PGP Software Developer’s Kit

User’'s Guide

Versionl.7 Int.

Copyright © 1990-1999 Network Associates, Inc. and its Affiliated Companies. All Rights
Reserved.

PGP* Software Developer’s Kit, Version 1.7.1Int.
9-9-99. Printed in the EC.

PGP, Pretty Good, and Pretty Good Privacy are registered trademarks of Network Associates,
Inc. and/or its Affiliated Companies in the US and other countries. All other registered and
unregistered trademarks in this document are the sole property of their respective owners.

Portions of this software may use public key algorithms described in U.S. Patent numbers
4,200,770, 4,218,582, 4,405,829, and 4,424,414, licensed exclusively by Public Key Partners; the
IDEA(tm) cryptographic cipher described in U.S. patent number 5,214,703, licensed from
Ascom Tech AG; and the Northern Telecom Ltd., CAST Encryption Algorithm, licensed from
Northern Telecom, Ltd. IDEA is atrademark of Ascom Tech AG. Network Associates Inc. may
have patents and/or pending patent applications covering subject matter in this software or its
documentation; the furnishing of this software or documentation does not give you any license
to these patents. The compression code in PGP is by Mark Adler and Jean-Loup Gailly, used
with permission from the free Info-ZIP implementation. LDAP software provided courtesy
University of Michigan at Ann Arbor, Copyright © 1992-1996 Regents of the University of
Michigan. All rights reserved. This product includes software developed by the Apache Group
for use in the Apache HTTP server project (http://www.apache.org/). Copyright © 1995-1999
The Apache Group. All rights reserved. See text files included with the software or the PGP
web site for further information. This software is based in part on the work of the Independent
JPEG Group. Soft TEMPEST font courtesy of Ross Anderson and Marcus Kuhn.

The software provided with this documentation is licensed to you for your individual use
under the terms of the End User License Agreement and Limited Warranty provided with the
software. The information in this document is subject to change without notice. Network
Associates Inc. does not warrant that the information meets your requirements or that the
information is free of errors. The information may include technical inaccuracies or
typographical errors. Changes may be made to the information and incorporated in new
editions of this document, if and when made available by Network Associates Inc.

Export of this software and documentation may be subject to compliance with the rules and
regulations promulgated from time to time by the Bureau of Export Administration, United
States Department of Commerce, which restrict the export and re-export of certain products
and technical data.

Network Associates International BV. +31(20)5866100
Gatwickstraat 25

NL-1043 GL Amsterdam

http://www.nai.com

info@nai.com

* is sometimes used instead of the ® for registered trademarks to protect marks registered

LIMITED WARRANTY

Limited Warranty. Network Associates warrants that for sixty (60) days from the date of
original purchase the media (for example diskettes) on which the Software is contained will be
free from defects in materials and workmanship.

Customer Remedies. Network Associates' and its suppliers' entire liability and your exclusive
remedy shall be, at Network Associates' option, either (i) return of the purchase price paid for
the license, if any, or (ii) replacement of the defective media in which the Software is contained
with a copy on nondefective media. You must return the defective media to Network
Associates at your expense with a copy of your receipt. This limited warranty is void if the
defect has resulted from accident, abuse, or misapplication. Any replacement media will be
warranted for the remainder of the original warranty period. Outside the United States, this
remedy is not available to the extent Network Associates is subject to restrictions under United
States export control laws and regulations.

Warranty Disclaimer. To the maximum extent permitted by applicable law, and except for the
limited warranty set forth herein, THE SOFTWARE IS PROVIDED ON AN “AS IS” BASIS
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. WITHOUT LIMITING THE
FOREGOING PROVISIONS, YOU ASSUME RESPONSIBILITY FOR SELECTING THE
SOFTWARE TO ACHIEVE YOUR INTENDED RESULTS, AND FOR THE INSTALLATION
OF, USE OF, AND RESULTS OBTAINED FROM THE SOFTWARE. WITHOUT LIMITING
THE FOREGOING PROVISIONS, NETWORK ASSOCIATES MAKES NO WARRANTY
THAT THE SOFTWARE WILL BE ERROR-FREE OR FREE FROM INTERRUPTIONS OR
OTHER FAILURES OR THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS. TO
THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NETWORK ASSOCIATES
DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NONINFRINGEMENT WITH RESPECT TO THE
SOFTWARE AND THE ACCOMPANYING DOCUMENTATION. SOME STATES AND
JURISDICTIONS DO NOT ALLOW LIMITATIONS ON IMPLIED WARRANTIES, SO THE
ABOVE LIMITATION MAY NOT APPLY TO YOU. The foregoing provisions shall be
enforceable to the maximum extent permitted by applicable law.

Table of Contents

Preface 1
Who should read this book? 1
Related material 1
About thisUsers GUide 1
DeVveloper SUPPOIt . .ottt e 2
How to contact Network Associates i, 3
CUSIOMEN SEIVICE . . .\ttt e e e 3
Technical SUPPOIt 3
Network Associates trainingt 4
Comments and feedback 4
Recommended Readingst 5
Non-Technical and beginning technical books 5
Intermediate books 5
Advanced books 6
Chapter 1. Introductionto the PGPsdk 7
Overview of the PGPsdK e 7
Security programming considerations o .. 7
Library source is open for peerreview 7
SDK is available to encourage PGP ubiquity 8
Programming in the cryptosystem, not implementing ciphers 8
Understanding the PGP cryptosystem 8
PGP inanutshell 9
ReCap 14
Core PGP 0perationst 15
Chapter 2. PGPsdk Organization, 17
Local key management 19
Ciphering and authentication 20
KeY Server aCCess 21
PGP API feature query functions 21
Option listfunctions e 22

User's Guide Y

Group funCtions 22

Utility toolbox functions 23
Random number functions 23
Userinterface functions 24
TLS (transport layer security) functions 24
Network socket functions i 24
Big number management functions L 25
Error functions e 26
Chapter 3. Programming withthe PGPsdk 27
Working with PGP’s opaque datatypes 27
The PGPContext structure 28
Working with option lists in PGPsdk functioncalls 28
Creating PGPOptionListRefs 29
Key management CONCEPLSttt e 30
Callback and event concepts it 31
Chapter 4. Implementing Common PGP Operations 33
Encrypting afile 33
OV W . oo 34
SlUD . oo 34
Obtaining the recipient's publickey 35
Creating the input and output file references 36
Forming options and ciphering the message 37
Calling PGPENCOdE() .. .ot 37
CleanUD ..o 38
PGP shutdown 38
Full listing: Encrypting afile 39
Decrypting afile 42
OV W . oo e 42
SBtUP . oo 42
Creating the input and output file references 43
Providing access to your user's private key oL 43
Forming options and deciphering the message 44
CleanUp .. 45

Vi PGP Software Developer’s Kit

Whatwe leftout 46
Full listing: Decrypting afile 48
Signing afile 50
OV W . oo e e 50
SlUD .ot 50
Creating the input and output file references 51
Accessing your user’s private key 51
Forming options and signing the message 52
Calling PGPENCOdE() . ..ot 53
CleanUD .o 53
Full listing: Signing afile 54
OVEBIVIBW . o 57
SlUD . o 57
Creating the filereferences i 58
Accessingakeydatabase 58
Forming options and verifying the signature 59
In your event callback handler function 60
CleanUD ..o 61
Chapter 5. PGPsdk Frequently Asked Questions 67
Frequently Asked QUESLIONS 67
What operating systems does PGPsdk support? 67
What key management functions are available from the PGPsdk? .. .67
Do | have to use a key from a key certificate when encrypting? 67
Can | use PGPsdk to generate keys, or do | need
a certificate serverforthat? 68
Can | encryptto more thanone key? 68
Is it possible to encrypt on one platform, say Windows 95,
and decrypt on another, say Solaris? 68
Does the PGPsdk include a random number generator? 68
Does the PGPsdk support Microsoft Visual Basic? 68
Does the PGPsdk supportJava? 68

User's Guide Vi

Viii PGP Software Developer’s Kit

Preface

Who should read this book?

This User’s Guide explains how to use the PGPsdk (software developer’s kit),
a collection of PGP digital privacy tools for software developers. Read it if
you’re a software developer working on the Unix, Windows, or Mac OS
platform and you want to add PGP compatibility or features to your
programs.

You’ll need to be an experienced C language programmer to understand and
use this material.

Related material

NOTE: All PGPsdk programmers will also need a copy of the PGPsdk
Reference Guide, which is a complete catalog of the functions in the
PGPsdk libraries. The Reference Guide is included in the PGPsdk
package.

If you are new to cryptography and would like an overview of the terminology
and concepts you will encounter while using PGP, please see the Network
Associates publication An Introduction to Cryptography. You may also want to
explore the “Recommended Readings.” listed at the end of this Preface.

About this User’'s Guide

The idea of this PGPsdk User’s Guide is to show developers:

= the general mechanics of programming with the PGPsdk headers and
libraries,

= how to use those headers and the libraries to add PGP functionality to a
program, by presenting code fragments for a few of the most
frequently-needed PGP operations as examples, and

= for developers new to PGP or crypto in general, an introduction to the
fundamental cryptosystem ideas that shaped the API.

User's Guide 1

Preface

To those ends, this User’s Guide is organized as follows:
Chapter 1: Introduction to the PGPsdk

Presents an overview of the PGPsdk, describes important basic concepts of the
PGP cryptosystem, and introduces the core crypto operations on which the
rest of the system depends.

Chapter 2: PGPsdk Organization

Describes how the functionality of the PGP cryptosystem is broken out by
subject area into the several runtime libraries and interface headers (.h files).

Chapter 3: Programming with the PGPsdk

Explains coding conventions used in the PGP interfaces, and how to work
with the PGP libraries in general.

Chapter 4: Implementing Common PGP Operations

This chapter contains example code snhippets that demonstrate how to do most
of the basic operations you’ll need to provide your users with PGP encryption
and authentication services.

Chapter 5: PGPsdk Frequently Asked Questions

From our developer tech support group, Chapter 5 is a list of answers to the
questions that developers most often ask regarding programming with the
PGPsdk. If you experience any difficulty while working with the PGPsdk, look
here first.

Developer support

Network Associates would like to thank you for your interest in adding PGP
functionality to your products. If you should need any additional information
beyond what we’ve provided in the PGPsdk, please contact the PGPsdk group
in our Developer Technical Services department (see next section).

PGP Sofware Developer's Kit

Preface

How to contact Networ k Asso ciates

Custome r service

To order products or obtain product information, contact the Network
Associates Customer Care department at +31(20)5866100 or write to the
following address:

Network Associates International BV.
Gatwickstraat25
NL-1043 GL Amsterdam

Technica | support

Network Associates is famous for its dedication to customer satisfaction. We
have continued this tradition by making our site on the World Wide Web a
valuable resource for answers to technical support issues. We encourage you
to make this your first stop for answers to frequently asked questions, for
updates to Network Associates software, and for access to Network Associates
news and encryption information.

World Wide Web http://www.nai.com

Technical Support for your PGP product is also available through these

channels:
Phone +31(20) 5866 100
Email tech-support-europe @nai.com

To provide the answers you need quickly and efficiently, the Network
Associates technical support staff needs some information about your
computer and your software. Please have this information ready before you
call:

If the automated services do not have the answers you need, contact Network
Associates at one of the following numbers Monday through Friday between
6:00 A.M. and 6:00 P.M™.

Phone +31(20) 5866 100

User's Guide 3

Preface

To provide the answers you need quickly and efficiently, the Network
Associates technical support staff needs some information about your
computer and your software. Please have this information ready before you
call:

Product name and version number

Computer brand and model

Any additional hardware or peripherals connected to your computer
Operating system type and version numbers

Network type and version, if applicable

Content of any status or error message displayed on screen, or appearing
in a log file (not all products produce log files)

Email application and version (if the problem involves using PGP with an
email product, for example, the Eudora plug-in)

Specific steps to reproduce the problem

Year 2000 Compl iance

Information regarding NAI products that are Year 2000 compliant and its Year
2000 standards and testing models may be obtained from NAI’s website at
http://www.nai.com/y2k.

For further information, email y2k@nai.com.

Networ k Associate s training

For information about scheduling on-site training for any Network Associates
product, call +31(20)5866100.

Comment s and feedback

Network Associates appreciates your comments and feedback, but incurs no
obligation to you for information you submit. Please address your comments
about pgp product documentation to: Network Associates International BV,
Gatwickstraat 25, NL-1043 GL Amsterdam. Y ou can also e-mail

comments to tns_documentation@nai.com.

4

PGP Sofware Developer's Kit

Preface

Recommended Readings

Non-Technical and beginning technical books

= Whitfield Diffie and Susan Eva Landau, “Privacy on the Line,” MIT Press;

ISBN: 0262041677

This book is a discussion of the history and policy surrounding
cryptography and communications security. It is an excellent read, even for
beginners and non-technical people, but with information that even a lot of
experts don't know.

David Kahn, “The Codebreakers” Scribner; ISBN: 0684831309

This book is a history of codes and code breakers from the time of the
Egyptians to the end of WWII. Kahn first wrote it in the sixties, and there is
a revised edition published in 1996. This book won't teach you anything
about how cryptography is done, but it has been the inspiration of the
whole modern generation of cryptographers.

Charlie Kaufman, Radia Perlman, and Mike Spencer, “Network Security:
Private Communication in a Public World,” Prentice Hall; ISBN:
0-13-061466-1

This is a good description of network security systems and protocols,
including descriptions of what works, what doesn't work, and why.
Published in 1995, so it doesn't have many of the latest advances, but is still
a good book. It also contains one of the most clear descriptions of how DES
works of any book written.

Intermediate books

Bruce Schneier, “Applied Cryptography: Protocols, Algorithms, and
Source Code in C,” John Wiley & Sons; ISBN: 0-471-12845-7

This is a good beginning technical book on how a lot of cryptography
works. If you want to become an expert, this is the place to start.

Alfred J. Menezes, Paul C. van Oorschot, and Scott Vanstone,

“Handbook of Applied Cryptography,” CRC Press; ISBN: 0-8493-8523-7
This is the technical book you should get after Schneier. There is a lot of
heavy-duty math in this book, but it is nonetheless usable for those who do
not understand the math.

Richard E. Smith, “Internet Cryptography,” Addison-Wesley Pub Co;
ISBN: 020192480

This book describes how many Internet security protocols. Most
importantly, it describes how systems that are designed well nonetheless
end up with flaws through careless operation. This book is light on math,
and heavy on practical information.

User's Guide 5

Preface

6

William R. Cheswick and Steven M. Bellovin, “Firewalls and Internet
Security: Repelling the Wily Hacker” Addison-Wesley Pub Co;

ISBN: 0201633574

This book is written by two senior researcher at AT&T Bell Labs, about
their experiences maintaining and redesigning AT&T's Internet
connection. Very readable.

Advanced books

Neal Koblitz, “A Course in Number Theory and Cryptography”
Springer-Verlag; ISBN: 0-387-94293-9

An excellent graduate-level mathematics textbook on number theory and
cryptography.

Eli Biham and Adi Shamir, “Differential Cryptanalysis of the Data
Encryption Standard,” Springer-Verlag; ISBN: 0-387-97930-1

This book describes the technique of differential cryptanalysis as applied to
DES. It is an excellent book for learning about this technique.

PGP Sofware Developer's Kit

Introduction to the PGPsdk

This chapter uses three sections to introduce the PGPsdk:
= Overview of the PGPsdk

= Understanding the PGP Cryptosystem

= Core PGP Operations

Overview of the PGPsdk

The PGPsdk provides everything a developer needs to incorporate any part of
the PGP cryptosystem’s functionality into their own software. The SDK
includes the same C-language header files and runtime libraries that Network
Associates’ own developers use to create the PGP software sold and
distributed by Network Associates.

Security programming considerations

Like any API guide, this document describes what to do; but note that because
PGP is concerned with digital privacy, in many cases we also go further to
point out what not to do, in order to help you avoid security holes that could
make the rest of your efforts moot.

Library source is open for peer review

If you would like to examine the source code for the libraries, including the
ciphering routines, Network Associates publishes that too. All of the functions
in the PGP libraries are also documented in the accompanying PGPsdk
Reference Guide.

It’s unusual for a company to publish the source code and document the
library interfaces of a commercial software product—but then, PGP is unusual
software that addresses a uniquely serious problem: digital privacy.

The PGP cryptosystem is open-source because its consumers would have no
reason to believe in it—indeed, shouldn’t believe in any cryptosystem—unless
its ciphering algorithms and protocols could be freely reviewed and approved
by the community of cryptographic experts.

PGP continually passes this test.

User's Guide 7

Introduction to the PGPsdk

SDK is available to encourage PGP ubiquity

Although Network Associates creates and publishes PGP software products of
its own, we also recognize that PGP becomes more valuable to its users as
more people use it. That’s why we’ve gone further than just publishing the
library source, to create and publish this PGPsdk in order to encourage other
developers to furnish PGP privacy services in their own software as well.

Programming in the cryptosystem, not implementing
ciphers

Developers new to the PGP API sometimes expect to find themselves dealing
with the mathematical intricacies of robustly scrambling and unscrambling
messages, but that really isn’t what PGPsdk programming is about.

While some people do get interested in the internal structure of the PGP
ciphering algorithms, you won’t need to understand them to use the PGP
libraries. That’s because all the details of ciphering and deciphering operations
are transparently handled by the API’s high-level functions. For example, once
you’ve done the necessary setup steps, all of the ‘scrambling’ is performed by
the single function call PGPEncode() .

What’s more important for you to understand are the general concepts of the
PGP cryptosystem. It’s this whole system that the PGP API supports, not just
the ciphering steps. As you read, keep in mind that ciphering is just one
operation in a much larger security scheme.

Understanding the PGP cryptosystem

Serious cryptography is not simple, and the PGP cryptosystem is no exception.
Before you attempt to implement PGP functionality in code, you should have
a good general understanding of the overall structure and functionality of the
PGP approach, and especially of the particular parts of it that you plan to add
to your program. It’s beyond the scope of this User’s Guide to give you that
larger understanding, but we can present a quick recap of the most central
concepts.

For pointers to some further readings on cryptosystems in general and PGP in
particular, please see the Preface.

8 PGP Software Developer’s Kit

Introduction to the PGPsdk

PGP in a nutshell

PGP is a system that can provide individuals and organizations with “Pretty
Good Privacy” for their computer systems and data. PGP is based on
cryptographic ciphering operations, and uses cryptography not only to
encrypt data for security, but also as a basis for identity authentication and
detection of data tampering services. PGP as a design has a highly reliable
mathematical basis, and PGP as a software library has a highly reliable history
of evolution and proven performance.

We’'ll start our tour of PGP by covering some of the basic concepts of
encryption, and work up to larger concepts like certification and trust
relationships.

Why encrypt?

The fundamental aim of encryption is to keep the contents of an item of
information secret until the intended recipient is ready to receive it. Since the
desire to do this most often arises in the context of communication between
two parties via an insecure carrier, the secret data is usually referred to as the
message; however, it’s sometimes useful for privacy reasons to encrypt
information even if it never leaves your own computer. PGP is basically an
encryption-based system.

Ciphering and deciphering as keyed, symmetrical transform

Encrypting or ciphering digital information has to be an
information-preserving, reversible operation; in other words, it requires both
one transform function for ciphering, and the exact inverse transform function
for deciphering. In the most simple, non-computer-based cryptosystems, these
transforms are so simple they can be communicated verbally: “Replace every
letter A with the letter D, B with E, etc.” or “Reverse every pair of letters.”

Modern digital ciphering uses far more intricate transforms, that are
additionally dependent upon a second piece of data called a key, such that
ciphering with even a slightly different key produces a radically different
encrypted message. With the right key, the encrypted message can be
deciphered; without that key, the message is unrecoverable because the
mathematics of recovery without the key are just too hairy. PGP uses this kind
of mathematically strong, keyed encryption.

User's Guide 9

Introduction to the PGPsdk

Single-key cryptosystems are too vulnerable

Conventional cryptography uses the same key both to encrypt and to decrypt
the data. This does a fine job of job of protecting the message, but there’s a
basic problem with this scheme: Now you have to protect the key, because
anyone who can get the key can recover the message. And since the key has to
somehow travel to the recipient in order to be used, there’s a potential for a lot
of exposure to loss. And in the context of transmitting data over a convenient
public carrier- i.e. the internet- the single-key approach is just too vulnerable
to rely on.

Key pairs make it possible to exchange keys publicly

PGP cryptography, by contrast, uses public key cryptography, in which each user
has two separate (but closely related) keys: a decryption key that you must
keep secure if you wish to protect your encrypted communications, and an
encryption key that you must make available to anyone you want to be able to
send you encrypted information. In PGP terminology, the decryption key is
known as the private key and the encryption key is known as the public key;
together, they make up your key pair. By publishing your public key, you make
it possible for anyone in the world to send you material encrypted so that only
you can read it; and this innovation for the first time makes crypto convenient
enough to be useful in a global internet context.

PGP client software helps you keep your private decryption key secret by,
again, encrypting it on your own computer with a passphrase (a long,
multi-word password) that you have to provide to access the key. In PGP, it’s
the passphrase that you personally have to remember, not the key itself.

Why public keys are safe

10

Due to the characteristics of the mathematics used in the PGP ciphering
functions, material encrypted using your public encryption key can only be
decrypted with your unique, corresponding private decryption key. Despite
the fact that your public encryption key is derived from your private
decryption key, the public encryption key is itself strongly encrypted, and it’s
therefore very difficult—practically impossible—to extract the private key
from the public key. This is why your public encryption key can be published
freely without giving away your unique decryption ability. Most PGP users
leave their public keys in automated public databases called certificate servers
or key servers from which anyone in the world can retrieve them.

PGP Software Developer’s Kit

Introduction to the PGPsdk

Why public keys are useful

This arrangement makes it easy for anyone with PGP software to encrypt
material in such a way that only you can decrypt it. Because it’s practically
impossible to access the information without the private decryption key once
information is in the encrypted form, it’s safe to use an insecure carrier such as
the internet to send the encrypted information.

In other words, publishing your public key gives you the ability to receive
information securely from anyone interested in sending you information
securely. Or, looking at it from the other side of the transaction, encrypting
material using someone else’s public key produces data that only they can
decrypt.

Importance of being certain of the key owner’s identity

As a sender, of course, to be really sure of the security of your PGP-encrypted
communication, you would have to be really sure that the public key that you
think belongs to your colleague Bob is in fact Bob true public key, and not a
public key generated by an impostor seeking to intercept Bob secure
communications. Lest that sound too paranoid, let’s revisit the part where the
sender obtains the recipient’s key. In practice, public keys are usually held in
automated certificate server programs, rather than handed off directly
between trusted people, so the question then becomes: How can you be sure it
was Bob who deposited that public key that your certificate server tells you
has Bob name on it, and not someone else?

This is where the related cryptographic ideas of digital certificates and digital
signatures enter the picture, along with a host of bigger issues like
organization-wide encryption policy—all of which boil down, in the end, to a
set of formalized structures for dealing with questions of plain old human
trust. PGP includes a model for representing trust relationships between
parties, and this model informs parts of the API design.

Digital signatures and certificates represent authentication

A digital certificate is a block of data with special properties, appended to a
message, that’s used to indicate that some trusted third party vouches for the
truth of another party’s assertion made inside that message. For example, an
assertion that a particular public key truly belongs to one particular person.

User's Guide 11

Introduction to the PGPsdk

A typical certificate contains a PGP public key and the proper name and user
ID of the key’s purported owner, plus the digital signature of at least one other
person (or any other kind of authority organization such as a business,
department, club, or government agency) who vouches that the public key in
the certificate really belongs to the named person. (A PGP certificate can, in
fact, contain multiple proper names and user IDs for the person—for example,
a person’s married name and maiden name, or a given name and stage name.)

A PGP digital signature is a small block of data that a PGP user can append to
any message or block of other data (whether encrypted or unencrypted) that
encodes both the exact content of the data and their own public key. Once
you’ve used PGP software to validate the digital signature on an incoming
message, you can determine the identity of whomever signed it, and you can
be sure that the data hasn’t been tampered with since it was signed.

You can use functions in the PGP libraries to test whether the signature on the
certificate is valid, and if it is, then you know that the public key and the user
information in the certificate are intact, and you will have also extracted the
public key of whomever signed the certificate.

The PGP API supports multiple standards for signatures, certificates, and
message digests.

Trust decisions: Who'’s doing the authenticating?

12

Of course, at this point the question becomes: Who is this person that signed
the certificate— and is that person anyone you should trust? Because if you’re
misled into encrypting with the wrong public key, your communication will
both be locked to the intended recipient, and open to a different, unknown
party who's specifically trying to hijack your intended recipient’s secure data.
(The process of generating a public key and getting it into a certificate and
signed by an authority is deliberate enough to make it practically impossible
to produce a misleadingly identified certificate accidentally.)

The answer is: You have to decide whose vouching you’re willing to trust
before any of this will work for you. And just to be clear: the risk is limited to
the data you send with this one specific public key only; getting fooled into
using the wrong public key doesn’t expose any of your other encrypted data
or communications. Also, this ‘trust’ question isn’t about trusting the other
fellow to be a good person, it’s limited to making sure that the public key really
belongs to the indicated person. PGP’s inventor Phil Zimmerman puts it like
this: “Trusting a key is not the same as trusting the key’s owner.”

PGP provides users a way to record their trust decisions in the form of a local
keyring file that contains a separate digital certificate for each collected public
key. When a user decides to trust a key as authentic, the PGP client software
adds the user’s own digital signature onto the certificate, and the user is able
to encrypt messages for that person’s eyes only.

PGP Software Developer’s Kit

Introduction to the PGPsdk

Figure 1-1. Direct trust

Delegating trust decisions

Because people are generally much too busy to actively research every
received certificate for trustworthiness, and because organizations sometimes
address this problem by delegating this certificate-checking function to
particular people or departments—either trusted individuals or, in PGP
terminology, institutional Certification Authorities (CAs). PGP lets you assign
each public key on your keyring a level of trust as an introducer —which is to say,
as a signer or voucher of other parties’ certificates. This level of trust can be
either complete, marginal, or untrusted; PGP will consider as valid the signature
of anyone with one ‘complete’ or at least two ‘marginal’ signatures on a
certificate. This scheme lets you, for example, designate your company CA as
a completely trusted introducer, so that the CA can do all the authentication
work on its set of certificates and you can simply rely on their judgement.

trusted

introducer

Figure 1-2. Trust via an introducer

Your ‘web of trust’

In PGP, the further concept of a trusted meta-introducer (a party whom you trust
to introduce other parties whom you are willing to also trust) opens the door
to the possibility of arbitrarily long chains of signature trust.

User's Guide 13

Introduction to the PGPsdk

trusted
trusted meta

introducer introducer

trusted
introducer

trusted
meta
introducer
trusted

introducer

Figure 1-3. Web of trust

We call these sets of chains your web of trust, and in the context of the internet,
your web of trust is potentially global.

Trust decisions are ultimately the responsibility of each user

All of this trust-checking occurs every time you use any public key to encrypt
anything. If you try to encrypt something with an incompletely trusted public
key, the PGP client software will alert you — but you always have the option to
ignore the warning and use the questionable key anyway.

Recap

In summary: PGP is a public key cryptosystem that supports multiple
ciphering, authentication, and certification standards, adds its own
decentralized ‘web of trust’ model, and unifies all these services under a single
API which is used both in PGP-branded software from Network Associates
and in the PGPsdk.

14 PGP Software Developer’s Kit

Introduction to the PGPsdk

Core PGP operations

As you can see, the PGP cryptosystem can involve a large number of different
entities, operations, and relationships. However, the PGP libraries implement
and represent them all through a fairly small number of core operations.

All the variety is produced by combining the following set of core operations
in different ways:

= Generating and saving the user’s own key pair

= Retrieving the user’s key pair from local storage

= Obtaining an intended recipient’s public key

= Generating a digital signature (signing a message), with the user’s key
= Verifying a received digital signature, with the sender’s key

= Encryption for an intended recipient, with their public key

= Decryption of a received message, with the user’s private key

The remainder of this User’s Guide concentrates on how to implement some
of these core operations in your own programs by using the PGP library API.

User's Guide 15

Introduction to the PGPsdk

16 PGP Software Developer’s Kit

PGPsdk Organization

This chapter uses two sections to explain how the library and headers forming
the PGP API are organized:

= Library and header file organization—This section shows how the PGP
API’s library and header files are organized into various subject areas on
each supported platform.

= Subject area overview—In this section we provide a brief introduction to
the services provided in each of those subject areas.

Further information on the organization of the PGP API, including detailed
information for each function, can be found in the PGPsdk Reference Guide.

An Introduction to Cryptography 17

PGPsdk Organization

Library and header file organization

Depending on the platform, the PGP API ships as two or three libraries. Each
library has one or more interface suites, with one C header file per suite. Both
the libraries and the headers are broken down by subject area:

Subject . Windows Unix Mac OS
area Header file library library library
Option lists pgpOptionList.h (various) (various) (various)
Local key
management PgpKeys h
Groups pgpGroups.h
Ciphering & pgpCBC.h
authentication | pgpCFC.h
pgpEncode.h PGP_SDK.dIl PGPsdk.a PGPsdkLib
pgpHash.h
pgpHMAC.h
pgpPublicKey.h
pgpSymmetricCipher.h
Feature query | pgpFeatures.h
Utilities pgpMemoryMgr.h
gggg%?;gr Z?ssr:] (various) (various) (various)
pgpUtilities.h
Random
number pgpRandomPool.h PGP_SDK.dlI PGPsdk.a PGPsdkLib
generation
User interface | pgpUserinterface.h PGPsdkuUl.dll (not available) PGPsdkUILib
Key server
access pgpKeyServer.h
TLS pgpTLS.h PGPsdkNL.dll | PGPsdkNetworkLib.a | PGPsdkNetworkLib
Network
sockets pgpSockets.h
Big number pgpBigNum.h
management
PGP_SDK.dII PGPsdk.a PGPsdkLib

Error codes

pgpErrors.h
pgpPFLErrors.h

18 PGP Software Developer’s Kit

PGPsdk Organization

Subject area overview

The PGP API provides a large number of functions and a large number of
interface suites. To help break it down into more manageable pieces, you may
find it useful to think of the API as being organized in terms of a set of primary
PGP operations, plus several categories of secondary, supporting functions:

Primary PGP operations
Local key management

Ciphering and authentication
Key server access

Support Functions
PGP API feature query functions

Option list functions

Group functions

Utility toolbox functions

Random number functions

User interface functions

TLS (transport layer security) functions
Network socket functions

Big number management functions
Error functions

Primary PGP operations

Primary PGP operations are things like encrypting, decrypting, signing, and
verifying signatures—the core functionality that drew you to PGP in the first
place—and directly related tasks such as getting the keys you need to do them.

Local key management
#include "pgpKeys.h"

Before you can do any cryptographic operation, you need to get a key. Keys
are considered to reside in local ‘key ring’ structures, either on disk or in
memory; remote keys are accessed via the key server access functions (see
below). A key may have any number of associated sub-keys, additional
recipient request keys (ARR), and user IDs; each user ID in turn may have any
number of associated signatures.

Local key management operations include:
= Create new key

An Introduction to Cryptography 19

PGPsdk Organization

20

=« Key import and export, via file or buffer

= Getand set key properties (respecting the ‘web of trust’ model which
propagates some properties along the web)

= Add key to key ring

= Search for key in keyring
= Remove key from keyring
= Check key validity

= Sign key

For further details on keys and key management, please see Chapter 2 of the
PGPsdk Reference Guide.

Ciphering and authentication
#include "pgpCBC.h"

#include "pgpCFC.h"

#include "pgpEncode.h"

#include "pgpHash.h"

#include "pgpHMAC.h"

#include "pgpPublicKey.h"
#include "pgpSymmetricCipher.h"

The PGP API furnishes two kinds of ciphering and authentication services:
both high-level and low-level, cryptosystem-specific. Depending on what you
want to do, you probably won’t need all the header files listed above.

Because some of these operations are processor-intensive and may take
significant amounts of time to execute, a callback mechanism is provided to
support both periodical progress-linked tasks (such as animating a progress
bar) and more general handling of situations that may arise during
cryptographic operations (for example, the need to prompt the user for a
passphrase). A set of event codes enumerates these callback conditions, and
tells your callback function what to do.

Ciphering and authentication operations include:
= The high-level PGPEncode() and PGPDecode() functions

= Lowe-level cipher functions for hashes, HMAC, symmetric cipher, cipher
block chaining, cipher feedback blocks, public key, and private key
functions

For further details on ciphering and authentication, please see Chapter 5 of the
PGPsdk Reference Guide.

PGP Software Developer’s Kit

PGPsdk Organization

Key server access
#include "pgpKeyServer.h"

The PGP API includes facilities for accessing HTTP and LDAP key servers.
Because of the communications-based nature of these functions, a thread and
callback mechanism is provided, using an enumerated set of event codes to tell
your callback procedure what to do.

Key server access operations include:

= Thread storage management functions

< Communication and callback management functions

= Remote key server operations: upload, delete, disable, and search for a key.

For further details on key server access, please see Chapter 10 of the PGPsdk
Reference Guide.

Support functions

This is setup, cleanup, connectivity, user interface, and other functions that
exist only to support the primary functions.

PGP API feature query functions
#include "pgpFeatures.h"

For anumber of reasons including variations in governmental regulation, new
feature development, and its long life, there have been lots of different PGP
library releases with different feature sets, even at the same version number.
For example, some library builds have omitted even the encryption functions.
For this reason, a developer accessing the PGP libraries from her code should
always use the feature query functions to verify that the needed functions are
present in the copy of the PGP library being used.

Feature query operations include:

= Get feature flags, count public key algorithms, count symmetric cipher
algorithms, get public key algorithm info, get symmetric cipher algorithm
info, and get PGPsdk version.

For further details on API feature query functions, please see Chapter 6 of the
PGPsdk Reference Guide.

An Introduction to Cryptography 21

PGPsdk Organization

22

Option list functions
#include "pgpOptionList.h"

As the ”Programming with the PGPsdk” chapter of this manual explains in
more detail, several important functions in the API use an ‘option list’
parameter mechanism. This approach affords the developer a great deal of
flexibility in forming the function calls, and avoids the burden of having to fill
in large parameter block structures. It does however require the developer to
use this set of option list functions to create and populate one opaque object
for every desired option. You can think of each function that creates and
option object as returning a token for that option.

Further functions support the creation and maintenance of lists of these option
tokens, permitting collections of options to be used multiple times once built.
For example, when encrypting every file on a given volume, all encryption
function options will remain the same except for the input file and the output
file; the rest of the options could be kept in a persistent option list.

Option list operations include:

= Functions to create and manage lists of option tokens: new, build, copy,
append, and free.

= More than 80 functions that take option parameters (if any) and return
option tokens. For example: specifying an output file, choosing a ciphering
algorithm, setting a title for a GUI window, etc.

For further details on option list functions, please see Chapter 3 of the PGPsdk
Reference Guide, and the "Programming with the PGPsdk” chapter of this
manual.

Group functions
#include "pgpGroups.h”

For easier management, key 1Ds may be kept in named lists, called groups.
Key IDs are not the same as keys and cannot be used in cryptographic
operations directly, so the PGP API provides functions to resolve a group into
the set of keys its key IDs represent. Group structures may be hierarchical; that
is, one group may contain another group. Groups are kept in group sets.

Group operations include:

= Group set management functions such as new, get, copy, merge, sort,
export, import, count, and free.

= Group management functions such as new, delete, add item, set, sort, and
count.

= Group item iterator functions such as new, next, and free.

PGP Software Developer’s Kit

PGPsdk Organization

= Group utility functions such as obtaining the referenced set of keys and
obtaining a flattened group from a hierarchical group.

For further details on group functions, please see Chapter 4 of the PGPsdk
Reference Guide.

Utility toolbox functions

#include "pgpMemoryMgr.h"
#include "pgpPubTypes.h"
#include "pgpSDKPrefs.h"
#include "pgpUtilities.h"

The utility toolbox supports the use of a number of basic PGP-unique
cross-platform resources and other mechanisms.

Utility operations include:

= PGPsdk management and preference functions, including management of
subsets such as the memory manager and networking APIs

= Functions to create and manage opaque objects and structures such as
Contexts, file specifications, and dates and times

For further details on utility toolbox functions, please see Chapter 7 of the
PGPsdk Reference Guide.

Random number functions
#include "pgpRandomPool.h"

PGP’s ciphering services require access to high-quality random numbers, and
that implies an infrastructure for creating and managing them. So PGP
supports a ‘pool’ of random numbers, and facilities for the acquisition of
random data of various kinds.

Random number operations include:
= Functions to manage the pool of random numbers

= Functions supporting the collection of entropy for use in forming new
random numbers

For further details on random number functions, please see Chapter 8 of the
PGPsdk Reference Guide.

An Introduction to Cryptography 23

PGPsdk Organization

24

User interface functions
#include "pgpUserinterface.h"

The PGPsdk allows developers to access the same user interface toolkit that
the PGP-brand software from Network Associates uses. The toolkit includes
customizable dialogs for several common operations such as entering
passphrases for various purposes, selecting keys to encrypt to, working with
a remote key server, and so forth. A set of options supports custom dialog
items.

User interface operations include:

= User interface management functions
= PGP dialog functions

= PGPOptions for custom dialog items

For further details on user interface functions, please see Chapter 9 of the
PGPsdk Reference Guide.

TLS (transport layer security) functions
#include "pgpTLS.h"

In a TLS communication connection, dataflow is broken into blocks and each
transmitted block is signed by the sending machine. By verifying the signature
on each block and rejecting blocks whose signatures don’t verify, the receiving
machine can be sure that the received data is intact and truly originated on the
sending machine (as opposed to an impostor). These PGPsdk functions
provide access to the low-level TLS functions that PGP uses when
communicating with TLS-capable remote key servers.

TLS operations include:

= Create, manage, and free TLS contexts

= Create, configure, manage, and free TLS sessions
= Attach a socket to a TLS session

For further details on TLS functions, please see Chapter 11 of the PGPsdk
Reference Guide.

Network socket functions
#include "pgpSockets.h"

The PGPsdk includes a simple platform-independent abstraction layer for
internet stream and datagram sockets. Note that associating a TLS session
with this socket layer results in an unusually easy-to-use, secure
communication package.

PGP Software Developer’s Kit

PGPsdk Organization

Socket operations include:

Create, manage, and delete sockets
Thread storage management
Socket listen, bind, and connect
Data send and send to

Data receive and receive from

Net-to-native byte ordering translations

For further details on network socket functions, please see Chapter 12 of the
PGPsdk Reference Guide.

Big number management functions
#include "pgpBigNum.h"

Generating keys and ciphering data with them involves math operations using
integers much larger than standard C compilers support. So the PGPsdk
includes several data types and functions for working with these ‘big
numbers.’

Big number operations include:

Create, copy, and free BigNum structures

Math functions that take BigNums as operands
Unary operator functions, such as shifts, for BigNums
Comparison operator functions for BigNums

Type translation and assignment functions

Functions to access subranges of a BigNum

For further details on big number management functions, please see Chapter
13 of the PGPsdk Reference Guide.

An Introduction to Cryptography 25

PGPsdk Organization

Error functions

#include "pgpErrors.h"
#include "pgpPFLErrors.h"

The PGPsdk uses a single error code space, and provides a function to
translate an error code number into a text string explaining the error.

Error operations include:
= Translate error code to text string.

For further details on PGP SDK errors, please see Appendix A of the PGPsdk
Reference Guide.

26 PGP Software Developer’s Kit

Programming with the

PGPsdk

This Chapter covers general topics related to programming with the PGP API:
=« Adding the PGP library and interfaces to your project

= Programming style

= Working with PGP’s opaque data types

= The PGPContext structure

= Working with option lists

- Key management concepts

= Callback and event concepts

= Platform-Specific Issues

These topics lay the groundwork for the more specific coverage of PGP
operations and functions that appears in Chapter 4, “Implementing Common
PGP Operations.”

Working with PGP’s opaque data types

For reasons of encapsulation and reliability across PGP library releases, many
important data structures used in the PGP API are presented in the interfaces
in terms of opaque data references. The functions that create these structures
return references to them, and you then manipulate and use them only by
passing the references to other PGP API functions— never by accessing the
members of the data structures directly.

For each of these data types, existence and memory management are handled
by a ‘New’and a ‘Free’ function, and a ReflsvValid macro is supplied so you
can avoid attempts to operate on bad references.

Important opaque data types include:

PGPContext A PGPsdk operating context

PGPOptionListRef An entry in a list of options for a
function

PGPKeySetRef A collection of one or more keys

An Introduction to Cryptography 27

Programming with the PGPsdk

For further details on these opaque data types, please see Chapter 1 of the
PGPsdk Reference Guide.

The PGPContext structure

Probably the most prominent of the PGP API’'s opaque data types is
PGPContext . Nearly all significant PGP operations require a valid
PGPContextRef , either directly or indirectly asa member of a further opaque
data type reference.

The PGPContext structure is opaque for a reason, so we won'’t detail its
contents here. What’s important to know is that you have to create one early
in your program, after calling PGPsdklInit() but before doing anything
significant with the PGPsdk; and you have to free the context late in your
program, after calling PGPsdkCleanup() and just before exiting.

PGPContextRef context = NULL;

/* Initialize the PGPsdk libs */
err = PGPsdkinit();
if(IsPGPError(err))

goto Exit;

[* Create the PGPContext */
err = PGPNewContext(kPGPsdkAPIVersion, &context);
if(IsPGPError(err))

goto Exit;

For further details on the PGPContextRef and PGPContext structures,
please see Chapter 1 of the PGPsdk Reference Guide.

Working with option lists in PGPsdk function calls

28

For many of the PGPsdk functions, the number of parameters a given
developer might want to use is variable, and the whole set of available
parameters is too large to use as conventionally-typed C function call
parameters. In fact, it’s even too large to keep in a standardized parameter
block structure— too much space would be wasted on average. Our solution is
to use an Option List technique in the parameter list of these function calls, and
this requires developers to work with a C programming idiom they may not
have encountered before.

Let’s look at the prototype for one of the functions that uses an option list:

PGPError PGPEncode(PGPContextRef pgpContext,
PGPOptionListRef firstOption, ...);

PGP Software Developer’s Kit

Programming with the PGPsdk

Note that the function prototype allows for any number of arguments (“... 7).
To use an Option List, you pass the function an arbitrary number of
PGPOptionListRef values, one per option that you wish to specify. You
produce each PGPOptionListRef by calling a function appropriate to the
parameter you want to provide. Here’s an example of a real-world call to
PGPEnNcode() , replacing the ‘...’ with real options:

PGPEncode(context,
PGPOEnNcryptToKeySet(context, foundUserKeys),
PGPOlInputFile(context, inFileRef),
PGPOOutputFile(context, outFileRef),
PGPOLastOption(context));

When called, the function simply pops the PGPOptionListRef s off the
stack, one at a time, and interprets each one in turn. This mechanism allows all
of the formal parameters to have the same type, and that’s what lets you as a
user of the function to choose your own set of options, and to supply them in
whatever order you prefer.

Note that in this form, an option list is a list of options in the source code, and
a sequence of data items on the stack, but as far as your program is concerned,
it’s not a free-standing data structure.

How does the called function know where to stop popping PGPOptionRef’s
off the stack? It looks for an end-of-list token. That’s why you must terminate
your option list with the special token that the function PGPOLastOption()
returns.

Creating PGPOptionListRefs

Note that because PGPOptionListRef is one of PGP’s opaque types, each
PGPOptionListRef value in the option list should be obtained only by a call
to the option list function corresponding to your desired parameter. These
functions all have names of the form PGPONameGoesHere(), where
NameGoesHere is the name of the option.

For example, as the previous code fragment illustrates, you’ll use the function
PGPOInputFile() to specify the input file for many operations: you pass
PGPOlInputFile() a PGPContextRef and the ID of the file containing your
input data, and then use the PGPOptionListRef it returns in the option list
for your desired operation.

An Introduction to Cryptography 29

Programming with the PGPsdk

Persistent option lists

A similar mechanism supports the creation of separate option list data
structures in memory, as distinct from option lists used in function
parameters. We also call these data structure-based option lists persistent
option lists in some of our documentation. This mechanism allows you to
build an option list just once and then use it multiple times, which is
sometimes helpful and sometimes necessary, as some PGPsdk functions take
option list pointers as parameters.

To create such an option list in memory, call the function
PGPNewOptionList() , and then populate the list with
PGPOptionListRef items at your convenience, using either

PGPBuildOptionList() or PGPAppendOptionList() . Persistent option
lists must be released with PGPFreeOptionList() once you’'re done with
them.

For more details on option list functions, please see Chapter 3 of the PGPsdk
Reference Guide.

Key management concepts

30

The PGP library can transparently maintain a structured, distributed database
of available public and private keys, and provides functions to query the
database, to obtain lists of keys matching your search criteria. This key
database may span any number of files, each of which may be either a local
disk file, or a remote file managed by a remote key server programs, or even a
local transient, memory-only file.

All accesses to key databases return lists of keys. You can get a list of your
user’s own public and private keys with the function
PGPOpenDefaultkeyRings() . Such a list of keys is called a key set, and can
be kept in an opaque PGPKeySetRef object. You can obtain keys matching
any given search criteria by creating a search filter to look for those criteriaand
then requesting a search be performed on an indicated key database, or on a
remote key server.

Once you've obtained a key set, you can sort them according to a number of
different criteria if you wish, and an iterator mechanism for walking a key set
is available. Reasons to iterate over a key list might include wanting to modify
all the keys in your list, or, once you’ve sorted your list into your preference
order, wanting to try to decrypt a message with each of the keys in turn, in
your own order of preference.

PGP Software Developer’s Kit

Programming with the PGPsdk

Looser, unfiltered collections of keys (such as you may want to keep in disk
files) called groups are also supported by a separate family of flexible functions
(see Chapter 4 of the PGPsdk Reference Guide). You can sort, index into, count,
name, iterate across, and describe a group. A group can contain other groups,
and groups can be kept either in a file or in memory; and you can produce a
key set from a group, for use with the many functions that operate on key sets
rather than groups.

For further details on the structure of keys and on key management
operations, please see Chapters 1 and 2 of the PGPsdk Reference Guide.

Callback and event concepts

Some major PGPsdk functions, notably PGPDecode() , allow you to provide
a callback handler function pointer parameter. If you provide such a callback
handler, then the PGPsdk will call your function whenever any of a predefined
set of conditions arises in the course of processing the requested operation (i.e.
during the PGPDecode()). Your function receives an event code parameter
that identifies the condition that triggered the callback. Symbols for these
event codes start with kPGPEvent_, and appear in pgpEncode.h .

For example, one of the things that can occur while decrypting a message with
PGPDecode() is that PGP may find that a passphrase is needed to authorize
access to the required private key. This will cause the PGP code to call your
callback handler with an event code of kPGPEvent_PassphraseEvent
Knowing this, you can write your event handler to put up an appropriate
dialog to obtain a passphrase from the user when it receives that event code.
For other events that flag a missing piece of information needed for an
operation, you can use the function PGPAddJobOptions() to supply it.

Typically a callback event handler will be written to accommodate and
respond to several different event codes.

The event codes used in each subject area of the PGPsdk API are detailed near
the start of each subject area’s chapter in the PGPsdk Reference Guide.

An Introduction to Cryptography 31

Programming with the PGPsdk

32 PGP Software Developer’s Kit

Implementing Common PGP

Operations

Nothing explains how to use a library quite like seeing some working code. In
this chapter we’ll present sample code fragments that illustrate how to
implement a number of basic PGP high-level operations:

= Encrypting afile

= Decrypting a file

= Signing afile

= Verifying a signature on a file

In the process of demonstrating how to achieve these high-level outcomes,
we’ll also articulate the supporting low-level PGP steps that you’ll need to be
able to take in your own code:

= Initializing PGP and setting up a PGPContext
= Setting up an option list

= Obtaining a public key from the local keyrings
= Obtaining a private key from the local keyring
= Ciphering with a public key

= Deciphering with a private key

Our first example, and the most basic one, teaches how to encrypt a text file.

Encrypting a file

Encrypting a message begins with the recipient’s public key and the message
to be encrypted, and ends with a PGP-encrypted message that can be safely
sent by means of an insecure carrier. (Recall that you have to obtain the
recipient’s public key in order to PGP-encrypt a message for the recipient’s
eyes only.)

This section demonstrates how to encrypt a file on disk, producing a second,
encrypted disk file.

An Introduction to Cryptography 33

Implementing Common PGP Operations

Overview

Setup

File encryption is accomplished by calling PGPEncode() with aset of options
specifying the input file, the output file, and the key(s) to which you wish to
encrypt. The code presented in this example demonstrates how to:

= Initialize the PGPsdk library

= Develop the data and create the resources needed to form the options
= Call PGPENncode() to perform the encryption

= Free the resources you created

= and finally, shut down the PGPsdk library.

We’ll step through the code, explaining one chunk at a time. For context, a full
listing of the example code appears at the end of this section.

The basic setup code for a simple encryption operation looks something like
this:

/* Initialize the PGPsdk libs */
err = PGPsdkinit();
if(IsPGPError(err))

goto Exit;

[* Create the PGPContext */
err = PGPNewContext(kPGPsdkAPIVersion, &context);
if(IsPGPError(err))

goto Exit;

Initializing the PGPsdk library

A basic rule or programming with the PGPsdk is that you must always call
PGPsdkInit() once to initialize the PGPsdk library before you attempt do
anything else with PGP. Note that you must also match this call with a call to
PGPsdkCleanup() before exiting your program.

Also note that we present these function calls within this encryption example
for clarity only; in a real-world program you’d make these calls at application
startup and shutdown time, not on a per-PGP-operation basis.

34 PGP Software Developer’s Kit

Implementing Common PGP Operations

Creating a PGPContext

Most interesting PGPsdk functions require a valid PGPContextRef
parameter, so you also have to call PGPNewContext() before you can get
very far. Note that you must match this call with a call to PGPFreeContext()
before exiting.

Again, for most real-world applications only a single context is required for
the whole application, so PGPNewContext() and PGPFreeContext()
would ordinarily appear at application startup and shutdown time, rather
than being called on a per-PGP-operation basis.

Obtaining the recipient’s public key

The next section of code retrieves the public key for the PGP user called
‘test@pgp.com’ from your user’s local default keyrings, and turns it into a
key set that you’ll use in one of the options you’ll pass to PGPEncode() :

char const *userlD = "test@pgp.com";

/* Open the default keyring */
err = PGPOpenDefaultKeyRings(context, kPGPKeyRingOpenFlags_Mutable,
&defaultkeyRing);
if(IsPGPError(err))
goto Exit;

/* Create a filter to look for the default "test@pgp.com” key */
err = PGPNewUserlIDStringFilter(context, userlD,
kPGPMatchSubString, &filter);
if(IsPGPError(err))
goto Exit;

/* Look for the key */
err = PGPFilterKeySet(defaultkeyRing, filter, &foundUserKeys);
if(ISPGPError(err))

goto Exit;

Performing the key search

To get the key for ‘test@pgp.com’ , you have to search your user’s default
keyring.

Before you can perform the key search, you first need to enable access to your
user’s default keyrings with PGPOpenDefaultkeyRings() . Then you need
to create a search filter that matches for ‘test@pgp.com’ , using
PGPNewUserIDStringFilter() . At that point you can perform the actual
search by calling PGPFilterKeySet() , which produces a key set reference
that holds all the keys that satisfy your search criteria. We’'re calling that key
set foundUserKeys

User's Guide 35

Implementing Common PGP Operations

Note that the result is typed as a set of keys, rather than as just a single key,
because your filter may find more than one key. You can use the function
PGPCountKeys() on the search result key set to see how many keys the filter
found for you, for example to help decide whether you need to present them
to the user as options to choose from. For clarity in this simple example,
because we expect there to be just the one ‘test@pgp.com’ key, we’ve left
all that out for now.

Creating the input and output file references

36

Specifying the input and output files is similar, but simpler:

char const *inFileName
char const *outFileName

= "C:\testPlainText";
= "C:\testEncrypted";
PGPFileSpecRef inFileRef
PGPFileSpecRef outFileRef

kinvalidPGPFileSpecRef;
kinvalidPGPFileSpecRef;

/* Create the file descriptions */
err = PGPNewFileSpecFromFullPath(context, inFileName, &inFileRef);
if(IsPGPError(err))

goto Exit;

err = PGPNewFileSpecFromFullPath(context, outFileName, &outFileRef);
if(IsPGPError(err))
goto Exit;

When you make your call to PGPEncode() , you’ll need to specify the input
and output files in terms of PGPFileSpecRef values, so you need to translate
your filename strings into that form first. Fortunately, the PGPsdk provides a
function to turn a file path string into a PGPFileSpecRef . It’s called
PGPNewFileSpecFromFullPath() , and you need to use it to make one
PGPFileSpecRef for the input file, and another for the output file.

Mac OS developers should note that this process works differently on that
platform, and that for clarity we’ve omitted the Mac OS version in this
example. You would use the function PGPNewFileSpecFromFSSpec()
instead, which in keeping with the Mac OS file system model takes an
FSSpec* instead of a char* path as the second parameter. Setting up the
FSSpec is your responsibility, though.

PGP Software Developer’s Kit

Implementing Common PGP Operations

Forming options and ciphering the message

At this point, all the hard work’s over. Now you just need to transform your
three encryption parameters into the form of PGP options, and provide them
in your call to PGPEncode() :

/* This is the main event; everything above and
below exists only to support this call */

err = PGPEncode(context,
PGPOEnNcryptToKeySet(context, foundUserKeys),
PGPOInputFile(context, inFileRef),
PGPOOutputFile(context, outFileRef),
PGPOLastOption(context));

Notice that the parameters to PGPEncode() , after the context , form a list of
PGP option functions, terminated by the PGPOLastOption(context)

This is a common idiom in PGPsdk programming that you should become
comfortable with; see Chapter 3, “Programming with the PGPsdk,” for an
introduction to option lists.

Each of the calls PGPOEncryptToKeySet() , PGPOInputFile() ,and
PGPOOutputFile() creates an opaque option data structure and returns an
opaque PGPOptionRef that refers to it:

< PGPOEnNcryptToKeySet(context, foundUserKeys) tells
PGPEnNcode() to encrypt the input file to the key(s) that your search
returned,;

= PGPOInputFile(context, inFileRef) tells PGPEncode() toread
the file you specified as the input source;

< PGPOOututFile(context, outFileRef) tells PGPEncode() to
write the encrypted version of the input file to the output file you specified.

These three calls form a simple option list directly in the call to PGPEncode() .
For future reference, note that a couple other option list strategies are possible,
including creating a separate PGPOptionList structure and adding
PGPOptionListRef sto it as desired, and finally passing the whole option
list in as a PGPOptionList parameter to PGPEncode() .

Calling PGPENcode()

To perform the actual encryption operation, you just call PGPEncode() as
shown. If all the option parameters were set correctly, this will result in the
creation of an encrypted output file with the name you specified.

User's Guide 37

Implementing Common PGP Operations

Cleanup

Before you can safely exit, you’ll need to dispose of whatever PGPsdk
resources you caused to be created, and shut down the PGPsdk library:

[* ---- Release resources used in this operation ------------- *

if

—~

PGPFileSpecReflsValid(inFileRef))
PGPFreeFileSpec(inFileRef);

if

—~

PGPFileSpecReflsValid(outFileRef))
PGPFreeFileSpec(outFileRef);

_.
—~

PGPFilterReflsValid(filter))
PGPFreeFilter(filter);

if

—~

PGPKeySetReflsValid(foundUserKeys))
PGPFreeKeySet(foundUserKeys);

if

—~

PGPKeySetReflsValid(defaultkeyRing))
PGPFreeKeySet(defaultkeyRing);

/* ---- PGP Shutdown */

/* Release the PGP context we've been using */
if(PGPContextReflsValid(context))
PGPFreeContext(context);

/* PGP library shutdown */
PGPsdkCleanup();

The PGPsdk library is responsible for managing whatever storage is required
to support its opaque data types, but it needs your help in order to know when
it’s time to free that storage. In this example we’ve used several opaque types,
and so before quitting we have to free up two file specs, a filter, and two key
sets.

PGP shutdown

We also have to free up the PGPContext we’ve been using, and lastly, you
should always balance your PGPsdkInit() call with a call to
PGPsdkCleanup() before exiting your program.

As with the corresponding setup operations (PGPsdkiInit() and
PGPNewContext()), note that we present these two calls within this
encryption example for clarity only; in a real-world program you’d ordinarily
make these calls at application startup and shutdown time, not on a
per-PGP-operation basis.

38 PGP Software Developer’s Kit

Implementing Common PGP Operations

Full listing: Encrypting a file

If we pull all of the above snippets together, reorganize them rationally, and

add some better comments, we get this full listing:

/* ==== Encrypt a File code fragment */
/*

* Demonstrates simple file encryption with the PGPsdk.

*

* Encrypts file "C:\testPlainText" with key "test@pgp.com",

* producing encrypted file "C:\testEncrypted".

*

*

* More precisely:

*

* The userlD key has to be available in the default keyring;

* for simplicity, this example uses a key with the user ID

* 'test@pgp.com'.

*

* Overwrites any existing output file with the same name.

*

*
~

/* Specify the key, input filename, and output filename to use */
char const *userlD = "test@pgp.com";
char const *inFileName "C:\testPlainText";
char const *outFileName "C:\testEncrypted";

/* Declare and initialize variables */

PGPError err = kPGPError_NoErr;
PGPContextRef context = kinvalidPGPContextRef;
PGPKeySetRef defaultkeyRing = kinvalidPGPKeySetRef;
PGPFilterRef filter = kinvalidPGPFilterRef;

PGPKeySetRef foundUserKeys = kinvalidPGPKeySetRef;
PGPFileSpecRef inFileRef kinvalidPGPFileSpecRef;
PGPFileSpecRef outFileRef kinvalidPGPFileSpecRef;

[* - PGP Setup *

/* NOTE: These calls appear here for clarity only.

* In a real-world application, you would call PGPsdkInit()
* and PGPNewContext() at application startup time, not on
* an operation-by-operation basis.

*/

/* Initialize the PGPsdk libs */
err = PGPsdkinit();
if(IsPGPError(err))

goto Exit;

/* Create the PGPContext */

err = PGPNewContext(kPGPsdkAPIVersion, &context);
if(IsPGPError(err))

User's Guide

39

Implementing Common PGP Operations

goto Exit;
[* ---- Prepare Encryption Operation Parameters ------------- */

/* Open the default keyring */
err = PGPOpenDefaultKeyRings(context, kPGPKeyRingOpenFlags_Mutable,
&defaultkeyRing);
if(IsPGPError(err))
goto Exit;

/* Create a filter to look for the default "test@pgp.com” key */
err = PGPNewUserlIDStringFilter(context, userlD,
kPGPMatchSubString, &filter);
if(IsPGPError(err))
goto Exit;

/* Look for the key */
err = PGPFilterKeySet(defaultkeyRing, filter, &foundUserKeys);
if(IsSPGPError(err))

goto Exit;

/* Create the file descriptions */
err = PGPNewFileSpecFromFullPath(context, inFileName, &inFileRef);
if(IsPGPError(err))

goto Exit;

err = PGPNewFileSpecFromFullPath(context, outFileName, &outFileRef);
if(IsPGPError(err))
goto Exit;

[* ---- Perform the Encryption operation ------------- */

/* This is the main event; everything above and

* below exists only to support this call.

*

* Produces the encrypted output file in the default directory.
*/

err = PGPEncode(context,
PGPOEnNcryptToKeySet(context, foundUserKeys),
PGPOlInputFile(context, inFileRef),
PGPOOutputFile(context, outFileRef),
PGPOLastOption(context));

Exit:

[* ---- Release resources used in this operation ------------- *

if(PGPFileSpecReflsValid(inFileRef))
PGPFreeFileSpec(inFileRef);

if(PGPFileSpecReflsValid(outFileRef))
PGPFreeFileSpec(outFileRef);

if(PGPFilterReflsValid(filter))

40 PGP Software Developer’s Kit

Implementing Common PGP Operations

PGPFreeFilter(filter);

if(PGPKeySetReflsValid(foundUserKeys))
PGPFreeKeySet(foundUserKeys);

if(PGPKeySetReflsValid(defaultkeyRing))
PGPFreeKeySet(defaultkeyRing);

/* ---- PGP Shutdown */

/* NOTE: These calls appear here for clarity only.
* In a real-world application, you would make these calls to
* PGPFreeContext() and PGPsdkInit() at application shutdown time,
* and not on an operation-by-operation basis.
*/
/* Release the PGP context we've been using */
if(PGPContextReflsValid(context))
PGPFreeContext(context);

/* PGP library shutdown */
PGPsdkCleanup();

User's Guide 41

Implementing Common PGP Operations

Decrypting a file

Overview

Setup

Decrypting a message meant for your program’s user begins with the received
encrypted message, and with your user’s private key waiting on your user’s
computer; decryption ends with the recovered decrypted message.

Recall that you have to be able to access your user’s private key in order to
decrypt a PGP-encrypted message. This is another way of saying that a person
who wants to encrypt a message for your user’s eyes only must encrypt to the
public key that uniquely corresponds to your user’s true private key.

This section demonstrates how to decrypt an encrypted disk file, producing a
second, unencrypted disk file. It happens to use as input the same file that the
previous example, "Encrypting a file” produced. You’ll notice that the code
here is even simpler than the encryption example was.

File decryption is accomplished by calling PGPDecode() with a set of options
specifying the input file, the output file, and the key set containing your user’s
private key(s). Building on the "Encrypting a file” section, the code presented
in this example demonstrates how to:

= Initialize the PGPsdk library
= Develop the data and create the resources needed to form the options
= Call PGPDecode() to perform the decryption

= Free the resources you created

and finally, shut down the PGPsdk library.
Again, we’ll step through the code, explaining one chunk at a time.

For context, a full listing of the example code appears at the end of this section.

Setup code for a simple decryption operation is the same as for encryption:

/* Initialize the PGPsdk libs */
err = PGPsdkinit();
if(IsPGPError(err))

goto Exit;

[* Create the PGPContext */
err = PGPNewContext(kPGPsdkAPIVersion, &context);
if(IsPGPError(err))

goto Exit;

42 PGP Software Developer’s Kit

Implementing Common PGP Operations

Initializing the PGPsdk library

Note that we present these function calls within this example for clarity only;
in a real-world program you’d make these calls at application startup and
shutdown time, not on a per-PGP-operation basis. For further explanation,
please refer to the Encrypt a file example.

Creating the input and output file references
This too is very similar to the encryption example:

/* Specify the input filename, output filename */
char const *inFileName "C:\testEncrypted";
char const *outFileName "C:\testDecrypted"”;

/* Declare and initialize variables */
PGPFileSpecRef inFileRef kinvalidPGPFileSpecRef;
PGPFileSpecRef outFileRef kinvalidPGPFileSpecRef;

/* Create the file descriptions */
err = PGPNewFileSpecFromFullPath(context, inFileName, &inFileRef);
if(IsPGPError(err))

goto Exit;

err = PGPNewFileSpecFromFullPath(context, outFileName, &outFileRef);
if(IsPGPError(err))
goto Exit;

You’ll have noticed that the only difference from the "Encrypting a file”
example is the exact filenames used. This consistency is one of the benefits of
the option list strategy— once you know how to specify the input and output
files for one PGPsdk operation, you know how to do it for almost every other
operation in the whole PGPsdk.

Mac OS developers should refer to the "Encrypting a file” example for an
explanation of how file references are handled differently on that platform.

Providing access to your user’s private key

For decryption, we need to provide PGPDecode() with access to our user’s
private key:

/* Open the default keyring */
err = PGPOpenDefaultKeyRings(context, kPGPKeyRingOpenFlags_Mutable,
&defaultkeyRing);
if(IsPGPError(err))
goto Exit;

User's Guide 43

Implementing Common PGP Operations

Passphrases control access to private decryption keys

Decrypting a message requires access to the recipient’s correct private key.
Because of the PGPsdk’s flexible and modular approach to key management,
it’s your responsibility when writing PGPsdk decryption code to provide
PGPDecode() with access to your user’s private key(s). These private keys
are typically stored in the user’s default keyrings. Although the default
keyrings may contain more than key, the decryption process extracts the
public key that was used to encrypt the message, and that enables
PGPEnNcode() to pick the uniquely corresponding private key.

Because private keys are the single most important secret in the PGP public
key security scheme, access to them is carefully guarded throughout the
PGPsdk. Your decryption code cannot access a private key without feeding
PGPDecode() the key’s passphrase.

For clarity in this example we expose the passphrase in plain text in the source
code, but please note that from a security standpoint this is just a terrible
practice — anyone with a debugger could read the passphrase simply by
inspecting your executable file, and there goes your security integrity, right
out the window. In general, you’ll want to keep any storage of passphrases as
transient and disguised as possible. In most real-world applications of PGP,
you’'d instead furnish a user interface dialog to ask your user for the
passphrase. (See also the note regarding event callback functions below, under
“Full listing: Signing a file)

Forming options and deciphering the message

44

Again, all the hard work’s over at this point and you just need to transform
your encryption parameters into PGP options and feed them to
PGPDecode() :

err = PGPDecode(context,
PGPOInputFile(context, inFileRef),
PGPOOutputFile(context, outFileRef),
PGPOKeySetRef(context, defaultkeyRing),
PGPOPassphrase(context, keyPassphrase),
PGPOLastOption(context));

Just as for PGPENncode() , the parameters to PGPDecode() after the context
form a list of PGP option functions, terminated by the PGPOLastOption(
context) . Again, thisis aform that, having learned it once, you’ll use again
and again in PGPsdk programming.

To run down the option parameters:

< PGPOInputFile(context, inFileRef) tells PGPDecode() toread
the file you specified as the input source;

PGP Software Developer’s Kit

Implementing Common PGP Operations

= PGPOOututFile(context, outFileRef) tells PGPDecode() to
write the encrypted version of the input file to the output file you specified,;

= PGPOKeySetRef(context, defaultkeyRing) feeds the user’s
default keys to PGPDecode() so it can search for the right decryption key
there;

= PGPOPassphrase(context, keyPassphrase) furnishes
PGPDecode() with the passphrase needed to access our test key;
ordinarily you’d have set keyPassphrase from a user dialog.

Calling PGPDecode()

Cleanup

To perform the actual decryption operation, you just call PGPDecode() as
shown. If all the option parameters were set correctly, this will result in the
creation of a decrypted output file with the name you specified.

Cleanup too is very similar to the encryption example:
[* ---- Release resources used in this operation ------------- *

if(PGPFileSpecReflsValid(inFileRef))
PGPFreeFileSpec(inFileRef);

if(PGPFileSpecReflsValid(outFileRef))
PGPFreeFileSpec(outFileRef);

if(PGPKeySetReflsValid(defaultkeyRing))
PGPFreeKeySet(defaultkeyRing);

/* ---- PGP Shutdown */

/* Release the PGP context we've been using */
if(PGPContextReflsValid(context))
PGPFreeContext(context);

/* PGP library shutdown */
PGPsdkCleanup();

Again, we present the ‘PGP Shutdown’ calls within this example for clarity
only; in a real-world program you’d ordinarily make these calls at application
shutdown time, not on a per-PGP-operation basis.

User's Guide 45

Implementing Common PGP Operations

What we left out

Event handler function

46

As you know, the PGPsdk provides a callback event handling mechanism for
some operations. Decrypting a file with PGPDecode() is probably the most
common use for an event handler, because in the course of decrypting the
message any number of unpredictable conditions can arise that need to be
handled adaptively.

For example, most users have more than one private key, but because the
encryption public key isn’t recovered until PGPDecode() has started
working, your code won’t know what passphrase to use at the time of your call
to PGPDecode() . This is why one of the callback event codes is
kPGPEvent_PassphraseEvent . If your callback function receives that
code, you need to take steps to acquire the needed passphrase, supply it to the
PGPsdk in the form of a standard PGP option with the call
PGPAddJobOptions() , and return.

To supply a simple callback event handler called myEventHandler() for
PGPDecode() , you'd add something like the following option to your
PGPDecode() call:

/* Use myEventHandler for event callbacks */
PGPOEventHandler(context, myEventHandler, &myState),

A very simple example of a callback handler that deals only with the
kPGPEvent_PassphraseEvent might look like this:

static PGPError myEventHandler(
PGPContextRefcontext,
PGPEvent*event,
PGPUserValueuserValue)

PGPErrorerr = kPGPError_NoErr;

if(event->type == kPGPEvent_PassphraseEvent)

{
PGPEventPassphraseData *d = &event->data.passphraseData;
char passphrase[256];

passphrase[0] = O;
if(d->fConventional)
{
/* Prompt for a conventional passphrase here.
See pgpUserinterface.h */

else

PGP Software Developer’s Kit

Implementing Common PGP Operations

}

/* Prompt for a decryption passphrase here.
See pgpUserinterface.h */

}

err = PGPAddJobOptions(event->job,
PGPOPassphraseBuffer(context, passphrase,
strlen(passphrase)),
PGPOLastOption(context));

return err;

}

Typically an event handler would be much more extensive than this one; over
twenty event codes are currently defined. Note that the previous example
”Encrypting a file” could probably have used an event handler function too.

For further information on event callback functions, please see “Callback and
event concepts” on page 31.

User's Guide 47

Implementing Common PGP Operations

Full listing: Decrypting a file

Again reorganizing the previous snippets and improving the comments, we
get this full listing:

/* ==== Decrypt a File code fragment */
/*
Demonstrates simple file decryption with the PGPsdk.

*

*

* Decrypts file "C:\testEncrypted" encrypted with key

* "test@pgp.com", producing encrypted file "C:\testDecrypted".
*

*

/* Specify the input filename, output filename,
and key passphrase to use */

char const *inFileName = "C:\testEncrypted";

char const *outFileName = "C:\testDecrypted"”;

char const *keyPassphrase = "testPassphrase";

/* Declare and initialize variables */

PGPError err = kPGPError_NoErr;
PGPContextRef context = kinvalidPGPContextRef;
PGPKeySetRef defaultkeyRing = kinvalidPGPKeySetRef;
PGPFileSpecRef inFileRef kinvalidPGPFileSpecRef;
PGPFileSpecRef outFileRef kinvalidPGPFileSpecRef;

[* - PGP Setup *

/* NOTE: These calls appear here for clarity only.

* In a real-world application, you would call PGPsdkInit()
* and PGPNewContext() at application startup time, not on
* an operation-by-operation basis.

*/

/* Initialize the PGPsdk libs */
err = PGPsdkinit();
if(IsPGPError(err))

goto Exit;

[* Create the PGPContext */
err = PGPNewContext(kPGPsdkAPIVersion, &context);
if(IsPGPError(err))

goto Exit;

[* ---- Prepare Decryption Operation Parameters ------------- */

/* Open the default keyring */
err = PGPOpenDefaultKeyRings(context, kPGPKeyRingOpenFlags_Mutable,
&defaultkeyRing);
if(IsPGPError(err))
goto Exit;

48 PGP Software Developer’s Kit

Implementing Common PGP Operations

/* Create the file descriptions */
err = PGPNewFileSpecFromFullPath(context, inFileName, &inFileRef);
if(IsPGPError(err))

goto Exit;

err = PGPNewFileSpecFromFullPath(context, outFileName, &outFileRef);
if(IsPGPError(err))
goto Exit;

[* ---- Perform the Decryption operation ------------- */

/* This is the main event; everything above and

* below exists only to support this call.

*

* Produces the decrypted output file in the default directory.
*/

err = PGPDecode(context,
PGPOlInputFile(context, inFileRef),
PGPOOutputFile(context, outFileRef),
PGPOKeySetRef(context, defaultkeyRing),
PGPOPassphrase(context, keyPassphrase),
PGPOLastOption(context));

Exit:
[* ---- Release resources used in this operation ------------- *

if

—~

PGPFileSpecReflsValid(inFileRef))
PGPFreeFileSpec(inFileRef);

_.
—~

PGPFileSpecReflsValid(outFileRef))
PGPFreeFileSpec(outFileRef);

if

—~

PGPKeySetReflsValid(defaultkeyRing))
PGPFreeKeySet(defaultkeyRing);

/* ---- PGP Shutdown */

/* NOTE: These calls appear here for clarity only.
* In a real-world application, you would make these calls to
* PGPFreeContext() and PGPsdkInit() at application shutdown time,
* and not on an operation-by-operation basis.
*/
/* Release the PGP context we've been using */
if(PGPContextReflsValid(context))
PGPFreeContext(context);

/* PGP library shutdown */
PGPsdkCleanup();

User's Guide

49

Implementing Common PGP Operations

Signing a file

In PGP, signhing a message begins with your own public key and a message to
be signed, and ends with a digital signature that you typically append to the
message.

As with decryption, you have to be able to access your user’s private key in
order to sign a message.

This section demonstrates how to sign a disk file, producing a second disk file
containing the signature. As you’ll notice, signing is more complicated than
the previous encryption and decryption examples.

Overview

File signing is accomplished by calling PGPEncode() with a set of options
specifying the input file, the output file, and the key to sign with and its
passphrase; a separate option asks for the signature to be created in a
‘detached’ file of its own. The code presented in this example demonstrates
how to:

= Initialize the PGPsdk library
= Develop the data and create the resources needed to form the options
= Call PGPEnNncode() to perform the signing operation

= Free the resources you created

and finally, shut down the PGPsdk library.

As before, we’ll go over the code one fragment at a time. For more context, a
full listing of the example code appears at the end of this section.

Setup
Our setup code is once again the same:

/* Initialize the PGPsdk libs */
err = PGPsdkinit();
if(IsPGPError(err))

goto Exit;

[* Create the PGPContext */
err = PGPNewContext(kPGPsdkAPIVersion, &context);
if(IsPGPError(err))

goto Exit;

50 PGP Software Developer’s Kit

Implementing Common PGP Operations

Creating the input and output file references

Once again, only the names have changed, and Mac OS would be handled
differently:

/* Specify the input and output filenames */
char const *inFileName "C:\testIn";
char const *outFileName "C:\testSignature";

/* Declare and initialize variables */
PGPKeylterRef keyListlterator= kInvalidPGPKeylterRef;
PGPKeyRef signingKey = kinvalidPGPKeyRef;

/* Create the file descriptions */
err = PGPNewFileSpecFromFullPath(context, inFileName, &inFileRef);
if(IsPGPError(err))

goto Exit;

err = PGPNewFileSpecFromFullPath(context, outFileName, &outFileRef);
if(IsPGPError(err))
goto Exit;

Accessing your user’s private key

This involves a filter and a key search to narrow down the default key ring to
one particular key to sign with, very similar to what we did in the "Encrypting
a file” example:

/* Open the default keyring */
err = PGPOpenDefaultKeyRings(context, kPGPKeyRingOpenFlags_Mutable,
&defaultkeyRing);
if(IsPGPError(err))
goto Exit;

/* Create a filter to look for the default "test@pgp.com” key */
err = PGPNewUserIDStringFilter(context, userlD,
kPGPMatchSubString, &filter);
if(IsPGPError(err))
goto Exit;

/* Look for the key */
err = PGPFilterKeySet(defaultkeyRing, filter, &foundUserKeys);
if(ISPGPError(err))

goto Exit;

/* use the first matching key */
err = PGPOrderKeySet(foundUserKeys, kPGPAnyOrdering,
&foundKeyslList);

err = PGPNewKeylter(foundKeyslList, &keyListlterator);
if(IsPGPError(err))

goto Exit;
err = PGPKeylterNext(keyListlterator, &signingKey);

User's Guide 51

Implementing Common PGP Operations

if(IsPGPError(err))
goto Exit;

Forming options and signing the message

52

Again, you need to transform your encryption parameters into PGP options
and feed them to PGPEncode() :

char const *keyPassphrase = "testPassphrase";

err = PGPEncode(context,

PGPOArmorOutput(context, TRUE),

PGPODetachedSig(context,
/* PGPODetachedSig uses its own option list */
PGPOLastOption(context)),

PGPOInputFile(context, inFileRef),

PGPOOutputFile(context, outFileRef),

PGPOSignWithKey(context, signingKey,
/* PGPOSignWithKey uses its own option list */
PGPOPassphrase(context, keyPassphrase),
PGPOLastOption(context)),

PGPOLastOption(context));

To run down the option list:

< PGPOArmorOutput(context, TRUE) tells PGPEncode() to format
the signature in the following familiar format, which is designed for email
transmission and makes clear what the signature is:

Version: PGPsdk version 1.7.1
(C) 1997-1999 Network Associates, Inc.
and its affiliated companies.

iIQA/AWUANO0308g/fXvgIViELEQLk2wCelL+GSNcDQZ31xTu2iGDfh
JcyEQXQAOPIi1INW1JYMgdfBNATia+zH/8Xe
=hvVuM

< PGPODetachedSig(context, PGPOLastOption(context)) tells
PGPEnNcode() to create the signature in a separate or ‘detached’ file;

= The call to PGPOSignWithKey() tells PGPEncode() what key to use
when creating the signature, and furnishes the passphrase needed to access
it;

= PGPOInputFile(context, inFileRef) tells PGPEncode() tosign
the file you specified as the input source;

< PGPOOututFile(context, outFileRef) tells PGPEncode() to
write the signature data to the output file you specified.

PGP Software Developer’s Kit

Implementing Common PGP Operations

Note that two of these option list functions use option lists themselves. In the
PGPODetachedSig() call this sub-option list only needs the
PGPOLastOption() , but in the call to PGPOSignWithKey() a real option
list appears to furnish the key and passphrase. You’ll rarely see option lists
nested much deeper than this.

Calling PGPENcode()

Cleanup

To perform the actual signature generation operation, you just call
PGPEnNncode() as shown. If all the option parameters were set correctly, this
will result in the creation of an output signature file with the name you
specified.

Cleanup is again pretty standard, but with a few more items to free this time:

[* ---- Release resources used in this operation ------------- *
PGPFileSpecReflsValid(inFileRef))
PGPFreeFileSpec(inFileRef);

_.
—~

if

—~

PGPFileSpecReflsValid(outFileRef))
PGPFreeFileSpec(outFileRef);

if

—~

PGPKeylterReflsValid(keyListlterator))
PGPFreeKeylter(keyListlterator);

_.
—~

PGPKeyListReflsValid(foundKeysList))
PGPFreeKeyList(foundKeysList);

if

—~

PGPFilterReflsValid(filter))
PGPFreeFilter(filter);

if

—~

PGPKeySetReflsValid(foundUserKeys))
PGPFreeKeySet(foundUserKeys);

_.
—~

PGPKeySetReflsValid(defaultkeyRing))
PGPFreeKeySet(defaultkeyRing);

/* ---- PGP Shutdown */

/* Release the PGP context we've been using */

if(PGPContextReflsValid(context))
PGPFreeContext(context);

/* PGP library shutdown */
PGPsdkCleanup();

User's Guide 53

Implementing Common PGP Operations

Full listing: Signing a file

54

A full listing for this example would look like this:

* ==== Sign a File code fragment */
/*

* Demonstrates simple file signing with the PGPsdk.

*

* Signs file "C:\testin" with key "test@pgp.com",

* producing the separate (aka 'detached') signature file

* "C:\testSignature".

*

/* Specify the input and output filenames, and the ID

* and passphrase of the key you want to sign with */
char const *inFileName = "C:\testIn";

char const *outFileName = "C:\testSignature";

char const *userlD "test@pgp.com”;

char const *keyPassphrase "testPassphrase”;

/* Declare and initialize variables */

PGPError err = kPGPError_NoErr;

PGPContextRef context = kinvalidPGPContextRef;
PGPKeySetRef defaultkeyRing = kinvalidPGPKeySetRef;
PGPFileSpecRef inFileRef = kinvalidPGPFileSpecRef;
PGPFileSpecRef outFileRef = kinvalidPGPFileSpecRef;
PGPKeySetRef foundUserKeys = kinvalidPGPKeySetRef;
PGPFilterRef filter = kinvalidPGPFilterRef;

PGPKeyListRef foundKeysList = kinvalidPGPKeyListRef;
PGPKeylterRef keyListlterator= kInvalidPGPKeylterRef;
PGPKeyRef signingKey = kinvalidPGPKeyRef;

[+ - PGP Setup *

/* NOTE: These calls appear here for clarity only.

* In a real-world application, you would call PGPsdkInit()
* and PGPNewContext() at application startup time, not on
* an operation-by-operation basis.

*/

/* Initialize the PGPsdk libs */
err = PGPsdkinit();
if(IsPGPError(err))

goto Exit;

[* Create the PGPContext */
err = PGPNewContext(kPGPsdkAPIVersion, &context);
if(IsPGPError(err))
goto Exit;
/* ---- Prepare Decryption Operation Parameters ------------- */

/* Open the default keyring */

PGP Software Developer’s Kit

Implementing Common PGP Operations

err = PGPOpenDefaultKeyRings(context, kPGPKeyRingOpenFlags_Mutable,
&defaultkeyRing);
if(IsPGPError(err))
goto Exit;

/* Create a filter to look for the default "test@pgp.com” key */
err = PGPNewUserIDStringFilter(context, userlD,
kPGPMatchSubString, &filter);
if(IsPGPError(err))
goto Exit;

/* Look for the key */
err = PGPFilterKeySet(defaultkeyRing, filter, &foundUserKeys);
if(ISPGPError(err))

goto Exit;

/* use the first matching key */
err = PGPOrderKeySet(foundUserKeys, kPGPAnyOrdering,
&foundKeyslList);

err = PGPNewKeylter(foundKeysList, &keyListlterator);
if(IsPGPError(err))
goto Exit;

err = PGPKeylterNext(keyListlterator, &signingKey);
if(IsPGPError(err))
goto Exit;

/* Create the file descriptions */
err = PGPNewFileSpecFromFullPath(context, inFileName, &inFileRef);
if(IsPGPError(err))

goto Exit;

err = PGPNewFileSpecFromFullPath(context, outFileName, &outFileRef);
if(IsPGPError(err))
goto Exit;

[* ---- Perform the Signing operation ------------- */

/* This is the main event; everything above and

* below exists only to support this call.

*

* Produces the signature output file in the default directory.
*/

err = PGPEncode(context,
PGPOArmorOutput(context, TRUE),
PGPODetachedSig(context,
/* PGPODetachedSig uses its own option list */
PGPOLastOption(context)),
PGPOInputFile(context, inFileRef),
PGPOOutputFile(context, outFileRef),
PGPOSignWithKey(context, signingKey,
/* PGPOSignWithKey uses its own option list */
PGPOPassphrase(context, keyPassphrase),

User's Guide

55

Implementing Common PGP Operations

PGPOLastOption(context)),
PGPOLastOption(context));

Exit:
[* ---- Release resources used in this operation ------------- *

if

—~

PGPFileSpecReflsValid(inFileRef))
PGPFreeFileSpec(inFileRef);

if

—~

PGPFileSpecReflsValid(outFileRef))
PGPFreeFileSpec(outFileRef);

_.
—~

PGPKeylterReflsValid(keyListlterator))
PGPFreeKeylter(keyListlterator);

if

—~

PGPKeyListReflsValid(foundKeysList))
PGPFreeKeyList(foundKeysList);

if

—~

PGPFilterReflsValid(filter))
PGPFreeFilter(filter);

if(PGPKeySetReflsValid(foundUserKeys))
PGPFreeKeySet(foundUserKeys);

if

—~

PGPKeySetReflsValid(defaultkeyRing))
PGPFreeKeySet(defaultkeyRing);

/* ---- PGP Shutdown */

/* NOTE: These calls appear here for clarity only.
* In a real-world application, you would make these calls to
* PGPFreeContext() and PGPsdkInit() at application shutdown time,
* and not on an operation-by-operation basis.
*/
/* Release the PGP context we've been using */
if(PGPContextReflsValid(context))
PGPFreeContext(context);

/* PGP library shutdown */
PGPsdkCleanup();

56 PGP Software Developer’s Kit

Implementing Common PGP Operations

Verifying a signature

Overview

Setup

In PGP, verifying a signature for a message begins with the message and the
signature, and ends with an indication of whether the signature could be
successfully verified or not.

To verify a signature, you have to be able to access a key database with the
public key of the person (or other entity) that appears to have signed the
message.

This section demonstrates how to verify a signature found in a disk file (a
‘detached’ signature) and display a message telling your user either that the
signature successfully verified, or that it didn’t. Verifying a signature is a little
more complicated than the signing example because you have to provide an
event handler function that does a certain amount of work.

Verifying a detached signature is accomplished by calling PGPDecode() with
a set of options specifying the input file, the detached signature file, a set of
keys where the signing key can be found, and an event handler function. As
ever, the code presented in this example demonstrates how to:

= Initialize the PGPsdk library
= Develop the data and create the resources needed to form the options
« Call PGPDecode() to perform the verification

= Free the resources you created

and finally, Shut down the PGPsdk library.

As before, we’ll go over the code chunk by chunk. For more context, a full
listing of the example code appears at the end of this section.

Our setup code is once again the same:

/* Initialize the PGPsdk libs */
err = PGPsdkinit();
if(IsPGPError(err))

goto Exit;

[* Create the PGPContext */
err = PGPNewContext(kPGPsdkAPIVersion, &context);
if(IsPGPError(err))

goto Exit;

User's Guide 57

Implementing Common PGP Operations

Creating the file references

little different this time:

In detached signature verification there are two input files (original data and
the signature made from it) but no output files, so the file references look a

/* Specify the filenames */
char const *origFileName

"C:\testIn";
char const *sigFileName

"C:\testSignature";

/* Declare and initialize variables */

PGPFileSpecRef origFileRef = kinvalidPGPFileSpecRef;
PGPFileSpecRef sigFileRef = kinvalidPGPFileSpecRef;
/* Create the file descriptions */

err = PGPNewFileSpecFromFullPath(context, origFileName, &origFileRef);
if(IsPGPError(err))
goto Exit;

err

PGPNewFileSpecFromFullPath(context, sigFileName, &sigFileRef);
if(IsPGPError(err))
goto Exit;

Again, Mac OS file references would be handled differently because of the
FSSpecs.

Accessing a key database

Again we need access to a key database where the public key used to create
the signature can be found. For our simple example using the
‘test@pgp.com’

key, we’ll use the default key ring for this:
/* Open the default keyring */

if(IsPGPError(err))

err = PGPOpenDefaultKeyRings(context, kPGPKeyRingOpenFlags_Mutable,
&defaultkeyRing);
goto Exit;

PGP Software Developer’s Kit

Implementing Common PGP Operations

Forming options and verifying the signature

As always, you need to transform your encryption parameters into PGP
options and feed them to PGPDecode() :

err = PGPDecode(context,

PGPOKeySetRef(context, defaultkeyRing),

PGPOEventHandler(context, myEventHandler, &sigData),

PGPOInputFile(context, sigFileRef),

PGPODetachedSig(context,
/* PGPODetachedSig uses its own option list */
PGPOInputFile(context, origFileRef),
PGPOLastOption(context)),

PGPOLastOption(context));

if(IsntPGPError(err))

{
/* Test validity of signature here */
if(sigData.checked)
{
/* There was a signature in the file */
if(sigData.verified)
/* The signature verified */
}
else
{
/* Signature was bad */
}
}
}

Verification options
To run down the option list:

= PGPOKeySetRef(context, defaultkeyRing) gives
PGPDecode() access to a key database where additional information
about the signing key can be found,

< PGPOEventHandler(context, myEventHandler, &myState)
tells PGPDecode() to use the event callback handler function you’ve
written when callback events occur;

< PGPOInputFile(context, origFileRef) tells PGPDecode() to
look at the indicated file when verifying the signature;

< The PGPODetachedSig() call tells PGPEncode() to read the signature
from the indicated ‘detached’ file;

User's Guide 59

Implementing Common PGP Operations

Again you’ll notice that one of these option list functions uses an option list of
its own.

Calling PGPDecode()

To initiate the signature verification operation, you call PGPDecode() as
shown. If all the option parameters were set correctly, this will resultin a
callback to your event callback handler function of type
kPGPEvent_SignatureEvent

Note: It’s in your callback handler that you’ll learn whether the signature
verified successfully, not at the PGPDecode() call itself.

In your event callback handler function

60

To support the PGPDecode() call shown above for detached signature
verification, your event callback handler function will need to include code to
deal with the kPGPEvent_SignatureEvent . That usually means
determining the verification result and reporting it to your user; here’s a very
simple way of doing that:

~
*

myEventHandler()

This function will be called during the verification
operation, during your PGPDecode() call.

Results of the verification will be available here when
an event of type kPGPEvent_SignatureEvent is received.

L N

*
-~

static PGPError myEventHandler(
PGPContextRef context,
PGPEvent*event,
PGPUserValueuserValue)

(void) context;

/* branch on the received event code */
switch(event->type)

{

/* ...handle other event codes here... */

case kPGPEvent_SignatureEvent:

{

PGPEventSignatureData*userData;

userData = (PGPEventSignatureData *) userValue;
*userData= event->data.signatureData;

PGP Software Developer’s Kit

Implementing Common PGP Operations

Cleanup

}

/* The signing key ref is valid only during the callback */
userData->signingKey = kinvalidPGPKeyRef;
break;

/* ...handle other event codes here... */

}

return kPGPError_NoErr;

The event parameter that your function receives is a pointer. You can follow
it and access its member data.signature to get a pointer to a
PGPEventSignatureData structure containing the results of the signature
verification attempt. For a successful verification, the signingkey — member
will be non-NULLand the verified member will be TRUE

Back in the main code section, cleanup is simple:

/*

if

—~

if

—~

_.
—~

/*

/*

---- Release resources used in this operation ------------- */

PGPFileSpecReflsValid(sigFileRef))

PGPFreeFileSpec(sigFileRef);

PGPFileSpecReflsValid(origFileRef))

PGPFreeFileSpec(origFileRef);

PGPKeySetReflsValid(defaultkeyRing))

PGPFreeKeySet(defaultkeyRing);

---- PGP Shutdown */

NOTE: These calls appear here for clarity only.

* In a real-world application, you would make these calls to
* PGPFreeContext() and PGPsdkInit() at application shutdown time,
* and not on an operation-by-operation basis.

*

/* Release the PGP context and shut down PGP *
if(PGPContextReflsValid(context))

PGPFreeContext(context);

/* PGP library shutdown */
PGPsdkCleanup();

User's Guide 61

Implementing Common PGP Operations

Full listing: Verifying a detached signature for a file

A full listing for this example would look like this:

~
*

myEventHandler()

This function will be called during the verification
operation, during your PGPDecode() call.

Results of the verification will be available here when
an event of type kPGPEvent_SignatureEvent is received.

L N

*
~

static PGPError myEventHandler(
PGPContextRef context,
PGPEvent*event,
PGPUserValueuserValue)

{
(void) context;
/* branch on the received event code */
switch(event->type)
{
/* ..handle other event codes here... */
case kPGPEvent_SignatureEvent:
{
PGPEventSignatureData*userData;
userData = (PGPEventSignatureData *) userValue;
*userData= event->data.signatureData;
/* The signing key ref is valid only during the callback */
userData->signingKey = kinvalidPGPKeyRef;
break;
}
/* ..handle other event codes here... */
}
return kPGPError_NoErr;
}
/* ==== Verify a detached Signature code fragment ===============
/*
* Demonstrates simple file signature verification with the PGPsdk.
*
* Verifies a separate (aka 'detached’) signature file
* "C:\testSignature" against file "C:\testln", producing a
* yea-or-nay verification judgement.
*
*/

62 PGP Software Developer’s Kit

Implementing Common PGP Operations

/* Specify the filenames */
char const *origFileName = "C:\testIn";
char const *sigFileName = "C:\testSignature";

/* Declare and initialize variables */

PGPError err = kPGPError_NoErr;

PGPContextRef context = kinvalidPGPContextRef;
PGPKeySetRef defaultKeyRing = kinvalidPGPKeySetRef;
PGPFileSpecRef origFileRef = kinvalidPGPFileSpecRef;
PGPFileSpecRef sigFileRef = kinvalidPGPFileSpecRef;

PGPEventSignatureData sigData;

/¥ - PGP Setup *

/* NOTE: These calls appear here for clarity only.

* In a real-world application, you would call PGPsdkInit()
* and PGPNewContext() at application startup time, not on
* an operation-by-operation basis.

*/

/* Initialize the PGPsdk libs */
err = PGPsdkinit();
if(IsPGPError(err))

goto Exit;

[* Create the PGPContext */
err = PGPNewContext(kPGPsdkAPIVersion, &context);
if(IsPGPError(err))

goto Exit;

/* ---- Prepare Decryption Operation Parameters ------------- */

/* Open the default keyring */
err = PGPOpenDefaultKeyRings(context, kPGPKeyRingOpenFlags_Mutable,
&defaultkeyRing);
if(IsPGPError(err))
goto Exit;

/* Create the file descriptions */
err = PGPNewFileSpecFromFullPath(context, origFileName, &origFileRef);
if(IsPGPError(err))

goto Exit;

err = PGPNewFileSpecFromFullPath(context, sigFileName, &sigFileRef);
if(IsPGPError(err))
goto Exit;

[* ---- Perform the Verify operation ------------- */

/* This is the main event; everything above and

* below exists only to support this call.

*

* NOTE: Verification results are determined in the event handler
* function, myEventHandler(), not here.

*/

User's Guide

63

Implementing Common PGP Operations

sigData.verified = FALSE;

err = PGPDecode(context,

PGPOKeySetRef(context, defaultkeyRing),

PGPOEventHandler(context, myEventHandler, &sigData),

PGPOInputFile(context, sigFileRef),

PGPODetachedSig(context,
/* PGPODetachedSig uses its own option list */
PGPOlInputFile(context, origFileRef),
PGPOLastOption(context)),

PGPOLastOption(context));

if(IsntPGPError(err))
/* Test validity of signature here */
if(sigData.checked)
{

/* There was a signature in the file */

if(sigData.verified)
{

}

else

{
}

/* The signature verified */

/* Signature was bad */

}
Exit:
[* ---- Release resources used in this operation ------------- *

if

—~

PGPFileSpecReflsValid(sigFileRef))
PGPFreeFileSpec(sigFileRef);

_.
—~

PGPFileSpecReflsValid(origFileRef))
PGPFreeFileSpec(origFileRef);

if

—~

PGPKeySetReflsValid(defaultkeyRing))
PGPFreeKeySet(defaultkeyRing);

/* ---- PGP Shutdown */

/* NOTE: These calls appear here for clarity only.

* In a real-world application, you would make these calls to

* PGPFreeContext() and PGPsdkInit() at application shutdown time,
* and not on an operation-by-operation basis.

*/

/* Release the PGP context and shut down PGP */

64 PGP Software Developer’s Kit

Implementing Common PGP Operations

if(PGPContextReflsValid(context))
PGPFreeContext(context);

/* PGP library shutdown */
PGPsdkCleanup();

User's Guide 65

Implementing Common PGP Operations

66 PGP Software Developer’s Kit

PGPsdk Frequently Asked

Questions

This chapter answers some of the questions programmers most often ask PGP
developer support regarding programming with the PGPsdk.

Frequently Asked Questions

What operating systems does PGPsdk support?
Windows 95 OSR2, 98, or NT with SP 4 or later

Mac OS System 7.6.1 or later

Linux x86 with 2.0.x kernel or later

Sun Solaris 2.5.1, 2.6, or 2.7

What key management functions are available from the PGPsdk?

The PGPsdk provides access to key management functions that allow
applications to create, sign, add, remove, search for, and check the validity of
keys on disk-based or in-memory key rings. It also includes functions for
checking and setting key property values according to the PGP ‘web of trust’
model, as well as functions that import and export keys to files and buffers.

The PGPsdk also provides access to functions that support communication
with HTTP and LDAP key servers, and that allow developers to search for,
add, disable, and delete keys on those servers. In addition the PGPsdk
includes functions for connecting to secure severs using TLS (Transport Layer
Security, a protocol based on SSL).

Do | have to use a key from a key certificate when encrypting?

No. Your alternative is to use our conventional encryption option to encrypt
datato a passphrase instead of a PGP key. Practically speaking, PGP keys exist
only in the form of key certificates.

User's Guide 67

PGPsdk Frequently Asked Questions

68

Can | use PGPsdk to generate keys, or do | need a certificate
server for that?

Yes, you can generate a key pair with PGP API calls available in the PGPsdk.
Key generation is generally a client-based operation, not a server-based
operation, and NAI’s key server product does not generate keys. In the PGP
scheme, a key server is just a central repository of keys for management and
control. When a PGP user wants to publish a public key that she has generated,
she needs to submit it to a key server.

Can | encrypt to more than one key?

Yes, you can encrypt data to any number of keys with PGP API calls available
in the PGPsdk.

Is it possible to encrypt on one platform, say Windows 95, and
decrypt on another, say Solaris?

Yes, the PGP cryptosystem is completely platform-independent. Data
encrypted on any platform can be decrypted on any other platform, so long as
the recipient’s correct public key is used for the encryption.

Does the PGPsdk include a random number generator?

PGPsdk includes functions to generate and manage a pool of random numbers
seeded from keystrokes and mouse movements, and provides both
cryptographically strong pseudo-random numbers and true random numbers
based on external events. The PGPsdk internal pseudo-random number
generator (RNG) is based on ANSI X9.17.

Does the PGPsdk support Microsoft Visual Basic?

Sorry, the PGPsdk does not currently support Visual Basic. You would need
to write an appropriate wrapper layer to use the PGP libraries from VB.

Does the PGPsdk support Java?
Sorry, the PGPsdk does not currently support Java.

PGP Software Developer’s Kit

	Version 1.7
	Table of Contents
	Preface
	Who should read this book?
	Related material

	About this User’s Guide
	Developer support

	How to contact Network Associates
	Customer service
	Technical support
	Year 2000 Compliance

	Network Associates training
	Comments and feedback
	Recommended Readings
	Non-Technical and beginning technical books
	Intermediate books
	Advanced books

	1 Introduction to the PGPsdk
	Overview of the PGPsdk
	Security programming considerations
	Library source is open for peer review
	SDK is available to encourage PGP ubiquity
	Programming in the cryptosystem, not implementing ciphers

	Understanding the PGP cryptosystem
	PGP in a nutshell
	Why encrypt?
	Ciphering and deciphering as keyed, symmetrical transform
	Single-key cryptosystems are too vulnerable
	Key pairs make it possible to exchange keys publicly
	Why public keys are safe
	Why public keys are useful
	Importance of being certain of the key owner’s identity
	Digital signatures and certificates represent authentication
	Trust decisions: Who’s doing the authenticating?
	Delegating trust decisions
	Your ‘web of trust’
	Trust decisions are ultimately the responsibility of each user

	Recap

	Core PGP operations

	2 PGPsdk Organization
	Local key management
	Ciphering and authentication
	Key server access
	PGP API feature query functions
	Option list functions
	Group functions
	Utility toolbox functions
	Random number functions
	User interface functions
	TLS (transport layer security) functions
	Network socket functions
	Big number management functions
	Error functions

	3 Programming with the PGPsdk
	Working with PGP’s opaque data types
	The PGPContext structure
	Working with option lists in PGPsdk function calls
	Creating PGPOptionListRefs
	Persistent option lists

	Key management concepts
	Callback and event concepts

	4 Implementing Common PGP Operations
	Encrypting a file
	Overview
	Setup
	Initializing the PGPsdk library
	Creating a PGPContext

	Obtaining the recipient’s public key
	Performing the key search

	Creating the input and output file references
	Forming options and ciphering the message
	Calling PGPEncode()
	Cleanup
	PGP shutdown

	Full listing: Encrypting a file
	Decrypting a file
	Overview
	Setup
	Initializing the PGPsdk library

	Creating the input and output file references
	Providing access to your user’s private key
	Passphrases control access to private decryption keys

	Forming options and deciphering the message
	Calling PGPDecode()

	Cleanup
	What we left out
	Event handler function

	Full listing: Decrypting a file

	Signing a file
	Overview
	Setup
	Creating the input and output file references
	Accessing your user’s private key
	Forming options and signing the message
	Calling PGPEncode()
	Cleanup

	Full listing: Signing a file
	Overview
	Setup
	Creating the file references
	Accessing a key database
	Forming options and verifying the signature
	Verification options
	Calling PGPDecode()

	In your event callback handler function
	Cleanup

	5 PGPsdk Frequently Asked Questions
	Frequently Asked Questions
	What operating systems does PGPsdk support?
	What key management functions are available from the PGPsdk?
	Do I have to use a key from a key certificate when encrypting?
	Can I use PGPsdk to generate keys, or do I need a certificate server for that?
	Can I encrypt to more than one key?
	Is it possible to encrypt on one platform, say Windows 95, and decrypt on another, say Solaris?
	Does the PGPsdk include a random number generator?
	Does the PGPsdk support Microsoft Visual Basic?
	Does the PGPsdk support Java?

