BIND 9 Administrator Reference
Manual

BIND 9.11.28 (Extended Support Version)

Copyright (C) 2000-2021 Internet Systems Consortium, Inc. ("ISC")

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of
the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

Internet Systems Consortium, Inc.
PO Box 360
Newmarket, NH 03857
USA
https:/ /www.isc.org/

Contents

1 Introduction

1.1
1.2
1.3
14

Scope of Document
Organization of This Document
Conventions Used in This Document
The Domain Name System (DNS)
DNS Fundamentals

Domains and Domain Names

Authoritative Name Servers
The Primary Server
Secondary Servers
Stealth Servers

Caching Name Servers
Forwarding

Name Servers in Multiple Roles

2 BIND Resource Requirements

2.1
2.2
23
24
2.5

Hardware requirements
CPU Requirements
Memory Requirements
Name Server-Intensive Environment Issues

Supported Operating Systems

O G = Rk W W W N NN

|

NN N9

iii

BIND 9.11.28

CONTENTS CONTENTS
3 Name Server Configuration 9
3.1 Sample Configurations 9
A Caching-only Name Server 9

An Authoritative-only Name Server 9

32 LoadBalancing 10
3.3 Name Server Operations 11
Tools for Use With the Name Server Daemon 11
DiagnosticTools 11
AdministrativeTools o 12

Signals 13

4 Advanced DNS Features 15
471 Notify e 15
42 DynamicUpdate 15
TheJournal File 16

4.3 Incremental Zone Transfers (IXFR) 16
44 SpLitDNS. 17
Example Split DNSSetup 17

45 TSIG 20
GeneratingaShared Key L oL oL 21
LoadingaNewKey 21
Instructing the ServertoUseaKey 22
TSIG-Based AccessControl 22
Errors 22

46 TKEY 23
47 SIG(0) . . . o e 23
48 DNSSEC e 24
GeneratingKeys L L 24
Signingthe Zone 24
Configuring Servers for DNSSEC 25

4.9 DNSSEC, Dynamic Zones, and Automatic Signing 27
Converting from insecuretosecure L. 27
Dynamic DNS Update Method 28
Fully Automatic Zone Signing 28

BIND 9.11.28

iv

CONTENTS CONTENTS

Private Type Records 29
DNSKEY Rollovers i 30
Dynamic DNS Update Method 30
AutomaticKey Rollovers. 30
NSEC3PARAM Rollovers via UPDATE 30
Converting From NSECtoNSEC3 31
Converting From NSEC3toNSEC 31
Converting From Secure toInsecure 31
PeriodicRe-signing 31
NSEC3and OPTOUT 31

4.10 Dynamic Trust Anchor Management 31
Validating Resolver 32
AuthoritativeServer L L 32

411 PKCS#11 (Cryptoki) Support 33
Prerequisites 33
Native PKCS#11o 33
Building SoftHSMvV2 34
OpenSSL-based PKCS#11 34
Patching OpenSSL 35

Building OpenSSL for the AEP Keyperon Linux 35

Building OpenSSL for the SCA 6000 on Solaris 36

Building OpenSSL for SoftHSM. 36
Configuring BIND 9 for Linux with the AEP Keyper 37
Configuring BIND 9 for Solaris with the SCA6000 37
Configuring BIND 9 for SoftHSM 38
PKCSH#11Tools oo 38
Usingthe HSM 38
Specifying the engine on the command line 40
Running named with automatic zone re-signing 40

412 DLZ (Dynamically Loadable Zones) 41
Configuring DLZ 41
Sample DLZDriver 42

413 Dynamic Database (DynDB) 42

v BIND 9.11.28

CONTENTS

CONTENTS

4.14

4.15

Configuring DynDB
Sample DynDBModule
CatalogZones
Principle of Operation
Configuring Catalog Zones
Catalog Zone Format
IPv6 Supportin BIND9
Address Lookups Using AAAARecords

Address-to-Name Lookups Using Nibble Format

5 The BIND 9 Lightweight Resolver

5.1 The Lightweight Resolver Library

5.2 Running a Resolver Daemon

6 BIND 9 Configuration Reference

6.1 Configuration File Elements

AddressMatch Lists

6.2

Syntax

Definitionand Usage
Comment Syntax

Syntax L

Definitionand Usage
Configuration File Grammar.
acl Statement Grammar,
acl Statement Definitionand Usage
controls Statement Grammar
controls Statement Definition and Usage
include Statement Grammar.
include Statement Definition and Usage
key Statement Grammar L.
key Statement Definitionand Usage
logging Statement Grammar
logging Statement Definition and Usage

The channel Phrase

BIND 9.11.28

Vi

CONTENTS CONTENTS

The category Phrase 63
The query-errors Category 67
Iwres Statement Grammar L L0 L oL 69
Iwres Statement Definitionand Usage 69
masters Statement Grammar L L L Lo 70
masters Statement Definitionand Usage, 70
options Statement Grammar Lo Lo 70
options Statement Definitionand Usage 76
BooleanOptions 85
Forwarding 96
Dual-stack Servers o 96
AccessControl 96
Interfaces 99
Query Address 100
Zone Transfers 102
UDPPortLists 105
Operating System Resource Limits 105
Server Resource Limits L. 106
Periodic Task Intervals 109
The sortlist Statement 0L 110
RRsetOrdering 111
Tuning 113
Built-in Server Information Zones L., 116
Built-in Empty Zones L o oo 117
Additional Section Caching 121
Content Filtering L 122
Response Policy Zone (RPZ) Rewriting 124
Response Rate Limiting 129
NXDOMAIN Redirection 131
server Statement Grammar Lo L 131
server Statement Definitionand Usage 132
statistics-channels Statement Grammar 134
statistics-channels Statement Definitionand Usage 134

Vvii BIND 9.11.28

CONTENTS CONTENTS
trusted-keys Statement Grammar o L 0oL 135
trusted-keys Statement Definitionand Usage 135
managed-keys Statement Grammar L. 135
managed-keys Statement Definitionand Usage 136
view Statement Grammar L Lo Lo L L 137
view Statement Definitionand Usage 137
zone Statement Grammar L L L 138
zone Statement Definitionand Usage 143

ZoneTypes 143

Class o 146

Zone Options 146
Dynamic Update Policies 151
Multiple Views L 156

6.3 ZoneFile 156
Types of Resource Records and WhentoUse Them 156
Resource Records 156
Textual Expressionof RRs 158
Discussionof MX Records 159
Setting TTLs e 159
Inverse MappinginIPv4 Lo 160
Other Zone File Directives 160
The@ (at-sign) 160

The $ORIGIN Directive 161

The $INCLUDE Directive 161

The $TTL Directive 161

BIND Primary File Extension: the $§GENERATE Directive. 162
Additional File Formats 163
64 BINDOStatistics. 164
The Statistics File 165
StatisticsCounters. L 166
Name Server Statistics Counters 166

Zone Maintenance Statistics Counters 169
Resolver Statistics Counters 170

Socket I/O Statistics Counters 171
Compatibility with BIND 8 Counters 172

BIND 9.11.28

viii

CONTENTS

CONTENTS

7 BIND 9 Security Considerations

71 AccessControl Lists.
72 Chrootand Setuid
The chroot Environment
Using the setuid Function
7.3 Dynamic Update Security

8 Troubleshooting

81 CommonProblems

It’s Not Working; How Can I Figure Out What’s Wrong?

91 arpaname.
92 ddns-confgen
93 delv
94 dig
9.5 dnsseccheckds
9.6 dnssec-coverage
9.7 dnssec-dsfromkey
9.8 dnssec-importkey L.
9.9 dnssec-keyfromlabel
9.10 dnssec-keygen L.
9.11 dnssec-keymgr
9.12 dnssec-revoke
9.13 dnssec-settime
9.14 dnssec-signzone
9.15 dnssec-verify Lo
9.16 dnstap-read
917 genrandom
918 host L
9.19 isc-hmac-fixup L.

920 Iwresd

175
175
177
178
178
178

181
181
181
181
181

183
183
183
185
190
199
200
202
205
206
210
215
219
220
222
228
230
231
231
234
235

iX

BIND 9.11.28

CONTENTS CONTENTS
921 mdig 237
9.22 named-checkconf 242
9.23 named-checkzone L 244
9.24 named-journalprint L L L Lo 247
9.25 named-nzd2nzf 247
9.26 named-rrchecker 248
9.27 named.conf e 249
928 named 267
9.29 nsec3hash 272
930 mslookup 272
931 nsupdate 276
9.32 pkesll-destroy 281
9.33 pkesll-keygen 282
9.34 pkesll-list 283
9.35 pkesll-tokens 284
936 rndc-confgen 285
9.37 rndc.conf 287
938 rndc 289

A Release Notes 297
B A Brief History of the DNS and BIND 321
C General DNS Reference Information 323
D BIND 9 DNS Library Support 329

BIND 9.11.28

1 Introduction

The Internet Domain Name System (DNS) consists of the syntax to specify the names of entities
in the Internet in a hierarchical manner, the rules used for delegating authority over names,
and the system implementation that actually maps names to Internet addresses. DNS data is
maintained in a group of distributed hierarchical databases.

1.1 SCOPE OF DOCUMENT

The Berkeley Internet Name Domain (BIND) implements a domain name server for a number
of operating systems. This document provides basic information about the installation and
care of the Internet Systems Consortium (ISC) BIND version 9 software package for system
administrators.

This version of the manual corresponds to BIND version 9.11.

1.2 ORGANIZATION OF THIS DOCUMENT

In this document, Chapter 1 introduces the basic DNS and BIND concepts. Chapter 2 describes
resource requirements for running BIND in various environments. Information in Chapter 3 is
task-oriented in its presentation and is organized functionally, to aid in the process of installing
the BIND 9 software. The task-oriented section is followed by Chapter 4, which contains more
advanced concepts that the system administrator may need for implementing certain options.
Chapter 5 describes the BIND 9 lightweight resolver. The contents of Chapter 6 are organized as
in a reference manual to aid in the ongoing maintenance of the software. Chapter 7 addresses
security considerations, and Chapter § contains troubleshooting help. The main body of the
document is followed by several appendices which contain useful reference information, such as
a bibliography and historic information related to BIND and the Domain Name System.

1.3 CONVENTIONS USED IN THIS DOCUMENT

In this document, we use the following general typographic conventions:

1 BIND 9.11.28

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

To describe: We use the style:
a pathname, filename, URL, hostname, mailing
list name, or new term or concept Fixed width

literal user input Fixed Width Bold

program output Fixed Width

The following conventions are used in descriptions of the BIND configuration file:

To describe: We use the style:
keywords Fixed Width
variables Fixed Width
Optional input

[Text is enclosed in square brackets]

1.4 THE DOMAIN NAME SYSTEM (DNS)

This document explains the installation and upkeep of the BIND (Berkeley Internet Name Do-
main) software package. We begin by reviewing the fundamentals of the Domain Name System
(DNS) as they relate to BIND.

DNS Fundamentals

The Domain Name System (DNS) is a hierarchical, distributed database. It stores information
for mapping Internet host names to IP addresses and vice versa, mail routing information, and
other data used by Internet applications.

Clients look up information in the DNS by calling a resolver library, which sends queries to one
or more name servers and interprets the responses. The BIND 9 software distribution contains a
name server, named, and a resolver library, liblwres.

Domains and Domain Names

The data stored in the DNS is identified by domain names that are organized as a tree according
to organizational or administrative boundaries. Each node of the tree, called a domain, is given
a label. The domain name of the node is the concatenation of all the labels on the path from the
node to the root node. This is represented in written form as a string of labels listed from right
to left and separated by dots. A label need only be unique within its parent domain.

For example, a domain name for a host at the company Example, Inc. could be ourhost .example.com,
where com is the top level domain to which ourhost.example.com belongs, example is a
subdomain of com, and ourhost is the name of the host.

BIND 9.11.28 2

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

For administrative purposes, the name space is partitioned into areas called zones, each starting
at a node and extending down to the "leaf" nodes or to nodes where other zones start. The data
for each zone is stored in a name server, which answers queries about the zone using the DNS
protocol.

The data associated with each domain name is stored in the form of resource records (RRs). Some
of the supported resource record types are described in Section 6.3.

For more detailed information about the design of the DNS and the DNS protocol, please refer
to the standards documents listed in Section C.2.

Zones

To properly operate a name server, it is important to understand the difference between a zone
and a domain.

As stated previously, a zone is a point of delegation in the DNS tree. A zone consists of those
contiguous parts of the domain tree for which a name server has complete information and
over which it has authority. It contains all domain names from a certain point downward in the
domain tree except those which are delegated to other zones. A delegation point is marked by
one or more NS records in the parent zone, which should be matched by equivalent NS records
at the root of the delegated zone.

For instance, consider the example . com domain which includes names such ashost . aaa.example.com
and host .bbb.example.comeven though the example . com zone includes only delegations

for the aaa.example.comand bbb .example.com zones. A zone can map exactly to a single

domain, but could also include only part of a domain, the rest of which could be delegated to

other name servers. Every name in the DNS tree is a domain, even if it is terminal, that is, has

no subdomains. Every subdomain is a domain and every domain except the root is also a sub-

domain. The terminology is not intuitive and we suggest reading RFCs 1033, 1034, and 1035 to

gain a complete understanding of this difficult and subtle topic.

Though BIND is called a "domain name server", it deals primarily in terms of zones. The "pri-
mary" and "secondary" declarations in the named. conf file specify zones, not domains. When
BIND asks some other site if it is willing to be a secondary server for a domain, it is actually
asking for secondary service for some collection of zones.

Authoritative Name Servers

Each zone is served by at least one authoritative name server, which contains the complete data
for the zone. To make the DNS tolerant of server and network failures, most zones have two or
more authoritative servers, on different networks.

Responses from authoritative servers have the "authoritative answer" (AA) bit set in the re-
sponse packets. This makes them easy to identify when debugging DNS configurations using
tools like dig (Section 3.3).

The Primary Server

The authoritative server where the main copy of the zone data is maintained is called the primary
(or master) server, or simply the primary. Typically it loads the zone contents from some local

3 BIND 9.11.28

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

file edited by humans or perhaps generated mechanically from some other local file which is
edited by humans. This file is called the zone file or master file.

In some cases, however, the zone file may not be edited by humans at all, but may instead be
the result of dynamic update operations.

Secondary Servers

The other authoritative servers, called the secondary (or slave) servers, load the zone contents
from another server using a replication process known as a zone transfer. Typically the data is
transferred directly from the primary master, but it is also possible to transfer it from another
secondary. In other words, a secondary server may itself act as a primary to a subordinate
secondary server.

Periodically, the secondary server must send a refresh query to determine whether the zone
contents have been updated. This is done by sending a query for the zone’s Start of Authority
(SOA) record and checking whether the SERIAL field has been updated; if so, a new transfer
request is initiated. The timing of these refresh queries is controlled by the SOA REFRESH and
RETRY fields, but can be overridden with the max-refresh-time, min-refresh-time, max-retry-
time, and min-retry-time options.

If the zone data cannot be updated within the time specified by the SOA EXPIRE option (up
to a hard-coded maximum of 24 weeks), the secondary zone expires and no longer responds to
queries.

Stealth Servers

Usually, all of the zone’s authoritative servers are listed in NS records in the parent zone. These
NS records constitute a delegation of the zone from the parent. The authoritative servers are also
listed in the zone file itself, at the fop level or apex of the zone. Servers that are not in the parent’s
NS delegation can be listed in the zone’s top-level NS records, but servers that are not present
at the zone’s top level cannot be listed in the parent’s delegation.

A stealth server is a server that is authoritative for a zone but is not listed in that zone’s NS
records. Stealth servers can be used for keeping a local copy of a zone, to speed up access to the
zone’s records, or to make sure that the zone is available even if all the "official" servers for the
zone are inaccessible.

A configuration where the primary server itself is a stealth server is often referred to as a "hid-
den primary" configuration. One use for this configuration is when the primary is behind a
firewall and is therefore unable to communicate directly with the outside world.

Caching Name Servers

The resolver libraries provided by most operating systems are stub resolvers, meaning that they
are not capable of performing the full DNS resolution process by themselves by talking directly
to the authoritative servers. Instead, they rely on a local name server to perform the resolution
on their behalf. Such a server is called a recursive name server; it performs recursive lookups for
local clients.

BIND 9.11.28 4

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

To improve performance, recursive servers cache the results of the lookups they perform. Since
the processes of recursion and caching are intimately connected, the terms recursive server and
caching server are often used synonymously.

The length of time for which a record may be retained in the cache of a caching name server is
controlled by the Time-To-Live (TTL) field associated with each resource record.

Forwarding

Even a caching name server does not necessarily perform the complete recursive lookup itself.
Instead, it can forward some or all of the queries that it cannot satisfy from its cache to another
caching name server, commonly referred to as a forwarder.

Forwarders are typically used when an administrator does not wish for all the servers at a
given site to interact directly with the rest of the Internet. For example, a common scenario is
when multiple internal DNS servers are behind an Internet firewall. Servers behind the firewall
forward their requests to the server with external access, which queries Internet DNS servers
on the internal servers’ behalf.

Another scenario (largely now superseded by Response Policy Zones) is to send queries first to
a custom server for RBL processing before forwarding them to the wider Internet.

There may be one or more forwarders in a given setup. The order in which the forwarders
are listed in named. conf does not determine the sequence in which they are queried; rather,
named uses the response times from previous queries to select the server that is likely to re-
spond the most quickly. A server that has not yet been queried is given an initial small random
response time to ensure that it is tried at least once. Dynamic adjustment of the recorded re-
sponse times ensures that all forwarders are queried, even those with slower response times.
This permits changes in behavior based on server responsiveness.

Name Servers in Multiple Roles

The BIND name server can simultaneously act as a primary for some zones, a secondary for
other zones, and a caching (recursive) server for a set of local clients.

However, since the functions of authoritative name service and caching/recursive name service
are logically separate, it is often advantageous to run them on separate server machines. A
server that only provides authoritative name service (an authoritative-only server) can run with
recursion disabled, improving reliability and security. A server that is not authoritative for any
zones and only provides recursive service to local clients (a caching-only server) does not need
to be reachable from the Internet at large and can be placed inside a firewall.

5 BIND 9.11.28

2 BIND Resource Requirements

2.1 HARDWARE REQUIREMENTS

DNS hardware requirements have traditionally been quite modest. For many installations,
servers that have been retired from active duty have performed admirably as DNS servers.

However, the DNSSEC features of BIND 9 may be quite CPU-intensive, so organizations that
make heavy use of these features may wish to consider larger systems for these applications.
BIND 9 is fully multithreaded, allowing full utilization of multiprocessor systems for installa-
tions that need it.

2.2 CPU REQUIREMENTS

CPU requirements for BIND 9 range from i386-class machines, for serving static zones without
caching, to enterprise-class machines to process many dynamic updates and DNSSEC-signed
zones, serving many thousands of queries per second.

2.3 MEMORY REQUIREMENTS

Server memory must be sufficient to hold both the cache and the zones loaded from disk. The
max-cache-size option can limit the amount of memory used by the cache, at the expense of
reducing cache hit rates and causing more DNS traffic. If additional section caching (Section 6.2)
is enabled, the max-acache-size option can be used to limit the amount of memory used by the
mechanism. It is still good practice to have enough memory to load all zone and cache data into
memory; unfortunately, the best way to determine this for a given installation is to watch the
name server in operation. After a few weeks, the server process should reach a relatively stable
size where entries are expiring from the cache as fast as they are being inserted.

2.4 NAME SERVER-INTENSIVE ENVIRONMENT ISSUES

For name server-intensive environments, there are two configurations that may be used. The
first is one where clients and any second-level internal name servers query a main name servet,

7 BIND 9.11.28

CHAPTER 2. BIND RESOURCE... 2.5. SUPPORTED OPERATING SYSTEMS

which has enough memory to build a large cache; this approach minimizes the bandwidth used
by external name lookups. The second alternative is to set up second-level internal name servers
to make queries independently. In this configuration, none of the individual machines need to
have as much memory or CPU power as in the first alternative, but this has the disadvantage
of making many more external queries, as none of the name servers share their cached data.

2.5 SUPPORTED OPERATING SYSTEMS

ISC BIND 9 compiles and runs on many Unix-like operating systems and on Microsoft Windows
Server 2012 R2, 2016 and Windows 10. For an up-to-date list of supported systems, see the
PLATFORMS.md file in the top-level directory of the BIND 9 source distribution.

BIND 9.11.28 8

3 Name Server Configuration

In this chapter we provide some suggested configurations, along with guidelines for their use.
We suggest reasonable values for certain option settings.

3.1 SAMPLE CONFIGURATIONS

A Caching-only Name Server

The following sample configuration is appropriate for a caching-only name server for use by
clients internal to a corporation. All queries from outside clients are refused using the allow-
query option. The same effect can be achieved using suitable firewall rules.

// Two corporate subnets we wish to allow queries from.
acl corpnets { 192.168.4.0/24; 192.168.7.0/24; };
options {

// Working directory

directory "/etc/namedb";

allow—query { corpnets; };
}i
// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type master;
file "localhost.rev";
notify noj;

}i

An Authoritative-only Name Server

This sample configuration is for an authoritative-only server that is the primary server for
"example.com" and a secondary server for the subdomain "eng.example.com'.

options {
// Working directory
directory "/etc/namedb";
// Do not allow access to cache

9 BIND 9.11.28

CHAPTER 3. NAME SERVER... 3.2. LOAD BALANCING

allow—query-cache { none; };

// This is the default

allow—query { any; };

// Do not provide recursive service
recursion no;

}i

// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type master;
file "localhost.rev";
notify noj;
}i
// We are the primary server for example.com
zone "example.com" {
type master;
file "example.com.db";
// IP addresses of secondary servers allowed to
// transfer example.com
allow—-transfer {
192.168.4.14;
192.168.5.53;
}i
i
// We are a secondary server for eng.example.com
zone "eng.example.com" {
type slave;
file "eng.example.com.bk";
// IP address of eng.example.com primary server
masters { 192.168.4.12; };

3.2 LoOAD BALANCING

A primitive form of load balancing can be achieved in the DNS by using multiple records (such
as multiple A records) for one name.

For example, assuming three HTTP servers with network addresses of 10.0.0.1, 10.0.0.2, and
10.0.0.3, a set of records such as the following means that clients will connect to each machine
one-third of the time:

Name TTL CLASS TYPE Resource Record (RR) Data
WWW 600 IN A 10.0.0.1

600 IN A 10.0.0.2

600 IN A 10.0.0.3

BIND 9.11.28 10

CHAPTER 3. NAME SERVER... 3.3. NAME SERVER OPERATIONS

When a resolver queries for these records, BIND rotates them and responds to the query with
the records in a different order. In the example above, clients randomly receive records in the
order1,2,3;2,3,1;and 3, 1, 2. Most clients use the first record returned and discard the rest.

For more detail on ordering responses, check the rrset-order sub-statement in the options state-
ment, see RRset Ordering.

3.3 NAME SERVER OPERATIONS

Tools for Use With the Name Server Daemon

This section describes several indispensable diagnostic, administrative, and monitoring tools
available to the system administrator for controlling and debugging the name server daemon.

Diagnostic Tools

The dig, host, and nslookup programs are all command-line tools for manually querying name
servers. They differ in style and output format.

dig
dig is the most versatile and complete of these lookup tools. It has two modes: simple
interactive mode for a single query, and batch mode, which executes a query for each in a
list of several query lines. All query options are accessible from the command line.

dig[@server] domain[query-type][query-class][+query-option][-dig-option][Y%comment]
The usual simple use of dig takes the form
dig @server domain query-type query-class

For more information and a list of available commands and options, see the dig man page.

host
The host utility emphasizes simplicity and ease of use. By default, it converts between
host names and Internet addresses, but its functionality can be extended with the use of
options.

host [-aCdInrsTwv] [-c class] [-N ndots] [-t type] [W timeout] [-R retries] [-m flag]
[-4] [-6] hostname [server]

For more information and a list of available commands and options, see the host man
page.

nslookup
nslookup has two modes: interactive and non-interactive. Interactive mode allows the
user to query name servers for information about various hosts and domains, or to print
a list of hosts in a domain. Non-interactive mode is used to print just the name and re-
quested information for a host or domain.

nslookup [-option...] [host-to-find | - [server]]

Interactive mode is entered when no arguments are given (the default name server is
"non

used) or when the first argument is a hyphen ("-") and the second argument is the host
name or Internet address of a name server.

11 BIND 9.11.28

CHAPTER 3. NAME SERVER... 3.3. NAME SERVER OPERATIONS

Non-interactive mode is used when the name or Internet address of the host to be looked
up is given as the first argument. The optional second argument specifies the host name
or address of a name server.

Due to its arcane user interface and frequently inconsistent behavior, we do not recom-
mend the use of nslookup. Use dig instead.

Administrative Tools

Administrative tools play an integral part in the management of a server.

named-checkconf
The named-checkconf program checks the syntax of a named. conf file.

named-checkconf [§vz] [-t directory] [filename]

named-checkzone
The named-checkzone program checks a zone file for syntax and consistency.

named-checkzone [-djqvD] [-c class] [-0 output] [-t directory] [-W directory] [-k
(ignore/warn/fail)] [-1’1 (ignore/warn/fail)] [—W (ignore/warn)] zone [filename]

named-compilezone
This tool is similar to named-checkzone, but it always dumps the zone content to a spec-
ified file (typically in a different format).

rndc
The remote name daemon control (rndc) program allows the system administrator to con-
trol the operation of a name server. If rndc is run without any options, it displays a usage
message as follows:

rndc [-C confi g] [-S server] [-p port] [-y key] command [command...]
See rndc(8) for details of the available rndc commands.

rndc requires a configuration file, since all communication with the server is authenticated
with digital signatures that rely on a shared secret, and there is no way to provide that
secret other than with a configuration file. The default location for the rndc configuration
file is /etc/rndc. conf, but an alternate location can be specified with the —c option.
If the configuration file is not found, rndc also looks in /etc/rndc.key (or whatever
sysconfdir was defined when the BIND build was configured). The rndc.key file is
generated by running rndc-confgen -a as described in Section 6.2.

The format of the configuration file is similar to that of named. conf, but is limited to
only four statements: the options, key, server, and include statements. These statements
are what associate the secret keys to the servers with which they are meant to be shared.
The order of statements is not significant.

The options statement has three clauses: default-server, default-key, and default-port.
default-server takes a host name or address argument and represents the server that is
contacted if no —s option is provided on the command line. default-key takes the name
of a key as its argument, as defined by a key statement. default-port specifies the port
to which mdc should connect if no port is given on the command line or in a server
statement.

BIND 9.11.28 12

CHAPTER 3. NAME SERVER... 3.3. NAME SERVER OPERATIONS

The key statement defines a key to be used by rndc when authenticating with named. Its
syntax is identical to the key statement in named. conft. The keyword key is followed by
a key name, which must be a valid domain name, though it need not actually be hierar-
chical; thus, a string like "rndc_key" is a valid name. The key statement has two clauses:
algorithm and secret. While the configuration parser accepts any string as the argument
to algorithm, currently only the strings "hmac-md5", "hmac-shal", "hmac-sha224",
"hmac-sha256", "hmac-sha384", and "hmac-sha512" have any meaning. The secret
is a Base64-encoded string as specified in RFC 3548.

The server statement associates a key defined using the key statement with a server. The
keyword server is followed by a host name or address. The server statement has two
clauses: key and port. The key clause specifies the name of the key to be used when
communicating with this server, and the port clause can be used to specify the port rndc
should connect to on the server.

A sample minimal configuration file is as follows:

key rndc_key {
algorithm "hmac-sha256";
secret
"c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnVOIG1hZGUgZmOyIGEgd29tYW4K <

".
4

bi
options {
default-server 127.0.0.1;
default-key rndc_key;
}i

This file, if installed as /etc/rndc.conf, allows the command:
$ rndc reload

to connect to 127.0.0.1 port 953 and causes the name server to reload, if a name server on
the local machine is running with following controls statements:

controls {
inet 127.0.0.1
allow { localhost; } keys { rndc_key; };
bi

and it has an identical key statement for rndc_key.

Running the rndc-confgen program conveniently creates an rndc.conf file, and also
displays the corresponding controls statement needed to add to named.conf. Alterna-
tively, it is possible to run rndc-confgen -a to set up an rndc.key file and not modify
named. conf at all.

Signals

Certain Unix signals cause the name server to take specific actions, as described in the following
table. These signals can be sent using the kill command.

13 BIND 9.11.28

CHAPTER 3. NAME SERVER... 3.3. NAME SERVER OPERATIONS

SIGHUP Causes the server to read named. conf and reload the database.
SIGTERM Causes the server to clean up and exit.
SIGINT Causes the server to clean up and exit.

BIND 9.11.28 14

4 Advanced DNS Features

4.1 NOTIFY

DNS NOTIFY is a mechanism that allows primary servers to notify their secondary servers of
changes to a zone’s data. In response to a NOTIFY from a primary server, the secondary checks
to see that its version of the zone is the current version and, if not, initiates a zone transfer.

For more information about DNS NOTIFY, see the description of the notify option in Sec-
tion 6.2 and the description of the zone option also-notify in Section 6.2. The NOTIFY protocol
is specified in RFC 1996.

NOTE

As a secondary zone can also be a primary to other secondaries, hamed, by default, sends
NOTIFY messages for every zone it loads. Specifying notify primary-only; causes hamed
to only send NOTIFY for primary zones that it loads.

4.2 DyYNAMIC UPDATE

Dynamic Update is a method for adding, replacing, or deleting records in a primary server
by sending it a special form of DNS messages. The format and meaning of these messages is
specified in RFC 2136.

Dynamic update is enabled by including an allow-update or an update-policy clause in the
zone statement.

If the zone’s update-policy is set to local, updates to the zone are permitted for the key
local-ddns, which is generated by named at startup. See Section 6.2 for more details.

Dynamic updates using Kerberos-signed requests can be made using the TKEY/GSS protocol,
either by setting the tkey-gssapi-keytab option, or by setting both the tkey-gssapi-credential

15 BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES 4.3. INCREMENTAL ZONE TRANSFERS. ..

and tkey-domain options. Once enabled, Kerberos-signed requests are matched against the
update policies for the zone, using the Kerberos principal as the signer for the request.

Updating of secure zones (zones using DNSSEC) follows RFC 3007: RRSIG, NSEC, and NSEC3
records affected by updates are automatically regenerated by the server using an online zone
key. Update authorization is based on transaction signatures and an explicit server policy.

The Journal File

All changes made to a zone using dynamic update are stored in the zone’s journal file. This file
is automatically created by the server when the first dynamic update takes place. The name of
the journal file is formed by appending the extension . jnl to the name of the corresponding
zone file, unless specifically overridden. The journal file is in a binary format and should not be
edited manually.

The server also occasionally writes ("dumps") the complete contents of the updated zone to its
zone file. This is not done immediately after each dynamic update, because that would be too
slow when a large zone is updated frequently. Instead, the dump is delayed by up to 15 minutes,
allowing additional updates to take place. During the dump process, transient files are created
with the extensions . jnw and . jbk; under ordinary circumstances, these are removed when
the dump is complete, and can be safely ignored.

When a server is restarted after a shutdown or crash, it replays the journal file to incorporate
into the zone any updates that took place after the last zone dump.

Changes that result from incoming incremental zone transfers are also journaled in a similar
way.

The zone files of dynamic zones cannot normally be edited by hand because they are not guar-
anteed to contain the most recent dynamic changes; those are only in the journal file. The only
way to ensure that the zone file of a dynamic zone is up-to-date is to run rndc stop.

To make changes to a dynamic zone manually, follow these steps: first, disable dynamic updates
to the zone using rndc freeze zone. This updates the zone file with the changes stored in its
. jnl file. Then, edit the zone file. Finally, run rndc thaw zone to reload the changed zone and
re-enable dynamic updates.

rndc sync zone updates the zone file with changes from the journal file without stopping dy-
namic updates; this may be useful for viewing the current zone state. To remove the . jnl file
after updating the zone file, use rndc sync -clean.

4.3 INCREMENTAL ZONE TRANSFERS (IXFR)

The incremental zone transfer (IXFR) protocol is a way for secondary servers to transfer only
changed data, instead of having to transfer an entire zone. The IXFR protocol is specified in
RFC 1995. See Proposed Standards.

When acting as a primary server, BIND 9 supports IXFR for those zones where the necessary
change history information is available. These include primary zones maintained by dynamic
update and secondary zones whose data was obtained by IXFR. For manually maintained pri-
mary zones, and for secondary zones obtained by performing a full zone transfer (AXFR), IXFR
is supported only if the option ixfr-from-differences is set to yes.

BIND 9.11.28 16

CHAPTER 4. ADVANCED DNS FEATURES 4.4. SPLIT DNS

When acting as a secondary server, BIND 9 attempts to use IXFR unless it is explicitly disabled.
For more information about disabling IXFR, see the description of the request-ixfr clause of the
server statement.

4.4 SpPLIT DNS

Setting up different views of the DNS space to internal and external resolvers is usually referred
to as a split DNS setup. There are several reasons an organization might want to set up its DNS
this way.

One common reason to use split DNS is to hide "internal" DNS information from "external"
clients on the Internet. There is some debate as to whether this is actually useful. Internal DNS
information leaks out in many ways (via email headers, for example) and most savvy "attackers"
can find the information they need using other means. However, since listing addresses of
internal servers that external clients cannot possibly reach can result in connection delays and
other annoyances, an organization may choose to use split DNS to present a consistent view of
itself to the outside world.

Another common reason for setting up a split DNS system is to allow internal networks that are
behind filters or in RFC 1918 space (reserved IP space, as documented in RFC 1918) to resolve
DNS on the Internet. Split DNS can also be used to allow mail from outside back into the
internal network.

Example Split DNS Setup

Let’s say a company named Example, Inc. (example . com) has several corporate sites that have
an internal network with reserved Internet Protocol (IP) space and an external demilitarized
zone (DMZ), or "outside" section of a network, that is available to the public.

Example, Inc. wants its internal clients to be able to resolve external hostnames and to exchange
mail with people on the outside. The company also wants its internal resolvers to have access
to certain internal-only zones that are not available at all outside of the internal network.

In order to accomplish this, the company sets up two sets of name servers. One set is on the
inside network (in the reserved IP space) and the other set is on bastion hosts, which are "proxy"
hosts in the DMZ that can talk to both sides of its network.

The internal servers are configured to forward all queries, except queries for sitel.internal,
site2.internal, sitel.example.com, and site2.example.com, to the servers in the
DMZ. These internal servers will have complete sets of information for sitel.example.com,
site2.example.com, sitel.internal,and site2.internal.

To protect the sitel.internal and site2.internal domains, the internal name servers
must be configured to disallow all queries to these domains from any external hosts, including
the bastion hosts.

The external servers, which are on the bastion hosts, are configured to serve the "public” version
of the sitel.example.comand site2.example.comzones. This could include things such
as the host records for public servers (www.example.comand ftp.example.com) and mail
exchange (MX) records (a.mx.example.comand b.mx.example.com).

17 BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES 4.4. SPLIT DNS

In addition, the public sitel.example.comand site2.example.com zones should have
special MX records that contain wildcard ("™*") records pointing to the bastion hosts. This is
needed because external mail servers do not have any other way of looking up how to deliver
mail to those internal hosts. With the wildcard records, the mail is delivered to the bastion host,
which can then forward it on to internal hosts.

Here’s an example of a wildcard MX record:

* IN MX 10 externall.example.com.

Now that they accept mail on behalf of anything in the internal network, the bastion hosts need
to know how to deliver mail to internal hosts. The resolvers on the bastion hosts need to be
configured to point to the internal name servers for DNS resolution.

Queries for internal hostnames are answered by the internal servers, and queries for external
hostnames are forwarded back out to the DNS servers on the bastion hosts.

For all of this to work properly, internal clients need to be configured to query only the internal
name servers for DNS queries. This could also be enforced via selective filtering on the network.

If everything has been set properly, Example, Inc.’s internal clients are now able to:

* Look up any hostnames in the sitel.example.comand site2.example.com zones.
* Look up any hostnames in the sitel.internal and site2.internal domains.
* Look up any hostnames on the Internet.

¢ Exchange mail with both internal and external users.
Hosts on the Internet are able to:

* Look up any hostnames in the sitel.example.comand site2.example.com zones.
¢ Exchange mail with anyone in the sitel.example.com and site2.example.com

zones.

Here is an example configuration for the setup just described above. Note that this is only
configuration information; for information on how to configure the zone files, see Section 3.1.

Internal DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips—-go-here; };
options {

forward only;

// forward to external servers

forwarders {
bastion-ips—go-here;

BIND 9.11.28 18

CHAPTER 4. ADVANCED DNS FEATURES

4.4. SPLIT DNS

}i

// sample allow-transfer (no one)
allow-transfer { none; };

// restrict query access

allow—query { internals; externals; };
// restrict recursion

allow-recursion { internals; };

}i

// sample primary zone

zone "sitel.example.com" {
type master;
file "m/sitel.example.con";

// do normal iterative resolution (do not forward)

forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };

}i

// sample secondary zone
zone "site2.example.com" {
type slave;
file "s/site2.example.com";
masters { 172.16.72.3; };
forwarders { };
allow—-query { internals; externals; };
allow-transfer { internals; };
}i

zone "sitel.internal" {
type master;
file "m/sitel.internal";
forwarders { };
allow-query { internals; };
allow-transfer { internals; }

}i

zone "site2.internal" {
type slave;
file "s/site2.internal";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals };
allow-transfer { internals; }

}i

External (bastion host) DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24;

acl externals { bastion-ips—go-here; };

}i

19

BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES 4.5. TSIG

options {

// sample allow-transfer (no one)
allow-transfer { none; };

// default query access

allow—query { any; };

// restrict cache access

allow—-query-cache { internals; externals; };
// restrict recursion

allow-recursion { internals; externals; };

}i

// sample secondary zone
zone "sitel.example.com" {

type master;

file "m/sitel.foo.com";

allow—-transfer { internals; externals; };
}i

zone "site2.example.com" {
type slave;
file "s/site2.foo.com";
masters { another_bastion_host_maybe; };
allow-transfer { internals; externals; }

}i

In the resolv.conf (or equivalent) on the bastion host(s):

search

nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4

4.5 TSIG

TSIG (Transaction SIGnatures) is a mechanism for authenticating DNS messages, originally
specified in RFC 2845. It allows DNS messages to be cryptographically signed using a shared
secret. TSIG can be used in any DNS transaction, as a way to restrict access to certain server
functions (e.g., recursive queries) to authorized clients when IP-based access control is insuffi-
cient or needs to be overridden, or as a way to ensure message authenticity when it is critical
to the integrity of the server, such as with dynamic UPDATE messages or zone transfers from a
primary to a secondary server.

This section is a guide to setting up TSIG in BIND. It describes the configuration syntax and the
process of creating TSIG keys.

named supports TSIG for server-to-server communication, and some of the tools included with
BIND support it for sending messages to named:

BIND 9.11.28 20

CHAPTER 4. ADVANCED DNS FEATURES 4.5. TSIG

e nsupdate(1) supports TSIG via the -k, -1, and -y command-line options, or via the key
command when running interactively.

¢ dig(1) supports TSIG via the —k and -y command-line options.

Generating a Shared Key

TSIG keys can be generated using the tsig-keygen command; the output of the command is
a key directive suitable for inclusion in named. conf. The key name, algorithm, and size can
be specified by command-line parameters; the defaults are "tsig-key", HMAC-SHA256, and 256
bits, respectively.

Any string which is a valid DNS name can be used as a key name. For example, a key to be
shared between servers called host1 and host2 could be called "host1-host2.", and this key can be
generated using:

$ tsig-keygen hostl-host2. > hostl-host2.key

This key may then be copied to both hosts. The key name and secret must be identical on
both hosts. (Note: copying a shared secret from one server to another is beyond the scope of the
DNS. A secure transport mechanism should be used: secure FTP, SSL, ssh, telephone, encrypted
email, etc.)

tsig-keygen can also be run as ddns-confgen, in which case its output includes additional con-
figuration text for setting up dynamic DNS in named. See ddns-confgen(8) for details.

Loading a New Key

For a key shared between servers called host1 and host2, the following could be added to each
server’s named. conf file:

key "hostl-host2." {

algorithm hmac-sha256;

secret "DAopyflmhCbFVZw7pgmNPBoLUg8WEUT7UuPOoLENP2HY=";
}i

(This is the same key generated above using tsig-keygen.)

Since this text contains a secret, it is recommended that either named.conf not be world-
readable, or that the key directive be stored in a file which is not world-readable and which
is included in named. conf via the include directive.

Once a key has been added to named. conf and the server has been restarted or reconfigured,
the server can recognize the key. If the server receives a message signed by the key, it is able to
verify the signature. If the signature is valid, the response is signed using the same key.

TSIG keys that are known to a server can be listed using the command rndc tsig-list.

21 BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES 4.5. TSIG

Instructing the Server to Use a Key

A server sending a request to another server must be told whether to use a key, and if so, which
key to use.

For example, a key may be specified for each server in the masters statement in the definition of
a secondary zone; in this case, all SOA QUERY messages, NOTIFY messages, and zone transfer
requests (AXFR or IXFR) are signed using the specified key. Keys may also be specified in the
also-notify statement of a primary or secondary zone, causing NOTIFY messages to be signed
using the specified key.

Keys can also be specified in a server directive. Adding the following on host1, if the IP address
of host2 is 10.1.2.3, would cause all requests from host1 to host2, including normal DNS queries,
to be signed using the host1-host2. key:

server 10.1.2.3 {
keys { hostl-host2. ;};
i

Multiple keys may be present in the keys statement, but only the first one is used. As this
directive does not contain secrets, it can be used in a world-readable file.

Requests sent by host2 to host1 would not be signed, unless a similar server directive were in
host2’s configuration file.

Whenever any server sends a TSIG-signed DNS request, it expects the response to be signed
with the same key. If a response is not signed, or if the signature is not valid, the response is
rejected.

TSIG-Based Access Control

TSIG keys may be specified in ACL definitions and ACL directives such as allow-query, allow-
transfer, and allow-update. The above key would be denoted in an ACL element as key host1-
host2.

Here is an example of an allow-update directive using a TSIG key:

allow-update { !{ !localnets; any; }; key hostl-host2. ;};

This allows dynamic updates to succeed only if the UPDATE request comes from an address in
localnets, and if it is signed using the hostl-host2. key.

See Section 6.2 for a discussion of the more flexible update-policy statement.

Errors

Processing of TSIG-signed messages can result in several errors:

¢ If a TSIG-aware server receives a message signed by an unknown key, the response will
be unsigned, with the TSIG extended error code set to BADKEY.

BIND 9.11.28 22

CHAPTER 4. ADVANCED DNS FEATURES 4.6. TKEY

e Ifa TSIG-aware server receives a message from a known key but with an invalid signature,
the response will be unsigned, with the TSIG extended error code set to BADSIG.

e If a TSIG-aware server receives a message with a time outside of the allowed range, the
response will be signed but the TSIG extended error code set to BADTIME, and the time
values will be adjusted so that the response can be successfully verified.

In all of the above cases, the server returns a response code of NOTAUTH (not authenticated).

4.6 TKEY

TKEY (Transaction KEY) is a mechanism for automatically negotiating a shared secret between
two hosts, originally specified in RFC 2930.

There are several TKEY "modes" that specify how a key is to be generated or assigned. BIND
9 implements only one of these modes: Diffie-Hellman key exchange. Both hosts are required
to have a KEY record with algorithm DH (though this record is not required to be present in a
zone).

The TKEY process is initiated by a client or server by sending a query of type TKEY to a TKEY-
aware server. The query must include an appropriate KEY record in the additional section, and
must be signed using either TSIG or SIG(0) with a previously established key. The server’s
response, if successful, contains a TKEY record in its answer section. After this transaction,
both participants have enough information to calculate a shared secret using Diffie-Hellman
key exchange. The shared secret can then be used by to sign subsequent transactions between
the two servers.

TSIG keys known by the server, including TKEY-negotiated keys, can be listed using rndc tsig-
list.

TKEY-negotiated keys can be deleted from a server using rndc tsig-delete. This can also be
done via the TKEY protocol itself, by sending an authenticated TKEY query specifying the "key
deletion" mode.

4.7 SIG(0)

BIND partially supports DNSSEC SIG(0) transaction signatures as specified in RFC 2535 and
RFC 2931. SIG(0) uses public/private keys to authenticate messages. Access control is per-
formed in the same manner as with TSIG keys; privileges can be granted or denied in ACL
directives based on the key name.

When a SIG(0) signed message is received, it is only verified if the key is known and trusted by
the server. The server does not attempt to recursively fetch or validate the key.

SIG(0) signing of multiple-message TCP streams is not supported.

The only tool shipped with BIND 9 that generates SIG(0) signed messages is nsupdate.

23 BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES 4.8. DNSSEC

4.8 DNSSEC

Cryptographic authentication of DNS information is possible through the DNS Security (DNSSEC-
bis) extensions, defined in RFC 4033, RFC 4034, and RFC 4035. This section describes the cre-
ation and use of DNSSEC signed zones.

In order to set up a DNSSEC secure zone, there are a series of steps which must be followed.
BIND 9 ships with several tools that are used in this process, which are explained in more detail
below. In all cases, the —h option prints a full list of parameters. Note that the DNSSEC tools
require the keyset files to be in the working directory or the directory specified by the —d option.

There must also be communication with the administrators of the parent and/or child zone to
transmit keys. A zone’s security status must be indicated by the parent zone for a DNSSEC-
capable resolver to trust its data. This is done through the presence or absence of a DS record at
the delegation point.

For other servers to trust data in this zone, they must be statically configured with either this
zone’s zone key or the zone key of another zone above this one in the DNS tree.

Generating Keys

The dnssec-keygen program is used to generate keys.

A secure zone must contain one or more zone keys. The zone keys will sign all other records
in the zone, as well as the zone keys of any secure delegated zones. Zone keys must have
the same name as the zone, have a name type of ZONE, and be usable for authentication. It
is recommended that zone keys use a cryptographic algorithm designated as "mandatory to
implement" by the IETF; currently the only one is RSASHA1.

The following command generates a 768-bit RSASHAT1 key for the child.example zone:
dnssec-keygen —a RSASHAl -b 768 —-n ZONE child.example.

Two output files are produced: Kchild.example.+005+12345.keyand Kchild.example.
+005+12345.private (where 12345 is an example of a key tag). The key filenames contain
the key name (child.example.), the algorithm (3 is DSA, 1 is RSAMDS5, 5 is RSASHAL], etc.),
and the key tag (12345 in this case). The private key (in the . private file) is used to generate
signatures, and the public key (in the . key file) is used for signature verification.

To generate another key with the same properties but with a different key tag, repeat the above
command.

The dnssec-keyfromlabel program is used to get a key pair from a crypto hardware device and
build the key files. Its usage is similar to dnssec-keygen.

The public keys should be inserted into the zone file by including the .key files using $IN-
CLUDE statements.

Signing the Zone

The dnssec-signzone program is used to sign a zone.

BIND 9.11.28 24

CHAPTER 4. ADVANCED DNS FEATURES 4.8. DNSSEC

Any keyset files corresponding to secure sub-zones should be present. The zone signer gen-
erates NSEC, NSEC3, and RRSIG records for the zone, as well as DS for the child zones if —g
is specified. If g is not specified, then DS RRsets for the secure child zones need to be added
manually.

By default, all zone keys which have an available private key are used to generate signatures.
The following command signs the zone, assuming it is in a file called zone.child.example:

dnssec-signzone -o child.example zone.child.example

One output file is produced: zone.child.example.signed. This file should be referenced
by named. conf as the input file for the zone.

dnssec-signzone also produces keyset and dsset files. These are used to provide the parent
zone administrators with the DNSKEYs (or their corresponding DS records) that are the secure
entry point to the zone.

Configuring Servers for DNSSEC

To enable named to respond appropriately to DNS requests from DNSSEC-aware clients, dnssec-
enable must be set to yes. (This is the default setting.)

To enable named to validate answers from other servers, the dnssec-enable option must be set
to yes, and the dnssec-validation option must be set to yes or auto.

If dnssec-validation is set to auto, then a default trust anchor for the DNS root zone is used. If
it is set to yes, however, then at least one trust anchor must be configured with a trusted-keys
or managed-keys statement in named. conf, or DNSSEC validation will not occur. The default
setting is yes.

trusted-keys are copies of DNSKEY RRs for zones that are used to form the first link in the
cryptographic chain of trust. All keys listed in trusted-keys (and corresponding zones) are
deemed to exist and only the listed keys are used to validate the DNSKEY RRset that they are
from.

managed-keys are trusted keys which are automatically kept up-to-date via RFC 5011 trust
anchor maintenance.

trusted-keys and managed-keys are described in more detail later in this document.

BIND 9 does not verify signatures on load, so zone keys for authoritative zones do not need to
be specified in the configuration file.

After DNSSEC is established, a typical DNSSEC configuration looks something like the fol-
lowing. It has one or more public keys for the root, which allows answers from outside the
organization to be validated. It also has several keys for parts of the namespace that the organi-
zation controls. These are here to ensure that named is immune to compromised security in the
DNSSEC components of parent zones.

managed-keys {
/* Root Key =/
"." initial-key 257 3 3 "BNY4wrWMInCfJ+ <
CXd0rVXyYmobt 7sEEfK3clRbGaTwS
JxrGkxJWoZu6I7PzJu/ <
E9gx4UC1zGAHLXKJE4zYIpRh

25 BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES

4.8. DNSSEC

}i

trusted-keys {

aBKnvcC2U9mzZhkdUpdlVso/ <+
HAdjNe8LmMlnzY3zy2Xy

4k 1WOADTPzSv9eamj8V18PHGjBLavVtYvk/ <

1In5ZApijYg

hf+6fElrmLkdaz MQ20CnACR817DF4BBa7UR/ <

beDHyp

5iWTXWSi6XmoJLbGIScqc7170KDGlvXR3M/

1UUVRbke

glIPJSidmK3ZyCl1lh4XSKbje/45 <«

SKucHgnwU5jefMtg
66gKodQj+ ¢

MiA21AfUVe7u99WzTLzY3glxDhxYQQ20FQ

97S+LKUTpQcg27RTAT3/

V5hROxScINgwcz4jYgZD2£Q

dgxbcDTCLlUOCRBdiieyLMNzXG3";

/* Key for our organization’s forward zone =/
example.com. 257 3 5 "AwEAAaxPMcR2x0HbQV4WeZB60oEDX+r0QM6
5KbhTjrWlZaARmPhEZZe3Y9ifgEuq7vz/z
GZUdEGNWy+JZzus01UptwgjGwhUS1558Hb
4JKUbbOTcM8pwX1jOEiX30DFVmjHO444gL
kBOUKUf /mC7HvEwYH/Be22GnClrinKJplO
g4ywzO9Wg1lMk7jbfW33gUKvirTHr25GL7S
TQUzBb5Usxt81lgnyTUHs1t3JwCY5S5hKZ6Cq
FxmAVZP20igTixin/l1LcrgX/KMEGd/biuv
F4qgJCyduieHukuY3H4XMACR+xia2nIUPvm
/OyWR8BW/hWdzOvnSCTh1Hf3xiY1leDbt /o
10TQ09A0=";

/* Key for our reverse zone.
257 3 5 "AQOnS4xn/IgOUpBPJ3bogzwc

2.0.192.IN-ADDRPA.NET.

bi
options {

dnssec—enable yes;
dnssec-validation yes;

x0dNax071L18QgZnQQQAVVr+i
LhGTnNGp3HoWQLUIzKrJVZ3zg
gy3WwNT6kZo6cOtszYgbtvchm
gQC8CzKojM/W16i6MG/eafGU3
51a0dS0yOI6BgPsw+YZdz1lYMa
IJGf4M4dyoKIhzdZyQ2bYQrjy
Q4LB01C7a0OnsMyYKHHYeRvVPxj
IQXmdggOJGg+vsevG06zW+1xg
YJh9rCIfnmlGX/KMgxLPG2vXT
D/RnLX+D3T3UL7HJYHJhAZD5L
59VvjSPsZJHeDCUyWYrvPZesZ
DIRvhDD52SKvbheeTJUm6Ehkz
ytNN2SN96QRk83/iI8ib";

BIND 9.11.28

26

CHAPTER 4. ADVANCED DNS FEATURES 4.9. DNSSEC, DYNAMIC ZONES, AND...

NOTE

None of the keys listed in this example are valid. In particular, the root key is not valid.

When DNSSEC validation is enabled and properly configured, the resolver rejects any answers
from signed, secure zones which fail to validate, and returns SERVFAIL to the client.

Responses may fail to validate for any of several reasons, including missing, expired, or invalid
signatures, a key which does not match the DS RRset in the parent zone, or an insecure response
from a zone which, according to its parent, should have been secure.

NOTE

When the validator receives a response from an unsigned zone that has a signed parent,
it must confirm with the parent that the zone was intentionally left unsigned. It does this by
verifying, via signed and validated NSEC/NSECS3 records, that the parent zone contains no
DS records for the child.

If the validator can prove that the zone is insecure, then the response is accepted. However,
if it cannot, the validator must assume an insecure response to be a forgery; it rejects the
response and logs an error.

The logged error reads "insecurity proof failed" and "got insecure response; parent indicates
it should be secure".

4.9 DNSSEC, DYNAMIC ZONES, AND AUTOMATIC SIGNING

Converting from insecure to secure

A zone ca be changed from insecure to secure in two ways: using a dynamic DNS update, or
via the auto-dnssec zone option.

For either method, named must be configured so that it can see the K« files which contain the
public and private parts of the keys that are used to sign the zone. These files are generated by
dnssec-keygen, and they should be placed in the key-directory, as specified in named. conf:

zone example.net
type master;
update-policy local;
file "dynamic/example.net/example.net";

27 BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES 4.9. DNSSEC, DYNAMIC ZONES, AND. ..

key-directory "dynamic/example.net";
bi

If one KSK and one ZSK DNSKEY key have been generated, this configuration causes all records

in the zone to be signed with the ZSK, and the DNSKEY RRset to be signed with the KSK. An
NSEC chain is generated as part of the initial signing process.

Dynamic DNS Update Method

To insert the keys via dynamic update:

o

nsupdate

ttl 3600

update add example.net DNSKEY 256 3 7 <+
AWEAAZnNn17pUFO0KpbPA2c7Gz76Vbl18v0teKT3EYAGERBfL8eQ8a135z2z3Y Ilm/ <
SAQBXIQMfLt IwqWPdgthsu36azGQAX8=

update add example.net DNSKEY 257 3 7 AwEAAd/70dU/64 <+
02LGsifbLtOmt O8dFDtTAZXSX2+X3e/UN1g9THg3Y0 XtCOIuawl/gkaKVxXe2lo8Ct+ <
dM6UehyCagk=

> send

vV Vv

2

While the update request completes almost immediately, the zone is not completely signed until
named has had time to "walk" the zone and generate the NSEC and RRSIG records. The NSEC
record at the apex is added last, to signal that there is a complete NSEC chain.

To sign using NSEC3 instead of NSEC, add an NSEC3PARAM record to the initial update re-
quest. The OPTOUT bit in the NSEC3 chain can be set in the flags field of the NSEC3PARAM
record.

o°

nsupdate
ttl 3600
update add example.net DNSKEY 256 3 7 <«
AWEAAZNn17pUFO0KpbPA2c7Gz76Vb18v0teKT3EYAGEBfL8eQ8al1352z2z3Y Ilm/
SAQOBxXIgMfLt IwgWPdgthsu36azGQAX8=
> update add example.net DNSKEY 257 3 7 AwEAAd/70dU/64 <
02LGsifbLtOmt O8dFDtTAZXSX2+X3e/UN1g9THg3Y0 XtCOIuawl/gkaKVxXe2lo8Ct+ <
dM6UehyCgk=
> update add example.net NSEC3PARAM 1 1 100 1234567890
> send

VvV Vv

Again, this update request completes almost immediately; however, the record does not show
up until named has had a chance to build/remove the relevant chain. A private type record is
created to record the state of the operation (see below for more details), and is removed once
the operation completes.

While the initial signing and NSEC/NSEC3 chain generation is happening, other updates are
possible as well.

Fully Automatic Zone Signing

To enable automatic signing, add the auto-dnssec option to the zone statement in named. conf.
auto-dnssec has two possible arguments: allow or maintain.

BIND 9.11.28 28

CHAPTER 4. ADVANCED DNS FEATURES 4.9. DNSSEC, DYNAMIC ZONES, AND...

With auto-dnssec allow, named can search the key directory for keys matching the zone, insert
them into the zone, and use them to sign the zone. It does so only when it receives an rndc sign
<zonename>.

auto-dnssec maintain includes the above functionality, but also automatically adjusts the zone’s
DNSKEY records on a schedule according to the keys’ timing metadata. (See dnssec-keygen(8)
and dnssec-settime(8) for more information.)

named periodically searches the key directory for keys matching the zone; if the keys” metadata
indicates that any change should be made to the zone - such as adding, removing, or revoking a
key - then that action is carried out. By default, the key directory is checked for changes every 60
minutes; this period can be adjusted with dnssec-loadkeys-interval, up to a maximum
of 24 hours. The rndc loadkeys forces named to check for key updates immediately.

If keys are present in the key directory the first time the zone is loaded, the zone is signed
immediately, without waiting for an rndc sign or rmdc loadkeys command. Those commands
can still be used when there are unscheduled key changes.

When new keys are added to a zone, the TTL is set to match that of any existing DNSKEY
RRset. If there is no existing DNSKEY RRset, the TTL is set to the TTL specified when the key
was created (using the dnssec-keygen -L option), if any, or to the SOA TTL.

To sign the zone using NSEC3 instead of NSEC, submit an NSEC3PARAM record via dynamic
update prior to the scheduled publication and activation of the keys. The OPTOUT bit for the
NSEC3 chain can be set in the flags field of the NSEC3PARAM record. The NSEC3PARAM
record does not appear in the zone immediately, but it is stored for later reference. When the
zone is signed and the NSEC3 chain is completed, the NSEC3PARAM record appears in the
zone.

Using the auto-dnssec option requires the zone to be configured to allow dynamic updates, by
adding an allow-update or update-policy statement to the zone configuration. If this has not
been done, the configuration fails.

Private Type Records

The state of the signing process is signaled by private type records (with a default type value
of 65534). When signing is complete, these records with a non-zero initial octet have a non-zero
value for the final octet.

If the first octet of a private type record is non-zero, the record indicates either that the zone
needs to be signed with the key matching the record, or that all signatures that match the record
should be removed. Here are the meanings of the different values of the first octet:

algorithm (octet 1)

key id in network order (octet 2 and 3)
removal flag (octet 4)

complete flag (octet 5)

Only records flagged as "complete” can be removed via dynamic update; attempts to remove
other private type records are silently ignored.

29 BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES 4.9. DNSSEC, DYNAMIC ZONES, AND. ..

If the first octet is zero (this is a reserved algorithm number that should never appear in a
DNSKEY record), the record indicates that changes to the NSEC3 chains are in progress. The
rest of the record contains an NSEC3PARAM record, while the flag field tells what operation to
perform based on the flag bits:

0x01 OPTOUT
0x80 CREATE
0x40 REMOVE
0x20 NONSEC

DNSKEY Rollovers

As with insecure-to-secure conversions, DNSSEC keyrolls can be done in two ways: using a
dynamic DNS update, or via the auto-dnssec zone option.

Dynamic DNS Update Method

To perform key rollovers via dynamic update, the K~ files for the new keys must be added so
that named can find them. The new DNSKEY RRs can then be added via dynamic update.
named then causes the zone to be signed with the new keys; when the signing is complete, the
private type records are updated so that the last octet is non-zero.

If this is for a KSK, the parent and any trust anchor repositories of the new KSK must be in-
formed.

The maximum TTL in the zone must expire before removing the old DNSKEY. If it is a KSK that
is being updated, the DS RRset in the parent must also be updated its TTL allowed to expire.
This ensures that all clients are able to verify at least one signature when the old DNSKEY is
removed.

The old DNSKEY can be removed via UPDATE, taking care to specify the correct key. named
cleans out any signatures generated by the old key after the update completes.

Automatic Key Rollovers

When a new key reaches its activation date (as set by dnssec-keygen or dnssec-settime), and
if the auto-dnssec zone option is set to maintain, named automatically carries out the key
rollover. If the key’s algorithm has not previously been used to sign the zone, then the zone is
fully signed as quickly as possible. However, if the new key replaces an existing key of the same
algorithm, the zone is re-signed incrementally, with signatures from the old key replaced with
signatures from the new key as their signature validity periods expire. By default, this rollover
completes in 30 days, after which it is safe to remove the old key from the DNSKEY RRset.

NSEC3PARAM Rollovers via UPDATE

The new NSEC3PARAM record can be added via dynamic update. When the new NSEC3
chain has been generated, the NSEC3PARAM flag field is set to zero. At that point, the old

BIND 9.11.28 30

CHAPTER 4. ADVANCED DNS FEATURES 4.10. DYNAMIC TRUST ANCHOR...

NSEC3PARAM record can be removed. The old chain is removed after the update request
completes.

Converting From NSEC to NSEC3

To do this, an NSEC3PARAM record must be added. When the conversion is complete, the
NSEC chain is removed and the NSEC3PARAM record has a zero flag field. The NSEC3 chain
is generated before the NSEC chain is destroyed.

Converting From NSEC3 to NSEC

To do this, use nsupdate to remove all NSEC3PARAM records with a zero flag field. The NSEC
chain is generated before the NSEC3 chain is removed.

Converting From Secure to Insecure

To convert a signed zone to unsigned using dynamic DNS, delete all the DNSKEY records
from the zone apex using nsupdate. All signatures, NSEC or NSEC3 chains, and associated
NSEC3PARAM records are removed automatically. This takes place after the update request
completes.

This requires the dnssec-secure-to-insecure option to be set to yes in named. conft.

In addition, if the auto-dnssec maintain zone statement is used, it should be removed or changed
to allow instead; otherwise, it will re-sign).

Periodic Re-signing

In any secure zone which supports dynamic updates, named periodically re-signs RRsets which
have not been re-signed as a result of some update action. The signature lifetimes are adjusted
to spread the re-sign load over time rather than all at once.

NSEC3 and OPTOUT

named only supports creating new NSEC3 chains where all the NSEC3 records in the zone have
the same OPTOUT state. named supports UPDATES to zones where the NSEC3 records in the
chain have mixed OPTOUT state. named does not support changing the OPTOUT state of an
individual NSEC3 record; if the OPTOUT state of an individual NSEC3 needs to be changed,
the entire chain must be changed.

4.10 DyNAMIC TRUST ANCHOR MANAGEMENT

BIND is able to maintain DNSSEC trust anchors using RFC 5011 key management. This fea-
ture allows named to keep track of changes to critical DNSSEC keys without any need for the
operator to make changes to configuration files.

31 BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES 4.10. DYNAMIC TRUST ANCHOR...

Validating Resolver

To configure a validating resolver to use RFC 5011 to maintain a trust anchor, configure the trust
anchor using a managed-keys statement. Information about this can be found in Section 6.2.

Authoritative Server

To set up an authoritative zone for RFC 5011 trust anchor maintenance, generate two (or more)
key signing keys (KSKs) for the zone. Sign the zone with one of them; this is the "active" KSK.
All KSKs which do not sign the zone are "stand-by" keys.

Any validating resolver which is configured to use the active KSK as an RFC 5011-managed
trust anchor takes note of the stand-by KSKs in the zone’s DNSKEY RRset, and stores them for
future reference. The resolver rechecks the zone periodically; after 30 days, if the new key is
still there, the key is accepted by the resolver as a valid trust anchor for the zone. Anytime after
this 30-day acceptance timer has completed, the active KSK can be revoked, and the zone can
be "rolled over" to the newly accepted key.

The easiest way to place a stand-by key in a zone is to use the "smart signing" features of dnssec-
keygen and dnssec-signzone. If a key exists with a publication date in the past, but an activa-
tion date which is unset or in the future, dnssec-signzone -S includes the DNSKEY record in
the zone but does not sign with it:

$ dnssec-keygen -K keys —-f KSK -P now —A now+2y example.net
$ dnssec-signzone —-S -K keys example.net

To revoke a key, use the command dnssec-revoke. This adds the REVOKED bit to the key flags
and regenerates the K« . key and K . private files.

After revoking the active key, the zone must be signed with both the revoked KSK and the new
active KSK. Smart signing takes care of this automatically.

Once a key has been revoked and used to sign the DNSKEY RRset in which it appears, that key
is never again accepted as a valid trust anchor by the resolver. However, validation can proceed
using the new active key, which was accepted by the resolver when it was a stand-by key.

See RFC 5011 for more details on key rollover scenarios.

When a key has been revoked, its key ID changes, increasing by 128 and wrapping around at
65535. So, for example, the key "Kexample.com.+005+10000" becomes "Kexample.com.
+005+10128".

If two keys have IDs exactly 128 apart and one is revoked, the two key IDs will collide, causing
several problems. To prevent this, dnssec-keygen does not generate a new key if another key
which may collide is present. This checking only occurs if the new keys are written to the same
directory that holds all other keys in use for that zone.

Older versions of BIND 9 did not have this protection. Exercise caution if using key revocation
on keys that were generated by previous releases, or if using keys stored in multiple directories
or on multiple machines.

It is expected that a future release of BIND 9 will address this problem in a different way, by
storing revoked keys with their original unrevoked key IDs.

BIND 9.11.28 32

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

4.11 PKCS#11 (CRYPTOKI) SUPPORT

Public Key Cryptography Standard #11 (PKCS#11) defines a platform-independent API for the
control of hardware security modules (HSMs) and other cryptographic support devices.

BIND 9 is known to work with three HSMs: The AEP Keyper, which has been tested with De-
bian Linux, Solaris x86 and Windows Server 2003; the Thales nShield, tested with Debian Linux;
and the Sun SCA 6000 cryptographic acceleration board, tested with Solaris x86. In addition,
BIND can be used with all current versions of SoftHSM, a software-based HSM simulator li-
brary produced by the OpenDNSSEC project.

PKCS#11 makes use of a "provider library™": a dynamically loadable library which provides a
low-level PKCS#11 interface to drive the HSM hardware. The PKCS#11 provider library comes
from the HSM vendor, and it is specific to the HSM to be controlled.

There are two available mechanisms for PKCS#11 support in BIND 9: OpenSSL-based PKCS#11
and native PKCS#11. When using the first mechanism, BIND uses a modified version of OpenSSL,
which loads the provider library and operates the HSM indirectly; any cryptographic opera-
tions not supported by the HSM can be carried out by OpenSSL instead. The second mechanism
enables BIND to bypass OpenSSL completely; BIND loads the provider library itself, and uses
the PKCS#11 API to drive the HSM directly.

Prerequisites

See the documentation provided by your HSM vendor for information about installing, initial-
izing, testing and troubleshooting the HSM.

Native PKCS#11

Native PKCS#11 mode will only work with an HSM capable of carrying out every cryptographic
operation BIND 9 may need. The HSM's provider library must have a complete implementation
of the PKCS#11 AP], so that all these functions are accessible. As of this writing, only the Thales
nShield HSM and SoftHSMv2 can be used in this fashion. For other HSMs, including the AEP
Keyper, Sun SCA 6000 and older versions of SoftHSM, use OpenSSL-based PKCS#11. (Note:
Eventually, when more HSMs become capable of supporting native PKCS#11, it is expected
that OpenSSL-based PKCS#11 will be deprecated.)

To build BIND with native PKCS#11, configure as follows:

$ cd bind9
$./configure —-enable-native-pkcsll \
—--with-pkcsll=provider-library-path

This will cause all BIND tools, including named and the dnssec-* and pkes11-* tools, to use
the PKCS#11 provider library specified in provider-library-path for cryptography. (The
provider library path can be overridden using the -E in named and the dnssec-* tools, or the
-m in the pkes11-* tools.)

33 BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

Building SoftHSMv2

SoftHSMv2, the latest development version of SoftHSM, is available from https:/ /github.com/-
opendnssec/SoftHSMv?2 . Itis a software library developed by the OpenDNSSEC project (http:/ /www.opendns
) which provides a PKCS#11 interface to a virtual HSM, implemented in the form of a SQLite3

database on the local filesystem. It provides less security than a true HSM, but it allows you to

experiment with native PKCS#11 when an HSM is not available. SoftHSMv2 can be configured

to use either OpenSSL or the Botan library to perform cryptographic functions, but when using

it for native PKCS#11 in BIND, OpenSSL is required.

By default, the SoftHSMv2 configuration file is prefix/etc/softhsm2.conf (where prefix is
configured at compile time). This location can be overridden by the SOFTHSM2_CONF envi-
ronment variable. The SoftHSMv2 cryptographic store must be installed and initialized before

using it with BIND.

$ cd SoftHSMv2

$ configure —--with-crypto-backend=openssl --prefix=/opt/pkcsll/usr —--
enable—-gost

S make

$ make install
$ /opt/pkecsll/usr/bin/softhsm-util —--init-token 0 —--slot 0 —--label <+
softhsmv2

OpenSSL-based PKCS#11

OpenSSL-based PKCS#11 mode uses a modified version of the OpenSSL library; stock OpenSSL
does not fully support PKCS#11. ISC provides a patch to OpenSSL to correct this. This patch
is based on work originally done by the OpenSolaris project; it has been modified by ISC to
provide new features such as PIN management and key-by-reference.

There are two "flavors" of PKCS#11 support provided by the patched OpenSSL, one of which
must be chosen at configuration time. The correct choice depends on the HSM hardware:

* Use ‘crypto-accelerator” with HSMs that have hardware cryptographic acceleration fea-
tures, such as the SCA 6000 board. This causes OpenSSL to run all supported crypto-
graphic operations in the HSM.

¢ Use 'sign-only’ with HSMs that are designed to function primarily as secure key storage
devices, but lack hardware acceleration. These devices are highly secure, but are not nec-
essarily any faster at cryptography than the system CPU --- often, they are slower. It is
therefore most efficient to use them only for those cryptographic functions that require
access to the secured private key, such as zone signing, and to use the system CPU for
all other computationally-intensive operations. The AEP Keyper is an example of such a
device.

The modified OpenSSL code is included in the BIND 9 release, in the form of a context diff
against the latest versions of OpenSSL. OpenSSL 0.9.8, 1.0.0, 1.0.1 and 1.0.2 are supported; there
are separate diffs for each version. In the examples to follow, we use OpenSSL 0.9.8, but the
same methods work with OpenSSL 1.0.0 through 1.0.2.

BIND 9.11.28 34

https://github.com/opendnssec/SoftHSMv2
https://github.com/opendnssec/SoftHSMv2
http://www.opendnssec.org
http://www.opendnssec.org

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

NOTE

The OpenSSL patches as of this writing (January 2016) support versions 0.9.8zh, 1.0.0t,
1.0.1g and 1.0.2f. ISC will provide updated patches as new versions of OpenSSL are re-
leased. The version number in the following examples is expected to change.

Before building BIND 9 with PKCS#11 support, it will be necessary to build OpenSSL with the
patch in place, and configure it with the path to your HSM’s PKCS#11 provider library.

Patching OpenSSL
$ wget http://www.openssl.org/source/openssl-0.9.8zc.tar.gz

Extract the tarball:

$ tar zxf openssl-0.9.8zc.tar.gz

Apply the patch from the BIND 9 release:

$ patch -pl -d openssl-0.9.8zc \
< bind9/bin/pkcsll/openssl-0.9.8zc-patch

NOTE

The patch file may not be compatible with the "patch" utility on all operating systems. You
may need to install GNU patch.

When building OpenSSL, place it in a non-standard location so that it does not interfere with
OpenSSL libraries elsewhere on the system. In the following examples, we choose to install into
"/opt/pkesll/usr". We will use this location when we configure BIND 9.

Later, when building BIND 9, the location of the custom-built OpenSSL library will need to be
specified via configure.

Building OpenSSL for the AEP Keyper on Linux

The AEP Keyper is a highly secure key storage device, but does not provide hardware crypto-
graphic acceleration. It can carry out cryptographic operations, but it is probably slower than
your system’s CPU. Therefore, we choose the ‘sign-only’ flavor when building OpenSSL.

35 BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

The Keyper-specific PKCS#11 provider library is delivered with the Keyper software. In this
example, we place it /opt/pkesll/usr/lib:

$ cp pkesll.GCC4.0.2.s0.4.05 /opt/pkesll/usr/lib/libpkesll.so

The Keyper library requires threads, so we must specify -pthread.

$ cd openssl-0.9.8zc

$./Configure linux-x86_64 -pthread \
—-pkll-libname=/opt/pkcsll/usr/lib/libpkcsll.so \
—--pkll-flavor=sign-only \
—-prefix=/opt/pkcsll/usr

After configuring, run "make" and "make test". If "make test" fails with "pthread_atfork() not
found", you forgot to add the -pthread above.

Building OpenSSL for the SCA 6000 on Solaris

The SCA-6000 PKCS#11 provider is installed as a system library, libpkcs11. It is a true crypto
accelerator, up to 4 times faster than any CPU, so the flavor shall be “crypto-accelerator’.

In this example, we are building on Solaris x86 on an AMD64 system.

$ cd openssl-0.9.8zc

$./Configure solaris64-x86_64-cc \
—-pkll-libname=/usr/1lib/64/libpkecsll.so \
—-pkll-flavor=crypto—-accelerator \
—-prefix=/opt/pkcsll/usr

(For a 32-bit build, use "solaris-x86-cc" and /usr/lib/libpkes11.s0.)

After configuring, run make and make test.

Building OpenSSL for SoftHSM

SoftHSM (version 1) is a software library developed by the OpenDNSSEC project (http:/ /www.opendnssec.org
) which provides a PKCS#11 interface to a virtual HSM, implemented in the form of a SQLite3

database on the local filesystem. SoftHSM uses the Botan library to perform cryptographic func-

tions. Though less secure than a true HSM, it can allow you to experiment with PKCS#11 when

an HSM is not available.

The SoftHSM cryptographic store must be installed and initialized before using it with OpenSSL,
and the SOFTHSM_CONF environment variable must always point to the SoftHSM configura-

tion file:

$ ecd softhsm-1.3.7

$ configure --prefix=/opt/pkcsll/usr

$ make

$ make install

$ export SOFTHSM CONF=/opt/pkcsll/softhsm.conf

$ echo "0:/opt/pkcsll/softhsm.db" > $SOFTHSM_CONF

$ /opt/pkecsll/usr/bin/softhsm —-init-token 0 --slot 0 --label softhsm

BIND 9.11.28 36

http://www.opendnssec.org
http://www.opendnssec.org

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

SoftHSM can perform all cryptographic operations, but since it only uses your system CPU,
there is no advantage to using it for anything but signing. Therefore, we choose the 'sign-only’
flavor when building OpenSSL.

$ cd openssl-0.9.8zc

$./Configure linux-x86_64 -pthread \
—-pkll-libname=/opt/pkcsll/usr/lib/libsofthsm.so \
—-pkll-flavor=sign-only \
—-prefix=/opt/pkcsll/usr

After configuring, run "make" and "make test".

Once you have built OpenSSL, run "apps/openssl engine pkes11" to confirm that PKCS#11
support was compiled in correctly. The output should be one of the following lines, depending
on the flavor selected:

(pkcsll) PKCS #11 engine support (sign only)

Or:
(pkcsll) PKCS #11 engine support (crypto accelerator)

Next, run "apps/openssl engine pkcs11 -t". This will attempt to initialize the PKCS#11 engine.

”

If it is able to do so successfully, it will report “[available]”.

If the output is correct, run "make install" which will install the modified OpenSSL suite to
/opt/pkcsll/usr.

Configuring BIND 9 for Linux with the AEP Keyper

To link with the PKCS#11 provider, threads must be enabled in the BIND 9 build.

$ ed ../bind9

$./configure —--enable-threads \
--with-openssl=/opt/pkcsll/usr \
—-with-pkesll=/opt/pkecsll/usr/lib/libpkesll. so

Configuring BIND 9 for Solaris with the SCA 6000

To link with the PKCS#11 provider, threads must be enabled in the BIND 9 build.

$ ed ../bind9

$./configure CC="cc -xarch=amd64" —--enable-threads \
—-with-openssl=/opt/pkcsll/usr \
—-with-pkecsll=/usr/1lib/64/1libpkcsll.so

(For a 32-bit build, omit CC="cc -xarch=amd64".)

If configure complains about OpenSSL not working, you may have a 32/64-bit architecture
mismatch. Or, you may have incorrectly specified the path to OpenSSL (it should be the same
as the --prefix argument to the OpenSSL Configure).

37 BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

Configuring BIND 9 for SoftHSM

$ ed ../bind9

$./configure —--enable-threads \
--with-openssl=/opt/pkcsll/usr \
—-with-pkecsll=/opt/pkecsll/usr/lib/libsofthsm. so

"non

After configuring, run "make", "make test" and "make install".

(Note: If "make test" fails in the "pkcs11" system test, you may have forgotten to set the SOFTHSM_CONF
environment variable.)

PKCS#11 Tools

BIND 9 includes a minimal set of tools to operate the HSM, including pkecs11-keygen to gener-
ate anew key pair within the HSM, pkes11-list to list objects currently available, pkcs11-destroy
to remove objects, and pkes11-tokens to list available tokens.

In UNIX/Linux builds, these tools are built only if BIND 9 is configured with the --with-pkes11
option. (Note: If --with-pkesl1 is set to "yes", rather than to the path of the PKCS#11 provider,
then the tools will be built but the provider will be left undefined. Use the -m option or the
PKCS11_PROVIDER environment variable to specify the path to the provider.)

Using the HSM
For OpenSSL-based PKCS#11, we must first set up the runtime environment so the OpenSSL
and PKCS#11 libraries can be loaded:

$ export LD_LIBRARY PATH=/opt/pkcsll/usr/lib:${LD_LIBRARY PATH}

This causes named and other binaries to load the OpenSSL library from /opt/pkcsll/usr/
lib rather than from the defaultlocation. This step is not necessary when using native PKCS#11.

Some HSMs require other environment variables to be set. For example, when operating an
AEP Keyper, it is necessary to specify the location of the "machine" file, which stores informa-
tion about the Keyper for use by the provider library. If the machine file is in /opt /Keyper/
PKCS1llProvider/machine, use:

$ export KEYPER LIBRARY PATH=/opt/Keyper/PKCSllProvider

Such environment variables must be set whenever running any tool that uses the HSM, in-
cluding pkesll-keygen, pkcesll-list, pkcsll-destroy, dnssec-keyfromlabel, dnssec-signzone,
dnssec-keygen, and named.

We can now create and use keys in the HSM. In this case, we will create a 2048 bit key and give
it the label "sample-ksk":

$ pkcsll-keygen -b 2048 -1 sample-ksk

To confirm that the key exists:

BIND 9.11.28 38

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

$ pkecsll-list

Enter PIN:

object [0]: handle 2147483658 class 3 label[8] ’sample-ksk’ id[O0]
object[1]: handle 2147483657 class 2 label[8] ’'sample-ksk’ 1id[0]

Before using this key to sign a zone, we must create a pair of BIND 9 key files. The "dnssec-
keyfromlabel" utility does this. In this case, we will be using the HSM key "sample-ksk" as the
key-signing key for "example.net":

S dnssec-keyfromlabel -1 sample-ksk —-f KSK example.net

The resulting K*.key and K*.private files can now be used to sign the zone. Unlike normal K*
files, which contain both public and private key data, these files will contain only the public key
data, plus an identifier for the private key which remains stored within the HSM. Signing with
the private key takes place inside the HSM.

If you wish to generate a second key in the HSM for use as a zone-signing key, follow the same
procedure above, using a different keylabel, a smaller key size, and omitting "-f KSK" from the
dnssec-keyfromlabel arguments:

(Note: When using OpenSSL-based PKCS#11 the label is an arbitrary string which identifies the
key. With native PKCS#11, the label is a PKCS#11 URI string which may include other details
about the key and the HSM, including its PIN. See dnssec-keyfromlabel(8) for details.)

$ pkcsll-keygen -b 1024 -1 sample-zsk
$ dnssec-keyfromlabel -1 sample-zsk example.net

Alternatively, you may prefer to generate a conventional on-disk key, using dnssec-keygen:

$ dnssec-keygen example.net

This provides less security than an HSM key, but since HSMs can be slow or cumbersome to use
for security reasons, it may be more efficient to reserve HSM keys for use in the less frequent
key-signing operation. The zone-signing key can be rolled more frequently, if you wish, to
compensate for a reduction in key security. (Note: When using native PKCS#11, there is no
speed advantage to using on-disk keys, as cryptographic operations will be done by the HSM
regardless.)

Now you can sign the zone. (Note: If not using the -S option to dnssec-signzone, it will be
necessary to add the contents of both K« . key files to the zone master file before signing it.)

$ dnssec-signzone —-S example.net

Enter PIN:

Verifying the zone using the following algorithms:

NSEC3RSASHAL.

Zone signing complete:

Algorithm: NSEC3RSASHAl: ZSKs: 1, KSKs: 1 active, 0 revoked, 0 stand-by
example.net.signed

39 BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

Specifying the engine on the command line

When using OpenSSL-based PKCS#11, the "engine" to be used by OpenSSL can be specified in
named and all of the BIND dnssec-* tools by using the "-E <engine>" command line option.
If BIND 9 is built with the --with-pkes11 option, this option defaults to "pkes11". Specifying
the engine will generally not be necessary unless for some reason you wish to use a different
OpenSSL engine.

If you wish to disable use of the "pkcs11" engine -— for troubleshooting purposes, or because
the HSM is unavailable --- set the engine to the empty string. For example:

$ dnssec-signzone -E '’ -S example.net

This causes dnssec-signzone to run as if it were compiled without the --with-pkcs11 option.

When built with native PKCS#11 mode, the "engine" option has a different meaning: it specifies
the path to the PKCS#11 provider library. This may be useful when testing a new provider
library.

Running named with automatic zone re-signhing

If you want named to dynamically re-sign zones using HSM keys, and/or to to sign new
records inserted via nsupdate, then named must have access to the HSM PIN. In OpenSSL-
based PKCS#11, this is accomplished by placing the PIN into the openssl.cnf file (in the above
examples, /opt /pkcsll/usr/ssl/openssl.cnf).

The location of the openssl.cnf file can be overridden by setting the OPENSSL_CONF environ-
ment variable before running named.

Sample openssl.cnf:

openssl_conf = openssl_def
[openssl_def]

engines = engine_section

[engine_section]

pkcsll = pkcsll_section

[pkcsll_section]

PIN = <PLACE PIN HERE>

This will also allow the dnssec-* tools to access the HSM without PIN entry. (The pkes11-* tools
access the HSM directly, not via OpenSSL, so a PIN will still be required to use them.)

In native PKCS#11 mode, the PIN can be provided in a file specified as an attribute of the key’s
label. For example, if a key had the label pkes11:object=1local-zsk; pin-source=/etc/hsmpin,
then the PIN would be read from the file /etc/hsmpin.

WARNING

Placing the HSM’s PIN in a text file in this manner may reduce the security ad-
vantage of using an HSM. Be sure this is what you want to do before configuring
the system in this way.

BIND 9.11.28 40

CHAPTER 4. ADVANCED DNS FEATURES 4.12. DLZ (DYNAMICALLY LOADABLE...

4.12 DLZ (DYNAMICALLY LOADABLE ZONES)

Dynamically Loadable Zones (DLZ) are an extension to BIND 9 that allows zone data to be
retrieved directly from an external database. There is no required format or schema. DLZ
drivers exist for several different database backends, including PostgreSQL, MySQL, and LDAP,
and can be written for any other.

Historically, DLZ drivers had to be statically linked with the named binary and were turned
on via a configure option at compile time (for example, configure —-with-dlz-1ldap). The
drivers provided in the BIND 9 tarball in contrib/dlz/drivers are still linked this way.

In BIND 9.8 and higher, it is possible to link some DLZ modules dynamically at runtime, via
the DLZ "dlopen" driver, which acts as a generic wrapper around a shared object implementing
the DLZ API. The "dlopen" driver is linked into named by default, so configure options are no
longer necessary when using these dynamically linkable drivers; they are still needed for the
older drivers in contrib/dlz/drivers.

The DLZ module provides data to named in text format, which is then converted to DNS wire
format by named. This conversion, and the lack of any internal caching, places significant
limits on the query performance of DLZ modules. Consequently, DLZ is not recommended for
use on high-volume servers. However, it can be used in a hidden primary configuration, with
secondaries retrieving zone updates via AXFR. Note, however, that DLZ has no built-in support
for DNS notify; secondary servers are not automatically informed of changes to the zones in the
database.

Configuring DLZ

A DLZ database is configured with a dlz statement in named. conf:

dlz example {
database "dlopen driver.so args";
search yes;

}i

This specifies a DLZ module to search when answering queries; the module is implemented in
driver.so and is loaded at runtime by the dlopen DLZ driver. Multiple dlz statements can
be specified; when answering a query, all DLZ modules with search set to yes are queried to
see whether they contain an answer for the query name. The best available answer is returned
to the client.

The search option in the above example can be omitted, because yes is the default value.

If search is set to no, then this DLZ module is not searched for the best match when a query
is received. Instead, zones in this DLZ must be separately specified in a zone statement. This
allows users to configure a zone normally using standard zone-option semantics, but specify a
different database backend for storage of the zone’s data. For example, to implement NXDO-
MAIN redirection using a DLZ module for backend storage of redirection rules:

dlz other {
database "dlopen driver.so args";
search no;

}i

41 BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES 4.13. DYNAMIC DATABASE (DYNDB)

zone "." {
type redirect;
dlz other;

}i

Sample DLZ Driver

For guidance in the implementation of DLZ modules, the directory contrib/dlz/example
contains a basic dynamically linkable DLZ module - i.e., one which can be loaded at runtime
by the "dlopen" DLZ driver. The example sets up a single zone, whose name is passed to the
module as an argument in the dlz statement:

dlz other {
database "dlopen driver.so example.nil";

}i

In the above example, the module is configured to create a zone "example.nil", which can an-
swer queries and AXFR requests and accept DDNS updates. At runtime, prior to any updates,
the zone contains an SOA, NS, and a single A record at the apex:

example.nil. 3600 IN SOA example.nil. hostmaster.example.nil <>

(
123 900 600 86400 3600

)
example.nil. 3600 IN NS example.nil.

example.nil. 1800 IN A 10.53.0.1

The sample driver can retrieve information about the querying client and alter its response
on the basis of this information. To demonstrate this feature, the example driver responds to
queries for "source-addr.zonename>/TXT" with the source address of the query. Note, how-
ever, that this record will not be included in AXFR or ANY responses. Normally, this feature is
used to alter responses in some other fashion, e.g., by providing different address records for a
particular name depending on the network from which the query arrived.

Documentation of the DLZ module API can be found in contrib/dlz/example/README.
This directory also contains the header file d1z_minimal . h, which defines the API and should
be included by any dynamically linkable DLZ module.

4.13 DyNAmMIC DATABASE (DYNDB)

Dynamic Database, or DynDB, is an extension to BIND 9 which, like DLZ (see Section 4.12),
allows zone data to be retrieved from an external database. Unlike DLZ, a DynDB module
provides a full-featured BIND zone database interface. Where DLZ translates DNS queries
into real-time database lookups, resulting in relatively poor query performance, and is unable
to handle DNSSEC-signed data due to its limited APL, a DynDB module can pre-load an in-
memory database from the external data source, providing the same performance and func-
tionality as zones served natively by BIND.

BIND 9.11.28 42

CHAPTER 4. ADVANCED DNS FEATURES 4.14. CATALOG ZONES

A DynDB module supporting LDAP has been created by Red Hat and is available from https://pagure.io/-
bind-dyndb-ldap.

A sample DynDB module for testing and developer guidance is included with the BIND source
code, in the directory bin/tests/system/dyndb/driver.

Configuring DynDB

A DynDB database is configured with a dyndb statement in named. conf:

dyndb example "driver.so" ({
parameters
}i

The file driver. sois a DynDB module which implements the full DNS database API. Multiple
dyndb statements can be specified, to load different drivers or multiple instances of the same
driver. Zones provided by a DynDB module are added to the view’s zone table, and are treated
as normal authoritative zones when BIND responds to queries. Zone configuration is handled
internally by the DynDB module.

The parameters are passed as an opaque string to the DynDB module’s initialization routine.
Configuration syntax differs depending on the driver.

Sample DynDB Module

For guidance in the implementation of DynDB modules, the directory bin/tests/system/
dyndb/driver contains a basic DynDB module. The example sets up two zones, whose names
are passed to the module as arguments in the dyndb statement:

dyndb sample "sample.so" { example.nil. arpa. };

In the above example, the module is configured to create a zone, "example.nil", which can an-
swer queries and AXFR requests, and accept DDNS updates. At runtime, prior to any updates,
the zone contains an SOA, NS, and a single A record at the apex:

example.nil. 86400 IN SOA example.nil. example.nil. (
0 28800 7200 604800 86400
)
example.nil. 86400 IN NS example.nil.
example.nil. 86400 IN A 127.0.0.1

When the zone is updated dynamically, the DynDB module determines whether the updated
RR is an address (i.e., type A or AAAA); if so, it automatically updates the corresponding PTR
record in a reverse zone. Note that updates are not stored permanently; all updates are lost
when the server is restarted.

4.14 CATALOG ZONES

A "catalog zone" is a special DNS zone that contains a list of other zones to be served, along with
their configuration parameters. Zones listed in a catalog zone are called "member zones." When

43 BIND 9.11.28

https://pagure.io/bind-dyndb-ldap
https://pagure.io/bind-dyndb-ldap

CHAPTER 4. ADVANCED DNS FEATURES 4.14. CATALOG ZONES

a catalog zone is loaded or transferred to a secondary server which supports this functionality,
the secondary server creates the member zones automatically. When the catalog zone is up-
dated (for example, to add or delete member zones, or change their configuration parameters),
those changes are immediately put into effect. Because the catalog zone is a normal DNS zone,
these configuration changes can be propagated using the standard AXFR/IXFR zone transfer
mechanism.

Catalog zones’ format and behavior are specified as an Internet draft for interoperability among
DNS implementations. The latest revision of the DNS catalog zones draft can be found here:
https:/ / datatracker.ietf.org /doc/draft-toorop-dnsop-dns-catalog-zones/ .

Principle of Operation

Normally, if a zone is to be served by a secondary server, the named. conf file on the server
must list the zone, or the zone must be added using rndc addzone. In environments with a large
number of secondary servers, and/or where the zones being served are changing frequently, the
overhead involved in maintaining consistent zone configuration on all the secondary servers
can be significant.

A catalog zone is a way to ease this administrative burden: it is a DNS zone that lists member
zones that should be served by secondary servers. When a secondary server receives an update
to the catalog zone, it adds, removes, or reconfigures member zones based on the data received.

To use a catalog zone, it must first be set up as a normal zone on both the primary and secondary
servers that are configured to use it. It must also be added to a catalog-zones list in the
options or view statement in named.conf. This is comparable to the way a policy zone is
configured as a normal zone and also listed in a response-policy statement.

To use the catalog zone feature to serve a new member zone:

* Set up the the member zone to be served on the primary as normal. This can be done by
editing named. conf or by running rndc addzone.

* Add an entry to the catalog zone for the new member zone. This can be done by edit-
ing the catalog zone’s zone file and running rndc reload, or by updating the zone using
nsupdate.

The change to the catalog zone is propagated from the primary to all secondaries using the
normal AXFR/IXFR mechanism. When the secondary receives the update to the catalog zone,
it detects the entry for the new member zone, creates an instance of that zone on the secondary
server, and points that instance to the masters specified in the catalog zone data. The newly
created member zone is a normal secondary zone, so BIND immediately initiates a transfer of
zone contents from the primary. Once complete, the secondary starts serving the member zone.

Removing a member zone from a secondary server requires only deleting the member zone’s
entry in the catalog zone; the change to the catalog zone is propagated to the secondary server
using the normal AXFR/IXFR transfer mechanism. The secondary server, on processing the
update, notices that the member zone has been removed, stops serving the zone, and removes
it from its list of configured zones. However, removing the member zone from the primary
server must be done by editing the configuration file or running rndc delzone.)

BIND 9.11.28 44

CHAPTER 4. ADVANCED DNS FEATURES 4.14. CATALOG ZONES

Configuring Catalog Zones

Catalog zones are configured with a catalog-zones statement in the options or view section
of named. conf. For example,

catalog-zones {
zone "catalog.example"
default-masters { 10.53.0.1; }
in-memory no
zone-directory "catzones"
min-update-interval 10;

}i

This statement specifies that the zone catalog.example is a catalog zone. This zone must be
properly configured in the same view. In most configurations, it would be a secondary zone.

The options following the zone name are not required, and may be specified in any order:

The default-masters option defines the default primaries for member zones listed in a cat-
alog zone, and can be overridden by options within a catalog zone. If no such options are
included, then member zones transfer their contents from the servers listed in this option.

The in-memory option, if set to yes, causes member zones to be stored only in memory. This
is functionally equivalent to configuring a secondary zone without a £ile option. The default
is no; member zones’ content is stored locally in a file whose name is automatically generated
from the view name, catalog zone name, and member zone name.

The zone-directory option causes local copies of member zones’ zone files to be stored in
the specified directory, if in-memory is not set to yes. The default is to store zone files in the
server’s working directory. A non-absolute pathname in zone-directory is assumed to be
relative to the working directory.

Themin-update-interval option sets the minimum interval between processing of updates
to catalog zones, in seconds. If an update to a catalog zone (for example, via IXFR) happens less
thanmin-update-interval seconds after the most recent update, the changes are not carried
out until this interval has elapsed. The default is 5 seconds.

Catalog zones are defined on a per-view basis. Configuring a non-empty catalog-zones
statement in a view automatically turns on allow-new-zones for that view. This means that
rndc addzone and rndc delzone also work in any view that supports catalog zones.

Catalog Zone Format
A catalog zone is a regular DNS zone; therefore, it must have a single SOA and at least one NS
record.

A record stating the version of the catalog zone format is also required. If the version number
listed is not supported by the server, then a catalog zone may not be used by that server.

catalog.example. IN SOA . . 2016022901 900 600 86400 1
catalog.example. IN NS nsexample.
version.catalog.example. IN TXT "1"

45 BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES 4.14. CATALOG ZONES

Note that this record must have the domain name '"version.catalog-zone-name". The data
stored in a catalog zone is indicated by the the domain name label immediately before the
catalog zone domain.

Catalog zone options can be set either globally for the whole catalog zone or for a single member
zone. Global options override the settings in the configuration file, and member zone options
override global options.

Global options are set at the apex of the catalog zone, e.g.:

masters.catalog.example. IN AAAA 2001:db8::1

BIND currently supports the following options:

* Asimple masters definition:

masters.catalog.example. IN A 192.0.2.1

This option defines a primary server for the member zones, which can be either an A or
AAAA record. If multiple primaries are set, the order in which they are used is random.

* A masters with a TSIG key defined:

label .masters.catalog.example. IN A 192.0.2.2
label.masters.catalog.example. IN TXT "tsig_key_name"

This option defines a primary server for the member zone with a TSIG key set. The TSIG
key must be configured in the configuration file. 1abel can be any valid DNS label.

¢ allow—queryand allow-transfer ACLs:

allow—-query.catalog.example. IN APL 1:10.0.0.1/24
allow-transfer.catalog.example. IN APL !1:10.0.0.1/32 <+
1:10.0.0.0/24

These options are the equivalents of allow-query and allow-transfer in a zone dec-
laration in the named. conf configuration file. The ACL is processed in order; if there is
no match to any rule, the default policy is to deny access. For the syntax of the APL RR,
see RFC 3123.

A member zone is added by including a PTR resource record in the zones sub-domain of the
catalog zone. The record label is a SHA-1 hash of the member zone name in wire format. The
target of the PTR record is the member zone name. For example, to add the member zone
domain.example:

5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog.example. IN PTR <=
domain.example.

The hash is necessary to identify options for a specific member zone. The member zone-specific
options are defined the same way as global options, but in the member zone subdomain:

BIND 9.11.28 46

CHAPTER 4. ADVANCED DNS FEATURES 4.15. IPV6 SUPPORT IN BIND 9

masters.5960775ba382e7a4e09263£fc06e7c00569b6a05c.zones.catalog.example. IN &
A 192.0.2.2

label .masters.5960775ba382e7a4e09263£fc06e7c00569b6a05¢c.zones.catalog. <
example. IN AAAA 2001:db8::2

label .masters.5960775ba382e7a4e09263£fc06e7c00569b6a05c.zones.catalog. <
example. IN TXT "tsig_key"

allow—-query.5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog.example <
. IN APL 1:10.0.0.0/24

Options defined for a specific zone override the global options defined in the catalog zone.
These in turn override the global options defined in the catalog-zones statement in the con-
figuration file.

Note that none of the global records for an option are inherited if any records are defined for
that option for the specific zone. For example, if the zone had a masters record of type A but
not AAAA, it would not inherit the type AAAA record from the global option.

4.15 |IPv6 SUPPORTIN BIND 9

BIND 9 fully supports all currently defined forms of IPv6 name-to-address and address-to-name
lookups. It also uses IPv6 addresses to make queries when running on an IPv6-capable system.

For forward lookups, BIND 9 supports only AAAA records. RFC 3363 deprecated the use of A6
records, and client-side support for A6 records was accordingly removed from BIND 9. How-
ever, authoritative BIND 9 name servers still load zone files containing A6 records correctly,
answer queries for A6 records, and accept zone transfer for a zone containing A6 records.

For IPv6 reverse lookups, BIND 9 supports the traditional "nibble" format used in the ip6.arpa
domain, as well as the older, deprecated ip6.int domain. Older versions of BIND 9 supported
the "binary label" (also known as "bitstring") format, but support of binary labels has been com-
pletely removed per RFC 3363. Many applications in BIND 9 do not understand the binary label
format at all anymore, and return an error if one is given. In particular, an authoritative BIND
9 name server will not load a zone file containing binary labels.

For an overview of the format and structure of IPv6 addresses, see Section C.1.

Address Lookups Using AAAA Records
The IPv6 AAAA record is a parallel to the IPv4 A record, and, unlike the deprecated A6 record,
specifies the entire IPv6 address in a single record. For example:

SORIGIN example.com.
host 3600 IN AAAA 2001:db8::1

Use of IPv4-in-IPv6 mapped addresses is not recommended. If a host has an IPv4 address, use
an A record, nota AAAA, with : : ff£f£f:192.168.42.1 as the address.

47 BIND 9.11.28

CHAPTER 4. ADVANCED DNS FEATURES 4.15. IPV6 SUPPORT IN BIND 9

Address-to-Name Lookups Using Nibble Format

When looking up an address in nibble format, the address components are simply reversed,
just as in IPv4, and ip6.arpa. is appended to the resulting name. For example, the following
would provide reverse name lookup for a host with address 2001 : db8: : 1:

$ORIGIN 0.0.0.0.

1,0.0:0.0,0.0,0-

o O

.0.0.0.8.b.d.0.1.0.0.2.1p6.arpa.
.0.0.0.0.0.0.0 14400 IN PTR (
host.example.com.)

BIND 9.11.28 48

5 The BIND 9 Lightweight Resolver

5.1 THE LIGHTWEIGHT RESOLVER LIBRARY

Traditionally, applications have been linked with a stub resolver library that sends recursive
DNS queries to a local caching name server.

At first, IPv6 introduced new complexity into the resolution process, such as following A6
chains and DNAME records, and simultaneous lookup of IPv4 and IPv6 addresses. Though
most of the complexity was then removed, these are hard or impossible to implement in a tra-
ditional stub resolver.

BIND 9 therefore can also provide resolution services to local clients using a combination of a
lightweight resolver library and a resolver daemon process running on the local host. These
communicate using a simple UDP-based protocol, the "lightweight resolver protocol," that is
distinct from and simpler than the full DNS protocol.

5.2 RUNNING A RESOLVER DAEMON

To use the lightweight resolver interface, the system must run the resolver daemon Iwresd or a
local name server configured with a lwres statement.

By default, applications using the lightweight resolver library make UDP requests to the IPv4
loopback address (127.0.0.1) on port 921. The address can be overridden by lwserver lines in
/etc/resolv.conf.

The lwresd daemon is essentially a caching-only name server that responds to requests using
the lightweight resolver protocol rather than the DNS protocol. Because it needs to run on each
host, it is designed to require no or minimal configuration. Unless otherwise instructed, it uses
the name servers listed on nameserver lines in /etc/resolv.conf as forwarders, but is also
capable of doing the resolution autonomously if none are specified.

The Iwresd daemon may also be configured with a named. conf-style configuration file, in
/etc/lwresd.conf by default. A name server may also be configured to act as a lightweight
resolver daemon using the lwres statement in named. conf.

The number of client queries that the Iwresd daemon serves can be set using the 1wres-tasks
and lwres-clients statements in the configuration.

49 BIND 9.11.28

6 BIND 9 Configuration Reference

6.1 CONFIGURATION FILE ELEMENTS

Following is a list of elements used throughout the BIND configuration file documentation:

The name of an address_match_list as defined by the acl
acl_name statement.

A list of one or more ip_addr, ip_prefix, key_id, or
address_match_list acl_name elements; see Section 6.1.

A named list of one or more ip_addr with optional key_id
. and/or ip_port. Amasters_list may include other
masters_list]
masters_lists.
A quoted string which is used as a DNS name; for example,
domain_name my.test.domain.

A list of one or more domain_name elements.

namelist

One to four integers valued 0 through 255 separated by dots
dotted_decimal ("."), such as 123.45.67 or 89.123.45.67.

An IPv4 address with exactly four elements in
ip4_addr dotted_decimal notation.

51 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.1. CONFIGURATION FILE ELEMENTS

ip6_addr

ip_addr

ip_dscp

ip_port

ip_prefix

key_id

key_list

number

An IPv6 address, such as 2001:db8::1234. IPv6-scoped
addresses that have ambiguity on their scope zones must be
disambiguated by an appropriate zone ID with the percent
character ("%") as a delimiter. It is strongly recommended to
use string zone names rather than numeric identifiers, to be
robust against system configuration changes. However, since
there is no standard mapping for such names and identifier
values, only interface names as link identifiers are supported,
assuming one-to-one mapping between interfaces and links.
For example, a link-local address fe80::1 on the link attached
to the interface ne0 can be specified as fe80::1%ne0. Note that
on most systems link-local addresses always have ambiguity
and need to be disambiguated.

An ip4_addr or ip6_addr.

A number between 0 and 63, used to select a differentiated
services code point (DSCP) value for use with outgoing traffic
on operating systems that support DSCP.

An IP port number. The number is limited to 0 through
65535, with values below 1024 typically restricted to use by
processes running as root. In some cases, an asterisk ("*")
character can be used as a placeholder to select a random
high-numbered port.

An IP network specified as an ip_addr, followed by a slash
("/") and then the number of bits in the netmask. Trailing
zeros in an ip_addr may be omitted. For example, 127/8 is
the network 127.0.0.0 with netmask 255.0.0.0 and 1.2.3.0/28 is
network 1.2.3.0 with netmask 255.255.255.240.

When specifying a prefix involving a IPv6-scoped address,
the scope may be omitted. In that case, the prefix matches
packets from any scope.

A domain_name representing the name of a shared key, to be
used for transaction security.

A list of one or more key_ ids, separated by semicolons and
ending with a semicolon.

A non-negative 32-bit integer (i.e., a number between 0 and
4294967295, inclusive). Its acceptable value might be further
limited by the context in which it is used.

BIND 9.11.28

52

CHAPTER 6. BIND 9 CONFIGURATION... 6.1. CONFIGURATION FILE ELEMENTS

A non-negative real number that can be specified to the
nearest one-hundredth. Up to five digits can be specified
before a decimal point, and up to two digits after, so the

fi i . p .
ixedpoint maximum value is 99999.99. Acceptable values might be
further limited by the contexts in which they are used.
A quoted string which is used as a pathname, such as
path_name zones/master/my.test.domain

Alist of an ip_port or a port range. A port range is
specified in the form of range followed by two ip_ports,
port_low and port_high, which represents port numbers
from port_low through port_high, inclusive. port_low

port_list must not be larger than port_high. For example, range
1024 65535 represents ports from 1024 through 65535. In
either case an asterisk ("*") character is not allowed as a valid
ip_port.

A 64-bit unsigned integer, or the keywords unlimited or
default.
Integers may take values 0 <= value <=
18446744073709551615, though certain parameters (such as
max-journal-size) may use a more limited range within these
extremes. In most cases, setting a value to 0 does not literally
mean zero; it means "undefined" or "as big as possible,"
depending on the context. See the explanations of particular
parameters that use size_spec for details on how they
size_spec interpret its use.
Numeric values can optionally be followed by a scaling
factor: K or k for kilobytes, M or m for megabytes, and G or g
for gigabytes, which scale by 1024, 1024*1024, and
1024*1024*1024 respectively.
unlimited generally means "as big as possible," and is
usually the best way to safely set a very large number.
default uses the limit that was in force when the server was
started.

A size_spec or integer value followed by "%" to represent
percent.

The behavior is exactly the same as size_spec, but
size_or_percent also allows specifying a positive integer
value followed by the "%"" sign to represent percent.

size_or_percent

Either yes or no. The words true and false are also
yes_or_no accepted, as are the numbers 1 and 0.

53 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.1. CONFIGURATION FILE ELEMENTS

One of yes, no, notify, notify—-passive, refresh, or
passive. When used in a zone, notify-passive,

dialup_option refresh, and passive are restricted to secondary and stub
zones.

Address Match Lists

Syntax
address_match_1list = address_match_list_element ;
address_match_list_element = [!] (ip_address | ip_prefix |

key key_id | acl_name | { address_match_list })

Definition and Usage

Address match lists are primarily used to determine access control for various server opera-
tions. They are also used in the listen-on and sortlist statements. The elements which constitute
an address match list can be any of the following;:

¢ an IP address (IPv4 or IPv6)

¢ an IP prefix (in "/" notation)

¢ akey ID, as defined by the key statement

¢ the name of an address match list defined with the acl statement

¢ anested address match list enclosed in braces

Elements can be negated with a leading exclamation mark ("!"), and the match list names "any",
"none", "localhost", and "localnets" are predefined. More information on those names can be

found in the description of the acl statement.

The addition of the key clause made the name of this syntactic element something of a mis-
nomer, since security keys can be used to validate access without regard to a host or network
address. Nonetheless, the term "address match list" is still used throughout the documentation.

When a given IP address or prefix is compared to an address match list, the comparison takes
place in approximately O(1) time. However, key comparisons require that the list of keys be
traversed until a matching key is found, and therefore may be somewhat slower.

The interpretation of a match depends on whether the list is being used for access control,
defining listen-on ports, or in a sortlist, and whether the element was negated.

When used as an access control list, a non-negated match allows access and a negated match
denies access. If there is no match, access is denied. The clauses allow-notify, allow-recursion,
allow-recursion-on, allow-query, allow-query-on, allow-query-cache, allow-query-cache-on,
allow-transfer, allow-update, allow-update-forwarding, blackhole, and keep-response-order

BIND 9.11.28 54

CHAPTER 6. BIND 9 CONFIGURATION... 6.1. CONFIGURATION FILE ELEMENTS

all use address match lists. Similarly, the listen-on option causes the server to refuse queries on
any of the machine’s addresses which do not match the list.

Order of insertion is significant. If more than one element in an ACL is found to match a given IP
address or prefix, preference is given to the one that came first in the ACL definition. Because of
this first-match behavior, an element that defines a subset of another element in the list should
come before the broader element, regardless of whether either is negated. For example, in
1.2.3/24; ! 1.2.3.13; the 1.2.3.13 element is completely useless because the algorithm matches
any lookup for 1.2.3.13 to the 1.2.3/24 element. Using ! 1.2.3.13; 1.2.3/24 fixes that problem by
blocking 1.2.3.13 via the negation, but all other 1.2.3.* hosts pass through.

Comment Syntax

The BIND 9 comment syntax allows comments to appear anywhere that whitespace may appear
in a BIND configuration file. To appeal to programmers of all kinds, they can be written in the
C, C++, or shell/perl style.

Syntax

/+* This is a BIND comment as in C */
// This is a BIND comment as in C++

This is a BIND comment as in common Unix shells
and perl

Definition and Usage

Comments may appear anywhere that whitespace may appear in a BIND configuration file.

C-style comments start with the two characters /* (slash, star) and end with */ (star, slash).
Because they are completely delimited with these characters, they can be used to comment only
a portion of a line or to span multiple lines.

C-style comments cannot be nested. For example, the following is not valid because the entire
comment ends with the first */:

/* This is the start of a comment.
This is still part of the comment.

/+ This is an incorrect attempt at nesting a comment. =*/
This is no longer in any comment. =/

C++-style comments start with the two characters // (slash, slash) and continue to the end of
the physical line. They cannot be continued across multiple physical lines; to have one logical
comment span multiple lines, each line must use the // pair. For example:

// This is the start of a comment. The next line
// is a new comment, even though it is logically
// part of the previous comment.

55 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION...

6.2. CONFIGURATION FILE GRAMMAR

Shell-style (or perl-style) comments start with the character # (number sign) and continue to the

end of the physical line, as in C++ comments. For example:

This is the start of a comment. The next line
is a new comment, even though it is logically
part of the previous comment.

WARNING

@ The semicolon (";") character cannot start a comment, unlike in a zone file. The
semicolon indicates the end of a configuration statement.

6.2 CONFIGURATION FILE GRAMMAR

A BIND 9 configuration consists of statements and comments. Statements end with a semicolon;
statements and comments are the only elements that can appear without enclosing braces.
Many statements contain a block of sub-statements, which are also terminated with a semi-

colon.

The following statements are supported:

Defines a named IP address matching list, for access control
acl and other uses.

Declares control channels to be used by the rndc utility.
controls
. Includes a file.
include

Specifies key information for use in authentication and
key authorization using TSIG.

Specifies what information the server logs and where the log
logging messages are sent.

Configures named to also act as a lightweight resolver
lwres daemon (Iwresd).

Defines a named list of primary servers for inclusion in stub
masters and secondary zones’ masters or also-notify lists.

Controls global server configuration options and sets defaults
options for other statements.

Sets certain configuration options on a per-server basis.
server

BIND 9.11.28

56

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

Declares communication channels to get access to named
statistics-channels statistics.

trusted-keys Defines trusted DNSSEC keys.

Lists DNSSEC keys to be kept up-to-date using RFC 5011
managed-keys trust anchor maintenance.

. Defines a view.
view

Defines a zone.
zone

The logging and options statements may only occur once per configuration.

acl Statement Grammar

acl string { address_match_element; ... };

acl Statement Definition and Usage

The acl statement assigns a symbolic name to an address match list. It gets its name from one
of the primary uses of address match lists: Access Control Lists (ACLs).

The following ACLs are built-in:

Matches all hosts.
any

Matches no hosts.
none

Matches the IPv4 and IPv6 addresses of all network interfaces on
localhost the system. When addresses are added or removed, the localhost

ACL element is updated to reflect the changes.

Matches any host on an IPv4 or IPv6 network for which the
system has an interface. When addresses are added or removed,
the localnets ACL element is updated to reflect the changes.

localnets Some systems do not provide a way to determine the prefix
lengths of local IPv6 addresses; in such cases, localnets only
matches the local IPv6 addresses, just like localhost.

controls Statement Grammar

controls {
inet (ipv4 address | ipvé_address |

57 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

*) [port (integer | %)] allow
{ address_match_element; ... } [
keys { string; ... }] [read-only
boolean];

unix quoted _string perm Iinteger
owner integer group Iinteger |
keys { string; ... } 1 [read-only
boolean 1;

controls Statement Definition and Usage

The controls statement declares control channels to be used by system administrators to manage
the operation of the name server. These control channels are used by the rndc utility to send
commands to and retrieve non-DNS results from a name server.

An inet control channel is a TCP socket listening at the specified ip_port on the specified
ip_addr, which can be an IPv4 or IPv6 address. An ip_addr of x (asterisk) is interpreted as
the IPv4 wildcard address; connections are accepted on any of the system’s IPv4 addresses. To
listen on the IPv6 wildcard address, use an ip_addr of : :. If rndc is only used on the local host,
using the loopback address (127.0.0.1 or : : 1) is recommended for maximum security.

"non

If no port is specified, port 953 is used. The asterisk "+" cannot be used for ip_port.

The ability to issue commands over the control channel is restricted by the allow and keys
clauses. Connections to the control channel are permitted based on the address_match_list.
This is for simple IP address-based filtering only; any key_id elements of the address_match_list
are ignored.

A unix control channel is a Unix domain socket listening at the specified path in the file system.
Access to the socket is specified by the perm, owner, and group clauses. Note on some plat-
forms (SunOS and Solaris), the permissions (perm) are applied to the parent directory as the
permissions on the socket itself are ignored.

The primary authorization mechanism of the command channel is the key_list, which contains
a list of key_ids. Each key_id in the key_list is authorized to execute commands over the
control channel. See Remote Name Daemon Control application in Section 3.3) for information
about configuring keys in rndc.

If the read-only clause is enabled, the control channel is limited to the following set of read-only
commands: nta -dump, null, status, showzone, testgen, and zonestatus. By default, read-only
is not enabled and the control channel allows read-write access.

If no controls statement is present, named sets up a default control channel listening on the
loopback address 127.0.0.1 and its IPv6 counterpart ::1. In this case, and also when the controls
statement is present but does not have a keys clause, named attempts to load the command
channel key from the file rndc.key in /etc (or whatever sysconfdir was specified when
BIND was built). To create an rndc.key file, run rnde-confgen -a.

The key name and the size of the secret cannot be easily changed; if it is desirable to change those
things, make a rndc. conf with a custom key. The rndc. key file also has its permissions set
such that only the owner of the file (the user that named is running as) can access it. For greater

BIND 9.11.28 58

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

flexibility in allowing other users to access rndc commands, create a rndc . conf file and make
it group-readable by a group that contains the users who should have access.

To disable the command channel, use an empty controls statement: controls { };.

include Statement Grammar

include filename;

include Statement Definition and Usage

The include statement inserts the specified file at the point where the include statement is
encountered. The include statement facilitates the administration of configuration files by per-
mitting the reading or writing of some things but not others. For example, the statement could
include private keys that are readable only by the name server.

key Statement Grammar

key string {
algorithm string;
secret string;

}i

key Statement Definition and Usage

The key statement defines a shared secret key for use with TSIG (see Section 4.5) or the com-
mand channel (see Section 6.2).

The key statement can occur at the top level of the configuration file or inside a view statement.
Keys defined in top-level key statements can be used in all views. Keys intended for use in a
controls statement (see Section 6.2) must be defined at the top level.

The key_id, also known as the key name, is a domain name that uniquely identifies the key. It
can be used in a server statement to cause requests sent to that server to be signed with this key,
or in address match lists to verify that incoming requests have been signed with a key matching
this name, algorithm, and secret.

The algorithm_id is a string that specifies a security /authentication algorithm. The named
server supports hmac-md5, hmac—-shal, hmac-sha224, hmac-sha256, hmac-sha384, and
hmac-sha512 TSIG authentication. Truncated hashes are supported by appending the mini-
mum number of required bits preceded by a dash, e.g., hmac-shal-80. The secret_string
is the secret to be used by the algorithm, and is treated as a Base64-encoded string.

59 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

logging Statement Grammar

logging {
category string { string; ... };
channel string {
buffered boolean;
file quoted _string [versions ("unlimited" | integer)
] [size size];
null;
print-category boolean;
print-severity boolean;
print-time boolean;
severity log severity;
stderr;
syslog [syslog_ facility 1;

logging Statement Definition and Usage

The logging statement configures a wide variety of logging options for the name server. Its
channel phrase associates output methods, format options, and severity levels with a name
that can then be used with the category phrase to select how various classes of messages are
logged.

Only one logging statement is used to define as many channels and categories as desired. If
there is no logging statement, the logging configuration is:

logging {
category default { default_syslog; default_debug; };
category unmatched { null; };

}i

If named is started with the —-L option, it logs to the specified file at startup, instead of using
syslog. In this case the logging configuration is:

logging {
category default { default_logfile; default_debug; };
category unmatched { null; };

b
The logging configuration is only established when the entire configuration file has been parsed.

When the server starts up, all logging messages regarding syntax errors in the configuration file
go to the default channels, or to standard error if the —~g option was specified.

The channel Phrase

All log output goes to one or more channels; there is no limit to the number of channels that can
be created.

BIND 9.11.28 60

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

Every channel definition must include a destination clause that says whether messages selected
for the channel go to a file, go to a particular syslog facility, go to the standard error stream, or
are discarded. The definition can optionally also limit the message severity level that is accepted
by the channel (the default is info), and whether to include a named-generated time stamp, the
category name, and/or the severity level (the default is not to include any).

The null destination clause causes all messages sent to the channel to be discarded; in that case,
other options for the channel are meaningless.

The file destination clause directs the channel to a disk file. It can include limitations both on
how large the file is allowed to become, and on how many versions of the file are saved each
time the file is opened.

If the versions log file option is used, then named retains that many backup versions of the file
by renaming them when opening. For example, to keep three old versions of the file lamers.
log, just before it is opened lamers.log.1 is renamed to lamers.log.2, lamers.log.0
isrenamed to lamers.log.1l,and lamers.logis renamed to lamers.log. 0. The versions
unlimited option can be set to not limit the number of versions. If a size option is associated
with the log file, then renaming is only done when the file being opened exceeds the indicated
size. No backup versions are kept by default; any existing log file is simply appended.

The size option for files is used to limit log growth. If the file ever exceeds the size, then named
stops writing to the file unless it also has a versions option associated with it. If backup versions
are kept, the files are rolled as described above and a new one begun. If there is no versions op-
tion, no more data is written to the log until some out-of-band mechanism removes or truncates
the log to less than the maximum size. The default behavior is not to limit the size of the file.

Here is an example using the size and versions options:

channel an_example_channel {
file "example.log" versions 3 size 20m;
print-time yes;
print-category yes;

i

The syslog destination clause directs the channel to the system log. Its argument is a syslog
facility as described in the syslog man page. Known facilities are kern, user, mail, daemon,
auth, syslog, lpr, news, uucp, cron, authpriv, ftp, local0, locall, local2, local3, local4, local5,
local6, and local7; however, not all facilities are supported on all operating systems. How
syslog handles messages sent to this facility is described in the syslog.conf man page. On a
system which uses a very old version of syslog, which only uses two arguments to the openlog()
function, then this clause is silently ignored.

On Windows machines, syslog messages are directed to the EventViewer.

The severity clause works like syslog’s "priorities," except that they can also be used when
writing straight to a file rather than using syslog. Messages which are not at least of the severity
level given are not selected for the channel; messages of higher severity levels are accepted.

When using syslog, the syslog.conf priorities also determine what eventually passes through.
For example, defining a channel facility and severity as daemon and debug, but only logging
daemon.warning via syslog.conf, causes messages of severity info and notice to be dropped.
If the situation were reversed, with named writing messages of only warning or higher, then
syslogd would print all messages it received from the channel.

61 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

The stderr destination clause directs the channel to the server’s standard error stream. This
is intended for use when the server is running as a foreground process, as when debugging a
configuration, for example.

The server can supply extensive debugging information when it is in debugging mode. If the
server’s global debug level is greater than zero, debugging mode is active. The global debug
level is set either by starting the named server with the -d flag followed by a positive integer, or
by running rndc trace. The global debug level can be set to zero, and debugging mode turned
off, by running rndc notrace. All debugging messages in the server have a debug level; higher
debug levels give more detailed output. Channels that specify a specific debug severity, for
example:

channel specific_debug_level {
file "foo";
severity debug 3;

}i

get debugging output of level 3 or less any time the server is in debugging mode, regardless
of the global debugging level. Channels with dynamic severity use the server’s global debug
level to determine what messages to print.

If print-time is set to yes, then the date and time are logged. print-time may be specified
for a syslog channel, but is usually unnecessary since syslog also logs the date and time. If
print-category is set to yes, then the category of the message is logged as well. Finally, if print-
severity is set, then the severity level of the message is logged. The print- options may be used
in any combination, and are always printed in the following order: time, category, severity.
Here is an example where all three print- options are on:

28-Feb-2000 15:05:32.863 general: notice: running

If buffered has been turned on, the output to files is not flushed after each log entry. By default
all log messages are flushed.

There are four predefined channels that are used for named’s default logging, as follows. If
named is started with the -L, then a fifth channel, default_logfile, is added. How they are used
is described in Section 6.2.

channel default_syslog {
// send to syslog’s daemon facility
syslog daemon;
// only send priority info and higher
severity info;

}i

channel default_debug {
// write to named.run in the working directory
// Note: stderr is used instead of "named.run" if
// the server is started with the ’'-g’ option.
file "named.run";
// log at the server’s current debug level
severity dynamic;

}i

channel default_stderr {

BIND 9.11.28 62

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

// writes to stderr
stderr;
// only send priority info and higher
severity info;
}i

channel null {
// toss anything sent to this channel
null;

}i

channel default_logfile {
// this channel is only present if named is
// started with the -L option, whose argument
// provides the file name
file "...";
// log at the server’s current debug level
severity dynamic;

}i

The default_debug channel has the special property that it only produces output when the
server’s debug level is non-zero. It normally writes to a file called named. run in the server’s
working directory.

For security reasons, when the —u command-line option is used, the named. run file is created
only after named has changed to the new UID, and any debug output generated while named
is starting - and still running as root - is discarded. To capture this output, run the server with
the —L option to specify a default logfile, or the —g option to log to standard error which can be
redirected to a file.

Once a channel is defined, it cannot be redefined. The built-in channels cannot be altered di-
rectly, but the default logging can be modified by pointing categories at defined channels.

The category Phrase

There are many categories, so desired logs can be sent anywhere while unwanted logs are ig-
nored. If a list of channels is not specified for a category, log messages in that category are
sent to the default category instead. If no default category is specified, the following "default
default" is used:

category default { default_syslog; default_debug; };

If named is started with the -L option, the default category is:

category default { default_logfile; default_debug; };

As an example, let’s say a user wants to log security events to a file, but also wants to keep the
default logging behavior. They would specify the following:

channel my_security_channel {
file "my_security_file";
severity info;

63 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

}i

category security {
my_security_channel;
default_syslog;
default_debug;

}i

To discard all messages in a category, specify the null channel:
category xfer-out { null; };

category notify { null; };

The following are the available categories and brief descriptions of the types of log information
they contain. More categories may be added in future BIND releases.

Processing of client requests.

client
Name servers that are skipped for being a CNAME
cname rather than A/AAAA records.
config Configuration file parsing and processing.
Messages relating to the databases used internally by
database the name server to store zone and cache data.
Logging options for those categories where no specific
default configuration has been defined.

Queries that have been forced to NXDOMAIN as the
delecation-onl result of a delegation-only zone or a delegation-only
& y in a forward, hint, or stub zone declaration.
Dispatching of incoming packets to the server
dispatch modules where they are to be processed.

dnssec DNSSEC and TSIG protocol processing.

dnstap The "dnstap" DNS traffic capture system.

BIND 9.11.28 64

CHAPTER 6. BIND 9 CONFIGURATION...

6.2. CONFIGURATION FILE GRAMMAR

edns-disabled

general

lame-servers

network

notify

Log queries that have been forced to use plain DNS
due to timeouts. This is often due to the remote servers
not being RFC 1034-compliant (not always returning
FORMERR or similar to EDNS queries and other
extensions to the DNS when they are not understood).
In other words, this is targeted at servers that fail to
respond to DNS queries that they don’t understand.
Note: the log message can also be due to packet loss.
Before reporting servers for non-RFC 1034 compliance
they should be re-tested to determine the nature of the
non-compliance. This testing should prevent or reduce
the number of false-positive reports.

Note: eventually named will have to stop treating
such timeouts as due to RFC 1034 non-compliance and
start treating it as plain packet loss. Falsely classifying
packet loss as due to RFC 1034 non-compliance
impacts DNSSEC validation, which requires EDNS for
the DNSSEC records to be returned.

Catch-all for many things that still are not classified
into categories.

Misconfigurations in remote servers, discovered by
BIND 9 when trying to query those servers during
resolution.

Network operations.

The NOTIFY protocol.

65

BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

Location where queries should be logged.
At startup, specifying the category queries also
enables query logging unless querylog option has
been specified.
The query log entry first reports a client object
identifier in @0x<hexadecimal-number> format. Next,
it reports the client’s IP address and port number, and
the query name, class, and type. Next, it reports
whether the Recursion Desired flag was set (+ if set, -
if not set), whether the query was signed (S), whether
EDNS was in use along with the EDNS version
number (E(#)), whether TCP was used (T), whether
DO (DNSSEC Ok) was set (D), whether CD (Checking
queries Disabled) was set (C), whether a valid DNS Server
COOKIE was received (V), and whether a DNS
COOKIE option without a valid Server COOKIE was
present (K). After this, the destination address the
query was sent to is reported.
client 127.0.0.1#62536
(www.example.com): query:
www.example.com IN AAAA +SE
client ::1#62537 (www.example.net):
query: www.example.net IN AAAA -SE
The first part of this log message, showing the client
address/port number and query name, is repeated in
all subsequent log messages related to the same query.

Information about queries that resulted in some
query-errors failure.

The start, periodic, and final notices of the rate limiting
of a stream of responses are logged at info severity in
this category. These messages include a hash value of
the domain name of the response and the name itself,
except when there is insufficient memory to record the
name for the final notice. The final notice is normally

rate-limit delayed until about one minute after rate limiting
stops. A lack of memory can hurry the final notice,
which is indicated by an initial asterisk (*). Various
internal events are logged at debug level 1 and higher.
Rate limiting of individual requests is logged in the
query-errors category.

DNS resolution, such as the recursive lookups
performed on behalf of clients by a caching name
server.

resolver

BIND 9.11.28 66

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

Information about errors in response policy zone files,
oz rewritten responses, and, at the highest debug levels,
P mere rewriting attempts.
security Approval and denial of requests.
Queries that have been terminated, either by dropping
spill or responding with SERVFAIL, as a result of a
P fetchlimit quota being exceeded.
trust-anchor- Trust-anchor-telemetry requests received by named.
telemetry
Messages that named was unable to determine the
class of, or for which there was no matching view. A
one-line summary is also logged to the client category.
h : . .
unmatched This category is best sent to a file or stderr; by default
it is sent to the null channel.
update Dynamic updates.
. A 1 ial of .
update-security pproval and denial of update requests
. Zone transfers the server is receiving.
xfer-in
Zone transfers the server is sending.
xfer-out

The query-errors Category

The query-errors category is used to indicate why and how specific queries resulted in re-
sponses which indicate an error. Normally, these messages will be logged at debug logging
levels; note, however, that if query logging is active, some are logged at info. The logging levels
are described below:

At debug level 1 or higher - or at info, when query logging is active - each response with
response code SERVFAIL is logged as follows:

client 127.0.0.1#61502: query failed (SERVFAIL) for www.example.com/IN/AAAA
at query.c:3880

This means an error resulting in SERVFAIL was detected at line 3880 of source file query . c.
Log messages of this level are particularly helpful in identifying the cause of SERVFAIL for an
authoritative server.

At debug level 2 or higher, detailed context information about recursive resolutions that re-
sulted in SERVFAIL is logged. The log message looks like this:

fetch completed at resolver.c:2970 for www.example.com/A

in 10.000183: timed out/success [domain:example.com,

referral:2, restart:7,qrysent:8,timeout:5,lame:0, quota:0,neterr:0,
badresp:1,adberr:0, findfail:0,valfail:0]

67 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

The first part before the colon shows that a recursive resolution for AAAA records of www.example.com
completed in 10.000183 seconds, and the final result that led to the SERVFAIL was determined
at line 2970 of source file resolver.c.

The next part shows the detected final result and the latest result of DNSSEC validation. The
latter is always "success" when no validation attempt was made. In this example, this query
probably resulted in SERVFAIL because all name servers are down or unreachable, leading to a
timeout in 10 seconds. DNSSEC validation was probably not attempted.

The last part, enclosed in square brackets, shows statistics collected for this particular resolution
attempt. The domain field shows the deepest zone that the resolver reached; it is the zone where
the error was finally detected. The meaning of the other fields is summarized in the following
table.

The number of referrals the resolver received
throughout the resolution process. In the above

referral example there are two, which are most likely com and
example.com.

The number of cycles that the resolver tried remote
servers at the domain zone. In each cycle, the resolver
sends one query (possibly resending it, depending on
the response) to each known name server of the
domain zone.

restart

The number of queries the resolver sent at the domain
grysent zone.

The number of timeouts since the resolver received the
timeout last response.

The number of lame servers the resolver detected at
the domain zone. A server is detected to be lame
either by an invalid response or as a result of lookup in
BIND 9’s address database (ADB), where lame servers
are cached.

lame

The number of times the resolver was unable to send a
quota query because it had exceeded the permissible fetch
quota for a server.
The number of erroneous results that the resolver
encountered in sending queries at the domain zone.
One common case is when the remote server is
unreachable and the resolver receives an "ICMP
unreachable" error message.

neterr

The number of unexpected responses (other than
lame) to queries sent by the resolver at the domain

badresp Jone

BIND 9.11.28 68

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

Failures in finding remote server addresses of the
domain zone in the ADB. One common case of this is

adberr that the remote server’s name does not have any
address records.

Failures to resolve remote server addresses. This is a
total number of failures throughout the resolution

findfail
process.
Failures of DNSSEC validation. Validation failures are
counted throughout the resolution process (not limited
valfail to the domain zone), but should only happen in

domain.

At debug level 3 or higher, the same messages as those at debug level 1 are logged for errors
other than SERVFAIL. Note that negative responses such as NXDOMAIN are not errors, and
are not logged at this debug level.

At debug level 4 or higher, the detailed context information logged at debug level 2 is logged
for errors other than SERVFAIL and for negative responses such as NXDOMAIN.

lwres Statement Grammar

This is the grammar of the Iwres statement in the named. conf file:

lwres {
[listen-on {
(ip_addr [port ip port] [dscp ip dscp 1 ;)

bl
[view view_name;]
[search { domain name ; ... }; 1
[ndots number;]
[lwres—-tasks number;]
[lwres—-clients number;]

};

Iwres Statement Definition and Usage

The lwres statement configures the name server to also act as a lightweight resolver server. (See
Section 5.2.) There may be multiple Iwres statements configuring lightweight resolver servers
with different properties.

The listen-on statement specifies a list of IPv4 addresses (and ports) that this instance of a
lightweight resolver daemon should accept requests on. If no port is specified, port 921 is used.
If this statement is omitted, requests are accepted on 127.0.0.1, port 921.

The view statement binds this instance of a lightweight resolver daemon to a view in the DNS
namespace, so that the response is constructed in the same manner as a normal DNS query

69 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

matching this view. If this statement is omitted, the default view is used; if there is no default
view, an error is triggered.

The search statement is equivalent to the search statement in /etc/resolv.conf. It provides
a list of domains which are appended to relative names in queries.

The ndots statement is equivalent to the ndots statement in /etc/resolv.conf. It indicates
the minimum number of dots in a relative domain name that should result in an exact-match
lookup before search path elements are appended.

The lwres-tasks statement specifies the number of worker threads the lightweight resolver
dedicates to serving clients. By default, the number is the same as the number of CPUs on the
system; this can be overridden using the —n command-line option when starting the server.

The lwres-clients statement specifies the number of client objects per thread the lightweight
resolver should create to serve client queries. By default, if the lightweight resolver runs as a
part of named, 256 client objects are created for each task; if it runs as Iwresd, 1024 client objects
are created for each thread. The maximum value is 32768; higher values are silently ignored
and the maximum is used instead. Note that setting too high a value may overconsume system
resources.

The maximum number of client queries that the lightweight resolver can handle at any one time
equals lwres-tasks times lwres-clients.

masters Statement Grammar

masters string [port integer] [dscp
integer] { (masters | ipv4_address |
port integer] | ipvé6_address [port
integer 1) [key string 1; ... };

masters Statement Definition and Usage

masters lists allow for a common set of primaries to be easily used by multiple stub and sec-
ondary zones in their masters or also-notify lists.

options Statement Grammar

This is the grammar of the options statement in the named. conf file:

options {
acache-cleaning-interval integer;
acache—-enable boolean;
additional-from—auth boolean;
additional-from—cache boolean;
allow—new—-zones boolean;
allow—notify { address _match_element; ... };
allow—query { address_match_element; ... };
allow—query-cache { address _match_element; ... };
allow—query—-cache-on { address_match_element; ... };

BIND 9.11.28 70

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

allow—query-on { address_match_element; ... };

allow-recursion { address_match_element; ... };

allow-recursion-on { address _match_element; ... };

allow-transfer { address match_element; ... };

allow—-update { address_match_element; ... };

allow-update-forwarding { address_match_element; ... };

also—notify [port integer] [dscp integer] { (masters |
ipv4_address [port integer] | ipvé6_address [port
integer]) [key string 1; ... };

alt-transfer—-source (ipv4 _address | x=) [port (integer | x)
] [dscp integer];

alt-transfer-source-v6 (ipvé6_address | =) [port (integer |
*)] [dscp integer 1;

answer—-cookie boolean;

attach-cache string;

auth-nxdomain boolean; // default changed

auto-dnssec (allow | maintain | off);

automatic-interface-scan boolean;

avoid-v4-udp-ports { portrange; ... };

avoid-v6-udp-ports { portrange; ... };

bindkeys—-file quoted_string;

blackhole { address match element; ... };

cache-file quoted string;

catalog-zones { zone string [default-masters [port integer]
[dscp integer] { (masters | ipv4 _address [port
integer] | ipvé_address [port integer]) [key
string]; ... } 1 [zone-directory quoted_string] [
in-memory boolean] [min-update-interval integer 1; ... };

check-dup-records (fail | warn | ignore);

check-integrity boolean;

check-mx (fail | warn | ignore);

check-mx-cname (fail | warn | ignore);

check—-names (master | slave | response
) (fail | warn | ignore);

check-sibling boolean;

check-spf (warn | ignore);

check-srv-cname (fail | warn | ignore);

check-wildcard boolean;

cleaning-interval integer;

clients—-per—query integer;

cookie-algorithm (aes | shal | sha256 | siphash24);
cookie-secret string;

coresize (default | unlimited | sizeval);

datasize (default | unlimited | sizeval);

deny—-answer—-addresses { address_match_element; ... } [
except-from { quoted string; ... } 1;

deny-answer-aliases { quoted _string; ... } [except—from ({
quoted_string; ... } 1;

dialup (notify | notify-passive | passive | refresh | boolean);

directory quoted _string;

disable—-algorithms string { string;
}i

disable-ds-digests string { string;

71 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

}i
disable-empty-zone string;
dns64 netprefix {

break-dnssec boolean;

clients { address match_element; ... };
exclude { address_match_element; ... };
mapped { address_match_element; ... };

recursive-only boolean;
suffix ipv6_address;
}i
dns64-contact string;
dns64-server string;
dnssec—-accept-expired boolean;
dnssec-dnskey-kskonly boolean;
dnssec—enable boolean;
dnssec-loadkeys-interval integer;
dnssec-lookaside (string trust—anchor
string | auto | no);
dnssec—-must-be-secure string boolean;
dnssec-secure-to-insecure boolean;
dnssec-update-mode (maintain | no-resign);
dnssec-validation (yes | no | auto);
dnstap { (all | auth | client | forwarder |
resolver) [(query | response)]; ... };
dnstap-identity (quoted _string | none |
hostname) ;
dnstap-output (file | unix) quoted_string;
dnstap-version (quoted_string | none);
dscp integer;

dual-stack-servers [port integer] { (quoted_string [port
integer] [dscp integer] | ipv4_address [port
integer] [dscp integer] | ipvé_address [port
integer] [dscp integer]); ... };

dump-file quoted _string;

edns-udp-size integer;

empty—-contact string;

empty-server string;

empty-zones—-enable boolean;

fetch—quota-params integer fixedpoint fixedpoint fixedpoint;
fetches-per-server integer [(drop | fail) 1;
fetches-per-zone integer [(drop | fail)];
files (default | unlimited | sizeval);
filter—aaaa { address_match_element; ... };
filter—-aaaa-on-v4 (break-dnssec | boolean);
filter—aaaa-on-v6 (break-dnssec | boolean);
flush-zones-on-shutdown boolean;

forward (first | only);
forwarders [port integer] [dscp integer] { (ipv4_address
| ipvé_address) [port integer] [dscp integer 1; ... };

fstrm-set-buffer-hint integer;
fstrm-set-flush-timeout integer;
fstrm-set-input—-queue-size integer;
fstrm-set-output-notify—-threshold integer;

BIND 9.11.28 72

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

fstrm-set-output—-queue-model (mpsc | spsc);
fstrm—-set-output—-queue-size integer;
fstrm-set-reopen-interval integer;

geoip—-directory (quoted string | none);
geoip—-use—ecs boolean;

heartbeat-interval integer;

hostname (quoted string | none);

inline-signing boolean;

interface-interval integer;

ixfr-from-differences (master | slave | boolean);
keep-response-order { address_match_element; ... };
key-directory quoted_string;

lame—-ttl ttlval;

listen-on [port integer] [dscp
integer] {
address_match_element; ... };

listen-on-v6 [port integer] [dscp
integer] {

address_match_element; ... };
lmdb-mapsize sizeval;
lock—-file (quoted_string | none);
managed-keys—-directory quoted string;
masterfile-format (map | raw | text);
masterfile-style (full | relative);
match-mapped—-addresses boolean;
max—acache-size (unlimited | sizeval);
max—cache-size (default | unlimited | sizeval | percentage);
max—cache-ttl integer;
max—-clients-per—query integer;
max—journal-size (unlimited | sizeval);
max—ncache-ttl integer;
max—-records integer;
max—-recursion—-depth integer;
max—-recursion—queries integer;
max-refresh-time integer;
max-retry-time integer;
max—-rsa—-exponent-size integer;
max—transfer-idle-in integer;
max—transfer-idle-out integer;
max—transfer-time-in integer;
max—transfer-time-out integer;
max—udp-size integer;
max—-zone—-ttl (unlimited | ttlval);
memstatistics boolean;
memstatistics—file quoted _string;
message—compression boolean;
min-refresh-time integer;
min-retry-time integer;
minimal-any boolean;
minimal-responses (no—-auth | no-auth-recursive | boolean);
multi-master boolean;
no—case—compress { address_match_element; ... };
nocookie-udp-size integer;

73 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION...

6.2. CONFIGURATION FILE GRAMMAR

notify (explicit | master-only | boolean
notify-delay integer;
notify-rate integer;
notify-source (ipv4 _address |
dscp integer 1;
notify-source-v6 (ipvé_address
[dscp integer 1;
notify-to-soa boolean;
nta-lifetime ttlval;
nta-recheck ttlval;
nxdomain-redirect string;
pid-file (quoted_string |
port integer;
preferred-glue string;
prefetch integer [integer];
provide-ixfr boolean;
query-source (([address] (ipv4_address |
integer | *) 1) | ([[address] (
port (integer | =))) [dscp integer];
query-source-v6 (([address] (ipvé_address
integer | x) 1) | ([[address] (
port (integer | =))) [dscp integer];
querylog boolean;
random—-device quoted_string;
rate-limit ({
all-per-second integer;
errors—-per—second integer;
exempt-clients { address _match_element;
ipv4-prefix-length integer;
ipvé-prefix—-length integer;
log-only boolean;
max—table-size integer;
min-table-size integer;
nodata-per—-second integer;
nxdomains—per-second integer;
gps—-scale integer;
referrals—-per—-second integer;
responses—per—second integer;
slip integer;
window integer;
}i
recursing—-file quoted _string;
recursion boolean;
recursive-clients integer;
request—-expire boolean;
request—-ixfr boolean;
request-nsid boolean;
require-server—-cookie boolean;
reserved-sockets integer;
resolver—query-timeout integer;
response—policy { zone string |[
integer] [policy (
| nodata | nxdomain |

)i

*x) [port (

| =) [port (

none

)i

log boolean]
disabled |
passthru |

cname |

integer |

*)

ipv4_address |

ipvé_address |

drop |
tcp-only quoted_string) 1 [

*) 10

I ox)]

integer

[port (
x)]
| =) [port (
x)]

}i

[max-policy-ttl

given | no-op

BIND 9.11.28 74

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

recursive-only boolean]; ... } [break-dnssec boolean] [
max-policy-ttl integer] [min-ns-dots integer] [
nsip-wait-recurse boolean] [gname-wait-recurse boolean]

[recursive-only boolean];
root—delegation-only [exclude { quoted _string; ... } 1;
root-key-sentinel boolean;
rrset—-order { [class string] [type string] [name
quoted_string] string string; ... };
secroots—-file quoted_string;
send—-cookie boolean;
serial-query-rate integer;
serial-update—-method (date | increment | unixtime);
server—-id (quoted _string | none | hostname);
servfail-ttl ttlval;
session-keyalg string;
session-keyfile (quoted string | none);
session-keyname string;
sig-signing—-nodes integer;
sig-signing-signatures integer;
sig-signing-type integer;
sig-validity-interval integer [integer];
sortlist { address match _element; ... };
stacksize (default | unlimited | sizeval);
startup-notify-rate integer;
statistics—-file quoted string;
tcp-clients integer;
tcp-listen—queue integer;
tkey—-dhkey quoted string integer;
tkey-domain quoted string;
tkey—-gssapi-credential quoted _string;
tkey—-gssapi-keytab quoted string;

transfer-format (many-answers | one-answer);

transfer—-message-size integer;

transfer—-source (ipv4_address | =) [port (integer | =)] [
dscp integer];

transfer-source-v6 (ipvé_address | *) [port (integer | *)

] [dscp integer];
transfers-in integer;
transfers—-out integer;
transfers—-per—-ns integer;
trust-anchor-telemetry boolean; // experimental
try-tcp-refresh boolean;
update-check-ksk boolean;
use-alt-transfer-source boolean;

use-v4-udp-ports { portrange; ... };
use-v6-udp-ports { portrange; ... };
v6-bias integer;

version (quoted_string | none);

zero—-no—-soa-ttl boolean;

zero—-no-soa-ttl-cache boolean;

zone-statistics (full | terse | none | boolean);
}i

75 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

options Statement Definition and Usage

The options statement sets up global options to be used by BIND. This statement may appear
only once in a configuration file. If there is no options statement, an options block with each
option set to its default is used.

attach-cache
This option allows multiple views to share a single cache database. Each view has its
own cache database by default, but if multiple views have the same operational policy for
name resolution and caching, those views can share a single cache to save memory, and
possibly improve resolution efficiency, by using this option.

The attach-cache option may also be specified in view statements, in which case it over-
rides the global attach-cache option.

The cache_name specifies the cache to be shared. When the named server configures
views which are supposed to share a cache, it creates a cache with the specified name for
the first view of these sharing views. The rest of the views simply refer to the already-
created cache.

One common configuration to share a cache is to allow all views to share a single cache.
This can be done by specifying attach-cache as a global option with an arbitrary name.

Another possible operation is to allow a subset of all views to share a cache while the
others retain their own caches. For example, if there are three views A, B, and C, and
only A and B should share a cache, specify the attach-cache option as a view of A (or B)’s
option, referring to the other view name:

view "A" {
// this view has its own cache

bi

view "B" {
// this view refers to A’s cache
attach-cache "A";

bi

view "C" {
// this view has its own cache

}i

Views that share a cache must have the same policy on configurable parameters that may
affect caching. The current implementation requires the following configurable options be
consistent among these views: check-names, cleaning-interval, dnssec-accept-expired,
dnssec-validation, max-cache-ttl, max-ncache-ttl, max-cache-size, and zero-no-soa-ttl.

Note that there may be other parameters that may cause confusion if they are inconsistent
for different views that share a single cache. For example, if these views define different
sets of forwarders that can return different answers for the same question, sharing the
answer does not make sense or could even be harmful. It is administrator’s responsibility
to ensure that configuration differences in different views do not cause disruption with a
shared cache.

BIND 9.11.28 76

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

directory
This sets the working directory of the server. Any non-absolute pathnames in the con-
figuration file are taken as relative to this directory. The default location for most server
output files (e.g., named. run) is this directory. If a directory is not specified, the working
directory defaults to ".", the directory from which the server was started. The direc-
tory specified should be an absolute path. It is strongly recommended that the directory be

writable by the effective user ID of the named process.

dnstap
dnstap is a fast, flexible method for capturing and logging DNS traffic. Developed by
Robert Edmonds at Farsight Security, Inc., and supported by multiple DNS implementa-
tions, dnstap uses libfstrm (a lightweight high-speed framing library, see https:/ /github.com/-
farsightsec/fstrm) to send event payloads which are encoded using Protocol Buffers (libprotobuf-
¢, amechanism for serializing structured data developed by Google, Inc.; see https:/ /developers.google.com/-
protocol-buffers).

To enable dnstap at compile time, the fstrm and protobuf-c libraries must be available,
and BIND must be configured with -—enable-dnstap.

The dnstap option is a bracketed list of message types to be logged. These may be set dif-
ferently for each view. Supported types are client, auth, resolver, and forwarder.
Specifying type all causes all dnstap messages to be logged, regardless of type.

Each type may take an additional argument to indicate whether to log query messages
or response messages; if not specified, both queries and responses are logged.

Example: To log all authoritative queries and responses, recursive client responses, and
upstream queries sent by the resolver, use:

dnstap {
auth;
client response;
resolver query;

}i

Logged dnstap messages can be parsed using the dnstap-read utility (see dnstap-read(1)
for details).

For more information on dnstap, see http://dnstap.info.

The fstrm library has a number of tunables that are exposed in named. conf, and can be
modified if necessary to improve performance or prevent loss of data. These are:

o fstrm-set-buffer-hint: The threshold number of bytes to accumulate in the output
buffer before forcing a buffer flush. The minimum is 1024, the maximum is 65536,
and the default is 8192.

¢ fstrm-set-flush-timeout: The number of seconds to allow unflushed data to remain
in the output buffer. The minimum is 1 second, the maximum is 600 seconds (10
minutes), and the default is 1 second.

¢ fstrm-set-output-notify-threshold: The number of outstanding queue entries to al-
low on an input queue before waking the I/O thread. The minimum is 1 and the
default is 32.

¢ fstrm-set-output-queue-model: The queuing semantics to use for queue objects. The
default is mpsc (multiple producer, single consumer); the other option is spsc (sin-
gle producer, single consumer).

77 BIND 9.11.28

https://github.com/farsightsec/fstrm
https://github.com/farsightsec/fstrm
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://dnstap.info

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

¢ fstrm-set-input-queue-size: The number of queue entries to allocate for each input
queue. This value must be a power of 2. The minimum is 2, the maximum is 16384,
and the default is 512.

¢ fstrm-set-output-queue-size: The number of queue entries to allocate for each out-
put queue. The minimum is 2, the maximum is system-dependent and based on
I0V_MAYX, and the default is 64.

¢ fstrm-set-reopen-interval: The number of seconds to wait between attempts to re-
open a closed output stream. The minimum is 1 second, the maximum is 600 seconds
(10 minutes), and the default is 5 seconds.

Note that all of the above minimum, maximum, and default values are set by the libfstrm
library, and may be subject to change in future versions of the library. See the libfstrm
documentation for more information.

dnstap-output
This configures the path to which the dnstap frame stream is sent if dnstap is enabled at
compile time and active.

The first argument is either £ile or unix, indicating whether the destination is a file or
a Unix domain socket. The second argument is the path of the file or socket. (Note: when
using a socket, dnstap messages are only sent if another process such as fstrm_capture
(provided with libfstrm) is listening on the socket.)

dnstap-output can only be set globally in options. Currently, it can only be set once while
named is running; once set, it cannot be changed by rndc reload or rndc reconfig.

dnstap-identity
This specifies an identity string to send in dnstap messages. If set to hostname, which is
the default, the server’s hostname is sent. If set to none, no identity string is sent.

dnstap-version
This specifies a version string to send in dnstap messages. The default is the version
number of the BIND release. If set to none, no version string is sent.

geoip-directory
When named is compiled using the MaxMind GeolP2 geolocation API, or the legacy
GeolP AP], this specifies the directory containing GeolP database files. By default, the
option is set based on the prefix used to build the libmaxminddb module; for exam-
ple, if the library is installed in /usr/local/lib, then the default geoip-directory is
/usr/local/share/GeoIP. On Windows, the default is the named working directory.
See Section 6.2 for details about geoip ACLs.

key-directory
This is the directory where the public and private DNSSEC key files should be found when
performing a dynamic update of secure zones, if different than the current working direc-
tory. (Note that this option has no effect on the paths for files containing non-DNSSEC
keys such as bind.keys, rndc.key, or session.key.)

Imdb-mapsize
When named is built with liblmdb, this option sets a maximum size for the memory map
of the new-zone database (NZD) in LMDB database format. This database is used to store
configuration information for zones added using rndc addzone. Note that this is not the
NZD database file size, but the largest size that the database may grow to.

BIND 9.11.28 78

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

Because the database file is memory mapped, its size is limited by the address space of the
named process. The default of 32 megabytes was chosen to be usable with 32-bit named
builds. The largest permitted value is 1 terabyte. Given typical zone configurations with-
out elaborate ACLs, a 32 MB NZD file ought to be able to hold configurations of about
100,000 zones.

managed-keys-directory
This specifies the directory in which to store the files that track managed DNSSEC keys.
By default, this is the working directory. The directory must be writable by the effective
user ID of the named process.

If named is not configured to use views, managed keys for the server are tracked in a sin-
gle file called managed-keys.bind. Otherwise, managed keys are tracked in separate
files, one file per view; each file name is the view name (or, if it contains characters that
are incompatible with use as a file name, the SHA256 hash of the view name), followed
by the extension .mkeys.

(Note: in earlier releases, file names for views always used the SHA256 hash of the view
name. To ensure compatibility after upgrading, if a file using the old name format is found
to exist, it is used instead of the new format.)

named-xfer
This option is obsolete. In BIND 9, no separate named-xfer program is needed; its function-
ality is built into the name server.

tkey-gssapi-keytab
This is the KRB5 keytab file to use for GSS-TSIG updates. If this option is set and tkey-
gssapi-credential is not set, updates are allowed with any key matching a principal in the
specified keytab.

tkey-gssapi-credential

This is the security credential with which the server should authenticate keys requested by

the GSS-TSIG protocol. Currently only Kerberos 5 authentication is available; the creden-

tial is a Kerberos principal which the server can acquire through the default system key

file, normally /etc/krbS5.keytab. The location of the keytab file can be overridden us-

ing the tkey-gssapi-keytab option. Normally this principal is of the form "DNS/server.domain".
To use GSS-TSIG, tkey-domain must also be set if a specific keytab is not set with tkey-
gssapi-keytab.

tkey-domain

This domain is appended to the names of all shared keys generated with TKEY. When a
client requests a TKEY exchange, it may or may not specify the desired name for the key. If
present, the name of the shared key is client-specified part +tkey-domain. Oth-
erwise, the name of the shared key is random hex digits + tkey-domain. In most
cases, the domainname should be the server’s domain name, or an otherwise nonexistent
subdomain like "_tkey.domainname". If using GSS-TSIG, this variable must be defined,
unless a specific keytab is specified using tkey-gssapi-keytab.

tkey-dhkey
This is the Diffie-Hellman key used by the server to generate shared keys with clients
using the Diffie-Hellman mode of TKEY. The server must be able to load the public and
private keys from files in the working directory. In most cases, the key_name should be
the server’s host name.

79 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

cache-file
This is for testing only. Do not use.

dump-file
This is the pathname of the file the server dumps the database to, when instructed to do
so with rndc dumpdb. If not specified, the default is named_dump . db.

memstatistics-file
This is the pathname of the file the server writes memory usage statistics to on exit. If not
specified, the default is named.memstats.

lock-file
This is the pathname of a file on which named attempts to acquire a file lock when starting
for the first time; if unsuccessful, the server terminates, under the assumption that another
server is already running. If not specified, the default is none.

Specifying lock-file none disables the use of a lock file. lock-file is ignored if named was
run using the -X option, which overrides it. Changes to lock-file are ignored if named is
being reloaded or reconfigured; it is only effective when the server is first started.

pid-file
This is the pathname of the file the server writes its process ID in. If not specified, the
default is /var/run/named/named.pid. The PID file is used by programs that send
signals to the running name server. Specifying pid-file none disables the use of a PID file;
no file is written and any existing one is removed. Note that none is a keyword, not a
filename, and therefore is not enclosed in double quotes.

recursing-file
This is the pathname of the file where the server dumps the queries that are currently
recursing, when instructed to do so with rndc recursing. If not specified, the default is
named.recursing.

statistics-file
This is the pathname of the file the server appends statistics to, when instructed to do
so using rndc stats. If not specified, the default is named. stats in the server’s current
directory. The format of the file is described in Section 6.4.

bindkeys-file
This is the pathname of a file to override the built-in trusted keys provided by named.
See the discussion of dnssec-validation for details. If not specified, the default is /etc/
bind.keys.

secroots-file
This is the pathname of the file the server dumps security roots to, when instructed to do
so with rndc secroots. If not specified, the default is named. secroots.

session-keyfile
This is the pathname of the file into which to write a TSIG session key generated by named
for use by nsupdate -1. If not specified, the default is /var/run/named/session.key.
(See Section 6.2, and in particular the discussion of the update-policy statement’s local
option for more information about this feature.)

BIND 9.11.28 80

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

session-keyname
This is the key name to use for the TSIG session key. If not specified, the default is
local-ddns.

session-keyalg
This is the algorithm to use for the TSIG session key. Valid values are hmac-shal, hmac-
sha224, hmac-sha256, hmac-sha384, hmac-sha512, and hmac-md5. If not specified, the
default is hmac-sha256.

port
This is the UDP/TCP port number the server uses to receive and send DNS protocol traf-
fic. The default is 53. This option is mainly intended for server testing; a server using a
port other than 53 is not able to communicate with the global DNS.

dscp
This is the global Differentiated Services Code Point (DSCP) value to classify outgoing
DN traffic, on operating systems that support DSCP. Valid values are 0 through 63. It is
not configured by default.

random-device

This specifies a source of entropy to be used by the server. Entropy is primarily needed
for DNSSEC operations, such as TKEY transactions and dynamic update of signed zones.
This option specifies the device (or file) from which to read entropy. If it is a file, oper-
ations requiring entropy will fail when the file has been exhausted. If random-device is
not specified, the default value is /dev/random (or equivalent) when present, and none
otherwise. The random-device option takes effect during the initial configuration load at
server startup time and is ignored on subsequent reloads.

preferred-glue
If specified, the listed type (A or AAAA) is emitted before other glue in the additional
section of a query response. The default is to prefer A records when responding to queries
that arrived via IPv4 and AAAA when responding to queries that arrived via IPvé6.

root-delegation-only
This turns on enforcement of delegation-only in TLDs (top-level domains) and root zones
with an optional exclude list.

DS queries are expected to be made to and be answered by delegation-only zones. Such
queries and responses are treated as an exception to delegation-only processing and are
not converted to NXDOMAIN responses, provided a CNAME is not discovered at the
query name.

If a delegation-only zone server also serves a child zone, it is not always possible to deter-
mine whether an answer comes from the delegation-only zone or the child zone. SOA NS
and DNSKEY records are apex-only records and a matching response that contains these
records or DS is treated as coming from a child zone. RRSIG records are also examined to
see if they are signed by a child zone, and the authority section is examined to see if there
is evidence that the answer is from the child zone. Answers that are determined to be
from a child zone are not converted to NXDOMAIN responses. Despite all these checks,
there is still a possibility of false negatives when a child zone is being served.

Similarly, false positives can arise from empty nodes (no records at the name) in the
delegation-only zone when the query type is not ANY.

81 BIND 9.11.28

CHAPTER 6.

BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

Note that some TLDs are not delegation-only; e.g., "DE", "LV", "US", and "MUSEUM". This
list is not exhaustive.

options {
root-delegation-only exclude { "de"; "1lv"; "us"; "museum"; };

}i

disable-algorithms

This disables the specified DNSSEC algorithms at and below the specified name. Multi-
ple disable-algorithms statements are allowed. Only the best-match disable-algorithms
clause is used to determine the algorithms.

If all supported algorithms are disabled, the zones covered by the disable-algorithms
setting are treated as insecure.

Configured trust anchors in trusted-keys or managed-keys that match a disabled algo-
rithm are ignored and treated as if they were not configured.

disable-ds-digests

This disables the specified DS digest types at and below the specified name. Multiple
disable-ds-digests statements are allowed. Only the best-match disable-ds-digests clause
is used to determine the digest types.

If all supported digest types are disabled, the zones covered by disable-ds-digests are
treated as insecure.

dnssec-lookaside

When set, dnssec-lookaside provides the validator with an alternate method to validate
DNSKEY records at the top of a zone. When a DNSKEY is at or below a domain specified
by the deepest dnssec-lookaside, and the normal DNSSEC validation has left the key
untrusted, the trust-anchor is appended to the key name and a DLV record is looked up to
see if it can validate the key. If the DLV record validates a DNSKEY (similarly to the way
a DS record does), the DNSKEY RRset is deemed to be trusted.

If dnssec-lookaside is set to no, then dnssec-lookaside is not used.

Note: the ISC-provided DLV service at d1v.isc.org has been shut down. The dnssec-
lookaside auto; configuration option, which set named to use ISC DLV with minimal
configuration, has accordingly been removed.

dnssec-must-be-secure

This specifies hierarchies which must be or may not be secure (signed and validated). If
yes, then named only accepts answers if they are secure. If no, then normal DNSSEC
validation applies, allowing insecure answers to be accepted. The specified domain must
be under a trusted-keys or managed-keys statement, or dnssec-validation auto must be
active.

dnse64

This directive instructs named to return mapped IPv4 addresses to AAAA queries when
there are no AAAA records. It is intended to be used in conjunction with a NAT64. Each
dns64 defines one DNS64 prefix. Multiple DNS64 prefixes can be defined.

Compatible IPv6 prefixes have lengths of 32, 40, 48, 56, 64, and 96, per RFC 6052. Bits
64..71 inclusive must be zero, with the most significant bit of the prefix in position 0.

BIND 9.11.28

82

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

In addition, a reverse IP6.ARPA zone is created for the prefix to provide a mapping
from the IP6.ARPA names to the corresponding IN-ADDR.ARPA names using synthe-
sized CNAMEs. dns64-server and dns64-contact can be used to specify the name of the
server and contact for the zones. These can be set at the view /options level but not on a
per-prefix basis.

Each dns64 supports an optional clients ACL that determines which clients are affected
by this directive. If not defined, it defaults to any; .

Each dns64 supports an optional mapped ACL that selects which IPv4 addresses are to
be mapped in the corresponding A RRset. If not defined, it defaults to any; .

Normally, DNS64 does not apply to a domain name that owns one or more AAAA records;
these records are simply returned. The optional exclude ACL allows specification of a list
of IPv6 addresses that are ignored if they appear in a domain name’s AAAA records;
DNS64 is applied to any A records the domain name owns. If not defined, exclude de-
faults to ::ffff:0.0.0.0/96.

A optional suffix can also be defined to set the bits trailing the mapped IPv4 address bits.
By default these bits are set to : :. The bits matching the prefix and mapped IPv4 address
must be zero.

If recursive-only is set to yes, the DNS64 synthesis only happens for recursive queries.
The default is no.

If break-dnssec is set to yes, the DNS64 synthesis happens even if the result, if validated,
would cause a DNSSEC validation failure. If this option is set to no (the default), the DO is
set on the incoming query, and there are RRSIGs on the applicable records, then synthesis
does not happen.

acl rfcl918 { 10/8; 192.168/16; 172.16/12; };

dns64 64:FF9B::/96 {

clients { any; };

mapped { 'rfcl918; any; };

exclude { 64:FF9B::/96; ::ffff:0000:0000/96; };
suffix ::;

}i

dnssec-loadkeys-interval
When a zone is configured with auto-dnssec maintain;, its key repository must be checked
periodically to see if any new keys have been added or any existing keys’ timing metadata
has been updated (see dnssec-keygen(8) and dnssec-settime(8)). The dnssec-loadkeys-
interval option sets the frequency of automatic repository checks, in minutes. The default
is 60 (1 hour), the minimum is 1 (1 minute), and the maximum is 1440 (24 hours); any
higher value is silently reduced.

dnssec-update-mode
If this option is set to its default value of maintain in a zone of type master which is
DNSSEC-signed and configured to allow dynamic updates (see Section 6.2), and if named
has access to the private signing key(s) for the zone, then named automatically signs all
new or changed records and maintains signatures for the zone by regenerating RRSIG
records whenever they approach their expiration date.

If the option is changed to no-resign, then named signs all new or changed records, but
scheduled maintenance of signatures is disabled.

83 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

With either of these settings, named rejects updates to a DNSSEC-signed zone when the
signing keys are inactive or unavailable to named. (A planned third option, external,
will disable all automatic signing and allow DNSSEC data to be submitted into a zone via
dynamic update; this is not yet implemented.)

nta-lifetime
This specifies the default lifetime, in seconds, for negative trust anchors added via rndc
nta.

A negative trust anchor selectively disables DNSSEC validation for zones that are known
to be failing because of misconfiguration, rather than an attack. When data to be validated
is at or below an active NTA (and above any other configured trust anchors), named aborts
the DNSSEC validation process and treats the data as insecure rather than bogus. This
continues until the NTA’s lifetime is elapsed. NTAs persist across named restarts.

For convenience, TTL-style time-unit suffixes can be used to specify the NTA lifetime in
seconds, minutes, or hours. nta-1ifetime defaults to one hour; it cannot exceed one
week.

nta-recheck
This specifies how often to check whether negative trust anchors added via rndc nta are
still necessary.

A negative trust anchor is normally used when a domain has stopped validating due to
operator error; it temporarily disables DNSSEC validation for that domain. In the interest
of ensuring that DNSSEC validation is turned back on as soon as possible, named period-
ically sends a query to the domain, ignoring negative trust anchors, to find out whether it
can now be validated. If so, the negative trust anchor is allowed to expire early.

Validity checks can be disabled for an individual NTA by using rndc nta -f, or for all NTAs
by setting nta-recheck to zero.

For convenience, TTL-style time-unit suffixes can be used to specify the NTA recheck
interval in seconds, minutes, or hours. The default is five minutes. It cannot be longer
than nta-1ifetime, which cannot be longer than a week.

max-zone-ttl
This specifies a maximum permissible TTL value in seconds. For convenience, TTL-style
time-unit suffixes may be used to specify the maximum value. When loading a zone file
usingamasterfile-format of text or raw, any record encountered with a TTL higher
than max—-zone-tt1 causes the zone to be rejected.

This is useful in DNSSEC-signed zones because when rolling to a new DNSKEY, the
old key needs to remain available until RRSIG records have expired from caches. The
max-zone-ttl option guarantees that the largest TTL in the zone is no higher than the
set value.

(Note: because map-format files load directly into memory, this option cannot be used
with them.)

The default value is unlimited. A max—-zone—-ttl of zero is treated as unlimited.
serial-update-method

Zones configured for dynamic DNS may use this option to set the update method to be
used for the zone serial number in the SOA record.

BIND 9.11.28 84

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

With the default setting of serial-update-method increment;, the SOA serial number is
incremented by one each time the zone is updated.

When set to serial-update-method unixtime;, the SOA serial number is set to the number
of seconds since the Unix epoch, unless the serial number is already greater than or equal
to that value, in which case it is simply incremented by one.

When set to serial-update-method date;, the new SOA serial number is the current date
in the form "YYYYMMDD", followed by two zeroes, unless the existing serial number is
already greater than or equal to that value, in which case it is incremented by one.

zone-statistics
If full, the server collects statistical data on all zones, unless specifically turned off on
a per-zone basis by specifying zone-statistics terse or zone-statistics none in the zone
statement. The default is terse, providing minimal statistics on zones (including name
and current serial number, but not query type counters).

These statistics may be accessed via the statistics-channel or using rndc stats, which
dumps them to the file listed in the statistics-file. See also Section 6.4.

For backward compatibility with earlier versions of BIND 9, the zone-statistics option can
also accept yes or no; yes has the same meaning as full. As of BIND 9.10, no has the
same meaning as none; previously, it was the same as terse.

Boolean Options

automatic-interface-scan
If yes and supported by the operating system, this automatically rescans network in-
terfaces when the interface addresses are added or removed. The default is yes. This
configuration option does not affect the time-based interface-interval option; it is rec-
ommended to set the time-based interface-interval to 0 when the operator confirms that
automatic interface scanning is supported by the operating system.

The automatic-interface-scan implementation uses routing sockets for the network inter-
face discovery; therefore, the operating system must support the routing sockets for this
feature to work.

allow-new-zones
If yes, then zones can be added at runtime via rndc addzone. The default is no.

Newly added zones’ configuration parameters are stored so that they can persist after the
server is restarted. The configuration information is saved in a file called viewname.nzf
(or, if named is compiled with liblmdb, in an LMDB database file called viewname.nzd).
viewname is the name of the view, unless the view name contains characters that are in-
compatible with use as a file name, in which case a cryptographic hash of the view name
is used instead.

Configurations for zones added at runtime are stored either in a new-zone file (NZF) or
a new-zone database (NZD), depending on whether named was linked with liblmdb at
compile time. See rndc(8) for further details about rndc addzone.

auth-nxdomain
If yes, then the AA bit is always set on NXDOMAIN responses, even if the server is not
actually authoritative. The default is no.

85 BIND 9.11.28

CHAPTER 6.

BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

deallocate-on-exit

This option was used in BIND 8 to enable checking for memory leaks on exit. BIND 9
ignores the option and always performs the checks.

memstatistics

This writes memory statistics to the file specified by memstatistics-file at exit. The default
is no unless -m record is specified on the command line, in which case it is yes.

dialup

If yes, then the server treats all zones as if they are doing zone transfers across a dial-
on-demand dialup link, which can be brought up by traffic originating from this server.
Although this setting has different effects according to zone type, it concentrates the zone
maintenance so that everything happens quickly, once every heartbeat-interval, ideally
during a single call. It also suppresses some normal zone maintenance traffic. The default
is no.

If specified in the view and zone statements, the dialup option overrides the global dialup
option.

If the zone is a primary zone, the server sends out a NOTIFY request to all the secondaries
(default). This should trigger the zone serial number check in the secondary (providing
it supports NOTIFY), allowing the secondary to verify the zone while the connection is
active. The set of servers to which NOTIFY is sent can be controlled by notify and also-
notify.

If the zone is a secondary or stub zone, the server suppresses the regular "zone up to date"
(refresh) queries and only performs them when the heartbeat-interval expires, in addition
to sending NOTIFY requests.

Finer control can be achieved by using notify, which only sends NOTIFY messages;
notify-passive, which sends NOTIFY messages and suppresses the normal refresh
queries; refresh, which suppresses normal refresh processing and sends refresh queries
when the heartbeat-interval expires; and passive, which disables normal refresh pro-
cessing.

dialup mode normal refresh heart-beat refresh ~ heart-beat notify
no (default) yes no no
no yes yes

yes
notify yes no yes
refresh no yes no

. no no no
passive
notify-passive noe noe yes

Note that normal NOTIFY processing is not affected by dialup.

fake-iquery

BIND 9.11.28

86

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

In BIND 8, this option enabled simulating the obsolete DNS query type IQUERY. BIND 9
never does IQUERY simulation.

fetch-glue
This option is obsolete. In BIND 8, fetch—-glue yes caused the server to attempt to
fetch glue resource records it did not have when constructing the additional data section
of a response. This is now considered a bad idea and BIND 9 never does it.

flush-zones-on-shutdown
When the nameserver exits upon receiving SIGTERM, flush or do not flush any pending
zone writes. The default is flush-zones-on-shutdown no.

geoip-use-ecs
When BIND is compiled with GeolP support and configured with "geoip" ACL elements,
this option indicates whether the EDNS Client Subnet option, if present in a request,
should be used for matching against the GeolP database. The default is geoip-use-ecs
yes.

has-old-clients
This option was incorrectly implemented in BIND 8, and is ignored by BIND 9. To
achieve the intended effect of has-old-clients yes, specify the two separate options auth-
nxdomain yes and rfc2308-typel no instead.

host-statistics
In BIND 8, this enabled keeping of statistics for every host that the name server interacts
with. It is not implemented in BIND 9.

root-key-sentinel
If yes, respond to root key sentinel probes as described in draft-ietf-dnsop-kskroll-sentinel-
08. The default is yes.

maintain-ixfr-base
This option is obsolete. It was used in BIND 8 to determine whether a transaction log was
kept for Incremental Zone Transfer. BIND 9 maintains a transaction log whenever possi-
ble. To disable outgoing incremental zone transfers, use provide-ixfr no.

message-compression
If yes, DNS name compression is used in responses to regular queries (not including
AXEFR or IXFR, which always use compression). Setting this option to no reduces CPU us-
age on servers and may improve throughput. However, it increases response size, which
may cause more queries to be processed using TCP; a server with compression disabled
is out of compliance with RFC 1123 Section 6.1.3.2. The default is yes.

minimal-responses
If set to yes, then when generating responses the server only adds records to the au-
thority and additional data sections when they are required (e.g. delegations, negative
responses). This may improve the performance of the server.

When set to no—auth, the server omits records from the authority section unless they are
required, but it may still add records to the additional section. When set to no—auth-recursive,
this is only done if the query is recursive. These settings are useful when answering stub

clients, which usually ignore the authority section. no—auth-recursive is designed for
mixed-mode servers that handle both authoritative and recursive queries.

The default is no.

87 BIND 9.11.28

CHAPTER 6.

BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

minimal-any

If set to yes, the server replies with only one of the RRsets for the query name, and its
covering RRSIGs if any, when generating a positive response to a query of type ANY over
UDP, instead of replying with all known RRsets for the name. Similarly, a query for type
RRSIG is answered with the RRSIG records covering only one type. This can reduce the
impact of some kinds of attack traffic, without harming legitimate clients. (Note, how-
ever, that the RRset returned is the first one found in the database; it is not necessarily
the smallest available RRset.) Additionally, minimal-responses is turned on for these
queries, so no unnecessary records are added to the authority or additional sections. The
default is no.

multiple-cnames

This option was used in BIND 8 to allow a domain name to have multiple CNAME
records, in violation of the DNS standards. BIND 9.2 onwards always strictly enforces
the CNAME rules both in primary files and dynamic updates.

notify

If yes (the default), DNS NOTIFY messages are sent when a zone the server is authorita-
tive for changes; see Section 4.1. The messages are sent to the servers listed in the zone’s
NS records (except the primary server identified in the SOA MNAME field), and to any
servers listed in the also-notify option.

If master—only, notifies are only sent for primary zones. If explicit, notifies are sent
only to servers explicitly listed using also-notify. If no, no notifies are sent.

The notify option may also be specified in the zone statement, in which case it overrides
the options notify statement. It would only be necessary to turn off this option if it caused
secondary zones to crash.

notify-to-soa

If yes, do not check the name servers in the NS RRset against the SOA MNAME. Nor-
mally a NOTIFY message is not sent to the SOA MNAME (SOA ORIGIN), as it is supposed
to contain the name of the ultimate primary server. Sometimes, however, a secondary
server is listed as the SOA MNAME in hidden primary configurations; in that case, the ul-
timate primary should be set to still send NOTIFY messages to all the name servers listed
in the NS RRset.

recursion

If yes, and a DNS query requests recursion, then the server attempts to do all the work
required to answer the query. If recursion is off and the server does not already know the
answer, it returns a referral response. The default is yes. Note that setting recursion no
does not prevent clients from getting data from the server’s cache; it only prevents new
data from being cached as an effect of client queries. Caching may still occur as an effect
the server’s internal operation, such as NOTIFY address lookups.

request-nsid

If yes, then an empty EDNS(0) NSID (Name Server Identifier) option is sent with all
queries to authoritative name servers during iterative resolution. If the authoritative
server returns an NSID option in its response, then its contents are logged in the resolver
category at level info. The default is no.

request-sit

This experimental option is obsolete.

BIND 9.11.28

88

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

require-server-cookie
If yes, require a valid server cookie before sending a full response to a UDP request from
a cookie-aware client. BADCOOKIE is sent if there is a bad or nonexistent server cookie.
The default is no.

Users wishing to test that DNS COOKIE clients correctly handle BADCOOKIE, or who are
getting a lot of forged DNS requests with DNS COOKIES present, should set this to yes.
Setting this to yes results in a reduced amplification effect in a reflection attack, as the
BADCOOQKIE response is smaller than a full response, while also requiring a legitimate
client to follow up with a second query with the new, valid, cookie.

answer-cookie
When set to the default value of yes, COOKIE EDNS options are sent when applicable in
replies to client queries. If set to no, COOKIE EDNS options are not sent in replies. This
can only be set at the global options level, not per-view.

answer-cookie no is only intended as a temporary measure, for use when named shares
an IP address with other servers that do not yet support DNS COOKIE. A mismatch be-
tween servers on the same address is not expected to cause operational problems, but
the option to disable COOKIE responses so that all servers have the same behavior is pro-
vided out of an abundance of caution. DNS COOKIE is an important security mechanism,
and should not be disabled unless absolutely necessary.

send-cookie

If yes, then a COOKIE EDNS option is sent along with the query. If the resolver has pre-
viously communicated with the server, the COOKIE returned in the previous transaction
is sent. This is used by the server to determine whether the resolver has talked to it before.
A resolver sending the correct COOKIE is assumed not to be an off-path attacker sending
a spoofed-source query; the query is therefore unlikely to be part of a reflection/ampli-
fication attack, so resolvers sending a correct COOKIE option are not subject to response
rate limiting (RRL). Resolvers which do not send a correct COOKIE option may be limited
to receiving smaller responses via the nocookie-udp-size option. The default is yes.

nocookie-udp-size
This sets the maximum size of UDP responses that are sent to queries without a valid
server COOKIE. A value below 128 is silently raised to 128. The default value is 4096, but
the max-udp-size option may further limit the response size as the default for max-udp-
size is 1232.

sit-secret
This experimental option is obsolete.

cookie-algorithm
This sets the algorithm to be used when generating the server cookie; the options are
"aes", "shal", or "sha256". The default is "aes" if supported by the cryptographic library;
otherwise, "sha256".

cookie-secret
If set, this is a shared secret used for generating and verifying EDNS COOKIE options
within an anycast cluster. If not set, the system generates a random secret at startup. The
shared secret is encoded as a hex string and needs to be 128 bits for AES128, 160 bits for
SHA1, and 256 bits for SHA256.

89 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

If there are multiple secrets specified, the first one listed in named. conf is used to gener-
ate new server cookies. The others are only used to verify returned cookies.

rfc2308-typel
Setting this to yes causes the server to send NS records along with the SOA record for
negative answers. The default is no.

NOTE

This is not yet implemented in BIND 9.

trust-anchor-telemetry
This causes named to send specially formed queries once per day to domains for which
trust anchors have been configured via trusted-keys, managed-keys, or dnssec-validation
auto.

The query name used for these queries has the form "_ta-xxxx(-xxxx)(...)".<domain>, where
each "xxxx" is a group of four hexadecimal digits representing the key ID of a trusted
DNSSEC key. The key IDs for each domain are sorted smallest to largest prior to encod-
ing. The query type is NULL.

By monitoring these queries, zone operators are able to see which resolvers have been
updated to trust a new key; this may help them decide when it is safe to remove an old
one.

The default is yes.

use-id-pool
This option is obsolete. BIND 9 always allocates query IDs from a pool.

use-ixfr
This option is obsolete. To disable IXFR to a particular server or servers, see the information
on the provide-ixfr option in Section 6.2. See also Section 4.3.

provide-ixfr
See the description of provide-ixfr in Section 6.2.

request-ixfr
See the description of request-ixfr in Section 6.2.

request-expire
See the description of request-expire in Section 6.2.

treat-cr-as-space
This option was used in BIND 8 to make the server treat carriage return ("\r") characters
the same way as a space or tab character, to facilitate loading of zone files on a Unix system
that were generated on an NT or DOS machine. In BIND 9, both UNIX "\n" and NT/DOS
"\r\n" newlines are always accepted, and the option is ignored.

BIND 9.11.28 90

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

additional-from-auth, additional-from-cache
These options control the behavior of an authoritative server when answering queries
which have additional data, or when following CNAME and DNAME chains.

When both of these options are set to yes (the default) and a query is being answered from
authoritative data (a zone configured into the server), the additional data section of the
reply is filled in using data from other authoritative zones and from the cache. In some
situations this is undesirable, such as when there is concern over the correctness of the
cache, or in servers where secondary zones may be added and modified by untrusted third
parties. Also, avoiding the search for this additional data speeds up server operations at
the possible expense of additional queries to resolve what would otherwise be provided
in the additional section.

For example, if a query asks for an MX record for host foo . example . com, and the record
found is "MX 10 mail.example.net", normally the address records (A and AAAA)
for mail.example.net are provided as well, if known, even though they are not in
the example.com zone. Setting these options to no disables this behavior and makes the
server only search for additional data in the zone it answers from.

These options are intended for use in authoritative-only servers, or in authoritative-only
views. Attempts to set them to no without also specifying recursion no will cause the
server to ignore the options and log a warning message.

Specifying additional-from-cache no actually disables the use of the cache not only for
additional data lookups but also when looking up the answer. This is usually the desired
behavior in an authoritative-only server where the correctness of the cached data is an
issue.

When a name server is non-recursively queried for a name that is not below the apex of
any served zone, it normally answers with an "upwards referral" to the root servers or
the servers of some other known parent of the query name. Since the data in an upwards
referral comes from the cache, the server is not able to provide upwards referrals when
additional-from-cache no has been specified. Instead, it responds to such queries with
REFUSED. This should not cause any problems since upwards referrals are not required
for the resolution process.

match-mapped-addresses
If yes, then an IPv4-mapped IPv6 address matches any address-match list entries that
match the corresponding IPv4 address.

This option was introduced to work around a kernel quirk in some operating systems
that causes IPv4 TCP connections, such as zone transfers, to be accepted on an IPv6 socket
using mapped addresses. This caused address-match lists designed for IPv4 to fail to
match. However, named now solves this problem internally. The use of this option is
discouraged.

filter-aaaa-on-v4
This option is only available when BIND 9 is compiled with the ——enable-filter—aaaa
option on the "configure" command line. It is intended to help the transition from IPv4 to
IPv6 by not giving IPv6 addresses to DNS clients unless they have connections to the IPv6
Internet. This is not recommended unless absolutely necessary. The default is no. The
filter-aaaa-on-v4 option may also be specified in view statements to override the global
filter-aaaa-on-v4 option.

91 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

If yes, the DNS client is at an IPv4 address, in filter-aaaa, and if the response does not
include DNSSEC signatures, then all AAAA records are deleted from the response. This
filtering applies to all responses and not only authoritative responses.

If break—-dnssec, then AAAA records are deleted even when DNSSEC is enabled. As
suggested by the name, this causes the response to not verify, because the DNSSEC pro-
tocol is designed to detect deletions.

This mechanism can erroneously cause other servers to not give AAAA records to their
clients. A recursing server with both IPv6 and IPv4 network connections, that queries an
authoritative server using this mechanism via IPv4, is denied AAAA records even if its
client is using IPv6.

This mechanism is applied to authoritative as well as non-authoritative records. A client
using IPv4 that is not allowed recursion can erroneously be given AAAA records because
the server is not allowed to check for A records.

Some AAAA records are given to IPv4 clients in glue records. IPv4 clients that are servers
can then erroneously answer requests for AAAA records received via IPv4.

filter-aaaa-on-v6
This is identical to filter-aaaa-on-v4, except it filters AAAA responses to queries from IPv6
clients instead of IPv4 clients. To filter all responses, set both options to yes.

ixfr-from-differences
When yes and the server loads a new version of a primary zone from its zone file or
receives a new version of a secondary file via zone transfer, it compares the new version
to the previous one and calculates a set of differences. The differences are then logged in
the zone’s journal file so that the changes can be transmitted to downstream secondaries
as an incremental zone transfer.

By allowing incremental zone transfers to be used for non-dynamic zones, this option
saves bandwidth at the expense of increased CPU and memory consumption at the pri-
mary server. In particular, if the new version of a zone is completely different from the
previous one, the set of differences is of a size comparable to the combined size of the old
and new zone versions, and the server needs to temporarily allocate memory to hold this
complete difference set.

ixfr-from-differences also accepts master and slave at the view and options levels, which
causes ixfr-from-differences to be enabled for all primary or secondary zones, respec-
tively. It is off by default.

Note: if inline signing is enabled for a zone, the user-provided ixfr-from-differences set-
ting is ignored for that zone.

multi-master
This should be set when there are multiple primary servers for a zone and the addresses
refer to different machines. If yes, named does not log when the serial number on the
primary is less than what named currently has. The default is no.

auto-dnssec
Zones configured for dynamic DNS may use this option to allow varying levels of auto-
matic DNSSEC key management. There are three possible settings:

auto-dnssec allow; permits keys to be updated and the zone fully re-signed whenever the
user issues the command rndc sign zonename.

BIND 9.11.28 92

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

auto-dnssec maintain; includes the above, but also automatically adjusts the zone’s DNSSEC
keys on a schedule, according to the keys’ timing metadata (see dnssec-keygen(8) and
dnssec-settime(8)). The command rndc sign zonename causes named to load keys from
the key repository and sign the zone with all keys that are active. rndc loadkeys zonename
causes named to load keys from the key repository and schedule key maintenance events
to occur in the future, but it does not sign the full zone immediately. Note: once keys
have been loaded for a zone the first time, the repository is searched for changes period-
ically, regardless of whether rndc loadkeys is used. The recheck interval is defined by
dnssec-loadkeys-interval.)

The default setting is auto-dnssec off.

dnssec-enable
This indicates whether DNSSEC-related resource records are to be returned by named.
If set to no, named does not return DNSSEC-related resource records unless specifically
queried for. The default is yes.

dnssec-validation
This option enables DNSSEC validation in named. Note that dnssec-enable also needs to
be set to yes to be effective. If set to no, DNSSEC validation is disabled.

If set to auto, DNSSEC validation is enabled and a default trust anchor for the DNS root
zone is used. If set to yes, DNSSEC validation is enabled, but a trust anchor must be
manually configured using a trusted-keys or managed-keys statement. The default is
yes.

The default root trust anchor is stored in the file bind.keys. named loads that key at
startup if dnssec-validation is set to auto. A copy of the file is installed along with BIND
9, and is current as of the release date. If the root key expires, a new copy of bind.keys
can be downloaded from https://www.isc.org/bind-keys.

(To prevent problems if bind. keys is not found, the current trust anchor is also compiled
in to named. Relying on this is not recommended, however, as it requires named to be
recompiled with a new key when the root key expires.)

NOTE

named loads only the root key from bind.keys. The file cannot be used to store
keys for other zones. The root key in bind.keys is ignored if dnssec-validation
auto is not in use.

Whenever the resolver sends out queries to an EDNS-compliant server, it always sets
the DO bit indicating it can support DNSSEC responses, even if dnssec-validation is
off.

dnssec-accept-expired
This accepts expired signatures when verifying DNSSEC signatures. The default is no.
Setting this option to yes leaves named vulnerable to replay attacks.

93 BIND 9.11.28

https://www.isc.org/bind-keys

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

querylog
Query logging provides a complete log of all incoming queries and all query errors. This
provides more insight into the server’s activity, but with a cost to performance which may
be significant on heavily loaded servers.

The querylog option specifies whether query logging should be active when named first
starts. If querylog is not specified, then query logging is determined by the presence of
the logging category queries. Query logging can also be activated at runtime using the
command rndc querylog on, or deactivated with rndc querylog off.

check-names
This option is used to restrict the character set and syntax of certain domain names in zone
files and/or DNS responses received from the network. The default varies according to
usage area. For primary zones (i.e., type master), the default is fail. For secondary zones
(type slave), the default is warn. For answers received from the network (response), the
default is ignore.

The rules for legal hostnames and mail domains are derived from RFC 952 and RFC 821
as modified by RFC 1123.

check-names applies to the owner names of A, AAAA, and MX records. It also applies to
the domain names in the RDATA of NS, SOA, MX, and SRV records. It further applies to
the RDATA of PTR records where the owner name indicates that it is a reverse lookup of
a hostname (the owner name ends in IN-ADDR.ARPA, IP6.ARPA, or IP6.INT).

check-dup-records
This checks primary zones for records that are treated as different by DNSSEC but are
semantically equal in plain DNS. The default is to warn. Other possible values are fail
and ignore.

check-mx
This checks whether the MX record appears to refer to a IP address. The default is to warn.
Other possible values are fail and ignore.

check-wildcard
This option is used to check for non-terminal wildcards. The use of non-terminal wild-
cards is almost always as a result of a failure to understand the wildcard matching al-
gorithm (RFC 1034). This option affects primary zones. The default (yes) is to check for
non-terminal wildcards and issue a warning.

check-integrity
This performs post-load zone integrity checks on primary zones. It checks that MX and
SRV records refer to address (A or AAAA) records and that glue address records ex-
ist for delegated zones. For MX and SRV records, only in-zone hostnames are checked
(for out-of-zone hostnames, use named-checkzone). For NS records, only names below
top-of-zone are checked (for out-of-zone names and glue consistency checks, use named-
checkzone). The default is yes.

The use of the SPF record to publish Sender Policy Framework is deprecated, as the mi-
gration from using TXT records to SPF records was abandoned. Enabling this option also
checks that a TXT Sender Policy Framework record exists (starts with "v=spfl") if there is
an SPF record. Warnings are emitted if the TXT record does not exist; they can be sup-
pressed with check-spf.

BIND 9.11.28 94

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

check-mx-cname
If check-integrity is set, then fail, warn, or ignore MX records that refer to CNAMES. The
default is to warn.

check-srv-cname
If check-integrity is set, then fail, warn, or ignore SRV records that refer to CNAMES. The
default is to warn.

check-sibling
When performing integrity checks, also check that sibling glue exists. The default is yes.

check-spf
If check-integrity is set, check that there is a TXT Sender Policy Framework record present
(starts with "v=spfl") if there is an SPF record present. The default is warn.

zero-no-soa-ttl
If yes, when returning authoritative negative responses to SOA queries, set the TTL of
the SOA record returned in the authority section to zero. The default is yes.

zero-no-soa-ttl-cache
If yess, when caching a negative response to an SOA query set the TTL to zero. The default
is no.

update-check-ksk
When set to the default value of yes, check the KSK bit in each key to determine how the
key should be used when generating RRSIGs for a secure zone.

Ordinarily, zone-signing keys (that is, keys without the KSK bit set) are used to sign the
entire zone, while key-signing keys (keys with the KSK bit set) are only used to sign the
DNSKEY RRset at the zone apex. However, if this option is set to no, then the KSK bit is
ignored; KSKs are treated as if they were ZSKs and are used to sign the entire zone. This
is similar to the dnssec-signzone -z command-line option.

When this option is set to yes, there must be at least two active keys for every algorithm
represented in the DNSKEY RRset: at least one KSK and one ZSK per algorithm. If there
is any algorithm for which this requirement is not met, this option is ignored for that
algorithm.

dnssec-dnskey-kskonly
When this option and update-check-ksk are both set to yes, only key-signing keys (that
is, keys with the KSK bit set) are used to sign the DNSKEY RRset at the zone apex. Zone-
signing keys (keys without the KSK bit set) are used to sign the remainder of the zone, but
not the DNSKEY RRset. This is similar to the dnssec-signzone -x command-line option.

The default is no. If update-check-ksk is set to no, this option is ignored.

try-tcp-refresh
If yes, try to refresh the zone using TCP if UDP queries fail. The default is yes.

dnssec-secure-to-insecure
This allows a dynamic zone to transition from secure to insecure (i.e., signed to unsigned)
by deleting all of the DNSKEY records. The default is no. If set to yes, and if the DNSKEY
RRset at the zone apex is deleted, all RRSIG and NSEC records are removed from the zone
as well.

95 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

If the zone uses NSECS3, it is also necessary to delete the NSEC3PARAM RRset from the
zone apex; this causes the removal of all corresponding NSEC3 records. (It is expected
that this requirement will be eliminated in a future release.)

Note that if a zone has been configured with auto-dnssec maintain and the private keys
remain accessible in the key repository, then the zone will be automatically signed again
the next time named is started.

Forwarding

The forwarding facility can be used to create a large site-wide cache on a few servers, reducing
traffic over links to external name servers. It can also be used to allow queries by servers that do
not have direct access to the Internet, but wish to look up exterior names anyway. Forwarding
occurs only on those queries for which the server is not authoritative and does not have the
answer in its cache.

forward
This option is only meaningful if the forwarders list is not empty. A value of first is
the default and causes the server to query the forwarders first; if that does not answer the
question, the server then looks for the answer itself. If only is specified, the server only
queries the forwarders.

forwarders
This specifies a list of IP addresses to which queries are forwarded. The default is the
empty list (no forwarding). Each address in the list can be associated with an optional
port number and/or DSCP value, and a default port number and DSCP value can be set
for the entire list.

Forwarding can also be configured on a per-domain basis, allowing for the global forwarding
options to be overridden in a variety of ways. Particular domains can be set to use different
forwarders, or have a different forward only/first behavior, or not forward at all; see Section 6.2.

Dual-stack Servers

Dual-stack servers are used as servers of last resort, to work around problems in reachability
due the lack of support for either IPv4 or IPv6 on the host machine.

dual-stack-servers
This specifies host names or addresses of machines with access to both IPv4 and IPv6
transports. If a hostname is used, the server must be able to resolve the name using only
the transport it has. If the machine is dual-stacked, the dual-stack-servers parameter has
no effect unless access to a transport has been disabled on the command line (e.g., named
-4).

Access Control

Access to the server can be restricted based on the IP address of the requesting system. See
Section 6.1 for details on how to specify IP address lists.

BIND 9.11.28 96

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

allow-notify
This ACL specifies which hosts are allowed to notify this secondary server of zone changes
in addition to the zone primaries. allow-notify may also be specified in the zone state-
ment, in which case it overrides the options allow-notify statement. It is only meaningful
for a secondary zone. If not specified, the default is to process notify messages only from
a zone’s primary.

allow-query
This specifies which hosts are allowed to ask ordinary DNS questions. allow-query may
also be specified in the zone statement, in which case it overrides the options allow-query
statement. If not specified, the default is to allow queries from all hosts.

NOTE

allow-query-cache is used to specify access to the cache.

allow-query-on
This specifies which local addresses can accept ordinary DNS questions. This makes it
possible, for instance, to allow queries on internal-facing interfaces but disallow them on
external-facing ones, without necessarily knowing the internal network’s addresses.

Note that allow-query-on is only checked for queries that are permitted by allow-query.
A query must be allowed by both ACLs, or it is refused.

allow-query-on may also be specified in the zone statement, in which case it overrides
the options allow-query-on statement.

If not specified, the default is to allow queries on all addresses.

NOTE

allow-query-cache is used to specify access to the cache.

allow-query-cache
This specifies which hosts are allowed to get answers from the cache. If allow-query-cache
is not set, BIND checks to see if the following parameters are set, in order: allow-recursion
and allow-query (unless recursion no; is set, in which case none; is used). If neither of
those parameters is set, the default (localnets; localhost;) is used.

allow-query-cache-on
This specifies which local addresses can send answers from the cache. If not specified, the
default is to allow cache queries on any address, localnets, and localhost.

97 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

allow-recursion
This specifies which hosts are allowed to make recursive queries through this server.
BIND checks to see if the following parameters are set, in order: allow-recursion, allow-
query-cache, and allow-query. If none of those parameters are set, the default (localnets;
localhost;) is used.

allow-recursion-on
This specifies which local addresses can accept recursive queries. If not specified, the
default is to allow recursive queries on all addresses.

allow-update
This specifies which hosts are allowed to submit Dynamic DNS updates for primary
zones. The default is to deny updates from all hosts. Note that allowing updates based on
the requestor’s IP address is insecure; see Section 7.3 for details.

allow-update-forwarding
This specifies which hosts are allowed to submit Dynamic DNS updates to secondary
zones to be forwarded to the primary. The defaultis { none; }, which means thatno up-
date forwarding is performed. To enable update forwarding, specify allow-update-forwarding
{ any; };. Specifying values other than { none; } or { any; } is usually coun-
terproductive; the responsibility for update access control should rest with the primary
server, not the secondaries.

Note that enabling the update forwarding feature on a secondary server may expose pri-
mary servers to attacks if they rely on insecure IP-address-based access control; see Sec-
tion 7.3 for more details.

allow-v6-synthesis
This option was introduced for the smooth transition from AAAA to A6 and from "nibble
labels" to binary labels. However, since both A6 and binary labels were then deprecated,
this option was also deprecated. It is now ignored with some warning messages.

allow-transfer
This specifies which hosts are allowed to receive zone transfers from the server. allow-
transfer may also be specified in the zone statement, in which case it overrides the options
allow-transfer statement. If not specified, the default is to allow transfers to all hosts.

blackhole
This specifies a list of addresses which the server does accept queries from or use to resolve
a query. Queries from these addresses are not responded to. The default is none.

filter-aaaa
This specifies a list of addresses to which filter-aaaa-on-v4 and filter-aaaa-on-v6 apply.
The default is any.

keep-response-order
This specifies a list of addresses to which the server sends responses to TCP queries, in
the same order in which they were received. This disables the processing of TCP queries
in parallel. The default is none.

no-case-compress
This specifies a list of addresses which require responses to use case-insensitive compres-
sion. This ACL can be used when named needs to work with clients that do not comply

BIND 9.11.28 98

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

with the requirement in RFC 1034 to use case-insensitive name comparisons when check-
ing for matching domain names.

If left undefined, the ACL defaults to none: case-insensitive compression is used for all
clients. If the ACL is defined and matches a client, case is ignored when compressing
domain names in DNS responses sent to that client.

This can result in slightly smaller responses; if a response contains the names "exam-
ple.com" and "example.COM", case-insensitive compression treats the second one as a
duplicate. It also ensures that the case of the query name exactly matches the case of the
owner names of returned records, rather than matches the case of the records entered in
the zone file. This allows responses to exactly match the query, which is required by some
clients due to incorrect use of case-sensitive comparisons.

Case-insensitive compression is always used in AXFR and IXFR responses, regardless of
whether the client matches this ACL.

There are circumstances in which named does not preserve the case of owner names of

records: if a zone file defines records of different types with the same name, but the capital-

ization of the name is different (e.g., "www.example.com/A" and "WWW.EXAMPLE.COM/AAAA"),
then all responses for that name use the first version of the name that was used in the zone

file. This limitation may be addressed in a future release. However, domain names spec-

ified in the rdata of resource records (i.e., records of type NS, MX, CNAME, etc.) always

have their case preserved unless the client matches this ACL.

resolver-query-timeout
This is the amount of time in seconds that the resolver spends attempting to resolve a
recursive query before failing. The default and minimum is 10 and the maximum is 30.
Setting it to 0 results in the default being used.

Interfaces

The interfaces and ports that the server answers queries from may be specified using the listen-
on option. listen-on takes an optional port and an address_match_1list of IPv4 addresses.
(IPv6 addresses are ignored, with a logged warning.) The server listens on all interfaces allowed
by the address match list. If a port is not specified, port 53 is used.

Multiple listen-on statements are allowed. For example:

listen-on { 5.6.7.8; };
listen-on port 1234 { !1.2.3.4; 1.2/16; };

enables the name server on port 53 for the IP address 5.6.7.8, and on port 1234 of an address on
the machine in net 1.2 that is not 1.2.3.4.

If no listen-on is specified, the server listens on port 53 on all IPv4 interfaces.

The listen-on-v6 option is used to specify the interfaces and the ports on which the server listens
for incoming queries sent using IPv6. If not specified, the server listens on port 53 on all IPv6
interfaces.

When

{ any; 1}

99 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

is specified as the address_match_1list for the listen-on-v6 option, the server does not bind
a separate socket to each IPv6 interface address as it does for IPv4, if the operating system has
enough API support for IPv6 (specifically, if it conforms to RFC 3493 and RFC 3542). Instead, it
listens on the IPv6 wildcard address. If the system only has incomplete API support for IPv6,
however, the behavior is the same as that for IPv4.

A list of particular IPv6 addresses can also be specified, in which case the server listens on a
separate socket for each specified address, regardless of whether the desired API is supported
by the system. IPv4 addresses specified in listen-on-v6 are ignored, with a logged warning.

Multiple listen-on-v6 options can be used. For example:

listen-on-v6 { any; };
listen-on-v6 port 1234 { !2001:db8::/32; any; };

enables the name server on port 53 for any IPv6 addresses (with a single wildcard socket), and
on port 1234 of IPv6 addresses that are not in the prefix 2001:db8:: /32 (with separate sockets for
each matched address).

To instruct the server not to listen on any IPv6 address, use:

listen-on-v6 { none; };

Query Address

If the server does not know the answer to a question, it queries other name servers. query-
source specifies the address and port used for such queries. For queries sent over IPv6, there is
a separate query-source-v6 option. If address is * (asterisk) or is omitted, a wildcard IP address
(INADDR_ANY) is used.

If port is * or is omitted, a random port number from a pre-configured range is picked up and
used for each query. The port range(s) is specified in the use-v4-udp-ports (for IPv4) and use-
v6-udp-ports (for IPv6) options, excluding the ranges specified in the avoid-v4-udp-ports and
avoid-vée-udp-ports options, respectively.

The defaults of the query-source and query-source-v6 options are:

query-source address * port x;
query-source-v6 address * port x;

If use-v4-udp-ports or use-v6-udp-ports is unspecified, named checks whether the operating
system provides a programming interface to retrieve the system’s default range for ephemeral
ports. If such an interface is available, named uses the corresponding system default range;
otherwise, it uses its own defaults:

use-v4-udp-ports { range 1024 65535; };
use-v6-udp-ports { range 1024 65535; };

Note: make sure the ranges are sufficiently large for security. A desirable size depends on sev-
eral parameters, but we generally recommend it contain at least 16384 ports (14 bits of entropy).
Note also that the system’s default range when used may be too small for this purpose, and
that the range may even be changed while named is running; the new range is automatically

BIND 9.11.28 100

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

applied when named is reloaded. Explicit configuration of use-v4-udp-ports and use-v6-udp-
ports is encouraged, so that the ranges are sufficiently large and are reasonably independent
from the ranges used by other applications.

Note: the operational configuration where named runs may prohibit the use of some ports. For
example, Unix systems do not allow named, if run without root privilege, to use ports less than
1024. If such ports are included in the specified (or detected) set of query ports, the correspond-
ing query attempts will fail, resulting in resolution failures or delay. It is therefore important to
configure the set of ports that can be safely used in the expected operational environment.

The defaults of the avoid-v4-udp-ports and avoid-v6-udp-ports options are:

avoid-v4-udp-ports {};
avoid-vé6-udp-ports {};

Note: BIND 9.5.0 introduced the use-queryport-pool option to support a pool of such random
ports, but this option is now obsolete because reusing the same ports in the pool may not be
sufficiently secure. For the same reason, it is generally strongly discouraged to specify a par-
ticular port for the query-source or query-source-v6 options; it implicitly disables the use of
randomized port numbers.

use-queryport-pool
This option is obsolete.

queryport-pool-ports
This option is obsolete.

queryport-pool-updateinterval
This option is obsolete.

NOTE

The address specified in the query-source option is used for both UDP and TCP queries,
but the port applies only to UDP queries. TCP queries always use a random unprivileged
port.

NOTE

Solaris 2.5.1 and earlier does not support setting the source address for TCP sockets.

101 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

NOTE

See also transfer-source and notify-source.

Zone Transfers

BIND has mechanisms in place to facilitate zone transfers and set limits on the amount of load
that transfers place on the system. The following options apply to zone transfers.

also-notify

This option defines a global list of IP addresses of name servers that are also sent NOTIFY
messages whenever a fresh copy of the zone is loaded, in addition to the servers listed
in the zone’s NS records. This helps to ensure that copies of the zones quickly converge
on stealth servers. Optionally, a port may be specified with each also-notify address to
send the notify messages to a port other than the default of 53. An optional TSIG key can
also be specified with each address to cause the notify messages to be signed; this can be
useful when sending notifies to multiple views. In place of explicit addresses, one or more
named masters lists can be used.

If an also-notify list is given in a zone statement, it overrides the options also-notify
statement. When a zone notify statement is set to no, the IP addresses in the global also-
notify list are not sent NOTIFY messages for that zone. The default is the empty list (no
global notification list).

max-transfer-time-in
Inbound zone transfers running longer than this many minutes are terminated. The de-
fault is 120 minutes (2 hours). The maximum value is 28 days (40320 minutes).

max-transfer-idle-in
Inbound zone transfers making no progress in this many minutes are terminated. The
default is 60 minutes (1 hour). The maximum value is 28 days (40320 minutes).

max-transfer-time-out
Outbound zone transfers running longer than this many minutes are terminated. The
default is 120 minutes (2 hours). The maximum value is 28 days (40320 minutes).

max-transfer-idle-out
Outbound zone transfers making no progress in this many minutes are terminated. The
default is 60 minutes (1 hour). The maximum value is 28 days (40320 minutes).

notify-rate
This specifies the rate at which NOTIFY requests are sent during normal zone mainte-
nance operations. (NOTIFY requests due to initial zone loading are subject to a separate
rate limit; see below.) The default is 20 per second. The lowest possible rate is one per
second; when set to zero, it is silently raised to one.

BIND 9.11.28 102

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

startup-notify-rate
This is the rate at which NOTIFY requests are sent when the name server is first starting
up, or when zones have been newly added to the name server. The default is 20 per
second. The lowest possible rate is one per second; when set to zero, it is silently raised to
one.

serial-query-rate
Secondary servers periodically query primary servers to find out if zone serial numbers
have changed. Each such query uses a minute amount of the secondary server’s network
bandwidth. To limit the amount of bandwidth used, BIND 9 limits the rate at which
queries are sent. The value of the serial-query-rate option, an integer, is the maximum
number of queries sent per second. The default is 20 per second. The lowest possible rate
is one per second; when set to zero, it is silently raised to one.

serial-queries
BIND 9 does not limit the number of outstanding serial queries and ignores the serial-
queries option. Instead, it limits the rate at which the queries are sent as defined using
the serial-query-rate option.

transfer-format

Zone transfers can be sent using two different formats, one-answer and many-answers.
The transfer-format option is used on the primary server to determine which format
it sends. one-answer uses one DNS message per resource record transferred. many-
answers packs as many resource records as possible into one message. many-answers
is more efficient; the default is many-answers. The many-answers format is also sup-
ported by recent Microsoft Windows name servers. transfer-format may be overridden
on a per-server basis by using the server statement.

transfer-message-size
This is an upper bound on the uncompressed size of DNS messages used in zone transfers
over TCP. If a message grows larger than this size, additional messages are used to com-
plete the zone transfer. (Note, however, that this is a hint, not a hard limit; if a message
contains a single resource record whose RDATA does not fit within the size limit, a larger
message will be permitted so the record can be transferred.)

Valid values are between 512 and 65535 octets; any values outside that range are adjusted
to the nearest value within it. The default is 20480, which was selected to improve mes-
sage compression; most DNS messages of this size will compress to less than 16536 bytes.
Larger messages cannot be compressed as effectively, because 16536 is the largest permis-
sible compression offset pointer in a DNS message.

This option is mainly intended for server testing; there is rarely any benefit in setting a
value other than the default.

transfers-in
This is the maximum number of inbound zone transfers that can run concurrently. The
default value is 10. Increasing transfers-in may speed up the convergence of secondary
zones, but it also may increase the load on the local system.

transfers-out
This is the maximum number of outbound zone transfers that can run concurrently. Zone
transfer requests in excess of the limit are refused. The default value is 10.

103 BIND 9.11.28

CHAPTER 6.

BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

transfers-per-ns

This is the maximum number of inbound zone transfers that can concurrently transfer
from a given remote name server. The default value is 2. Increasing transfers-per-ns may
speed up the convergence of secondary zones, but it also may increase the load on the
remote name server. transfers-per-ns may be overridden on a per-server basis by using
the transfers phrase of the server statement.

transfer-source

transfer-source determines which local address is bound to IPv4 TCP connections used
to fetch zones transferred inbound by the server. It also determines the source IPv4 ad-
dress, and optionally the UDP port, used for the refresh queries and forwarded dynamic
updates. If not set, it defaults to a system-controlled value which is usually the address
of the interface "closest to" the remote end. This address must appear in the remote end’s
allow-transfer option for the zone being transferred, if one is specified. This statement
sets the transfer-source for all zones, but can be overridden on a per-view or per-zone
basis by including a transfer-source statement within the view or zone block in the con-
figuration file.

NOTE

Solaris 2.5.1 and earlier does not support setting the source address for TCP sockets.

transfer-source-vé6

This option is the same as transfer-source, except zone transfers are performed using IPv6.

alt-transfer-source

This indicates an alternate transfer source if the one listed in transfer-source fails and
use-alt-transfer-source is set.

NOTE

To avoid using the alternate transfer source, set use-alt-transfer-source appropriately
and do not depend upon getting an answer back to the first refresh query.

alt-transfer-source-vé6

This indicates an alternate transfer source if the one listed in transfer-source-vé6 fails and
use-alt-transfer-source is set.

use-alt-transfer-source

This indicates whether the alternate transfer sources should be used. If views are speci-
fied, this defaults to no; otherwise, it defaults to yes.

BIND 9.11.28

104

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

notify-source
notify-source determines which local source address, and optionally UDP port, is used to
send NOTIFY messages. This address must appear in the secondary server’s masters zone
clause or in an allow-notify clause. This statement sets the notify-source for all zones, but
can be overridden on a per-zone or per-view basis by including a notify-source statement
within the zone or view block in the configuration file.

NOTE

Solaris 2.5.1 and earlier does not support setting the source address for TCP sockets.

notify-source-v6
This option acts like notify-source, but applies to notify messages sent to IPv6 addresses.

UDP Port Lists

use-v4-udp-ports, avoid-v4-udp-ports, use-v6-udp-ports, and avoid-v6-udp-ports specify a
list of IPv4 and IPv6 UDP ports that are or are not used as source ports for UDP messages.
See Section 6.2 about how the available ports are determined. For example, with the following
configuration:

use-vb6-udp-ports { range 32768 65535; };
avoid-v6-udp-ports { 40000; range 50000 60000; };

UDP ports of IPv6 messages sent from named are in one of the following ranges: 32768 to 39999,
40001 to 49999, and 60001 to 65535.

avoid-v4-udp-ports and avoid-vé6-udp-ports can be used to prevent named from choosing as
its random source port a port that is blocked by a firewall or a port that is used by other appli-
cations; if a query went out with a source port blocked by a firewall, the answer would not pass
through the firewall and the name server would have to query again. Note: the desired range
can also be represented only with use-v4-udp-ports and use-v6-udp-ports, and the avoid- op-
tions are redundant in that sense; they are provided for backward compatibility and to possibly
simplify the port specification.

Operating System Resource Limits

The server’s usage of many system resources can be limited. Scaled values are allowed when
specifying resource limits. For example, 1G can be used instead of 1073741824 to specify a limit
of one gigabyte. unlimited requests unlimited use, or the maximum available amount. default
uses the limit that was in force when the server was started. See the description of size_spec in
Section 6.1.

The following options set operating system resource limits for the name server process. Some
operating systems do not support some or any of the limits; on such systems, a warning is
issued if an unsupported limit is used.

105 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

coresize
This sets the maximum size of a core dump. The default is default.

datasize

This sets the maximum amount of data memory the server may use. The default is
default. This is a hard limit on server memory usage; if the server attempts to allo-
cate memory in excess of this limit, the allocation will fail, which may in turn leave the
server unable to perform DNS service. Therefore, this option is rarely useful as a way to
limit the amount of memory used by the server, but it can be used to raise an operating
system data size limit that is too small by default. To limit the amount of memory used by
the server, use the max-cache-size and recursive-clients options instead.

files
This sets the maximum number of files the server may have open concurrently. The de-
faultisunlimited.

stacksize
This sets the maximum amount of stack memory the server may use. The default is
default.

Server Resource Limits

The following options set limits on the server’s resource consumption that are enforced inter-
nally by the server rather than by the operating system.

max-ixfr-log-size
This option is obsolete; it is accepted and ignored for BIND 8 compatibility. The option
max-journal-size performs a similar function in BIND 9.

max-journal-size
This sets a maximum size for each journal file (see Section 4.2). When the journal file ap-
proaches the specified size, some of the oldest transactions in the journal are automatically
removed. The largest permitted value is 2 gigabytes. The default is unlimited, which
also means 2 gigabytes. This option may also be set on a per-zone basis.

max-records
This sets the maximum number of records permitted in a zone. The default is zero, which
means the maximum is unlimited.

host-statistics-max
In BIND 8, this specified the maximum number of host statistics entries to be kept. It is
not implemented in BIND 9.

recursive-clients
This sets the maximum number (a "hard quota") of simultaneous recursive lookups the
server performs on behalf of clients. The default is 1000. Because each recursing client
uses a fair bit of memory (on the order of 20 kilobytes), the value of the recursive-clients
option may have to be decreased on hosts with limited memory.

recursive-clients defines a "hard quota" limit for pending recursive clients; when
more clients than this are pending, new incoming requests are not accepted, and for each
incoming request a previous pending request is dropped.

BIND 9.11.28 106

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

A "soft quota" is also set. When this lower quota is exceeded, incoming requests are
accepted, but for each one, a pending request is dropped. If recursive-clients is
greater than 1000, the soft quota is set to recursive-clients minus 100; otherwise it
is set to 90% of recursive-clients.

tcp-clients
This is the maximum number of simultaneous client TCP connections that the server ac-
cepts. The defaultis 150.

clients-per-query, max-clients-per-query
These set the initial value (minimum) and maximum number of recursive simultaneous
clients for any given query (<qname,qtype,qclass>) that the server accepts before drop-
ping additional clients. named attempts to self-tune this value and changes are logged.
The default values are 10 and 100.

This value should reflect how many queries come in for a given name in the time it takes
to resolve that name. If the number of queries exceeds this value, named assumes that it
is dealing with a non-responsive zone and drops additional queries. If it gets a response
after dropping queries, it raises the estimate. The estimate is then lowered in 20 minutes
if it has remained unchanged.

If clients-per-query is set to zero, there is no limit on the number of clients per query and
no queries are dropped.

If max-clients-per-query is set to zero, there is no upper bound other than imposed by
recursive-clients.

fetches-per-zone
This sets the maximum number of simultaneous iterative queries to any one domain that
the server permits before blocking new queries for data in or beneath that zone. This value
should reflect how many fetches would normally be sent to any one zone in the time it
would take to resolve them. It should be smaller than recursive-clients.

When many clients simultaneously query for the same name and type, the clients are
all attached to the same fetch, up to the max-clients-per—-query limit, and only one
iterative query is sent. However, when clients are simultaneously querying for different
names or types, multiple queries are sent and max-clients-per—query is not effective
as a limit.

Optionally, this value may be followed by the keyword drop or fail, indicating whether
queries which exceed the fetch quota for a zone are dropped with no response, or an-
swered with SERVFAIL. The default is drop.

If fetches-per-zone is set to zero, there is no limit on the number of fetches per query and
no queries are dropped. The default is zero.

The current list of active fetches can be dumped by running rndc recursing. The list in-
cludes the number of active fetches for each domain and the number of queries that have
been passed or dropped as a result of the fetches-per-zone limit. (Note: these coun-
ters are not cumulative over time; whenever the number of active fetches for a domain
drops to zero, the counter for that domain is deleted, and the next time a fetch is sent to
that domain, it is recreated with the counters set to zero.)

fetches-per-server
This sets the maximum number of simultaneous iterative queries that the server allows to

107 BIND 9.11.28

CHAPTER 6.

BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

be sent to a single upstream name server before blocking additional queries. This value
should reflect how many fetches would normally be sent to any one server in the time it
would take to resolve them. It should be smaller than recursive-clients.

Optionally, this value may be followed by the keyword drop or fail, indicating whether
queries are dropped with no response or answered with SERVFAIL, when all of the servers
authoritative for a zone are found to have exceeded the per-server quota. The default is
fail.

If fetches-per-server is set to zero, there is no limit on the number of fetches per query
and no queries are dropped. The default is zero.

The fetches-per-server quota is dynamically adjusted in response to detected congestion.
As queries are sent to a server and are either answered or time out, an exponentially
weighted moving average is calculated of the ratio of timeouts to responses. If the current
average timeout ratio rises above a "high" threshold, then fetches-per-server is reduced
for that server. If the timeout ratio drops below a "low" threshold, then fetches-per-server
is increased. The fetch-quota-params options can be used to adjust the parameters for
this calculation.

fetch-quota-params

This sets the parameters to use for dynamic resizing of the fet ches-per-server quota
in response to detected congestion.

The first argument is an integer value indicating how frequently to recalculate the moving
average of the ratio of timeouts to responses for each server. The default is 100, meaning
that BIND recalculates the average ratio after every 100 queries have either been answered
or timed out.

The remaining three arguments represent the "low" threshold (defaulting to a timeout
ratio of 0.1), the "high" threshold (defaulting to a timeout ratio of 0.3), and the discount
rate for the moving average (defaulting to 0.7). A higher discount rate causes recent events
to weigh more heavily when calculating the moving average; a lower discount rate causes
past events to weigh more heavily, smoothing out short-term blips in the timeout ratio.
These arguments are all fixed-point numbers with precision of 1/100; at most two places
after the decimal point are significant.

reserved-sockets

This sets the number of file descriptors reserved for TCP, stdio, etc. This needs to be big
enough to cover the number of interfaces named listens on plus tcp-clients, as well as to
provide room for outgoing TCP queries and incoming zone transfers. The default is 512.
The minimum value is 128 and the maximum value is 128 fewer than maxsockets (-S).
This option may be removed in the future.

This option has little effect on Windows.

max-cache-size

This sets the maximum amount of memory to use for the server’s cache, in bytes or per-
centage of total physical memory. When the amount of data in the cache reaches this limit,
the server causes records to expire prematurely, following an LRU-based strategy, so that
the limit is not exceeded. The keyword unlimited, or the value 0, places no limit on the
cache size; records are purged from the cache only when their TTLs expire. Any positive
values less than 2MB are ignored and reset to 2MB. In a server with multiple views, the
limit applies separately to the cache of each view. The default is 90%. On systems where

BIND 9.11.28

108

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

detection of the amount of physical memory is not supported, values represented as a
percentage fall back to unlimited. Note that the detection of physical memory is done
only once at startup, so named does not adjust the cache size if the amount of physical
memory is changed during runtime.

tcp-listen-queue
This sets the listen-queue depth. The default and minimum is 10. If the kernel supports
the accept filter "dataready"”, this also controls how many TCP connections are queued in
kernel space waiting for some data before being passed to accept. Non-zero values less
than 10 are silently raised. A value of 0 may also be used; on most platforms this sets the
listen-queue length to a system-defined default value.

Periodic Task Intervals

cleaning-interval
This interval is effectively obsolete. Previously, the server removed expired resource
records from the cache every cleaning-interval minutes. BIND 9 now manages cache
memory in a more sophisticated manner and does not rely on periodic cleaning anymore.
Specifying this option therefore has no effect on the server’s behavior.

heartbeat-interval
The server performs zone maintenance tasks for all zones marked as dialup whenever
this interval expires. The default is 60 minutes. Reasonable values are up to 1 day (1440
minutes). The maximum value is 28 days (40320 minutes). If set to 0, no zone maintenance
for these zones occurs.

interface-interval
The server scans the network interface list every interface-interval minutes. The default is
60 minutes; the maximum value is 28 days (40320 minutes). If set to 0, interface scanning
only occurs when the configuration file is loaded, or when automatic-interface-scan is
enabled and supported by the operating system. After the scan, the server begins listening
for queries on any newly discovered interfaces (provided they are allowed by the listen-
on configuration), and stops listening on interfaces that have gone away.

statistics-interval
Name server statistics are logged every statistics-interval minutes. The default is 60, and
the maximum value is 28 days (40320 minutes). If set to 0, no statistics are logged.

NOTE

This option is not implemented in BIND 9.

topology
In BIND 8, this option indicated network topology so that preferential treatment could

be given to the topologically closest name servers when sending queries. It is not imple-
mented in BIND 9.

109 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

The sortlist Statement

The response to a DNS query may consist of multiple resource records (RRs) forming a resource
record set (RRset). The name server normally returns the RRs within the RRset in an indeter-
minate order (but see the rrset-order statement in Section 6.2). The client resolver code should
rearrange the RRs as appropriate: that is, using any addresses on the local net in preference
to other addresses. However, not all resolvers can do this or are correctly configured. When a
client is using a local server, the sorting can be performed in the server, based on the client’s
address. This only requires configuring the name servers, not all the clients.

The sortlist statement (see below) takes an address_match_list and interprets it in a special way.
Each top-level statement in the sortlist must itself be an explicit address_match_list with one
or two elements. The first element (which may be an IP address, an IP prefix, an ACL name, or
a nested address_match_list) of each top-level list is checked against the source address of the
query until a match is found. When the addresses in the first element overlap, the first rule to
match is selected.

Once the source address of the query has been matched, if the top-level statement contains only
one element, the actual primitive element that matched the source address is used to select the
address in the response to move to the beginning of the response. If the statement is a list of two
elements, then the second element is interpreted as a topology preference list. Each top-level
element is assigned a distance, and the address in the response with the minimum distance is
moved to the beginning of the response.

In the following example, any queries received from any of the addresses of the host itself get
responses preferring addresses on any of the locally connected networks. Next most preferred
are addresses on the 192.168.1/24 network, and after that either the 192.168.2/24 or 192.168.3 /24
network, with no preference shown between these two networks. Queries received from a host
on the 192.168.1/24 network prefer other addresses on that network to the 192.168.2/24 and
192.168.3/24 networks. Queries received from a host on the 192.168.4/24 or the 192.168.5/24
network only prefer other addresses on their directly connected networks.

sortlist {
// IF the local host
// THEN first fit on the following nets
{ localhost;
{ localnets;
192.168.1/24;
{ 192.168.2/24; 192.168.3/24; }; }; };
// IF on class C 192.168.1 THEN use .1, or .2 or .3
{ 192.168.1/24;
{ 192.168.1/24;
{ 192.168.2/24; 192.168.3/24; }; }; };
// IF on class C 192.168.2 THEN use .2, or .l or .3
{ 192.168.2/24;
{ 192.168.2/24;
{ 192.168.1/24; 192.168.3/24; }; }; };
// IF on class C 192.168.3 THEN use .3, or .1 or .2
{ 192.168.3/24;
{ 192.168.3/24;
{ 192.168.1/24; 192.168.2/24; }; }; };
// IF .4 or .5 THEN prefer that net
{ { 192.168.4/24; 192.168.5/24; 1};

BIND 9.11.28 110

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

bi
bi

The following example illustrates reasonable behavior for the local host and hosts on directly
connected networks. Responses sent to queries from the local host favor any of the directly
connected networks. Responses sent to queries from any other hosts on a directly connected
network prefer addresses on that same network. Responses to other queries are not sorted.

sortlist {
{ localhost; localnets; };
{ localnets; };

}i

RRset Ordering

NOTE

While alternating the order of records in a DNS response between subsequent queries is
a known load distribution technique, certain caveats apply (mostly stemming from caching)
which usually make it a suboptimal choice for load balancing purposes when used on its
own.

The rrset-order statement permits configuration of the ordering of the records in a multiple-
record response. See also: Section 6.2.

Each rule in an rrset-order statement is defined as follows:
[class <class_name>] [type <type_name>][name "<domain_name>"] order <ordering>

The default qualifiers for each rule are:

¢ If no class is specified, the default is ANY.
¢ If no type is specified, the default is ANY.

¢ If no name is specified, the default is * (asterisk).

<domain_name> only matches the name itself, not any of its subdomains. To make a rule match
all subdomains of a given name, a wildcard name (*. <domain_name>) must be used. Note that
*. <domain_name> does not match <domain_name> itself; to specify RRset ordering for a name
and all of its subdomains, two separate rules must be defined: one for <domain_name>and one

for *.<domain_name>.

The legal values for <ordering> are:

111 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

fixed
Records are returned in the order they are defined in the zone file.

NOTE

The fixed option is only available if BIND is configured with --enable-fixed-rrset at
compile time.

random
Records are returned in a random order.

cyclic
Records are returned in a cyclic round-robin order, rotating by one record per query.

By default, records are returned in random order.

Note that if multiple rrset-order statements are present in the configuration file (at both the
options and view levels), they are not combined; instead, the more-specific one (view) replaces
the less-specific one (options).

If multiple rules within a single rrset-order statement match a given RRset, the first matching
rule is applied.

Example:

rrset-order {
type A name "foo.isc.org" order random;
type AAAA name "foo.isc.org" order cyclic;
name "bar.isc.org" order fixed;
name "*.bar.isc.org" order random;
name "x.baz.isc.org" order cyclic;

}i

With the above configuration, the following RRset ordering is used:

ONAME QTYPE | RRset Order
foo.isc.org A random
foo.isc.org AAAA cyclic
foo.isc.org TXT random
sub. foo.isc.org | all random
bar.isc.org all fixed
sub.bar.isc.org | all random
baz.isc.org all random
sub.baz.isc.org | all cyclic

BIND 9.11.28 112

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

Tuning

lame-ttl
This sets the number of seconds to cache a lame server indication. 0 disables caching.
(This is NOT recommended.) The defaultis 600 (10 minutes) and the maximum value is
1800 (30 minutes).

servfail-ttl
This sets the number of seconds to cache a SERVFAIL response due to DNSSEC validation
failure or other general server failure. If set to 0, SERVFAIL caching is disabled. The
SERVFAIL cache is not consulted if a query has the CD (Checking Disabled) bit set; this
allows a query that failed due to DNSSEC validation to be retried without waiting for the
SERVFAIL TTL to expire.

The maximum value is 30 seconds; any higher value is silently reduced. The default is 1
second.

max-ncache-ttl
To reduce network traffic and increase performance, the server stores negative answers.
max-ncache-ttl is used to set a maximum retention time for these answers in the server, in
seconds. The default max-ncache-ttl is 10800 seconds (3 hours). max-ncache-ttl cannot
exceed 7 days and is silently truncated to 7 days if set to a greater value.

max-cache-ttl
This sets the maximum time for which the server caches ordinary (positive) answers, in
seconds. The default is 604800 (one week). A value of zero may cause all queries to return
SERVFAIL, because of lost caches of intermediate RRsets (such as NS and glue AAAA/A
records) in the resolution process.

min-roots
This sets the minimum number of root servers that is required for a request for the root
servers to be accepted. The default is 2.

NOTE

This is not implemented in BIND 9.

sig-validity-interval

This specifies the number of days into the future that DNSSEC signatures that are auto-
matically generated as a result of dynamic updates (Section 4.2) will expire. There is an
optional second field which specifies how long before expiry that the signatures are regen-
erated. If not specified, the signatures are regenerated at 1/4 of base interval. The second
field is specified in days if the base interval is greater than 7 days; otherwise it is specified
in hours. The default base interval is 30 days, giving a re-signing interval of 7 1/2 days.
The maximum value is 10 years (3660 days).

113 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

The signature inception time is unconditionally set to one hour before the current time, to
allow for a limited amount of clock skew.

The sig-validity-interval should be at least several multiples of the SOA expire interval,
to allow for reasonable interaction between the various timer and expiry dates.

sig-signing-nodes
This specifies the maximum number of nodes to be examined in each quantum, when
signing a zone with a new DNSKEY. The defaultis 100.

sig-signing-signatures
This specifies a threshold number of signatures that terminates processing a quantum,
when signing a zone with a new DNSKEY. The defaultis 10.

sig-signing-type
This specifies a private RDATA type to be used when generating signing-state records.
The default is 65534.

This parameter may be removed in a future version, once there is a standard type.

Signing-state records are used internally by named to track the current state of a zone-
signing process, i.e., whether it is still active or has been completed. The records can be
inspected using the command rndc signing -list zone. Once named has finished signing
a zone with a particular key, the signing-state record associated with that key can be re-
moved from the zone by running rndc signing -clear keyid/algorithm zone. To clear all
of the completed signing-state records for a zone, use rndc signing -clear all zone.

min-refresh-time, max-refresh-time, min-retry-time, max-retry-time
These options control the server’s behavior on refreshing a zone (querying for SOA changes)
or retrying failed transfers. Usually the SOA values for the zone are used, up to a hard-
coded maximum expiry of 24 weeks. However, these values are set by the primary, giving
secondary server administrators little control over their contents.

These options allow the administrator to set a minimum and maximum refresh and retry
time in seconds per-zone, per-view, or globally. These options are valid for secondary and
stub zones, and clamp the SOA refresh and retry times to the specified values.

The following defaults apply: min-refresh-time 300 seconds, max-refresh-time 2419200
seconds (4 weeks), min-retry-time 500 seconds, and max-retry-time 1209600 seconds (2
weeks).

edns-udp-size
This sets the maximum advertised EDNS UDP bulffer size, in bytes, to control the size of
packets received from authoritative servers in response to recursive queries. Valid values
are 512 to 4096; values outside this range are silently adjusted to the nearest value within
it. The default value is 1232.

The usual reason for setting edns-udp-size to a non-default value is to get UDP answers
to pass through broken firewalls that block fragmented packets and/or block UDP DNS
packets that are greater than 512 bytes.

When named first queries a remote server, it advertises a UDP buffer size of 512, as this
has the greatest chance of success on the first try.

If the initial response times out, named tries again with plain DNS; if that is successful, it
is taken as evidence that the server does not support EDNS. After enough failures using

BIND 9.11.28 114

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

EDNS and successes using plain DNS, named defaults to plain DNS for future communi-
cations with that server. If that happens, named periodically sends an EDNS query to see
if the situation has improved.

However, if the initial query is successful with EDNS advertising a buffer size of 512, then
named advertises progressively larger buffer sizes on successive queries, until responses
begin timing out or edns-udp-size is reached.

The default buffer sizes used by named are 512, 1232, 1432, and 4096, but never ex-
ceed edns-udp-size. (The values 1232 and 1432 are chosen to allow for an IPv4-/IPv6-
encapsulated UDP message to be sent without fragmentation at the minimum MTU sizes
for Ethernet and IPv6 networks.)

max-udp-size
This sets the maximum EDNS UDP message size that named sends, in bytes. Valid values
are 512 to 4096; values outside this range are silently adjusted to the nearest value within
it. The default value is 1232.

This value applies to responses sent by a server; to set the advertised buffer size in queries,
see edns-udp-size.

The usual reason for setting max-udp-size to a non-default value is to allow UDP answers
to pass through broken firewalls that block fragmented packets and /or block UDP packets
that are greater than 512 bytes. This is independent of the advertised receive buffer (edns-
udp-size).

Setting this to a low value encourages additional TCP traffic to the name server.

masterfile-format
This specifies the file format of zone files (see Section 6.3). The default value is text,
which is the standard textual representation, except for secondary zones, in which the de-
fault value is raw. Files in formats other than text are typically expected to be generated
by the named-compilezone tool, or dumped by named.

Note that when a zone file in a format other than text is loaded, named may omit some
of the checks which would be performed for a file in text format. In particular, check-
names checks do not apply for the raw format. This means a zone file in the raw format
must be generated with the same check level as that specified in the named configuration
file. Also, map format files are loaded directly into memory via memory mapping, with
only minimal checking.

This statement sets the masterfile-format for all zones, but can be overridden on a per-
zone or per-view basis by including a masterfile-format statement within the zone or
view block in the configuration file.

masterfile-style
This specifies the formatting of zone files during dump, when the masterfile-format
is text. This option is ignored with any other masterfile-format.

When set to relative, records are printed in a multi-line format, with owner names ex-
pressed relative to a shared origin. When set to full, records are printed in a single-line
format with absolute owner names. The full format is most suitable when a zone file
needs to be processed automatically by a script. The relative format is more human-
readable, and is thus suitable when a zone is to be edited by hand. The defaultis relative.

115 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

max-recursion-depth
This sets the maximum number of levels of recursion that are permitted at any one time
while servicing a recursive query. Resolving a name may require looking up a name server
address, which in turn requires resolving another name, etc.; if the number of recursions
exceeds this value, the recursive query is terminated and returns SERVFAIL. The default
is7.

max-recursion-queries
This sets the maximum number of iterative queries that may be sent while servicing a
recursive query. If more queries are sent, the recursive query is terminated and returns
SERVFAIL. The default is 100.

notify-delay
This sets the delay, in seconds, between sending sets of NOTIFY messages for a zone. The
default is 5 seconds.

The overall rate at which NOTIFY messages are sent for all zones is controlled by serial-
query-rate.

max-rsa-exponent-size
This sets the maximum RSA exponent size, in bits, that is accepted when validating. Valid
values are 35 to 4096 bits. The default, zero, is also accepted and is equivalent to 4096.

prefetch
When a query is received for cached data which is to expire shortly, named can refresh
the data from the authoritative server immediately, ensuring that the cache always has an
answer available.

prefetch specifies the "trigger” TTL value at which prefetch of the current query takes
place; when a cache record with a lower TTL value is encountered during query process-
ing, it is refreshed. Valid trigger TTL values are 1 to 10 seconds. Values larger than 10
seconds are silently reduced to 10. Setting a trigger TTL to zero causes prefetch to be
disabled. The default trigger TTL is 2.

An optional second argument specifies the "eligibility" TTL: the smallest original TTL
value that is accepted for a record to be eligible for prefetching. The eligibility TTL must
be at least six seconds longer than the trigger TTL; if not, named silently adjusts it upward.
The default eligibility TTL is 9.

v6-bias
When determining the next name server to try, this indicates by how many milliseconds
to prefer IPv6 name servers. The default is 50 milliseconds.

Built-in Server Information Zones

The server provides some helpful diagnostic information through a number of built-in zones
under the pseudo-top-level-domain bind in the CHAOS class. These zones are part of a built-
in view (see Section 6.2) of class CHAOS, which is separate from the default view of class IN.
Most global configuration options (allow-query, etc.) apply to this view, but some are locally
overridden: notify, recursion, and allow-new-zones are always set to no, and rate-limit is set
to allow three responses per second.

To disable these zones, use the options below or hide the built-in CHAOS view by defining an
explicit view of class CHAOS that matches all clients.

BIND 9.11.28 116

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

version
This is the version the server should report via a query of the name version.bind with
type TXT and class CHAOS. The default is the real version number of this server. Speci-
fying version none disables processing of the queries.

Setting version to any value (including none) also disables queries for authors.bind
TXT CH.

hostname
This is the hostname the server should report via a query of the name hostname .bind
with type TXT and class CHAOS. This defaults to the hostname of the machine hosting
the name server, as found by the gethostname() function. The primary purpose of such
queries is to identify which of a group of anycast servers is actually answering the queries.
Specifying hostname none; disables processing of the queries.

server-id
This is the ID the server should report when receiving a Name Server Identifier (NSID)
query, or a query of the name ID.SERVER with type TXT and class CHAOS. The pri-
mary purpose of such queries is to identify which of a group of anycast servers is actu-
ally answering the queries. Specifying server-id none; disables processing of the queries.
Specifying server-id hostname; causes named to use the hostname as found by the geth-
ostname() function. The default server-id is none.

Built-in Empty Zones

The named server has some built-in empty zones, for SOA and NS records only. These are for
zones that should normally be answered locally and which queries should not be sent to the
Internet’s root servers. The official servers which cover these namespaces return NXDOMAIN
responses to these queries. In particular, these cover the reverse namespaces for addresses from
RFC 1918, RFC 4193, REC 5737, and RFC 6598. They also include the reverse namespace for the
IPv6 local address (locally assigned), IPv6 link local addresses, the IPv6 loopback address, and
the IPv6 unknown address.

The server attempts to determine if a built-in zone already exists or is active (covered by a
forward-only forwarding declaration) and does not create an empty zone if either is true.

The current list of empty zones is:

¢ 10.IN-ADDR.ARPA

¢ 16.172.IN-ADDR.ARPA
e 17.172.IN-ADDR.ARPA
¢ 18.172.IN-ADDR.ARPA
e 19.172.IN-ADDR.ARPA
e 20.172.IN-ADDR.ARPA
e 21.172.IN-ADDR.ARPA
e 22.172.IN-ADDR.ARPA

117 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION...

6.2. CONFIGURATION FILE GRAMMAR

23.172.IN-ADDR.ARPA
24.172.IN-ADDR.ARPA
25.172.IN-ADDR.ARPA
26.172.IN-ADDR.ARPA
27.172.IN-ADDR.ARPA
28.172.IN-ADDR.ARPA
29.172.IN-ADDR.ARPA
30.172.IN-ADDR.ARPA
31.172.IN-ADDR.ARPA
168.192.IN-ADDR.ARPA
64.100.IN-ADDR.ARPA
65.100.IN-ADDR.ARPA
66.100.IN-ADDR.ARPA
67.100.IN-ADDR.ARPA
68.100.IN-ADDR.ARPA
69.100.IN-ADDR.ARPA
70.100.IN-ADDR.ARPA
71.100.IN-ADDR.ARPA
72.100.IN-ADDR.ARPA
73.100.IN-ADDR.ARPA
74.100.IN-ADDR.ARPA
75.100.IN-ADDR.ARPA
76.100.IN-ADDR.ARPA
77.100.IN-ADDR.ARPA
78.100.IN-ADDR.ARPA
79.100.IN-ADDR.ARPA
80.100.IN-ADDR.ARPA
81.100.IN-ADDR.ARPA
82.100.IN-ADDR.ARPA
83.100.IN-ADDR.ARPA

BIND 9.11.28

118

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

e 84.100.IN-ADDR.ARPA
¢ 85.100.IN-ADDR.ARPA
¢ 86.100.IN-ADDR.ARPA
e 87.100.IN-ADDR.ARPA
¢ 88.100.IN-ADDR.ARPA
¢ 89.100.IN-ADDR.ARPA
¢ 90.100.IN-ADDR.ARPA
¢ 91.100.IN-ADDR.ARPA
e 92.100.IN-ADDR.ARPA
¢ 93.100.IN-ADDR.ARPA
¢ 94.100.IN-ADDR.ARPA
¢ 95.100.IN-ADDR.ARPA
¢ 96.100.IN-ADDR.ARPA
e 97.100.IN-ADDR.ARPA
¢ 98.100.IN-ADDR.ARPA
¢ 99.100.IN-ADDR.ARPA
¢ 100.100.IN-ADDR.ARPA
¢ 101.100.IN-ADDR.ARPA
¢ 102.100.IN-ADDR.ARPA
¢ 103.100.IN-ADDR.ARPA
¢ 104.100.IN-ADDR.ARPA
¢ 105.100.IN-ADDR.ARPA
¢ 106.100.IN-ADDR.ARPA
¢ 107.100.IN-ADDR.ARPA
¢ 108.100.IN-ADDR.ARPA
¢ 109.100.IN-ADDR.ARPA
¢ 110.100.IN-ADDR.ARPA
e 111.100.IN-ADDR.ARPA
e 112.100.IN-ADDR.ARPA
¢ 113.100.IN-ADDR.ARPA

119 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

¢ 114.100.IN-ADDR.ARPA

e 115.100.IN-ADDR.ARPA

¢ 116.100.IN-ADDR.ARPA

e 117.100.IN-ADDR.ARPA

¢ 118.100.IN-ADDR.ARPA

¢ 119.100.IN-ADDR.ARPA

¢ 120.100.IN-ADDR.ARPA

e 121.100.IN-ADDR.ARPA

e 122.100.IN-ADDR.ARPA

e 123.100.IN-ADDR.ARPA

e 124.100.IN-ADDR.ARPA

e 125.100.IN-ADDR.ARPA

¢ 126.100.IN-ADDR.ARPA

e 127.100.IN-ADDR.ARPA

¢ 0.IN-ADDR.ARPA

e 127.IN-ADDR.ARPA

e 254.169.IN-ADDR.ARPA

e 2.0.192.IN-ADDR.ARPA

¢ 100.51.198.IN-ADDR.ARPA

e 113.0.203.IN-ADDR.ARPA

e 255.255.255.255.IN-ADDR.ARPA
¢ 0.IP6.ARPA
¢ 1.0.IP6.ARPA
¢ 8.B.D.0.1.0.0.2.1P6.ARPA

e D.FIP6.ARPA

¢ 8.E.FIP6.ARPA

¢ 9.E.EIP6.ARPA

¢ AEEIP6.ARPA

e B.E.FIP6.ARPA

e EMPTY.AS112.ARPA

BIND 9.11.28 120

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

¢ HOME.ARPA

Empty zones can be set at the view level and only apply to views of class IN. Disabled empty
zones are only inherited from options if there are no disabled empty zones specified at the view
level. To override the options list of disabled zones, disable the root zone at the view level. For
example:

disable-empty-zone ".";

If using the address ranges covered here, reverse zones covering the addresses should already
be in place. In practice this appears to not be the case, with many queries being made to the
infrastructure servers for names in these spaces. So many, in fact, that sacrificial servers had to
be deployed to channel the query load away from the infrastructure servers.

NOTE

The real parent servers for these zones should disable all empty zones under the parent
zone they serve. For the real root servers, this is all built-in empty zones. This enables them
to return referrals to deeper in the tree.

empty-server
This specifies the server name that appears in the returned SOA record for empty zones.
If none is specified, the zone’s name is used.

empty-contact
This specifies the contact name that appears in the returned SOA record for empty zones.

If none is specified, "." is used.

empty-zones-enable
This enables or disables all empty zones. By default, they are enabled.

disable-empty-zone
This disables individual empty zones. By default, none are disabled. This option can be
specified multiple times.

Additional Section Caching

The additional section cache, also called acache, is an internal cache to improve the response
performance of BIND 9. When additional section caching is enabled, BIND 9 caches an internal
shortcut to the additional section content for each answer RR. Note that acache is an internal
caching mechanism of BIND 9, and is not related to the DNS caching server function.

Additional section caching does not change the response content (except the RRsets ordering of
the additional section; see below), but can improve the response performance significantly. It

121 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

is particularly effective when BIND 9 acts as an authoritative server for a zone that has many
delegations with many glue RRs.

To obtain the maximum performance improvement from additional section caching, setting
additional-from-cache to no is recommended, since the current implementation of acache does
not shortcut additional section information from the DNS cache data.

One obvious disadvantage of acache is that it requires much more memory for the internal
cached data. Thus, if the response performance does not matter and memory consumption is
more critical, the acache mechanism can be disabled by setting acache-enable to no. It is also
possible to specify the upper limit of memory consumption for acache by using max-acache-
size.

Additional section caching also has a minor effect on the RRset ordering in the additional sec-
tion. Without acache, cyclic order is effective for the additional section as well as for the answer
and authority sections. However, additional section caching fixes the ordering when it first
caches an RRset for the additional section, and the same ordering is kept in succeeding re-
sponses, regardless of the setting of rrset-order. The effect of this should be minor, however,
since an RRset in the additional section typically only contains a small number of RRs (and in
many cases only a single RR), so the ordering is not significant.

The following is a summary of options related to acache.

acache-enable
If yes, additional section caching is enabled. The default value is no.

acache-cleaning-interval
The server removes stale cache entries, based on an LRU-based algorithm, every acache-
cleaning-interval minutes. The default is 60 minutes. If set to 0, no periodic cleaning
occurs.

max-acache-size
This is the maximum amount of memory, in bytes, to use for the server’s acache. When
the amount of data in the acache reaches this limit, the server cleans more aggressively so
that the limit is not exceeded. In a server with multiple views, the limit applies separately
to the acache of each view. The default is 16M.

Content Filtering

BIND 9 provides the ability to filter out responses from external DNS servers containing certain
types of data in the answer section. Specifically, it can reject address (A or AAAA) records if the
corresponding IPv4 or IPv6 addresses match the given address_match_list of the deny-
answer-addresses option. It can also reject CNAME or DNAME records if the "alias" name (i.e.,
the CNAME alias or the substituted query name due to DNAME) matches the given namelist
of the deny-answer-aliases option, where "match" means the alias name is a subdomain of one
of the name_1list elements. If the optional namelist is specified with except-from, records
whose query name matches the list are accepted regardless of the filter setting. Likewise, if the
alias name is a subdomain of the corresponding zone, the deny-answer-aliases filter does not
apply; for example, even if "example.com" is specified for deny-answer-aliases,

www.example.com. CNAME xxx.example.com.

BIND 9.11.28 122

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

returned by an "example.com" server is accepted.

Inthe address_match_list of the deny-answer-addresses option, only ip_addrand ip_prefix
are meaningful; any key_1id is silently ignored.

If a response message is rejected due to the filtering, the entire message is discarded without
being cached, and a SERVFAIL error is returned to the client.

This filtering is intended to prevent "DNS rebinding attacks," in which an attacker, in response
to a query for a domain name the attacker controls, returns an IP address within the user’s own
network or an alias name within the user’s own domain. A naive web browser or script could
then serve as an unintended proxy, allowing the attacker to get access to an internal node of
the local network that could not be externally accessed otherwise. See the paper available at
https://dl.acm.org/doi/10.1145/1315245.1315298 for more details about these attacks.

For example, with a domain named "example.net" and an internal network using an IPv4 prefix
192.0.2.0/24, an administrator might specify the following rules:

deny-answer—-addresses { 192.0.2.0/24; } except—from { "example.net"; };
deny-answer-aliases { "example.net"; };

If an external attacker let a web browser in the local network look up an IPv4 address of "at-
tacker.example.com", the attacker’s DNS server would return a response like this:

attacker.example.com. A 192.0.2.1

in the answer section. Since the rdata of this record (the IPv4 address) matches the specified
prefix 192.0.2.0/24, this response would be ignored.

On the other hand, if the browser looked up a legitimate internal web server "www.example.net'
and the following response were returned to the BIND 9 server:

www.example.net. A 192.0.2.2

it would be accepted, since the owner name "www.example.net" matches the except-from ele-
ment, "example.net".

Note that this is not really an attack on the DNS per se. In fact, there is nothing wrong with
having an "external" name mapped to an "internal" IP address or domain name from the DNS
point of view; it might actually be provided for a legitimate purpose, such as for debugging. As
long as the mapping is provided by the correct owner, it either is not possible or does not make
sense to detect whether the intent of the mapping is legitimate within the DNS. The "rebind-
ing" attack must primarily be protected at the application that uses the DNS. For a large site,
however, it may be difficult to protect all possible applications at once. This filtering feature is
provided only to help such an operational environment; turning it on is generally discouraged
unless there is no other choice and the attack is a real threat to applications.

Care should be particularly taken if using this option for addresses within 127.0.0.0/8. These
addresses are obviously "internal," but many applications conventionally rely on a DNS map-
ping from some name to such an address. Filtering out DNS records containing this address
spuriously can break such applications.

123 BIND 9.11.28

https://dl.acm.org/doi/10.1145/1315245.1315298

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

Response Policy Zone (RPZ) Rewriting

BIND 9 includes a limited mechanism to modify DNS responses for requests analogous to email
anti-spam DNS rejection lists. Responses can be changed to deny the existence of domains
(NXDOMAIN), deny the existence of IP addresses for domains (NODATA), or contain other IP
addresses or data.

Response policy zones are named in the response-policy option for the view or among the
global options if there is no response-policy option for the view. Response policy zones are
ordinary DNS zones containing RRsets that can be queried normally if allowed. It is usually
best to restrict those queries with something like allow-query { localhost; };. Note that zones
using masterfile-format map cannot be used as policy zones.

A response-policy option can support multiple policy zones. To maximize performance, a radix
tree is used to quickly identify response policy zones containing triggers that match the current
query. This imposes an upper limit of 32 on the number of policy zones in a single response-
policy option; more than that is a configuration error.

Rules encoded in response policy zones are processed after those defined in Access Control Lists
(ACLs). All queries from clients which are not permitted access to the resolver are answered
with a status code of REFUSED, regardless of configured RPZ rules.

Five policy triggers can be encoded in RPZ records.

RPZ-CLIENT-IP

IP records are triggered by the IP address of the DNS client. Client IP address triggers
are encoded in records that have owner names that are subdomains of rpz-client-ip, rela-
tivized to the policy zone origin name, and encode an address or address block. IPv4 ad-
dresses are represented as prefixlength.B4.B3.B2.Bl.rpz—client—ip. The IPv4
prefix length must be between 1 and 32. All four bytes - B4, B3, B2, and B1 - must be
present. B4 is the decimal value of the least significant byte of the IPv4 address as in
IN-ADDR.ARPA.

IPv6 addresses are encoded in a format similar to the standard IPv6 text representation,
prefixlength.W8.W7.W6.W5.W4.W3.W2.Wl.rpz—-client-ip. Each of WS,... W1 is
a one- to four-digit hexadecimal number representing 16 bits of the IPv6 address as in the
standard text representation of IPv6 addresses, but reversed as in IP6.ARPA. (Note that
this representation of IPv6 address is different from IP6.ARPA where each hex digit occu-
pies a label.) All 8 words must be present except when one set of consecutive zero words
is replaced with .zz., analogous to double colons (::) in standard IPv6 text encodings.
The IPv6 prefix length must be between 1 and 128.

ONAME
QNAME policy records are triggered by query names of requests and targets of CNAME
records resolved to generate the response. The owner name of a QNAME policy record is
the query name relativized to the policy zone.

RPZ-IP
IP triggers are IP addresses in an A or AAAA record in the ANSWER section of a response.
They are encoded like client-IP triggers, except as subdomains of rpz-ip.

RPZ-NSDNAME
NSDNAME triggers match names of authoritative servers for the query name, a parent

BIND 9.11.28 124

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

of the query name, a CNAME for the query name, or a parent of a CNAME. They are
encoded as subdomains of rpz-nsdname, relativized to the RPZ origin name. NSIP trig-
gers match IP addresses in A and AAAA RRsets for domains that can be checked against
NSDNAME policy records. The nsdname-enable phrase turns NSDNAME triggers off or
on for a single policy zone or for all zones.

If authoritative nameservers for the query name are not yet known, named recursively
looks up the authoritative servers for the query name before applying an RPZ-NSDNAME
rule, which can cause a processing delay. To speed up processing at the cost of precision,
the nsdname-wait-recurse option can be used; when set to no, RPZ-NSDNAME rules are
only applied when authoritative servers for the query name have already been looked up
and cached. If authoritative servers for the query name are not in the cache, the RPZ-
NSDNAME rule is ignored, but the authoritative servers for the query name are looked
up in the background and the rule is applied to subsequent queries. The default is yes,
meaning RPZ-NSDNAME rules are always applied, even if authoritative servers for the
query name need to be looked up first.

RPZ-NSIP
NSIP triggers match the IP addresses of authoritative servers. They are enncoded like IP
triggers, except as subdomains of rpz-nsip. NSDNAME and NSIP triggers are checked
only for names with at least min-ns-dots dots. The default value of min-ns-dots is 1, to
exclude top-level domains.

If a name server’s IP address is not yet known, named recursively looks up the IP address
before applying an RPZ-NSIP rule, which can cause a processing delay. To speed up
processing at the cost of precision, the nsip-wait-recurse option can be used: when set
to no, RPZ-NSIP rules are only applied when a name server’s IP address has already
been looked up and cached. If a server’s IP address is not in the cache, the RPZ-NSIP
rule is ignored, but the address is looked up in the background and the rule is applied
to subsequent queries. The default is yes, meaning RPZ-NSIP rules are always applied,
even if an address needs to be looked up first.

The query response is checked against all response policy zones, so two or more policy records
can be triggered by a response. Because DNS responses are rewritten according to at most
one policy record, a single record encoding an action (other than DISABLED actions) must be
chosen. Triggers, or the records that encode them, are chosen for rewriting in the following
order:

1. Choose the triggered record in the zone that appears first in the response-policy option.
2. Prefer CLIENT-IP to QNAME to IP to NSDNAME to NSIP triggers in a single zone.

3. Among NSDNAME triggers, prefer the trigger that matches the smallest name under the
DNSSEC ordering.

4. Among IP or NSIP triggers, prefer the trigger with the longest prefix.

5. Among triggers with the same prefix length, prefer the IP or NSIP trigger that matches
the smallest IP address.

125 BIND 9.11.28

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

When the processing of a response is restarted to resolve DNAME or CNAME records and a
policy record set has not been triggered, all response policy zones are again consulted for the
DNAME or CNAME names and addresses.

RPZ record sets are any types of DNS record, except DNAME or DNSSEC, that encode actions
or responses to individual queries. Any of the policies can be used with any of the triggers. For
example, while the TCP-only policy is commonly used with client-IP triggers, it can be used
with any type of trigger to force the use of TCP for responses with owner names in a zone.

PASSTHRU
The auto-acceptance policy is specified by a CNAME whose target is rpz-passthru. It
causes the response to not be rewritten and is most often used to "poke holes" in policies
for CIDR blocks.

DROP
The auto-rejection policy is specified by a CNAME whose target is rpz-drop. It causes the
response to be discarded. Nothing is sent to the DNS client.

TCP-Only
The "slip" policy is specified by a CNAME whose target is rpz-tcp-only. It changes UDP
responses to short, truncated DNS responses that require the DNS client to try again with
TCP. It is used to mitigate distributed DNS reflection attacks.

NXDOMAIN
The "domain undefined" response is encoded by a CNAME whose target is the root do-
main (.)

NODATA
The empty set of resource records is specified by a CNAME whose target is the wildcard
top-level domain (x .). It rewrites the response to NODATA or ANCOUNT=0.

Local Data
A set of ordinary DNS records can be used to answer queries. Queries for record types
not the set are answered with NODATA.

A special form of local data isa CNAME whose target is a wildcard such as *.example.com.
It is used as if an ordinary CNAME after the asterisk (*) has been replaced with the query
name. This special form is useful for query logging in the walled garden’s authoritative
DNS server.

All of the actions specified in all of the individual records in a policy zone can be overridden
with a policy clause in the response-policy option. An organization using a policy zone pro-
vided by another organization might use this mechanism to redirect domains to its own walled
garden.

GIVEN
The placeholder policy says "do not override but perform the action specified in the zone."

DISABLED
The testing override policy causes policy zone records to do nothing but log what they
would have done if the policy zone were not disabled. The response to the DNS query is
written (or not) according to any triggered policy records that are not disabled. Disabled
policy zones should appear first, because they are often not logged if a higher-precedence
trigger is found first.

BIND 9.11.28 126

CHAPTER 6. BIND 9 CONFIGURATION... 6.2. CONFIGURATION FILE GRAMMAR

PASSTHRU, DROP, TCP-Only, NXDOMAIN, NODATA
each override the corresponding per-record policy.

CNAME domain
causes all RPZ policy records to act as if they were "cname domain" records.

By default, the actions encoded in a response policy zone are applied only to queries that ask
for recursion (RD=1). That default can be changed for a single policy zone, or for all response
policy zones in a view, with a recursive-only no clause. This feature is useful for serving the
same zone files both inside and outside an RFC 1918 cloud and using RPZ to delete answers
that would otherwise contain RFC 1918 values on the externally visible name server or view.

Also by default, RPZ actions are applied only to DNS requests that either do not request DNSSEC
metadata (DO=0) or when no DNSSEC records are available for the requested name in the orig-
inal zone (not the response policy zone). This default can be changed for all response policy
zones in a view with a break-dnssec yes clause. In that case, RPZ actions are applied regardless
of DNSSEC. The name of the clause option reflects the fact that results rewritten by RPZ actions
cannot verify.

No DNS records are needed for a QNAME or Client-IP trigger; the name or IP address itself
is sufficient, so in principle the query name need not be recursively resolved. However, not
resolving the requested name can leak the fact that response policy rewriting is in use, and that
the name is listed in a policy zone, to operators of servers for listed names. To prevent that in-
formation leak, by default any recursion needed for a request is done before any policy triggers
are considered. Because listed domains often have slow authoritative servers, this behavior can
cost significant time. The qname-wait-recurse no option overrides that default behavior when
recursion cannot change a non-error response. The option does not affect QNAME or client-1P
triggers in policy zones listed after other zones containing IP, NSIP, and NSDNAME triggers,
because those may depend on the A, AAAA, and NS records that would be found during recur-
sive resolution. It also does not affect DNSSEC requests (DO=1) unless break-dnssec yes is in
use, because the response would depend on whether RRSIG records were found during resolu-
tion. Using this option can cause error responses such as SERVFAIL to appear to be rewritten,
since no recursion is being done to discover problems at the authoritative server.

The TTL of a record modified by RPZ policies is set from the TTL of the relevant record in the
policy zone. It is then limited to a maximum value. The max-policy-ttl clause changes the
maximum number of seconds from its default of 5.

For example, an administrator might use this option statement:

response-policy { zone "badlist"; };

and this zone statement:

zone "badlist"