
BIND 9 Administrator Reference
Manual

BIND 9.12.1rc2

Copyright (C) 2000-2018 Internet Systems Consortium, Inc. ("ISC")

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of
the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

Internet Systems Consortium
950 Charter Street

Redwood City, California
USA

https://www.isc.org/

Contents

1 Introduction 1

1.1 Scope of Document . 1

1.2 Organization of This Document . 1

1.3 Conventions Used in This Document . 1

1.4 The Domain Name System (DNS) . 2

DNS Fundamentals . 2

Domains and Domain Names . 2

Zones . 3

Authoritative Name Servers . 3

The Primary Master . 3

Slave Servers . 4

Stealth Servers . 4

Caching Name Servers . 4

Forwarding . 5

Name Servers in Multiple Roles . 5

2 BIND Resource Requirements 7

2.1 Hardware requirements . 7

2.2 CPU Requirements . 7

2.3 Memory Requirements . 7

2.4 Name Server Intensive Environment Issues . 7

2.5 Supported Operating Systems . 8

iii BIND 9.12.1rc2

CONTENTS CONTENTS

3 Name Server Configuration 9

3.1 Sample Configurations . 9

A Caching-only Name Server . 9

An Authoritative-only Name Server . 9

3.2 Load Balancing . 10

3.3 Name Server Operations . 11

Tools for Use With the Name Server Daemon . 11

Diagnostic Tools . 11

Administrative Tools . 12

Signals . 13

4 Advanced DNS Features 15

4.1 Notify . 15

4.2 Dynamic Update . 15

The journal file . 16

4.3 Incremental Zone Transfers (IXFR) . 16

4.4 Split DNS . 17

Example split DNS setup . 17

4.5 TSIG . 20

Generating a Shared Key . 21

Loading A New Key . 21

Instructing the Server to Use a Key . 22

TSIG-Based Access Control . 22

Errors . 22

4.6 TKEY . 23

4.7 SIG(0) . 23

4.8 DNSSEC . 24

Generating Keys . 24

Signing the Zone . 24

Configuring Servers . 25

4.9 DNSSEC, Dynamic Zones, and Automatic Signing 27

Converting from insecure to secure . 27

Dynamic DNS update method . 28

Fully automatic zone signing . 29

BIND 9.12.1rc2 iv

CONTENTS CONTENTS

Private-type records . 29

DNSKEY rollovers . 30

Dynamic DNS update method . 30

Automatic key rollovers . 30

NSEC3PARAM rollovers via UPDATE . 31

Converting from NSEC to NSEC3 . 31

Converting from NSEC3 to NSEC . 31

Converting from secure to insecure . 31

Periodic re-signing . 31

NSEC3 and OPTOUT . 31

4.10 Dynamic Trust Anchor Management . 32

Validating Resolver . 32

Authoritative Server . 32

4.11 PKCS#11 (Cryptoki) support . 33

Prerequisites . 33

Native PKCS#11 . 33

Building SoftHSMv2 . 34

OpenSSL-based PKCS#11 . 34

Patching OpenSSL . 35

Building OpenSSL for the AEP Keyper on Linux 36

Building OpenSSL for the SCA 6000 on Solaris 36

Building OpenSSL for SoftHSM . 36

Configuring BIND 9 for Linux with the AEP Keyper 37

Configuring BIND 9 for Solaris with the SCA 6000 37

Configuring BIND 9 for SoftHSM . 38

PKCS#11 Tools . 38

Using the HSM . 38

Specifying the engine on the command line . 40

Running named with automatic zone re-signing 40

4.12 DLZ (Dynamically Loadable Zones) . 41

Configuring DLZ . 41

Sample DLZ Driver . 42

4.13 DynDB (Dynamic Database) . 43

v BIND 9.12.1rc2

CONTENTS CONTENTS

Configuring DynDB . 43

Sample DynDB Module . 43

4.14 Catalog Zones . 44

Principle of Operation . 44

Configuring Catalog Zones . 45

Catalog Zone format . 46

4.15 IPv6 Support in BIND 9 . 47

Address Lookups Using AAAA Records . 48

Address to Name Lookups Using Nibble Format 48

5 BIND 9 Configuration Reference 49

5.1 Configuration File Elements . 49

Address Match Lists . 52

Syntax . 52

Definition and Usage . 52

Comment Syntax . 53

Syntax . 53

Definition and Usage . 53

5.2 Configuration File Grammar . 54

acl Statement Grammar . 55

acl Statement Definition and Usage . 55

controls Statement Grammar . 55

controls Statement Definition and Usage . 56

include Statement Grammar . 57

include Statement Definition and Usage . 57

key Statement Grammar . 57

key Statement Definition and Usage . 57

logging Statement Grammar . 58

logging Statement Definition and Usage . 58

The channel Phrase . 58

The category Phrase . 61

The query-errors Category . 65

masters Statement Grammar . 67

masters Statement Definition and Usage . 67

BIND 9.12.1rc2 vi

CONTENTS CONTENTS

options Statement Grammar . 67

options Statement Definition and Usage . 73

Boolean Options . 83

Forwarding . 93

Dual-stack Servers . 94

Access Control . 94

Interfaces . 97

Query Address . 97

Zone Transfers . 99

UDP Port Lists . 103

Operating System Resource Limits . 103

Server Resource Limits . 104

Periodic Task Intervals . 107

The sortlist Statement . 108

RRset Ordering . 109

Tuning . 110

Built-in server information zones . 114

Built-in Empty Zones . 115

Content Filtering . 119

Response Policy Zone (RPZ) Rewriting . 121

Response Rate Limiting . 126

N . 128

server Statement Grammar . 128

server Statement Definition and Usage . 129

statistics-channels Statement Grammar . 131

statistics-channels Statement Definition and Usage 132

trusted-keys Statement Grammar . 133

trusted-keys Statement Definition and Usage . 133

managed-keys Statement Grammar . 133

managed-keys Statement Definition and Usage . 133

view Statement Grammar . 134

view Statement Definition and Usage . 135

zone Statement Grammar . 136

vii BIND 9.12.1rc2

CONTENTS CONTENTS

zone Statement Definition and Usage . 140

Zone Types . 140

Class . 143

Zone Options . 144

Dynamic Update Policies . 148

Multiple views . 152

5.3 Zone File . 153

Types of Resource Records and When to Use Them 153

Resource Records . 153

Textual expression of RRs . 159

Discussion of MX Records . 160

Setting TTLs . 161

Inverse Mapping in IPv4 . 161

Other Zone File Directives . 162

The @ (at-sign) . 162

The $ORIGIN Directive . 162

The $INCLUDE Directive . 162

The $TTL Directive . 163

BIND Master File Extension: the $GENERATE Directive 163

Additional File Formats . 164

5.4 BIND9 Statistics . 165

The Statistics File . 166

Statistics Counters . 166

Name Server Statistics Counters . 167

Zone Maintenance Statistics Counters . 169

Resolver Statistics Counters . 170

Socket I/O Statistics Counters . 171

Compatibility with BIND 8 Counters . 172

6 BIND 9 Security Considerations 173

6.1 Access Control Lists . 173

6.2 Chroot and Setuid . 175

The chroot Environment . 176

Using the setuid Function . 176

6.3 Dynamic Update Security . 176

BIND 9.12.1rc2 viii

CONTENTS CONTENTS

7 Troubleshooting 179

7.1 Common Problems . 179

It’s not working; how can I figure out what’s wrong? 179

7.2 Incrementing and Changing the Serial Number . 179

7.3 Where Can I Get Help? . 179

8 Manual pages 181

8.1 arpaname . 181

8.2 ddns-confgen . 181

8.3 delv . 183

8.4 dig . 188

8.5 dnssec-cds . 197

8.6 dnssec-checkds . 200

8.7 dnssec-coverage . 201

8.8 dnssec-dsfromkey . 203

8.9 dnssec-importkey . 205

8.10 dnssec-keyfromlabel . 207

8.11 dnssec-keygen . 211

8.12 dnssec-keymgr . 216

8.13 dnssec-revoke . 219

8.14 dnssec-settime . 220

8.15 dnssec-signzone . 223

8.16 dnssec-verify . 229

8.17 dnstap-read . 231

8.18 genrandom . 231

8.19 host . 232

8.20 mdig . 235

8.21 named-checkconf . 239

8.22 named-checkzone . 241

8.23 named-journalprint . 244

8.24 named-nzd2nzf . 245

8.25 named-rrchecker . 245

8.26 named.conf . 246

8.27 named . 265

ix BIND 9.12.1rc2

CONTENTS CONTENTS

8.28 nsec3hash . 269

8.29 nslookup . 270

8.30 nsupdate . 273

8.31 pkcs11-destroy . 279

8.32 pkcs11-keygen . 280

8.33 pkcs11-list . 281

8.34 pkcs11-tokens . 282

8.35 rndc-confgen . 283

8.36 rndc.conf . 285

8.37 rndc . 287

A Release Notes 297

B A Brief History of the DNS and BIND 299

C General DNS Reference Information 301

D BIND 9 DNS Library Support 307

BIND 9.12.1rc2 x

1 Introduction

The Internet Domain Name System (DNS) consists of the syntax to specify the names of entities
in the Internet in a hierarchical manner, the rules used for delegating authority over names,
and the system implementation that actually maps names to Internet addresses. DNS data is
maintained in a group of distributed hierarchical databases.

1.1 SCOPE OF DOCUMENT

The Berkeley Internet Name Domain (BIND) implements a domain name server for a number
of operating systems. This document provides basic information about the installation and
care of the Internet Systems Consortium (ISC) BIND version 9 software package for system
administrators.

This version of the manual corresponds to BIND version 9.12.

1.2 ORGANIZATION OF THIS DOCUMENT

In this document, Chapter 1 introduces the basic DNS and BIND concepts. Chapter 2 describes
resource requirements for running BIND in various environments. Information in Chapter 3 is
task-oriented in its presentation and is organized functionally, to aid in the process of installing
the BIND 9 software. The task-oriented section is followed by Chapter 4, which contains more
advanced concepts that the system administrator may need for implementing certain options.
The contents of Chapter 5 are organized as in a reference manual to aid in the ongoing main-
tenance of the software. Chapter 6 addresses security considerations, and Chapter 7 contains
troubleshooting help. The main body of the document is followed by several appendices which
contain useful reference information, such as a bibliography and historic information related to
BIND and the Domain Name System.

1.3 CONVENTIONS USED IN THIS DOCUMENT

In this document, we use the following general typographic conventions:

1 BIND 9.12.1rc2

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

To describe: We use the style:
a pathname, filename, URL, hostname, mailing
list name, or new term or concept Fixed width

literal user input
Fixed Width Bold

program output
Fixed Width

The following conventions are used in descriptions of the BIND configuration file:

To describe: We use the style:
keywords

Fixed Width

variables
Fixed Width

Optional input [Text is enclosed in square brackets]

1.4 THE DOMAIN NAME SYSTEM (DNS)

The purpose of this document is to explain the installation and upkeep of the BIND (Berkeley
Internet Name Domain) software package, and we begin by reviewing the fundamentals of the
Domain Name System (DNS) as they relate to BIND.

DNS Fundamentals

The Domain Name System (DNS) is a hierarchical, distributed database. It stores information
for mapping Internet host names to IP addresses and vice versa, mail routing information, and
other data used by Internet applications.

Clients look up information in the DNS by calling a resolver library, which sends queries to one
or more name servers and interprets the responses. The BIND 9 software distribution contains a
name server, named, and a set of associated tools.

Domains and Domain Names

The data stored in the DNS is identified by domain names that are organized as a tree according
to organizational or administrative boundaries. Each node of the tree, called a domain, is given
a label. The domain name of the node is the concatenation of all the labels on the path from the
node to the root node. This is represented in written form as a string of labels listed from right
to left and separated by dots. A label need only be unique within its parent domain.

For example, a domain name for a host at the company Example, Inc. could be ourhost.
example.com, where com is the top level domain to which ourhost.example.com belongs,
example is a subdomain of com, and ourhost is the name of the host.

BIND 9.12.1rc2 2

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

For administrative purposes, the name space is partitioned into areas called zones, each starting
at a node and extending down to the leaf nodes or to nodes where other zones start. The data
for each zone is stored in a name server, which answers queries about the zone using the DNS
protocol.

The data associated with each domain name is stored in the form of resource records (RRs). Some
of the supported resource record types are described in Section 5.3.

For more detailed information about the design of the DNS and the DNS protocol, please refer
to the standards documents listed in Section C.2.

Zones

To properly operate a name server, it is important to understand the difference between a zone
and a domain.

As stated previously, a zone is a point of delegation in the DNS tree. A zone consists of those
contiguous parts of the domain tree for which a name server has complete information and
over which it has authority. It contains all domain names from a certain point downward in the
domain tree except those which are delegated to other zones. A delegation point is marked by
one or more NS records in the parent zone, which should be matched by equivalent NS records
at the root of the delegated zone.

For instance, consider the example.com domain which includes names such as host.aaa.
example.com and host.bbb.example.com even though the example.com zone includes
only delegations for the aaa.example.com and bbb.example.com zones. A zone can map
exactly to a single domain, but could also include only part of a domain, the rest of which could
be delegated to other name servers. Every name in the DNS tree is a domain, even if it is terminal,
that is, has no subdomains. Every subdomain is a domain and every domain except the root is
also a subdomain. The terminology is not intuitive and we suggest that you read RFCs 1033,
1034 and 1035 to gain a complete understanding of this difficult and subtle topic.

Though BIND is called a "domain name server", it deals primarily in terms of zones. The master
and slave declarations in the named.conf file specify zones, not domains. When you ask some
other site if it is willing to be a slave server for your domain, you are actually asking for slave
service for some collection of zones.

Authoritative Name Servers

Each zone is served by at least one authoritative name server, which contains the complete data
for the zone. To make the DNS tolerant of server and network failures, most zones have two or
more authoritative servers, on different networks.

Responses from authoritative servers have the "authoritative answer" (AA) bit set in the re-
sponse packets. This makes them easy to identify when debugging DNS configurations using
tools like dig (Section 3.3).

The Primary Master

The authoritative server where the master copy of the zone data is maintained is called the
primary master server, or simply the primary. Typically it loads the zone contents from some

3 BIND 9.12.1rc2

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

local file edited by humans or perhaps generated mechanically from some other local file which
is edited by humans. This file is called the zone file or master file.

In some cases, however, the master file may not be edited by humans at all, but may instead be
the result of dynamic update operations.

Slave Servers

The other authoritative servers, the slave servers (also known as secondary servers) load the zone
contents from another server using a replication process known as a zone transfer. Typically the
data are transferred directly from the primary master, but it is also possible to transfer it from
another slave. In other words, a slave server may itself act as a master to a subordinate slave
server.

Periodically, the slave server must send a refresh query to determine whether the zone contents
have been updated. This is done by sending a query for the zone’s SOA record and checking
whether the SERIAL field has been updated; if so, a new transfer request is initiated. The
timing of these refresh queries is controlled by the SOA REFRESH and RETRY fields, but can be
overrridden with the max-refresh-time, min-refresh-time, max-retry-time, and min-retry-time
options.

If the zone data cannot be updated within the time specified by the SOA EXPIRE option (up to
a hard-coded maximum of 24 weeks) then the slave zone expires and will no longer respond to
queries.

Stealth Servers

Usually all of the zone’s authoritative servers are listed in NS records in the parent zone. These
NS records constitute a delegation of the zone from the parent. The authoritative servers are also
listed in the zone file itself, at the top level or apex of the zone. You can list servers in the zone’s
top-level NS records that are not in the parent’s NS delegation, but you cannot list servers in
the parent’s delegation that are not present at the zone’s top level.

A stealth server is a server that is authoritative for a zone but is not listed in that zone’s NS
records. Stealth servers can be used for keeping a local copy of a zone to speed up access to the
zone’s records or to make sure that the zone is available even if all the "official" servers for the
zone are inaccessible.

A configuration where the primary master server itself is a stealth server is often referred to as
a "hidden primary" configuration. One use for this configuration is when the primary master is
behind a firewall and therefore unable to communicate directly with the outside world.

Caching Name Servers

The resolver libraries provided by most operating systems are stub resolvers, meaning that they
are not capable of performing the full DNS resolution process by themselves by talking directly
to the authoritative servers. Instead, they rely on a local name server to perform the resolution
on their behalf. Such a server is called a recursive name server; it performs recursive lookups for
local clients.

BIND 9.12.1rc2 4

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

To improve performance, recursive servers cache the results of the lookups they perform. Since
the processes of recursion and caching are intimately connected, the terms recursive server and
caching server are often used synonymously.

The length of time for which a record may be retained in the cache of a caching name server is
controlled by the Time To Live (TTL) field associated with each resource record.

Forwarding

Even a caching name server does not necessarily perform the complete recursive lookup itself.
Instead, it can forward some or all of the queries that it cannot satisfy from its cache to another
caching name server, commonly referred to as a forwarder.

There may be one or more forwarders, and they are queried in turn until the list is exhausted
or an answer is found. Forwarders are typically used when you do not wish all the servers at
a given site to interact directly with the rest of the Internet servers. A typical scenario would
involve a number of internal DNS servers and an Internet firewall. Servers unable to pass
packets through the firewall would forward to the server that can do it, and that server would
query the Internet DNS servers on the internal server’s behalf.

Name Servers in Multiple Roles

The BIND name server can simultaneously act as a master for some zones, a slave for other
zones, and as a caching (recursive) server for a set of local clients.

However, since the functions of authoritative name service and caching/recursive name service
are logically separate, it is often advantageous to run them on separate server machines. A
server that only provides authoritative name service (an authoritative-only server) can run with
recursion disabled, improving reliability and security. A server that is not authoritative for any
zones and only provides recursive service to local clients (a caching-only server) does not need
to be reachable from the Internet at large and can be placed inside a firewall.

5 BIND 9.12.1rc2

2 BIND Resource Requirements

2.1 HARDWARE REQUIREMENTS

DNS hardware requirements have traditionally been quite modest. For many installations,
servers that have been pensioned off from active duty have performed admirably as DNS
servers.

The DNSSEC features of BIND 9 may prove to be quite CPU intensive however, so organi-
zations that make heavy use of these features may wish to consider larger systems for these
applications. BIND 9 is fully multithreaded, allowing full utilization of multiprocessor systems
for installations that need it.

2.2 CPU REQUIREMENTS

CPU requirements for BIND 9 range from i486-class machines for serving of static zones with-
out caching, to enterprise-class machines if you intend to process many dynamic updates and
DNSSEC signed zones, serving many thousands of queries per second.

2.3 MEMORY REQUIREMENTS

The memory of the server has to be large enough to fit the cache and zones loaded off disk.
The max-cache-size option can be used to limit the amount of memory used by the cache, at
the expense of reducing cache hit rates and causing more DNS traffic. It is still good practice to
have enough memory to load all zone and cache data into memory --- unfortunately, the best
way to determine this for a given installation is to watch the name server in operation. After
a few weeks the server process should reach a relatively stable size where entries are expiring
from the cache as fast as they are being inserted.

2.4 NAME SERVER INTENSIVE ENVIRONMENT ISSUES

For name server intensive environments, there are two alternative configurations that may be
used. The first is where clients and any second-level internal name servers query a main name

7 BIND 9.12.1rc2

CHAPTER 2. BIND RESOURCE . . . 2.5. SUPPORTED OPERATING SYSTEMS

server, which has enough memory to build a large cache. This approach minimizes the band-
width used by external name lookups. The second alternative is to set up second-level internal
name servers to make queries independently. In this configuration, none of the individual ma-
chines needs to have as much memory or CPU power as in the first alternative, but this has the
disadvantage of making many more external queries, as none of the name servers share their
cached data.

2.5 SUPPORTED OPERATING SYSTEMS

ISC BIND 9 compiles and runs on a large number of Unix-like operating systems and on Mi-
crosoft Windows Server 2003 and 2008, and Windows XP and Vista. For an up-to-date list of
supported systems, see the README file in the top level directory of the BIND 9 source distri-
bution.

BIND 9.12.1rc2 8

3 Name Server Configuration

In this chapter we provide some suggested configurations along with guidelines for their use.
We suggest reasonable values for certain option settings.

3.1 SAMPLE CONFIGURATIONS

A Caching-only Name Server

The following sample configuration is appropriate for a caching-only name server for use by
clients internal to a corporation. All queries from outside clients are refused using the allow-
query option. Alternatively, the same effect could be achieved using suitable firewall rules.

// Two corporate subnets we wish to allow queries from.
acl corpnets { 192.168.4.0/24; 192.168.7.0/24; };
options {

// Working directory
directory "/etc/namedb";

allow-query { corpnets; };
};
// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {

type master;
file "localhost.rev";
notify no;

};

An Authoritative-only Name Server

This sample configuration is for an authoritative-only server that is the master server for "example.
com" and a slave for the subdomain "eng.example.com".

options {
// Working directory
directory "/etc/namedb";
// Do not allow access to cache

9 BIND 9.12.1rc2

CHAPTER 3. NAME SERVER . . . 3.2. LOAD BALANCING

allow-query-cache { none; };
// This is the default
allow-query { any; };
// Do not provide recursive service
recursion no;

};

// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {

type master;
file "localhost.rev";
notify no;

};
// We are the master server for example.com
zone "example.com" {

type master;
file "example.com.db";
// IP addresses of slave servers allowed to
// transfer example.com
allow-transfer {

192.168.4.14;
192.168.5.53;

};
};
// We are a slave server for eng.example.com
zone "eng.example.com" {

type slave;
file "eng.example.com.bk";
// IP address of eng.example.com master server
masters { 192.168.4.12; };

};

3.2 LOAD BALANCING

A primitive form of load balancing can be achieved in the DNS by using multiple records (such
as multiple A records) for one name.

For example, if you have three WWW servers with network addresses of 10.0.0.1, 10.0.0.2 and
10.0.0.3, a set of records such as the following means that clients will connect to each machine
one third of the time:

Name TTL CLASS TYPE Resource Record (RR) Data

www 600 IN A 10.0.0.1

600 IN A 10.0.0.2

600 IN A 10.0.0.3

BIND 9.12.1rc2 10

CHAPTER 3. NAME SERVER . . . 3.3. NAME SERVER OPERATIONS

When a resolver queries for these records, BIND will rotate them and respond to the query with
the records in a different order. In the example above, clients will randomly receive records in
the order 1, 2, 3; 2, 3, 1; and 3, 1, 2. Most clients will use the first record returned and discard
the rest.

For more detail on ordering responses, check the rrset-order sub-statement in the options state-
ment, see RRset Ordering.

3.3 NAME SERVER OPERATIONS

Tools for Use With the Name Server Daemon

This section describes several indispensable diagnostic, administrative and monitoring tools
available to the system administrator for controlling and debugging the name server daemon.

Diagnostic Tools

The dig, host, and nslookup programs are all command line tools for manually querying name
servers. They differ in style and output format.

dig
dig is the most versatile and complete of these lookup tools. It has two modes: simple
interactive mode for a single query, and batch mode which executes a query for each in a
list of several query lines. All query options are accessible from the command line.

dig [@server] domain [query-type] [query-class] [+query-option] [-dig-option] [%com

ment]

The usual simple use of dig will take the form

dig @server domain query-type query-class

For more information and a list of available commands and options, see the dig man page.

host
The host utility emphasizes simplicity and ease of use. By default, it converts between
host names and Internet addresses, but its functionality can be extended with the use of
options.

host [-aCdlnrsTwv] [-c class] [-N ndots] [-t type] [-W timeout] [-R retries] [-m flag]
[-4] [-6] hostname [server]

For more information and a list of available commands and options, see the host man
page.

nslookup
nslookup has two modes: interactive and non-interactive. Interactive mode allows the
user to query name servers for information about various hosts and domains or to print
a list of hosts in a domain. Non-interactive mode is used to print just the name and re-
quested information for a host or domain.

nslookup [-option...] [host-to-find | - [server]]

11 BIND 9.12.1rc2

CHAPTER 3. NAME SERVER . . . 3.3. NAME SERVER OPERATIONS

Interactive mode is entered when no arguments are given (the default name server will
be used) or when the first argument is a hyphen (`-’) and the second argument is the host
name or Internet address of a name server.

Non-interactive mode is used when the name or Internet address of the host to be looked
up is given as the first argument. The optional second argument specifies the host name
or address of a name server.

Due to its arcane user interface and frequently inconsistent behavior, we do not recom-
mend the use of nslookup. Use dig instead.

Administrative Tools

Administrative tools play an integral part in the management of a server.

named-checkconf
The named-checkconf program checks the syntax of a named.conf file.

named-checkconf [-jvz] [-t directory] [filename]

named-checkzone
The named-checkzone program checks a master file for syntax and consistency.

named-checkzone [-djqvD] [-c class] [-o output] [-t directory] [-w directory] [-k
(ignore|warn|fail)] [-n (ignore|warn|fail)] [-W (ignore|warn)] zone [filename]

named-compilezone
Similar to named-checkzone, but it always dumps the zone content to a specified file
(typically in a different format).

rndc
The remote name daemon control (rndc) program allows the system administrator to con-
trol the operation of a name server. Since BIND 9.2, rndc supports all the commands of
the BIND 8 ndc utility except ndc start and ndc restart, which were also not supported in
ndc’s channel mode. If you run rndc without any options it will display a usage message
as follows:

rndc [-c config] [-s server] [-p port] [-y key] command [command...]

See rndc(8) for details of the available rndc commands.

rndc requires a configuration file, since all communication with the server is authenticated
with digital signatures that rely on a shared secret, and there is no way to provide that
secret other than with a configuration file. The default location for the rndc configuration
file is /etc/rndc.conf, but an alternate location can be specified with the -c option. If
the configuration file is not found, rndc will also look in /etc/rndc.key (or whatever
sysconfdir was defined when the BIND build was configured). The rndc.key file is
generated by running rndc-confgen -a as described in Section 5.2.

The format of the configuration file is similar to that of named.conf, but limited to only
four statements, the options, key, server and include statements. These statements are
what associate the secret keys to the servers with which they are meant to be shared. The
order of statements is not significant.

The options statement has three clauses: default-server, default-key, and default-port.
default-server takes a host name or address argument and represents the server that will

BIND 9.12.1rc2 12

CHAPTER 3. NAME SERVER . . . 3.3. NAME SERVER OPERATIONS

be contacted if no -s option is provided on the command line. default-key takes the
name of a key as its argument, as defined by a key statement. default-port specifies the
port to which rndc should connect if no port is given on the command line or in a server
statement.
The key statement defines a key to be used by rndc when authenticating with named. Its
syntax is identical to the key statement in named.conf. The keyword key is followed by
a key name, which must be a valid domain name, though it need not actually be hierarchi-
cal; thus, a string like "rndc_key" is a valid name. The key statement has two clauses: al-
gorithm and secret. While the configuration parser will accept any string as the argument
to algorithm, currently only the strings "hmac-md5", "hmac-sha1", "hmac-sha224",
"hmac-sha256", "hmac-sha384" and "hmac-sha512" have any meaning. The secret
is a Base64 encoded string as specified in RFC 3548.
The server statement associates a key defined using the key statement with a server. The
keyword server is followed by a host name or address. The server statement has two
clauses: key and port. The key clause specifies the name of the key to be used when
communicating with this server, and the port clause can be used to specify the port rndc
should connect to on the server.
A sample minimal configuration file is as follows:

key rndc_key {
algorithm "hmac-sha256";
secret

"c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0IG1hZGUgZm9yIGEgd29tYW4K ←↩
";

};
options {

default-server 127.0.0.1;
default-key rndc_key;

};

This file, if installed as /etc/rndc.conf, would allow the command:
$ rndc reload

to connect to 127.0.0.1 port 953 and cause the name server to reload, if a name server on
the local machine were running with following controls statements:

controls {
inet 127.0.0.1

allow { localhost; } keys { rndc_key; };
};

and it had an identical key statement for rndc_key.
Running the rndc-confgen program will conveniently create a rndc.conf file for you,
and also display the corresponding controls statement that you need to add to named.
conf. Alternatively, you can run rndc-confgen -a to set up a rndc.key file and not
modify named.conf at all.

Signals

Certain UNIX signals cause the name server to take specific actions, as described in the follow-
ing table. These signals can be sent using the kill command.

13 BIND 9.12.1rc2

CHAPTER 3. NAME SERVER . . . 3.3. NAME SERVER OPERATIONS

SIGHUP Causes the server to read named.conf and reload the database.

SIGTERM Causes the server to clean up and exit.

SIGINT Causes the server to clean up and exit.

BIND 9.12.1rc2 14

4 Advanced DNS Features

4.1 NOTIFY

DNS NOTIFY is a mechanism that allows master servers to notify their slave servers of changes
to a zone’s data. In response to a NOTIFY from a master server, the slave will check to see that
its version of the zone is the current version and, if not, initiate a zone transfer.

For more information about DNS NOTIFY, see the description of the notify option in Sec-
tion 5.2 and the description of the zone option also-notify in Section 5.2. The NOTIFY protocol
is specified in RFC 1996.

NOTE

As a slave zone can also be a master to other slaves, named, by default, sends NOTIFY
messages for every zone it loads. Specifying notify master-only; will cause named to only
send NOTIFY for master zones that it loads.

4.2 DYNAMIC UPDATE

Dynamic Update is a method for adding, replacing or deleting records in a master server by
sending it a special form of DNS messages. The format and meaning of these messages is
specified in RFC 2136.

Dynamic update is enabled by including an allow-update or an update-policy clause in the
zone statement.

If the zone’s update-policy is set to local, updates to the zone will be permitted for the key
local-ddns, which will be generated by named at startup. See Section 5.2 for more details.

Dynamic updates using Kerberos signed requests can be made using the TKEY/GSS protocol
by setting either the tkey-gssapi-keytab option, or alternatively by setting both the tkey-gssapi-
credential and tkey-domain options. Once enabled, Kerberos signed requests will be matched

15 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.3. INCREMENTAL ZONE TRANSFERS . . .

against the update policies for the zone, using the Kerberos principal as the signer for the re-
quest.

Updating of secure zones (zones using DNSSEC) follows RFC 3007: RRSIG, NSEC and NSEC3
records affected by updates are automatically regenerated by the server using an online zone
key. Update authorization is based on transaction signatures and an explicit server policy.

The journal file

All changes made to a zone using dynamic update are stored in the zone’s journal file. This file
is automatically created by the server when the first dynamic update takes place. The name of
the journal file is formed by appending the extension .jnl to the name of the corresponding
zone file unless specifically overridden. The journal file is in a binary format and should not be
edited manually.

The server will also occasionally write ("dump") the complete contents of the updated zone to
its zone file. This is not done immediately after each dynamic update, because that would be
too slow when a large zone is updated frequently. Instead, the dump is delayed by up to 15
minutes, allowing additional updates to take place. During the dump process, transient files
will be created with the extensions .jnw and .jbk; under ordinary circumstances, these will
be removed when the dump is complete, and can be safely ignored.

When a server is restarted after a shutdown or crash, it will replay the journal file to incorporate
into the zone any updates that took place after the last zone dump.

Changes that result from incoming incremental zone transfers are also journaled in a similar
way.

The zone files of dynamic zones cannot normally be edited by hand because they are not guar-
anteed to contain the most recent dynamic changes --- those are only in the journal file. The
only way to ensure that the zone file of a dynamic zone is up to date is to run rndc stop.

If you have to make changes to a dynamic zone manually, the following procedure will work:
Disable dynamic updates to the zone using rndc freeze zone. This will update the zone’s master
file with the changes stored in its .jnl file. Edit the zone file. Run rndc thaw zone to reload
the changed zone and re-enable dynamic updates.

rndc sync zone will update the zone file with changes from the journal file without stopping
dynamic updates; this may be useful for viewing the current zone state. To remove the .jnl
file after updating the zone file, use rndc sync -clean.

4.3 INCREMENTAL ZONE TRANSFERS (IXFR)

The incremental zone transfer (IXFR) protocol is a way for slave servers to transfer only changed
data, instead of having to transfer the entire zone. The IXFR protocol is specified in RFC 1995.
See Proposed Standards.

When acting as a master, BIND 9 supports IXFR for those zones where the necessary change
history information is available. These include master zones maintained by dynamic update
and slave zones whose data was obtained by IXFR. For manually maintained master zones,

BIND 9.12.1rc2 16

CHAPTER 4. ADVANCED DNS FEATURES 4.4. SPLIT DNS

and for slave zones obtained by performing a full zone transfer (AXFR), IXFR is supported only
if the option ixfr-from-differences is set to yes.

When acting as a slave, BIND 9 will attempt to use IXFR unless it is explicitly disabled. For
more information about disabling IXFR, see the description of the request-ixfr clause of the
server statement.

4.4 SPLIT DNS

Setting up different views, or visibility, of the DNS space to internal and external resolvers is
usually referred to as a Split DNS setup. There are several reasons an organization would want
to set up its DNS this way.

One common reason for setting up a DNS system this way is to hide "internal" DNS information
from "external" clients on the Internet. There is some debate as to whether or not this is actually
useful. Internal DNS information leaks out in many ways (via email headers, for example)
and most savvy "attackers" can find the information they need using other means. However,
since listing addresses of internal servers that external clients cannot possibly reach can result
in connection delays and other annoyances, an organization may choose to use a Split DNS to
present a consistent view of itself to the outside world.

Another common reason for setting up a Split DNS system is to allow internal networks that are
behind filters or in RFC 1918 space (reserved IP space, as documented in RFC 1918) to resolve
DNS on the Internet. Split DNS can also be used to allow mail from outside back in to the
internal network.

Example split DNS setup

Let’s say a company named Example, Inc. (example.com) has several corporate sites that have
an internal network with reserved Internet Protocol (IP) space and an external demilitarized
zone (DMZ), or "outside" section of a network, that is available to the public.

Example, Inc. wants its internal clients to be able to resolve external hostnames and to exchange
mail with people on the outside. The company also wants its internal resolvers to have access
to certain internal-only zones that are not available at all outside of the internal network.

In order to accomplish this, the company will set up two sets of name servers. One set will
be on the inside network (in the reserved IP space) and the other set will be on bastion hosts,
which are "proxy" hosts that can talk to both sides of its network, in the DMZ.

The internal servers will be configured to forward all queries, except queries for site1.internal,
site2.internal, site1.example.com, and site2.example.com, to the servers in the
DMZ. These internal servers will have complete sets of information for site1.example.com,
site2.example.com, site1.internal, and site2.internal.

To protect the site1.internal and site2.internal domains, the internal name servers
must be configured to disallow all queries to these domains from any external hosts, including
the bastion hosts.

The external servers, which are on the bastion hosts, will be configured to serve the "public"
version of the site1 and site2.example.com zones. This could include things such as

17 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.4. SPLIT DNS

the host records for public servers (www.example.com and ftp.example.com), and mail
exchange (MX) records (a.mx.example.com and b.mx.example.com).

In addition, the public site1 and site2.example.com zones should have special MX records
that contain wildcard (`*’) records pointing to the bastion hosts. This is needed because external
mail servers do not have any other way of looking up how to deliver mail to those internal
hosts. With the wildcard records, the mail will be delivered to the bastion host, which can then
forward it on to internal hosts.

Here’s an example of a wildcard MX record:

* IN MX 10 external1.example.com.

Now that they accept mail on behalf of anything in the internal network, the bastion hosts will
need to know how to deliver mail to internal hosts. In order for this to work properly, the
resolvers on the bastion hosts will need to be configured to point to the internal name servers
for DNS resolution.

Queries for internal hostnames will be answered by the internal servers, and queries for external
hostnames will be forwarded back out to the DNS servers on the bastion hosts.

In order for all this to work properly, internal clients will need to be configured to query only
the internal name servers for DNS queries. This could also be enforced via selective filtering on
the network.

If everything has been set properly, Example, Inc.’s internal clients will now be able to:

• Look up any hostnames in the site1 and site2.example.com zones.

• Look up any hostnames in the site1.internal and site2.internal domains.

• Look up any hostnames on the Internet.

• Exchange mail with both internal and external people.

Hosts on the Internet will be able to:

• Look up any hostnames in the site1 and site2.example.com zones.

• Exchange mail with anyone in the site1 and site2.example.com zones.

Here is an example configuration for the setup we just described above. Note that this is only
configuration information; for information on how to configure your zone files, see Section 3.1.

Internal DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { bastion-ips-go-here; };

options {
...
...

BIND 9.12.1rc2 18

CHAPTER 4. ADVANCED DNS FEATURES 4.4. SPLIT DNS

forward only;
// forward to external servers
forwarders {

bastion-ips-go-here;
};
// sample allow-transfer (no one)
allow-transfer { none; };
// restrict query access
allow-query { internals; externals; };
// restrict recursion
allow-recursion { internals; };
...
...

};

// sample master zone
zone "site1.example.com" {

type master;
file "m/site1.example.com";
// do normal iterative resolution (do not forward)
forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };

};

// sample slave zone
zone "site2.example.com" {

type slave;
file "s/site2.example.com";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };

};

zone "site1.internal" {
type master;
file "m/site1.internal";
forwarders { };
allow-query { internals; };
allow-transfer { internals; }

};

zone "site2.internal" {
type slave;
file "s/site2.internal";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals };
allow-transfer { internals; }

};

External (bastion host) DNS server config:

19 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.5. TSIG

acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { bastion-ips-go-here; };

options {
...
...
// sample allow-transfer (no one)
allow-transfer { none; };
// default query access
allow-query { any; };
// restrict cache access
allow-query-cache { internals; externals; };
// restrict recursion
allow-recursion { internals; externals; };
...
...

};

// sample slave zone
zone "site1.example.com" {

type master;
file "m/site1.foo.com";
allow-transfer { internals; externals; };

};

zone "site2.example.com" {
type slave;
file "s/site2.foo.com";
masters { another_bastion_host_maybe; };
allow-transfer { internals; externals; }

};

In the resolv.conf (or equivalent) on the bastion host(s):

search ...
nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4

4.5 TSIG

TSIG (Transaction SIGnatures) is a mechanism for authenticating DNS messages, originally
specified in RFC 2845. It allows DNS messages to be cryptographically signed using a shared
secret. TSIG can be used in any DNS transaction, as a way to restrict access to certain server
functions (e.g., recursive queries) to authorized clients when IP-based access control is insuffi-
cient or needs to be overridden, or as a way to ensure message authenticity when it is critical
to the integrity of the server, such as with dynamic UPDATE messages or zone transfers from a
master to a slave server.

BIND 9.12.1rc2 20

CHAPTER 4. ADVANCED DNS FEATURES 4.5. TSIG

This is a guide to setting up TSIG in BIND. It describes the configuration syntax and the process
of creating TSIG keys.

named supports TSIG for server-to-server communication, and some of the tools included with
BIND support it for sending messages to named:

• nsupdate(1) supports TSIG via the -k, -l and -y command line options, or via the key
command when running interactively.

• dig(1) supports TSIG via the -k and -y command line options.

Generating a Shared Key

TSIG keys can be generated using the tsig-keygen command; the output of the command is
a key directive suitable for inclusion in named.conf. The key name, algorithm and size can
be specified by command line parameters; the defaults are "tsig-key", HMAC-SHA256, and 256
bits, respectively.

Any string which is a valid DNS name can be used as a key name. For example, a key to be
shared between servers called host1 and host2 could be called "host1-host2.", and this key could
be generated using:

$ tsig-keygen host1-host2. > host1-host2.key

This key may then be copied to both hosts. The key name and secret must be identical on
both hosts. (Note: copying a shared secret from one server to another is beyond the scope of the
DNS. A secure transport mechanism should be used: secure FTP, SSL, ssh, telephone, encrypted
email, etc.)

tsig-keygen can also be run as ddns-confgen, in which case its output includes additional con-
figuration text for setting up dynamic DNS in named. See ddns-confgen(8) for details.

Loading A New Key

For a key shared between servers called host1 and host2, the following could be added to each
server’s named.conf file:

key "host1-host2." {
algorithm hmac-sha256;
secret "DAopyf1mhCbFVZw7pgmNPBoLUq8wEUT7UuPoLENP2HY=";

};

(This is the same key generated above using tsig-keygen.)

Since this text contains a secret, it is recommended that either named.conf not be world-
readable, or that the key directive be stored in a file which is not world-readable, and which
is included in named.conf via the include directive.

Once a key has been added to named.conf and the server has been restarted or reconfigured,
the server can recognize the key. If the server receives a message signed by the key, it will be
able to verify the signature. If the signature is valid, the response will be signed using the same
key.

TSIG keys that are known to a server can be listed using the command rndc tsig-list.

21 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.5. TSIG

Instructing the Server to Use a Key

A server sending a request to another server must be told whether to use a key, and if so, which
key to use.

For example, a key may be specified for each server in the masters statement in the definition
of a slave zone; in this case, all SOA QUERY messages, NOTIFY messages, and zone transfer
requests (AXFR or IXFR) will be signed using the specified key. Keys may also be specified
in the also-notify statement of a master or slave zone, causing NOTIFY messages to be signed
using the specified key.

Keys can also be specified in a server directive. Adding the following on host1, if the IP address
of host2 is 10.1.2.3, would cause all requests from host1 to host2, including normal DNS queries,
to be signed using the host1-host2. key:

server 10.1.2.3 {
keys { host1-host2. ;};

};

Multiple keys may be present in the keys statement, but only the first one is used. As this
directive does not contain secrets, it can be used in a world-readable file.

Requests sent by host2 to host1 would not be signed, unless a similar server directive were in
host2’s configuration file.

Whenever any server sends a TSIG-signed DNS request, it will expect the response to be signed
with the same key. If a response is not signed, or if the signature is not valid, the response will
be rejected.

TSIG-Based Access Control

TSIG keys may be specified in ACL definitions and ACL directives such as allow-query, allow-
transfer and allow-update. The above key would be denoted in an ACL element as key host1-
host2.

An example of an allow-update directive using a TSIG key:

allow-update { !{ !localnets; any; }; key host1-host2. ;};

This allows dynamic updates to succeed only if the UPDATE request comes from an address in
localnets, and if it is signed using the host1-host2. key.

See Section 5.2 for a discussion of the more flexible update-policy statement.

Errors

Processing of TSIG-signed messages can result in several errors:

• If a TSIG-aware server receives a message signed by an unknown key, the response will
be unsigned, with the TSIG extended error code set to BADKEY.

BIND 9.12.1rc2 22

CHAPTER 4. ADVANCED DNS FEATURES 4.6. TKEY

• If a TSIG-aware server receives a message from a known key but with an invalid signature,
the response will be unsigned, with the TSIG extended error code set to BADSIG.

• If a TSIG-aware server receives a message with a time outside of the allowed range, the
response will be signed, with the TSIG extended error code set to BADTIME, and the time
values will be adjusted so that the response can be successfully verified.

In all of the above cases, the server will return a response code of NOTAUTH (not authenti-
cated).

4.6 TKEY

TKEY (Transaction KEY) is a mechanism for automatically negotiating a shared secret between
two hosts, originally specified in RFC 2930.

There are several TKEY "modes" that specify how a key is to be generated or assigned. BIND
9 implements only one of these modes: Diffie-Hellman key exchange. Both hosts are required
to have a KEY record with algorithm DH (though this record is not required to be present in a
zone).

The TKEY process is initiated by a client or server by sending a query of type TKEY to a TKEY-
aware server. The query must include an appropriate KEY record in the additional section, and
must be signed using either TSIG or SIG(0) with a previously established key. The server’s
response, if successful, will contain a TKEY record in its answer section. After this transac-
tion, both participants will have enough information to calculate a shared secret using Diffie-
Hellman key exchange. The shared secret can then be used by to sign subsequent transactions
between the two servers.

TSIG keys known by the server, including TKEY-negotiated keys, can be listed using rndc tsig-
list.

TKEY-negotiated keys can be deleted from a server using rndc tsig-delete. This can also be
done via the TKEY protocol itself, by sending an authenticated TKEY query specifying the "key
deletion" mode.

4.7 SIG(0)

BIND partially supports DNSSEC SIG(0) transaction signatures as specified in RFC 2535 and
RFC 2931. SIG(0) uses public/private keys to authenticate messages. Access control is per-
formed in the same manner as TSIG keys; privileges can be granted or denied in ACL directives
based on the key name.

When a SIG(0) signed message is received, it will only be verified if the key is known and
trusted by the server. The server will not attempt to recursively fetch or validate the key.

SIG(0) signing of multiple-message TCP streams is not supported.

The only tool shipped with BIND 9 that generates SIG(0) signed messages is nsupdate.

23 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.8. DNSSEC

4.8 DNSSEC

Cryptographic authentication of DNS information is possible through the DNS Security (DNSSEC-
bis) extensions, defined in RFC 4033, RFC 4034, and RFC 4035. This section describes the cre-
ation and use of DNSSEC signed zones.

In order to set up a DNSSEC secure zone, there are a series of steps which must be followed.
BIND 9 ships with several tools that are used in this process, which are explained in more detail
below. In all cases, the -h option prints a full list of parameters. Note that the DNSSEC tools
require the keyset files to be in the working directory or the directory specified by the -d option,
and that the tools shipped with BIND 9.2.x and earlier are not compatible with the current ones.

There must also be communication with the administrators of the parent and/or child zone to
transmit keys. A zone’s security status must be indicated by the parent zone for a DNSSEC
capable resolver to trust its data. This is done through the presence or absence of a DS record at
the delegation point.

For other servers to trust data in this zone, they must either be statically configured with this
zone’s zone key or the zone key of another zone above this one in the DNS tree.

Generating Keys

The dnssec-keygen program is used to generate keys.

A secure zone must contain one or more zone keys. The zone keys will sign all other records
in the zone, as well as the zone keys of any secure delegated zones. Zone keys must have
the same name as the zone, a name type of ZONE, and must be usable for authentication. It
is recommended that zone keys use a cryptographic algorithm designated as "mandatory to
implement" by the IETF; currently the only one is RSASHA1.

The following command will generate a 768-bit RSASHA1 key for the child.example zone:

dnssec-keygen -a RSASHA1 -b 768 -n ZONE child.example.

Two output files will be produced: Kchild.example.+005+12345.key and Kchild.example.
+005+12345.private (where 12345 is an example of a key tag). The key filenames contain
the key name (child.example.), algorithm (3 is DSA, 1 is RSAMD5, 5 is RSASHA1, etc.),
and the key tag (12345 in this case). The private key (in the .private file) is used to generate
signatures, and the public key (in the .key file) is used for signature verification.

To generate another key with the same properties (but with a different key tag), repeat the above
command.

The dnssec-keyfromlabel program is used to get a key pair from a crypto hardware and build
the key files. Its usage is similar to dnssec-keygen.

The public keys should be inserted into the zone file by including the .key files using $IN-
CLUDE statements.

Signing the Zone

The dnssec-signzone program is used to sign a zone.

BIND 9.12.1rc2 24

CHAPTER 4. ADVANCED DNS FEATURES 4.8. DNSSEC

Any keyset files corresponding to secure sub-zones should be present. The zone signer will
generate NSEC, NSEC3 and RRSIG records for the zone, as well as DS for the child zones if ’-
g’ is specified. If ’-g’ is not specified, then DS RRsets for the secure child zones need to be
added manually.

The following command signs the zone, assuming it is in a file called zone.child.example.
By default, all zone keys which have an available private key are used to generate signatures.

dnssec-signzone -o child.example zone.child.example

One output file is produced: zone.child.example.signed. This file should be referenced
by named.conf as the input file for the zone.

dnssec-signzone will also produce a keyset and dsset files and optionally a dlvset file. These
are used to provide the parent zone administrators with the DNSKEYs (or their corresponding
DS records) that are the secure entry point to the zone.

Configuring Servers

To enable named to respond appropriately to DNS requests from DNSSEC aware clients, dnssec-
enable must be set to yes. (This is the default setting.)

To enable named to validate answers from other servers, the dnssec-enable option must be set
to yes, and the dnssec-validation options must be set to yes or auto.

If dnssec-validation is set to auto, then a default trust anchor for the DNS root zone will be
used. If it is set to yes, however, then at least one trust anchor must be configured with a
trusted-keys or managed-keys statement in named.conf, or DNSSEC validation will not oc-
cur. The default setting is yes.

trusted-keys are copies of DNSKEY RRs for zones that are used to form the first link in the
cryptographic chain of trust. All keys listed in trusted-keys (and corresponding zones) are
deemed to exist and only the listed keys will be used to validated the DNSKEY RRset that they
are from.

managed-keys are trusted keys which are automatically kept up to date via RFC 5011 trust
anchor maintenance.

trusted-keys and managed-keys are described in more detail later in this document.

Unlike BIND 8, BIND 9 does not verify signatures on load, so zone keys for authoritative zones
do not need to be specified in the configuration file.

After DNSSEC gets established, a typical DNSSEC configuration will look something like the
following. It has one or more public keys for the root. This allows answers from outside the
organization to be validated. It will also have several keys for parts of the namespace the or-
ganization controls. These are here to ensure that named is immune to compromises in the
DNSSEC components of the security of parent zones.

managed-keys {
/* Root Key */
"." initial-key 257 3 3 "BNY4wrWM1nCfJ+ ←↩

CXd0rVXyYmobt7sEEfK3clRbGaTwS
JxrGkxJWoZu6I7PzJu/ ←↩

E9gx4UC1zGAHlXKdE4zYIpRh

25 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.8. DNSSEC

aBKnvcC2U9mZhkdUpd1Vso/ ←↩
HAdjNe8LmMlnzY3zy2Xy

4klWOADTPzSv9eamj8V18PHGjBLaVtYvk/ ←↩
ln5ZApjYg

hf+6fElrmLkdaz MQ2OCnACR817DF4BBa7UR/ ←↩
beDHyp

5iWTXWSi6XmoJLbG9Scqc7l70KDqlvXR3M/ ←↩
lUUVRbke

g1IPJSidmK3ZyCllh4XSKbje/45 ←↩
SKucHgnwU5jefMtq

66gKodQj+ ←↩
MiA21AfUVe7u99WzTLzY3qlxDhxYQQ20FQ

97S+LKUTpQcq27R7AT3/ ←↩
V5hRQxScINqwcz4jYqZD2fQ

dgxbcDTClU0CRBdiieyLMNzXG3";
};

trusted-keys {
/* Key for our organization’s forward zone */
example.com. 257 3 5 "AwEAAaxPMcR2x0HbQV4WeZB6oEDX+r0QM6

5KbhTjrW1ZaARmPhEZZe3Y9ifgEuq7vZ/z
GZUdEGNWy+JZzus0lUptwgjGwhUS1558Hb
4JKUbbOTcM8pwXlj0EiX3oDFVmjHO444gL
kBOUKUf/mC7HvfwYH/Be22GnClrinKJp1O
g4ywzO9WglMk7jbfW33gUKvirTHr25GL7S
TQUzBb5Usxt8lgnyTUHs1t3JwCY5hKZ6Cq
FxmAVZP20igTixin/1LcrgX/KMEGd/biuv
F4qJCyduieHukuY3H4XMAcR+xia2nIUPvm
/oyWR8BW/hWdzOvnSCThlHf3xiYleDbt/o
1OTQ09A0=";

/* Key for our reverse zone. */
2.0.192.IN-ADDRPA.NET. 257 3 5 "AQOnS4xn/IgOUpBPJ3bogzwc

xOdNax071L18QqZnQQQAVVr+i
LhGTnNGp3HoWQLUIzKrJVZ3zg
gy3WwNT6kZo6c0tszYqbtvchm
gQC8CzKojM/W16i6MG/eafGU3
siaOdS0yOI6BgPsw+YZdzlYMa
IJGf4M4dyoKIhzdZyQ2bYQrjy
Q4LB0lC7aOnsMyYKHHYeRvPxj
IQXmdqgOJGq+vsevG06zW+1xg
YJh9rCIfnm1GX/KMgxLPG2vXT
D/RnLX+D3T3UL7HJYHJhAZD5L
59VvjSPsZJHeDCUyWYrvPZesZ
DIRvhDD52SKvbheeTJUm6Ehkz
ytNN2SN96QRk8j/iI8ib";

};

options {
...
dnssec-enable yes;
dnssec-validation yes;

};

BIND 9.12.1rc2 26

CHAPTER 4. ADVANCED DNS FEATURES 4.9. DNSSEC, DYNAMIC ZONES, AND . . .

NOTE

None of the keys listed in this example are valid. In particular, the root key is not valid.

When DNSSEC validation is enabled and properly configured, the resolver will reject any an-
swers from signed, secure zones which fail to validate, and will return SERVFAIL to the client.

Responses may fail to validate for any of several reasons, including missing, expired, or invalid
signatures, a key which does not match the DS RRset in the parent zone, or an insecure response
from a zone which, according to its parent, should have been secure.

NOTE

When the validator receives a response from an unsigned zone that has a signed parent,
it must confirm with the parent that the zone was intentionally left unsigned. It does this by
verifying, via signed and validated NSEC/NSEC3 records, that the parent zone contains no
DS records for the child.

If the validator can prove that the zone is insecure, then the response is accepted. However,
if it cannot, then it must assume an insecure response to be a forgery; it rejects the response
and logs an error.

The logged error reads "insecurity proof failed" and "got insecure response; parent indicates
it should be secure".

4.9 DNSSEC, DYNAMIC ZONES, AND AUTOMATIC SIGNING

Converting from insecure to secure

Changing a zone from insecure to secure can be done in two ways: using a dynamic DNS
update, or the auto-dnssec zone option.

For either method, you need to configure named so that it can see the K* files which contain the
public and private parts of the keys that will be used to sign the zone. These files will have been
generated by dnssec-keygen. You can do this by placing them in the key-directory, as specified
in named.conf:

zone example.net {
type master;
update-policy local;

27 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.9. DNSSEC, DYNAMIC ZONES, AND . . .

file "dynamic/example.net/example.net";
key-directory "dynamic/example.net";

};

If one KSK and one ZSK DNSKEY key have been generated, this configuration will cause all
records in the zone to be signed with the ZSK, and the DNSKEY RRset to be signed with the
KSK as well. An NSEC chain will be generated as part of the initial signing process.

Dynamic DNS update method

To insert the keys via dynamic update:

% nsupdate
> ttl 3600
> update add example.net DNSKEY 256 3 7 ←↩

AwEAAZn17pUF0KpbPA2c7Gz76Vb18v0teKT3EyAGfBfL8eQ8al35zz3Y I1m/ ←↩
SAQBxIqMfLtIwqWPdgthsu36azGQAX8=

> update add example.net DNSKEY 257 3 7 AwEAAd/7odU/64 ←↩
o2LGsifbLtQmtO8dFDtTAZXSX2+X3e/UNlq9IHq3Y0 XtC0Iuawl/qkaKVxXe2lo8Ct+ ←↩
dM6UehyCqk=

> send

While the update request will complete almost immediately, the zone will not be completely
signed until named has had time to walk the zone and generate the NSEC and RRSIG records.
The NSEC record at the apex will be added last, to signal that there is a complete NSEC chain.

If you wish to sign using NSEC3 instead of NSEC, you should add an NSEC3PARAM record to
the initial update request. If you wish the NSEC3 chain to have the OPTOUT bit set, set it in the
flags field of the NSEC3PARAM record.

% nsupdate
> ttl 3600
> update add example.net DNSKEY 256 3 7 ←↩

AwEAAZn17pUF0KpbPA2c7Gz76Vb18v0teKT3EyAGfBfL8eQ8al35zz3Y I1m/ ←↩
SAQBxIqMfLtIwqWPdgthsu36azGQAX8=

> update add example.net DNSKEY 257 3 7 AwEAAd/7odU/64 ←↩
o2LGsifbLtQmtO8dFDtTAZXSX2+X3e/UNlq9IHq3Y0 XtC0Iuawl/qkaKVxXe2lo8Ct+ ←↩
dM6UehyCqk=

> update add example.net NSEC3PARAM 1 1 100 1234567890
> send

Again, this update request will complete almost immediately; however, the record won’t show
up until named has had a chance to build/remove the relevant chain. A private type record will
be created to record the state of the operation (see below for more details), and will be removed
once the operation completes.

While the initial signing and NSEC/NSEC3 chain generation is happening, other updates are
possible as well.

BIND 9.12.1rc2 28

CHAPTER 4. ADVANCED DNS FEATURES 4.9. DNSSEC, DYNAMIC ZONES, AND . . .

Fully automatic zone signing

To enable automatic signing, add the auto-dnssec option to the zone statement in named.conf.
auto-dnssec has two possible arguments: allow or maintain.

With auto-dnssec allow, named can search the key directory for keys matching the zone, insert
them into the zone, and use them to sign the zone. It will do so only when it receives an rndc
sign <zonename>.

auto-dnssec maintain includes the above functionality, but will also automatically adjust the
zone’s DNSKEY records on schedule according to the keys’ timing metadata. (See dnssec-
keygen(8) and dnssec-settime(8) for more information.)

named will periodically search the key directory for keys matching the zone, and if the keys’
metadata indicates that any change should be made the zone, such as adding, removing, or
revoking a key, then that action will be carried out. By default, the key directory is checked
for changes every 60 minutes; this period can be adjusted with the dnssec-loadkeys-inte
rval, up to a maximum of 24 hours. The rndc loadkeys forces named to check for key updates
immediately.

If keys are present in the key directory the first time the zone is loaded, the zone will be signed
immediately, without waiting for an rndc sign or rndc loadkeys command. (Those commands
can still be used when there are unscheduled key changes, however.)

When new keys are added to a zone, the TTL is set to match that of any existing DNSKEY RRset.
If there is no existing DNSKEY RRset, then the TTL will be set to the TTL specified when the
key was created (using the dnssec-keygen -L option), if any, or to the SOA TTL.

If you wish the zone to be signed using NSEC3 instead of NSEC, submit an NSEC3PARAM
record via dynamic update prior to the scheduled publication and activation of the keys. If you
wish the NSEC3 chain to have the OPTOUT bit set, set it in the flags field of the NSEC3PARAM
record. The NSEC3PARAM record will not appear in the zone immediately, but it will be
stored for later reference. When the zone is signed and the NSEC3 chain is completed, the
NSEC3PARAM record will appear in the zone.

Using the auto-dnssec option requires the zone to be configured to allow dynamic updates, by
adding an allow-update or update-policy statement to the zone configuration. If this has not
been done, the configuration will fail.

Private-type records

The state of the signing process is signaled by private-type records (with a default type value
of 65534). When signing is complete, these records will have a nonzero value for the final octet
(for those records which have a nonzero initial octet).

The private type record format: If the first octet is non-zero then the record indicates that the
zone needs to be signed with the key matching the record, or that all signatures that match the
record should be removed.

algorithm (octet 1)
key id in network order (octet 2 and 3)
removal flag (octet 4)
complete flag (octet 5)

29 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.9. DNSSEC, DYNAMIC ZONES, AND . . .

Only records flagged as "complete" can be removed via dynamic update. Attempts to remove
other private type records will be silently ignored.

If the first octet is zero (this is a reserved algorithm number that should never appear in a
DNSKEY record) then the record indicates changes to the NSEC3 chains are in progress. The
rest of the record contains an NSEC3PARAM record. The flag field tells what operation to
perform based on the flag bits.

0x01 OPTOUT
0x80 CREATE
0x40 REMOVE
0x20 NONSEC

DNSKEY rollovers

As with insecure-to-secure conversions, rolling DNSSEC keys can be done in two ways: using
a dynamic DNS update, or the auto-dnssec zone option.

Dynamic DNS update method

To perform key rollovers via dynamic update, you need to add the K* files for the new keys
so that named can find them. You can then add the new DNSKEY RRs via dynamic update.
named will then cause the zone to be signed with the new keys. When the signing is complete
the private type records will be updated so that the last octet is non zero.

If this is for a KSK you need to inform the parent and any trust anchor repositories of the new
KSK.

You should then wait for the maximum TTL in the zone before removing the old DNSKEY. If
it is a KSK that is being updated, you also need to wait for the DS RRset in the parent to be
updated and its TTL to expire. This ensures that all clients will be able to verify at least one
signature when you remove the old DNSKEY.

The old DNSKEY can be removed via UPDATE. Take care to specify the correct key. named will
clean out any signatures generated by the old key after the update completes.

Automatic key rollovers

When a new key reaches its activation date (as set by dnssec-keygen or dnssec-settime), if
the auto-dnssec zone option is set to maintain, named will automatically carry out the key
rollover. If the key’s algorithm has not previously been used to sign the zone, then the zone will
be fully signed as quickly as possible. However, if the new key is replacing an existing key of
the same algorithm, then the zone will be re-signed incrementally, with signatures from the old
key being replaced with signatures from the new key as their signature validity periods expire.
By default, this rollover completes in 30 days, after which it will be safe to remove the old key
from the DNSKEY RRset.

BIND 9.12.1rc2 30

CHAPTER 4. ADVANCED DNS FEATURES 4.9. DNSSEC, DYNAMIC ZONES, AND . . .

NSEC3PARAM rollovers via UPDATE

Add the new NSEC3PARAM record via dynamic update. When the new NSEC3 chain has been
generated, the NSEC3PARAM flag field will be zero. At this point you can remove the old
NSEC3PARAM record. The old chain will be removed after the update request completes.

Converting from NSEC to NSEC3

To do this, you just need to add an NSEC3PARAM record. When the conversion is complete,
the NSEC chain will have been removed and the NSEC3PARAM record will have a zero flag
field. The NSEC3 chain will be generated before the NSEC chain is destroyed.

Converting from NSEC3 to NSEC

To do this, use nsupdate to remove all NSEC3PARAM records with a zero flag field. The NSEC
chain will be generated before the NSEC3 chain is removed.

Converting from secure to insecure

To convert a signed zone to unsigned using dynamic DNS, delete all the DNSKEY records
from the zone apex using nsupdate. All signatures, NSEC or NSEC3 chains, and associated
NSEC3PARAM records will be removed automatically. This will take place after the update
request completes.

This requires the dnssec-secure-to-insecure option to be set to yes in named.conf.

In addition, if the auto-dnssec maintain zone statement is used, it should be removed or changed
to allow instead (or it will re-sign).

Periodic re-signing

In any secure zone which supports dynamic updates, named will periodically re-sign RRsets
which have not been re-signed as a result of some update action. The signature lifetimes will be
adjusted so as to spread the re-sign load over time rather than all at once.

NSEC3 and OPTOUT

named only supports creating new NSEC3 chains where all the NSEC3 records in the zone
have the same OPTOUT state. named supports UPDATES to zones where the NSEC3 records
in the chain have mixed OPTOUT state. named does not support changing the OPTOUT state
of an individual NSEC3 record, the entire chain needs to be changed if the OPTOUT state of an
individual NSEC3 needs to be changed.

31 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.10. DYNAMIC TRUST ANCHOR . . .

4.10 DYNAMIC TRUST ANCHOR MANAGEMENT

BIND is able to maintain DNSSEC trust anchors using RFC 5011 key management. This fea-
ture allows named to keep track of changes to critical DNSSEC keys without any need for the
operator to make changes to configuration files.

Validating Resolver

To configure a validating resolver to use RFC 5011 to maintain a trust anchor, configure the trust
anchor using a managed-keys statement. Information about this can be found in Section 5.2.

Authoritative Server

To set up an authoritative zone for RFC 5011 trust anchor maintenance, generate two (or more)
key signing keys (KSKs) for the zone. Sign the zone with one of them; this is the "active" KSK.
All KSKs which do not sign the zone are "stand-by" keys.

Any validating resolver which is configured to use the active KSK as an RFC 5011-managed
trust anchor will take note of the stand-by KSKs in the zone’s DNSKEY RRset, and store them
for future reference. The resolver will recheck the zone periodically, and after 30 days, if the
new key is still there, then the key will be accepted by the resolver as a valid trust anchor for
the zone. Any time after this 30-day acceptance timer has completed, the active KSK can be
revoked, and the zone can be "rolled over" to the newly accepted key.

The easiest way to place a stand-by key in a zone is to use the "smart signing" features of dnssec-
keygen and dnssec-signzone. If a key with a publication date in the past, but an activation date
which is unset or in the future, " dnssec-signzone -S" will include the DNSKEY record in the
zone, but will not sign with it:

$ dnssec-keygen -K keys -f KSK -P now -A now+2y example.net
$ dnssec-signzone -S -K keys example.net

To revoke a key, the new command dnssec-revoke has been added. This adds the REVOKED
bit to the key flags and re-generates the K*.key and K*.private files.

After revoking the active key, the zone must be signed with both the revoked KSK and the new
active KSK. (Smart signing takes care of this automatically.)

Once a key has been revoked and used to sign the DNSKEY RRset in which it appears, that
key will never again be accepted as a valid trust anchor by the resolver. However, validation
can proceed using the new active key (which had been accepted by the resolver when it was a
stand-by key).

See RFC 5011 for more details on key rollover scenarios.

When a key has been revoked, its key ID changes, increasing by 128, and wrapping around at
65535. So, for example, the key "Kexample.com.+005+10000" becomes "Kexample.com.
+005+10128".

If two keys have IDs exactly 128 apart, and one is revoked, then the two key IDs will collide,
causing several problems. To prevent this, dnssec-keygen will not generate a new key if another

BIND 9.12.1rc2 32

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

key is present which may collide. This checking will only occur if the new keys are written to
the same directory which holds all other keys in use for that zone.

Older versions of BIND 9 did not have this precaution. Exercise caution if using key revocation
on keys that were generated by previous releases, or if using keys stored in multiple directories
or on multiple machines.

It is expected that a future release of BIND 9 will address this problem in a different way, by
storing revoked keys with their original unrevoked key IDs.

4.11 PKCS#11 (CRYPTOKI) SUPPORT

PKCS#11 (Public Key Cryptography Standard #11) defines a platform-independent API for the
control of hardware security modules (HSMs) and other cryptographic support devices.

BIND 9 is known to work with three HSMs: The AEP Keyper, which has been tested with De-
bian Linux, Solaris x86 and Windows Server 2003; the Thales nShield, tested with Debian Linux;
and the Sun SCA 6000 cryptographic acceleration board, tested with Solaris x86. In addition,
BIND can be used with all current versions of SoftHSM, a software-based HSM simulator li-
brary produced by the OpenDNSSEC project.

PKCS#11 makes use of a "provider library": a dynamically loadable library which provides a
low-level PKCS#11 interface to drive the HSM hardware. The PKCS#11 provider library comes
from the HSM vendor, and it is specific to the HSM to be controlled.

There are two available mechanisms for PKCS#11 support in BIND 9: OpenSSL-based PKCS#11
and native PKCS#11. When using the first mechanism, BIND uses a modified version of OpenSSL,
which loads the provider library and operates the HSM indirectly; any cryptographic opera-
tions not supported by the HSM can be carried out by OpenSSL instead. The second mechanism
enables BIND to bypass OpenSSL completely; BIND loads the provider library itself, and uses
the PKCS#11 API to drive the HSM directly.

Prerequisites

See the documentation provided by your HSM vendor for information about installing, initial-
izing, testing and troubleshooting the HSM.

Native PKCS#11

Native PKCS#11 mode will only work with an HSM capable of carrying out every cryptographic
operation BIND 9 may need. The HSM’s provider library must have a complete implementation
of the PKCS#11 API, so that all these functions are accessible. As of this writing, only the Thales
nShield HSM and SoftHSMv2 can be used in this fashion. For other HSMs, including the AEP
Keyper, Sun SCA 6000 and older versions of SoftHSM, use OpenSSL-based PKCS#11. (Note:
Eventually, when more HSMs become capable of supporting native PKCS#11, it is expected
that OpenSSL-based PKCS#11 will be deprecated.)

To build BIND with native PKCS#11, configure as follows:

33 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

$ cd bind9
$./configure --enable-native-pkcs11 \

--with-pkcs11=provider-library-path

This will cause all BIND tools, including named and the dnssec-* and pkcs11-* tools, to use
the PKCS#11 provider library specified in provider-library-path for cryptography. (The
provider library path can be overridden using the -E in named and the dnssec-* tools, or the -
m in the pkcs11-* tools.)

Building SoftHSMv2

SoftHSMv2, the latest development version of SoftHSM, is available from https://github.com/opendnssec/SoftHSMv2.
It is a software library developed by the OpenDNSSEC project (http://www.opendnssec.org)
which provides a PKCS#11 interface to a virtual HSM, implemented in the form of a SQLite3
database on the local filesystem. It provides less security than a true HSM, but it allows you to
experiment with native PKCS#11 when an HSM is not available. SoftHSMv2 can be configured
to use either OpenSSL or the Botan library to perform cryptographic functions, but when using
it for native PKCS#11 in BIND, OpenSSL is required.

By default, the SoftHSMv2 configuration file is prefix/etc/softhsm2.conf (where prefix is
configured at compile time). This location can be overridden by the SOFTHSM2_CONF envi-
ronment variable. The SoftHSMv2 cryptographic store must be installed and initialized before
using it with BIND.

$ cd SoftHSMv2
$ configure --with-crypto-backend=openssl --prefix=/opt/pkcs11/usr -- ←↩

enable-gost
$ make
$ make install
$ /opt/pkcs11/usr/bin/softhsm-util --init-token 0 --slot 0 --label ←↩

softhsmv2

OpenSSL-based PKCS#11

OpenSSL-based PKCS#11 mode uses a modified version of the OpenSSL library; stock OpenSSL
does not fully support PKCS#11. ISC provides a patch to OpenSSL to correct this. This patch
is based on work originally done by the OpenSolaris project; it has been modified by ISC to
provide new features such as PIN management and key-by-reference.

There are two "flavors" of PKCS#11 support provided by the patched OpenSSL, one of which
must be chosen at configuration time. The correct choice depends on the HSM hardware:

• Use ’crypto-accelerator’ with HSMs that have hardware cryptographic acceleration fea-
tures, such as the SCA 6000 board. This causes OpenSSL to run all supported crypto-
graphic operations in the HSM.

• Use ’sign-only’ with HSMs that are designed to function primarily as secure key storage
devices, but lack hardware acceleration. These devices are highly secure, but are not nec-
essarily any faster at cryptography than the system CPU --- often, they are slower. It is

BIND 9.12.1rc2 34

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

therefore most efficient to use them only for those cryptographic functions that require
access to the secured private key, such as zone signing, and to use the system CPU for
all other computationally-intensive operations. The AEP Keyper is an example of such a
device.

The modified OpenSSL code is included in the BIND 9 release, in the form of a context diff
against the latest versions of OpenSSL. OpenSSL 0.9.8, 1.0.0, 1.0.1 and 1.0.2 are supported; there
are separate diffs for each version. In the examples to follow, we use OpenSSL 0.9.8, but the
same methods work with OpenSSL 1.0.0 through 1.0.2.

NOTE

The OpenSSL patches as of this writing (January 2016) support versions 0.9.8zh, 1.0.0t,
1.0.1q and 1.0.2f. ISC will provide updated patches as new versions of OpenSSL are re-
leased. The version number in the following examples is expected to change.

Before building BIND 9 with PKCS#11 support, it will be necessary to build OpenSSL with the
patch in place, and configure it with the path to your HSM’s PKCS#11 provider library.

Patching OpenSSL

$ wget http://www.openssl.org/source/openssl-0.9.8zc.tar.gz

Extract the tarball:

$ tar zxf openssl-0.9.8zc.tar.gz

Apply the patch from the BIND 9 release:

$ patch -p1 -d openssl-0.9.8zc \
< bind9/bin/pkcs11/openssl-0.9.8zc-patch

NOTE

The patch file may not be compatible with the "patch" utility on all operating systems. You
may need to install GNU patch.

When building OpenSSL, place it in a non-standard location so that it does not interfere with
OpenSSL libraries elsewhere on the system. In the following examples, we choose to install into
"/opt/pkcs11/usr". We will use this location when we configure BIND 9.

35 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

Later, when building BIND 9, the location of the custom-built OpenSSL library will need to be
specified via configure.

Building OpenSSL for the AEP Keyper on Linux

The AEP Keyper is a highly secure key storage device, but does not provide hardware crypto-
graphic acceleration. It can carry out cryptographic operations, but it is probably slower than
your system’s CPU. Therefore, we choose the ’sign-only’ flavor when building OpenSSL.

The Keyper-specific PKCS#11 provider library is delivered with the Keyper software. In this
example, we place it /opt/pkcs11/usr/lib:

$ cp pkcs11.GCC4.0.2.so.4.05 /opt/pkcs11/usr/lib/libpkcs11.so

The Keyper library requires threads, so we must specify -pthread.

$ cd openssl-0.9.8zc
$./Configure linux-x86_64 -pthread \

--pk11-libname=/opt/pkcs11/usr/lib/libpkcs11.so \
--pk11-flavor=sign-only \
--prefix=/opt/pkcs11/usr

After configuring, run "make" and "make test". If "make test" fails with "pthread_atfork() not
found", you forgot to add the -pthread above.

Building OpenSSL for the SCA 6000 on Solaris

The SCA-6000 PKCS#11 provider is installed as a system library, libpkcs11. It is a true crypto
accelerator, up to 4 times faster than any CPU, so the flavor shall be ’crypto-accelerator’.

In this example, we are building on Solaris x86 on an AMD64 system.

$ cd openssl-0.9.8zc
$./Configure solaris64-x86_64-cc \

--pk11-libname=/usr/lib/64/libpkcs11.so \
--pk11-flavor=crypto-accelerator \
--prefix=/opt/pkcs11/usr

(For a 32-bit build, use "solaris-x86-cc" and /usr/lib/libpkcs11.so.)

After configuring, run make and make test.

Building OpenSSL for SoftHSM

SoftHSM (version 1) is a software library developed by the OpenDNSSEC project (http://www.opendnssec.org)
which provides a PKCS#11 interface to a virtual HSM, implemented in the form of a SQLite3
database on the local filesystem. SoftHSM uses the Botan library to perform cryptographic func-
tions. Though less secure than a true HSM, it can allow you to experiment with PKCS#11 when
an HSM is not available.

The SoftHSM cryptographic store must be installed and initialized before using it with OpenSSL,
and the SOFTHSM_CONF environment variable must always point to the SoftHSM configura-
tion file:

BIND 9.12.1rc2 36

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

$ cd softhsm-1.3.7
$ configure --prefix=/opt/pkcs11/usr
$ make
$ make install
$ export SOFTHSM_CONF=/opt/pkcs11/softhsm.conf
$ echo "0:/opt/pkcs11/softhsm.db" > $SOFTHSM_CONF
$ /opt/pkcs11/usr/bin/softhsm --init-token 0 --slot 0 --label softhsm

SoftHSM can perform all cryptographic operations, but since it only uses your system CPU,
there is no advantage to using it for anything but signing. Therefore, we choose the ’sign-only’
flavor when building OpenSSL.

$ cd openssl-0.9.8zc
$./Configure linux-x86_64 -pthread \

--pk11-libname=/opt/pkcs11/usr/lib/libsofthsm.so \
--pk11-flavor=sign-only \
--prefix=/opt/pkcs11/usr

After configuring, run "make" and "make test".

Once you have built OpenSSL, run "apps/openssl engine pkcs11" to confirm that PKCS#11
support was compiled in correctly. The output should be one of the following lines, depending
on the flavor selected:

(pkcs11) PKCS #11 engine support (sign only)

Or:

(pkcs11) PKCS #11 engine support (crypto accelerator)

Next, run "apps/openssl engine pkcs11 -t". This will attempt to initialize the PKCS#11 engine.
If it is able to do so successfully, it will report “[available]”.

If the output is correct, run "make install" which will install the modified OpenSSL suite to
/opt/pkcs11/usr.

Configuring BIND 9 for Linux with the AEP Keyper

To link with the PKCS#11 provider, threads must be enabled in the BIND 9 build.

$ cd ../bind9
$./configure --enable-threads \

--with-openssl=/opt/pkcs11/usr \
--with-pkcs11=/opt/pkcs11/usr/lib/libpkcs11.so

Configuring BIND 9 for Solaris with the SCA 6000

To link with the PKCS#11 provider, threads must be enabled in the BIND 9 build.

37 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

$ cd ../bind9
$./configure CC="cc -xarch=amd64" --enable-threads \

--with-openssl=/opt/pkcs11/usr \
--with-pkcs11=/usr/lib/64/libpkcs11.so

(For a 32-bit build, omit CC="cc -xarch=amd64".)

If configure complains about OpenSSL not working, you may have a 32/64-bit architecture
mismatch. Or, you may have incorrectly specified the path to OpenSSL (it should be the same
as the --prefix argument to the OpenSSL Configure).

Configuring BIND 9 for SoftHSM

$ cd ../bind9
$./configure --enable-threads \

--with-openssl=/opt/pkcs11/usr \
--with-pkcs11=/opt/pkcs11/usr/lib/libsofthsm.so

After configuring, run "make", "make test" and "make install".

(Note: If "make test" fails in the "pkcs11" system test, you may have forgotten to set the SOFTHSM_CONF
environment variable.)

PKCS#11 Tools

BIND 9 includes a minimal set of tools to operate the HSM, including pkcs11-keygen to gener-
ate a new key pair within the HSM, pkcs11-list to list objects currently available, pkcs11-destroy
to remove objects, and pkcs11-tokens to list available tokens.

In UNIX/Linux builds, these tools are built only if BIND 9 is configured with the --with-pkcs11
option. (Note: If --with-pkcs11 is set to "yes", rather than to the path of the PKCS#11 provider,
then the tools will be built but the provider will be left undefined. Use the -m option or the
PKCS11_PROVIDER environment variable to specify the path to the provider.)

Using the HSM

For OpenSSL-based PKCS#11, we must first set up the runtime environment so the OpenSSL
and PKCS#11 libraries can be loaded:

$ export LD_LIBRARY_PATH=/opt/pkcs11/usr/lib:${LD_LIBRARY_PATH}

This causes named and other binaries to load the OpenSSL library from /opt/pkcs11/usr/
lib rather than from the default location. This step is not necessary when using native PKCS#11.

Some HSMs require other environment variables to be set. For example, when operating an
AEP Keyper, it is necessary to specify the location of the "machine" file, which stores informa-
tion about the Keyper for use by the provider library. If the machine file is in /opt/Keyper/
PKCS11Provider/machine, use:

BIND 9.12.1rc2 38

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

$ export KEYPER_LIBRARY_PATH=/opt/Keyper/PKCS11Provider

Such environment variables must be set whenever running any tool that uses the HSM, in-
cluding pkcs11-keygen, pkcs11-list, pkcs11-destroy, dnssec-keyfromlabel, dnssec-signzone,
dnssec-keygen, and named.

We can now create and use keys in the HSM. In this case, we will create a 2048 bit key and give
it the label "sample-ksk":

$ pkcs11-keygen -b 2048 -l sample-ksk

To confirm that the key exists:

$ pkcs11-list
Enter PIN:
object[0]: handle 2147483658 class 3 label[8] ’sample-ksk’ id[0]
object[1]: handle 2147483657 class 2 label[8] ’sample-ksk’ id[0]

Before using this key to sign a zone, we must create a pair of BIND 9 key files. The "dnssec-
keyfromlabel" utility does this. In this case, we will be using the HSM key "sample-ksk" as the
key-signing key for "example.net":

$ dnssec-keyfromlabel -l sample-ksk -f KSK example.net

The resulting K*.key and K*.private files can now be used to sign the zone. Unlike normal K*
files, which contain both public and private key data, these files will contain only the public key
data, plus an identifier for the private key which remains stored within the HSM. Signing with
the private key takes place inside the HSM.

If you wish to generate a second key in the HSM for use as a zone-signing key, follow the same
procedure above, using a different keylabel, a smaller key size, and omitting "-f KSK" from the
dnssec-keyfromlabel arguments:

(Note: When using OpenSSL-based PKCS#11 the label is an arbitrary string which identifies the
key. With native PKCS#11, the label is a PKCS#11 URI string which may include other details
about the key and the HSM, including its PIN. See dnssec-keyfromlabel(8) for details.)

$ pkcs11-keygen -b 1024 -l sample-zsk
$ dnssec-keyfromlabel -l sample-zsk example.net

Alternatively, you may prefer to generate a conventional on-disk key, using dnssec-keygen:

$ dnssec-keygen example.net

This provides less security than an HSM key, but since HSMs can be slow or cumbersome to use
for security reasons, it may be more efficient to reserve HSM keys for use in the less frequent
key-signing operation. The zone-signing key can be rolled more frequently, if you wish, to
compensate for a reduction in key security. (Note: When using native PKCS#11, there is no
speed advantage to using on-disk keys, as cryptographic operations will be done by the HSM
regardless.)

Now you can sign the zone. (Note: If not using the -S option to dnssec-signzone, it will be
necessary to add the contents of both K*.key files to the zone master file before signing it.)

39 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS#11 (CRYPTOKI) SUPPORT

$ dnssec-signzone -S example.net
Enter PIN:
Verifying the zone using the following algorithms:
NSEC3RSASHA1.
Zone signing complete:
Algorithm: NSEC3RSASHA1: ZSKs: 1, KSKs: 1 active, 0 revoked, 0 stand-by
example.net.signed

Specifying the engine on the command line

When using OpenSSL-based PKCS#11, the "engine" to be used by OpenSSL can be specified in
named and all of the BIND dnssec-* tools by using the "-E <engine>" command line option.
If BIND 9 is built with the --with-pkcs11 option, this option defaults to "pkcs11". Specifying
the engine will generally not be necessary unless for some reason you wish to use a different
OpenSSL engine.

If you wish to disable use of the "pkcs11" engine --- for troubleshooting purposes, or because
the HSM is unavailable --- set the engine to the empty string. For example:

$ dnssec-signzone -E ’’ -S example.net

This causes dnssec-signzone to run as if it were compiled without the --with-pkcs11 option.

When built with native PKCS#11 mode, the "engine" option has a different meaning: it specifies
the path to the PKCS#11 provider library. This may be useful when testing a new provider
library.

Running named with automatic zone re-signing

If you want named to dynamically re-sign zones using HSM keys, and/or to to sign new
records inserted via nsupdate, then named must have access to the HSM PIN. In OpenSSL-
based PKCS#11, this is accomplished by placing the PIN into the openssl.cnf file (in the above
examples, /opt/pkcs11/usr/ssl/openssl.cnf).

The location of the openssl.cnf file can be overridden by setting the OPENSSL_CONF environ-
ment variable before running named.

Sample openssl.cnf:

openssl_conf = openssl_def
[openssl_def]
engines = engine_section
[engine_section]
pkcs11 = pkcs11_section
[pkcs11_section]
PIN = <PLACE PIN HERE>

This will also allow the dnssec-* tools to access the HSM without PIN entry. (The pkcs11-* tools
access the HSM directly, not via OpenSSL, so a PIN will still be required to use them.)

BIND 9.12.1rc2 40

CHAPTER 4. ADVANCED DNS FEATURES 4.12. DLZ (DYNAMICALLY LOADABLE . . .

In native PKCS#11 mode, the PIN can be provided in a file specified as an attribute of the key’s
label. For example, if a key had the label pkcs11:object=local-zsk;pin-source=/etc/hsmpin,
then the PIN would be read from the file /etc/hsmpin.

WARNING

Placing the HSM’s PIN in a text file in this manner may reduce the security ad-
vantage of using an HSM. Be sure this is what you want to do before configuring
the system in this way.

4.12 DLZ (DYNAMICALLY LOADABLE ZONES)

DLZ (Dynamically Loadable Zones) is an extension to BIND 9 that allows zone data to be re-
trieved directly from an external database. There is no required format or schema. DLZ drivers
exist for several different database backends including PostgreSQL, MySQL, and LDAP and can
be written for any other.

Historically, DLZ drivers had to be statically linked with the named binary and were turned
on via a configure option at compile time (for example, "configure --with-dlz-ldap").
Currently, the drivers provided in the BIND 9 tarball in contrib/dlz/drivers are still linked
this way.

In BIND 9.8 and higher, it is possible to link some DLZ modules dynamically at runtime, via
the DLZ "dlopen" driver, which acts as a generic wrapper around a shared object implementing
the DLZ API. The "dlopen" driver is linked into named by default, so configure options are no
longer necessary when using these dynamically linkable drivers, but are still needed for the
older drivers in contrib/dlz/drivers.

When the DLZ module provides data to named, it does so in text format. The response is
converted to DNS wire format by named. This conversion, and the lack of any internal caching,
places significant limits on the query performance of DLZ modules. Consequently, DLZ is not
recommended for use on high-volume servers. However, it can be used in a hidden master
configuration, with slaves retrieving zone updates via AXFR. (Note, however, that DLZ has no
built-in support for DNS notify; slaves are not automatically informed of changes to the zones
in the database.)

Configuring DLZ

A DLZ database is configured with a dlz statement in named.conf:

dlz example {
database "dlopen driver.so args";
search yes;
};

41 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.12. DLZ (DYNAMICALLY LOADABLE . . .

This specifies a DLZ module to search when answering queries; the module is implemented in
driver.so and is loaded at runtime by the dlopen DLZ driver. Multiple dlz statements can be
specified; when answering a query, all DLZ modules with search set to yes will be queried to
find out if they contain an answer for the query name; the best available answer will be returned
to the client.

The search option in the above example can be omitted, because yes is the default value.

If search is set to no, then this DLZ module is not searched for the best match when a query
is received. Instead, zones in this DLZ must be separately specified in a zone statement. This
allows you to configure a zone normally using standard zone option semantics, but specify a
different database back-end for storage of the zone’s data. For example, to implement NXDO-
MAIN redirection using a DLZ module for back-end storage of redirection rules:

dlz other {
database "dlopen driver.so args";
search no;
};

zone "." {
type redirect;
dlz other;
};

Sample DLZ Driver

For guidance in implementation of DLZ modules, the directory contrib/dlz/example con-
tains a basic dynamically-linkable DLZ module--i.e., one which can be loaded at runtime by the
"dlopen" DLZ driver. The example sets up a single zone, whose name is passed to the module
as an argument in the dlz statement:

dlz other {
database "dlopen driver.so example.nil";
};

In the above example, the module is configured to create a zone "example.nil", which can an-
swer queries and AXFR requests, and accept DDNS updates. At runtime, prior to any updates,
the zone contains an SOA, NS, and a single A record at the apex:

example.nil. 3600 IN SOA example.nil. hostmaster.example.nil ←↩
. (

123 900 600 86400 3600
)

example.nil. 3600 IN NS example.nil.
example.nil. 1800 IN A 10.53.0.1

The sample driver is capable of retrieving information about the querying client, and altering
its response on the basis of this information. To demonstrate this feature, the example driver
responds to queries for "source-addr.zonename>/TXT" with the source address of the query.
Note, however, that this record will *not* be included in AXFR or ANY responses. Normally,
this feature would be used to alter responses in some other fashion, e.g., by providing different
address records for a particular name depending on the network from which the query arrived.

BIND 9.12.1rc2 42

CHAPTER 4. ADVANCED DNS FEATURES 4.13. DYNDB (DYNAMIC DATABASE)

Documentation of the DLZ module API can be found in contrib/dlz/example/README.
This directory also contains the header file dlz_minimal.h, which defines the API and should
be included by any dynamically-linkable DLZ module.

4.13 DYNDB (DYNAMIC DATABASE)

DynDB is an extension to BIND 9 which, like DLZ (see Section 4.12), allows zone data to be re-
trieved from an external database. Unlike DLZ, a DynDB module provides a full-featured BIND
zone database interface. Where DLZ translates DNS queries into real-time database lookups,
resulting in relatively poor query performance, and is unable to handle DNSSEC-signed data
due to its limited API, a DynDB module can pre-load an in-memory database from the exter-
nal data source, providing the same performance and functionality as zones served natively by
BIND.

A DynDB module supporting LDAP has been created by Red Hat and is available from https://fedorahosted.org/bind-
dyndb-ldap/.

A sample DynDB module for testing and developer guidance is included with the BIND source
code, in the directory bin/tests/system/dyndb/driver.

Configuring DynDB

A DynDB database is configured with a dyndb statement in named.conf:

dyndb example "driver.so" {
parameters

};

The file driver.so is a DynDB module which implements the full DNS database API. Mul-
tiple dyndb statements can be specified, to load different drivers or multiple instances of the
same driver. Zones provided by a DynDB module are added to the view’s zone table, and are
treated as normal authoritative zones when BIND is responding to queries. Zone configuration
is handled internally by the DynDB module.

The parameters are passed as an opaque string to the DynDB module’s initialization routine.
Configuration syntax will differ depending on the driver.

Sample DynDB Module

For guidance in implementation of DynDB modules, the directory bin/tests/system/dyndb/
driver. contains a basic DynDB module. The example sets up two zones, whose names are
passed to the module as arguments in the dyndb statement:

dyndb sample "sample.so" { example.nil. arpa. };

In the above example, the module is configured to create a zone "example.nil", which can an-
swer queries and AXFR requests, and accept DDNS updates. At runtime, prior to any updates,
the zone contains an SOA, NS, and a single A record at the apex:

43 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.14. CATALOG ZONES

example.nil. 86400 IN SOA example.nil. example.nil. (
0 28800 7200 604800 86400

)
example.nil. 86400 IN NS example.nil.
example.nil. 86400 IN A 127.0.0.1

When the zone is updated dynamically, the DynDB module will determine whether the up-
dated RR is an address (i.e., type A or AAAA) and if so, it will automatically update the corre-
sponding PTR record in a reverse zone. (Updates are not stored permanently; all updates are
lost when the server is restarted.)

4.14 CATALOG ZONES

A "catalog zone" is a special DNS zone that contains a list of other zones to be served, along
with their configuration parameters. Zones listed in a catalog zone are called "member zones".
When a catalog zone is loaded or transferred to a slave server which supports this functionality,
the slave server will create the member zones automatically. When the catalog zone is updated
(for example, to add or delete member zones, or change their configuration parameters) those
changes are immediately put into effect. Because the catalog zone is a normal DNS zone, these
configuration changes can be propagated using the standard AXFR/IXFR zone transfer mecha-
nism.

Catalog zones’ format and behavior are specified as an internet draft for interoperability among
DNS implementations. As of this release, the latest revision of the DNS catalog zones draft can
be found here: https://datatracker.ietf.org/doc/draft-muks-dnsop-dns-catalog-zones/

Principle of Operation

Normally, if a zone is to be served by a slave server, the named.conf file on the server must
list the zone, or the zone must be added using rndc addzone. In environments with a large
number of slave servers and/or where the zones being served are changing frequently, the
overhead involved in maintaining consistent zone configuration on all the slave servers can be
significant.

A catalog zone is a way to ease this administrative burden. It is a DNS zone that lists member
zones that should be served by slave servers. When a slave server receives an update to the
catalog zone, it adds, removes, or reconfigures member zones based on the data received.

To use a catalog zone, it must first be set up as a normal zone on the master and the on slave
servers that will be configured to use it. It must also be added to a catalog-zones list in the
options or view statement in named.conf. (This is comparable to the way a policy zone is
configured as a normal zone and also listed in a response-policy statement.)

To use the catalog zone feature to serve a new member zone:

• Set up the the member zone to be served on the master as normal. This could be done by
editing named.conf, or by running rndc addzone.

BIND 9.12.1rc2 44

CHAPTER 4. ADVANCED DNS FEATURES 4.14. CATALOG ZONES

• Add an entry to the catalog zone for the new member zone. This could be done by editing
the catalog zone’s master file and running rndc reload, or by updating the zone using
nsupdate.

The change to the catalog zone will be propagated from the master to all slaves using the normal
AXFR/IXFR mechanism. When the slave receives the update to the catalog zone, it will detect
the entry for the new member zone, create an instance of of that zone on the slave server, and
point that instance to the masters specified in the catalog zone data. The newly created mem-
ber zone is a normal slave zone, so BIND will immediately initiate a transfer of zone contents
from the master. Once complete, the slave will start serving the member zone.

Removing a member zone from a slave server requires nothing more than deleting the member
zone’s entry in the catalog zone. The change to the catalog zone is propagated to the slave
server using the normal AXFR/IXFR transfer mechanism. The slave server, on processing the
update, will notice that the member zone has been removed. It will stop serving the zone and
remove it from its list of configured zones. (Removing the member zone from the master server
has to be done in the normal way, by editing the configuration file or running rndc delzone.)

Configuring Catalog Zones

Catalog zones are configured with a catalog-zones statement in the options or view section
of named.conf. For example,

catalog-zones {
zone "catalog.example"

default-masters { 10.53.0.1; }
in-memory no
zone-directory "catzones"
min-update-interval 10;

};

This statement specifies that the zone catalog.example is a catalog zone. This zone must be
properly configured in the same view. In most configurations, it would be a slave zone.

The options following the zone name are not required, and may be specified in any order:

The default-masters option defines the default masters for member zones listed in a catalog
zone. This can be overridden by options within a catalog zone. If no such options are included,
then member zones will transfer their contents from the servers listed in this option.

The in-memory option, if set to yes, causes member zones to be stored only in memory. This
is functionally equivalent to configuring a slave zone without a file. option. The default is no;
member zones’ content will be stored locally in a file whose name is automatically generated
from the view name, catalog zone name, and member zone name.

The zone-directory option causes local copies of member zones’ master files (if in-memory
is not set to yes) to be stored in the specified directory. The default is to store zone files in the
server’s working directory. A non-absolute pathname in zone-directory is assumed to be
relative to the working directory.

The min-update-interval option sets the minimum interval between processing of updates
to catalog zones, in seconds. If an update to a catalog zone (for example, via IXFR) happens less

45 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.14. CATALOG ZONES

than min-update-interval seconds after the most recent update, then the changes will not
be carried out until this interval has elapsed. The default is 5 seconds.

Catalog zones are defined on a per-view basis. Configuring a non-empty catalog-zones
statement in a view will automatically turn on allow-new-zones for that view. (Note: this
means rndc addzone and rndc delzone will also work in any view that supports catalog zones.)

Catalog Zone format

A catalog zone is a regular DNS zone; therefore, it has to have a single SOA and at least one NS
record.

A record stating the version of the catalog zone format is also required. If the version number
listed is not supported by the server, then a catalog zone may not be used by that server.

catalog.example. IN SOA . . 2016022901 900 600 86400 1
catalog.example. IN NS nsexample.
version.catalog.example. IN TXT "1"

Note that this record must have the domain name version.catalog-zone-name. This illustrates
how the meaning of data stored in a catalog zone is indicated by the the domain name label
immediately before the catalog zone domain.

Catalog zone options can be set either globally for the whole catalog zone or for a single member
zone. Global options override the settings in the configuration file and member zone options
override global options.

Global options are set at the apex of the catalog zone, e.g.:

masters.catalog.example. IN AAAA 2001:db8::1

BIND currently supports the following options:

• A simple masters definition:

masters.catalog.example. IN A 192.0.2.1

This option defines a master server for the member zones - it can be either an A or AAAA
record. If multiple masters are set the order in which they are used is random.

• A masters with a TSIG key defined:

label.masters.catalog.example. IN A 192.0.2.2
label.masters.catalog.example. IN TXT "tsig_key_name"

This option defines a master server for the member zone with a TSIG key set. The TSIG
key must be configured in the configuration file. label can be any valid DNS label.

• allow-query and allow-transfer ACLs:

allow-query.catalog.example. IN APL 1:10.0.0.1/24
allow-transfer.catalog.example. IN APL !1:10.0.0.1/32 ←↩

1:10.0.0.0/24

BIND 9.12.1rc2 46

CHAPTER 4. ADVANCED DNS FEATURES 4.15. IPV6 SUPPORT IN BIND 9

These options are the equivalents of allow-query and allow-transfer in a zone dec-
laration in the named.conf configuration file. The ACL is processed in order - if there’s
no match to any rule the default policy is to deny access. For the syntax of the APL RR see
RFC 3123

A member zone is added by including a PTR resource record in the zones sub-domain of the
catalog zone. The record label is a SHA-1 hash of the member zone name in wire format. The
target of the PTR record is the member zone name. For example, to add the member zone
domain.example:

5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog.example. IN PTR ←↩
domain.example.

The hash is necessary to identify options for a specific member zone. The member zone-specific
options are defined the same way as global options, but in the member zone subdomain:

masters.5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog.example. IN ←↩
A 192.0.2.2

label.masters.5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog. ←↩
example. IN AAAA 2001:db8::2

label.masters.5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog. ←↩
example. IN TXT "tsig_key"

allow-query.5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog.example ←↩
. IN APL 1:10.0.0.0/24

As would be expected, options defined for a specific zone override the global options defined
in the catalog zone. These in turn override the global options defined in the catalog-zones
statement in the configuration file.

(Note that none of the global records an option will be inherited if any records are defined for
that option for the specific zone. For example, if the zone had a masters record of type A but
not AAAA, then it would not inherit the type AAAA record from the global option.)

4.15 IPV6 SUPPORT IN BIND 9

BIND 9 fully supports all currently defined forms of IPv6 name to address and address to name
lookups. It will also use IPv6 addresses to make queries when running on an IPv6 capable
system.

For forward lookups, BIND 9 supports only AAAA records. RFC 3363 deprecated the use of A6
records, and client-side support for A6 records was accordingly removed from BIND 9. How-
ever, authoritative BIND 9 name servers still load zone files containing A6 records correctly,
answer queries for A6 records, and accept zone transfer for a zone containing A6 records.

For IPv6 reverse lookups, BIND 9 supports the traditional "nibble" format used in the ip6.arpa
domain, as well as the older, deprecated ip6.int domain. Older versions of BIND 9 supported
the "binary label" (also known as "bitstring") format, but support of binary labels has been com-
pletely removed per RFC 3363. Many applications in BIND 9 do not understand the binary label
format at all any more, and will return an error if given. In particular, an authoritative BIND 9
name server will not load a zone file containing binary labels.

For an overview of the format and structure of IPv6 addresses, see Section C.1.

47 BIND 9.12.1rc2

CHAPTER 4. ADVANCED DNS FEATURES 4.15. IPV6 SUPPORT IN BIND 9

Address Lookups Using AAAA Records

The IPv6 AAAA record is a parallel to the IPv4 A record, and, unlike the deprecated A6 record,
specifies the entire IPv6 address in a single record. For example,

$ORIGIN example.com.
host 3600 IN AAAA 2001:db8::1

Use of IPv4-in-IPv6 mapped addresses is not recommended. If a host has an IPv4 address, use
an A record, not a AAAA, with ::ffff:192.168.42.1 as the address.

Address to Name Lookups Using Nibble Format

When looking up an address in nibble format, the address components are simply reversed,
just as in IPv4, and ip6.arpa. is appended to the resulting name. For example, the following
would provide reverse name lookup for a host with address 2001:db8::1.

$ORIGIN 0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 14400 IN PTR (

host.example.com.)

BIND 9.12.1rc2 48

5 BIND 9 Configuration Reference

BIND 9 configuration is broadly similar to BIND 8; however, there are a few new areas of con-
figuration, such as views. BIND 8 configuration files should work with few alterations in BIND
9, although more complex configurations should be reviewed to check if they can be more effi-
ciently implemented using the new features found in BIND 9.

BIND 4 configuration files can be converted to the new format using the shell script contrib/
named-bootconf/named-bootconf.sh.

5.1 CONFIGURATION FILE ELEMENTS

Following is a list of elements used throughout the BIND configuration file documentation:

acl_name
The name of an address_match_list as defined by the acl
statement.

address_match_list
A list of one or more ip_addr, ip_prefix, key_id, or
acl_name elements, see Section 5.1.

masters_list

A named list of one or more ip_addr with optional key_id
and/or ip_port. A masters_list may include other
masters_lists.

domain_name
A quoted string which will be used as a DNS name, for
example "my.test.domain".

namelist
A list of one or more domain_name elements.

dotted_decimal
One to four integers valued 0 through 255 separated by dots
(`.’), such as 123, 45.67 or 89.123.45.67.

ip4_addr
An IPv4 address with exactly four elements in
dotted_decimal notation.

49 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.1. CONFIGURATION FILE ELEMENTS

ip6_addr

An IPv6 address, such as 2001:db8::1234. IPv6 scoped
addresses that have ambiguity on their scope zones must be
disambiguated by an appropriate zone ID with the percent
character (`%’) as delimiter. It is strongly recommended to
use string zone names rather than numeric identifiers, in
order to be robust against system configuration changes.
However, since there is no standard mapping for such names
and identifier values, currently only interface names as link
identifiers are supported, assuming one-to-one mapping
between interfaces and links. For example, a link-local
address fe80::1 on the link attached to the interface ne0 can be
specified as fe80::1%ne0. Note that on most systems
link-local addresses always have the ambiguity, and need to
be disambiguated.

ip_addr
An ip4_addr or ip6_addr.

ip_dscp

A number between 0 and 63, used to select a differentiated
services code point (DSCP) value for use with outgoing traffic
on operating systems that support DSCP.

ip_port

An IP port number. The number is limited to 0 through
65535, with values below 1024 typically restricted to use by
processes running as root. In some cases, an asterisk (`*’)
character can be used as a placeholder to select a random
high-numbered port.

ip_prefix

An IP network specified as an ip_addr, followed by a slash
(`/’) and then the number of bits in the netmask. Trailing
zeros in a ip_addr may omitted. For example, 127/8 is the
network 127.0.0.0 with netmask 255.0.0.0 and 1.2.3.0/28 is
network 1.2.3.0 with netmask 255.255.255.240.
When specifying a prefix involving a IPv6 scoped address the
scope may be omitted. In that case the prefix will match
packets from any scope.

key_id
A domain_name representing the name of a shared key, to be
used for transaction security.

key_list
A list of one or more key_ids, separated by semicolons and
ending with a semicolon.

number

A non-negative 32-bit integer (i.e., a number between 0 and
4294967295, inclusive). Its acceptable value might be further
limited by the context in which it is used.

BIND 9.12.1rc2 50

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.1. CONFIGURATION FILE ELEMENTS

fixedpoint

A non-negative real number that can be specified to the
nearest one hundredth. Up to five digits can be specified
before a decimal point, and up to two digits after, so the
maximum value is 99999.99. Acceptable values might be
further limited by the context in which it is used.

path_name
A quoted string which will be used as a pathname, such as
zones/master/my.test.domain.

port_list

A list of an ip_port or a port range. A port range is
specified in the form of range followed by two ip_ports,
port_low and port_high, which represents port numbers
from port_low through port_high, inclusive. port_low
must not be larger than port_high. For example, range
1024 65535 represents ports from 1024 through 65535. In
either case an asterisk (`*’) character is not allowed as a valid
ip_port.

size_spec

A 64-bit unsigned integer, or the keywords unlimited or
default.
Integers may take values 0 <= value <=
18446744073709551615, though certain parameters (such as
max-journal-size) may use a more limited range within these
extremes. In most cases, setting a value to 0 does not literally
mean zero; it means "undefined" or "as big as possible",
depending on the context. See the explanations of particular
parameters that use size_spec for details on how they
interpret its use.
Numeric values can optionally be followed by a scaling
factor: K or k for kilobytes, M or m for megabytes, and G or g
for gigabytes, which scale by 1024, 1024*1024, and
1024*1024*1024 respectively.
unlimited generally means "as big as possible", and is
usually the best way to safely set a very large number.
default uses the limit that was in force when the server was
started.

size_or_percent

size_spec or integer value followed by ’%’ to represent
percents.
The behavior is exactly the same as size_spec, but
size_or_percent allows also to specify a positive integer
value followed by ’%’ sign to represent percents.

yes_or_no
Either yes or no. The words true and false are also
accepted, as are the numbers 1 and 0.

51 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.1. CONFIGURATION FILE ELEMENTS

dialup_option

One of yes, no, notify, notify-passive, refresh or
passive. When used in a zone, notify-passive,
refresh, and passive are restricted to slave and stub
zones.

Address Match Lists

Syntax

address_match_list = address_match_list_element ; ...

address_match_list_element = [!] (ip_address | ip_prefix |
key key_id | acl_name | { address_match_list })

Definition and Usage

Address match lists are primarily used to determine access control for various server opera-
tions. They are also used in the listen-on and sortlist statements. The elements which constitute
an address match list can be any of the following:

• an IP address (IPv4 or IPv6)

• an IP prefix (in `/’ notation)

• a key ID, as defined by the key statement

• the name of an address match list defined with the acl statement

• a nested address match list enclosed in braces

Elements can be negated with a leading exclamation mark (`!’), and the match list names "any",
"none", "localhost", and "localnets" are predefined. More information on those names can be
found in the description of the acl statement.

The addition of the key clause made the name of this syntactic element something of a mis-
nomer, since security keys can be used to validate access without regard to a host or network
address. Nonetheless, the term "address match list" is still used throughout the documentation.

When a given IP address or prefix is compared to an address match list, the comparison takes
place in approximately O(1) time. However, key comparisons require that the list of keys be
traversed until a matching key is found, and therefore may be somewhat slower.

The interpretation of a match depends on whether the list is being used for access control,
defining listen-on ports, or in a sortlist, and whether the element was negated.

When used as an access control list, a non-negated match allows access and a negated match
denies access. If there is no match, access is denied. The clauses allow-notify, allow-recursion,
allow-recursion-on, allow-query, allow-query-on, allow-query-cache, allow-query-cache-on,
allow-transfer, allow-update, allow-update-forwarding, blackhole, and keep-response-order

BIND 9.12.1rc2 52

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.1. CONFIGURATION FILE ELEMENTS

all use address match lists. Similarly, the listen-on option will cause the server to refuse queries
on any of the machine’s addresses which do not match the list.

Order of insertion is significant. If more than one element in an ACL is found to match a given
IP address or prefix, preference will be given to the one that came first in the ACL definition.
Because of this first-match behavior, an element that defines a subset of another element in
the list should come before the broader element, regardless of whether either is negated. For
example, in 1.2.3/24; ! 1.2.3.13; the 1.2.3.13 element is completely useless because the algorithm
will match any lookup for 1.2.3.13 to the 1.2.3/24 element. Using ! 1.2.3.13; 1.2.3/24 fixes that
problem by having 1.2.3.13 blocked by the negation, but all other 1.2.3.* hosts fall through.

Comment Syntax

The BIND 9 comment syntax allows for comments to appear anywhere that whitespace may
appear in a BIND configuration file. To appeal to programmers of all kinds, they can be written
in the C, C++, or shell/perl style.

Syntax

/* This is a BIND comment as in C */

// This is a BIND comment as in C++

This is a BIND comment as in common UNIX shells
and perl

Definition and Usage

Comments may appear anywhere that whitespace may appear in a BIND configuration file.

C-style comments start with the two characters /* (slash, star) and end with */ (star, slash).
Because they are completely delimited with these characters, they can be used to comment only
a portion of a line or to span multiple lines.

C-style comments cannot be nested. For example, the following is not valid because the entire
comment ends with the first */:

/* This is the start of a comment.
This is still part of the comment.

/* This is an incorrect attempt at nesting a comment. */
This is no longer in any comment. */

C++-style comments start with the two characters // (slash, slash) and continue to the end of
the physical line. They cannot be continued across multiple physical lines; to have one logical
comment span multiple lines, each line must use the // pair. For example:

// This is the start of a comment. The next line
// is a new comment, even though it is logically
// part of the previous comment.

53 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

Shell-style (or perl-style, if you prefer) comments start with the character # (number sign) and
continue to the end of the physical line, as in C++ comments. For example:

This is the start of a comment. The next line
is a new comment, even though it is logically
part of the previous comment.

WARNING

You cannot use the semicolon (`;’) character to start a comment such as you
would in a zone file. The semicolon indicates the end of a configuration state-
ment.

5.2 CONFIGURATION FILE GRAMMAR

A BIND 9 configuration consists of statements and comments. Statements end with a semi-
colon. Statements and comments are the only elements that can appear without enclosing
braces. Many statements contain a block of sub-statements, which are also terminated with
a semicolon.

The following statements are supported:

acl
defines a named IP address matching list, for access control
and other uses.

controls declares control channels to be used by the rndc utility.

include includes a file.

key
specifies key information for use in authentication and
authorization using TSIG.

logging
specifies what the server logs, and where the log messages
are sent.

masters
defines a named masters list for inclusion in stub and slave
zones’ masters or also-notify lists.

options
controls global server configuration options and sets defaults
for other statements.

server sets certain configuration options on a per-server basis.

statistics-channels
declares communication channels to get access to named
statistics.

BIND 9.12.1rc2 54

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

trusted-keys defines trusted DNSSEC keys.

managed-keys
lists DNSSEC keys to be kept up to date using RFC 5011 trust
anchor maintenance.

view defines a view.

zone defines a zone.

The logging and options statements may only occur once per configuration.

acl Statement Grammar

acl string { address_match_element; ... };

acl Statement Definition and Usage

The acl statement assigns a symbolic name to an address match list. It gets its name from a
primary use of address match lists: Access Control Lists (ACLs).

The following ACLs are built-in:

any Matches all hosts.

none Matches no hosts.

localhost

Matches the IPv4 and IPv6 addresses of all network interfaces on
the system. When addresses are added or removed, the localhost
ACL element is updated to reflect the changes.

localnets

Matches any host on an IPv4 or IPv6 network for which the
system has an interface. When addresses are added or removed,
the localnets ACL element is updated to reflect the changes.
Some systems do not provide a way to determine the prefix
lengths of local IPv6 addresses. In such a case, localnets only
matches the local IPv6 addresses, just like localhost.

controls Statement Grammar

controls {
inet (ipv4_address | ipv6_address |

*) [port (integer | *)] allow
{ address_match_element; ... } [
keys { string; ... }] [read-only

55 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

boolean];
unix quoted_string perm integer

owner integer group integer [
keys { string; ... }] [read-only
boolean];

};

controls Statement Definition and Usage

The controls statement declares control channels to be used by system administrators to control
the operation of the name server. These control channels are used by the rndc utility to send
commands to and retrieve non-DNS results from a name server.

An inet control channel is a TCP socket listening at the specified ip_port on the specified
ip_addr, which can be an IPv4 or IPv6 address. An ip_addr of * (asterisk) is interpreted as
the IPv4 wildcard address; connections will be accepted on any of the system’s IPv4 addresses.
To listen on the IPv6 wildcard address, use an ip_addr of ::. If you will only use rndc on
the local host, using the loopback address (127.0.0.1 or ::1) is recommended for maximum
security.

If no port is specified, port 953 is used. The asterisk "*" cannot be used for ip_port.

The ability to issue commands over the control channel is restricted by the allow and keys
clauses. Connections to the control channel are permitted based on the address_match_list.
This is for simple IP address based filtering only; any key_id elements of the address_match_list
are ignored.

A unix control channel is a UNIX domain socket listening at the specified path in the file sys-
tem. Access to the socket is specified by the perm, owner and group clauses. Note on some
platforms (SunOS and Solaris) the permissions (perm) are applied to the parent directory as the
permissions on the socket itself are ignored.

The primary authorization mechanism of the command channel is the key_list, which contains
a list of key_ids. Each key_id in the key_list is authorized to execute commands over the
control channel. See Remote Name Daemon Control application in Section 3.3) for information
about configuring keys in rndc.

If the read-only clause is enabled, the control channel is limited to the following set of read-only
commands: nta -dump, null, status, showzone, testgen, and zonestatus. By default, read-only
is not enabled and the control channel allows read-write access.

If no controls statement is present, named will set up a default control channel listening on the
loopback address 127.0.0.1 and its IPv6 counterpart ::1. In this case, and also when the controls
statement is present but does not have a keys clause, named will attempt to load the command
channel key from the file rndc.key in /etc (or whatever sysconfdir was specified as when
BIND was built). To create a rndc.key file, run rndc-confgen -a.

The rndc.key feature was created to ease the transition of systems from BIND 8, which did not
have digital signatures on its command channel messages and thus did not have a keys clause.
It makes it possible to use an existing BIND 8 configuration file in BIND 9 unchanged, and
still have rndc work the same way ndc worked in BIND 8, simply by executing the command
rndc-confgen -a after BIND 9 is installed.

BIND 9.12.1rc2 56

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

Since the rndc.key feature is only intended to allow the backward-compatible usage of BIND
8 configuration files, this feature does not have a high degree of configurability. You cannot
easily change the key name or the size of the secret, so you should make a rndc.conf with
your own key if you wish to change those things. The rndc.key file also has its permissions
set such that only the owner of the file (the user that named is running as) can access it. If you
desire greater flexibility in allowing other users to access rndc commands, then you need to
create a rndc.conf file and make it group readable by a group that contains the users who
should have access.

To disable the command channel, use an empty controls statement: controls { };.

include Statement Grammar

include filename;

include Statement Definition and Usage

The include statement inserts the specified file at the point where the include statement is
encountered. The include statement facilitates the administration of configuration files by per-
mitting the reading or writing of some things but not others. For example, the statement could
include private keys that are readable only by the name server.

key Statement Grammar

key string {
algorithm string;
secret string;

};

key Statement Definition and Usage

The key statement defines a shared secret key for use with TSIG (see Section 4.5) or the com-
mand channel (see Section 5.2).

The key statement can occur at the top level of the configuration file or inside a view statement.
Keys defined in top-level key statements can be used in all views. Keys intended for use in a
controls statement (see Section 5.2) must be defined at the top level.

The key_id, also known as the key name, is a domain name uniquely identifying the key. It can
be used in a server statement to cause requests sent to that server to be signed with this key, or
in address match lists to verify that incoming requests have been signed with a key matching
this name, algorithm, and secret.

The algorithm_id is a string that specifies a security/authentication algorithm. The named
server supports hmac-md5, hmac-sha1, hmac-sha224, hmac-sha256, hmac-sha384 and
hmac-sha512 TSIG authentication. Truncated hashes are supported by appending the mini-
mum number of required bits preceded by a dash, e.g. hmac-sha1-80. The secret_string is
the secret to be used by the algorithm, and is treated as a Base64 encoded string.

57 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

logging Statement Grammar

logging {
category string { string; ... };
channel string {
buffered boolean;
file quoted_string [versions (unlimited | integer)]

[size size] [suffix (increment | timestamp)];
null;
print-category boolean;
print-severity boolean;
print-time (iso8601 | iso8601-utc | local | boolean);
severity log_severity;
stderr;
syslog [syslog_facility];

};
};

logging Statement Definition and Usage

The logging statement configures a wide variety of logging options for the name server. Its
channel phrase associates output methods, format options and severity levels with a name that
can then be used with the category phrase to select how various classes of messages are logged.

Only one logging statement is used to define as many channels and categories as are wanted.
If there is no logging statement, the logging configuration will be:

logging {
category default { default_syslog; default_debug; };
category unmatched { null; };

};

If named is started with the -L option, it logs to the specified file at startup, instead of using
syslog. In this case the logging configuration will be:

logging {
category default { default_logfile; default_debug; };
category unmatched { null; };

};

In BIND 9, the logging configuration is only established when the entire configuration file has
been parsed. In BIND 8, it was established as soon as the logging statement was parsed. When
the server is starting up, all logging messages regarding syntax errors in the configuration file
go to the default channels, or to standard error if the -g option was specified.

The channel Phrase

All log output goes to one or more channels; you can make as many of them as you want.

Every channel definition must include a destination clause that says whether messages selected
for the channel go to a file, to a particular syslog facility, to the standard error stream, or are

BIND 9.12.1rc2 58

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

discarded. It can optionally also limit the message severity level that will be accepted by the
channel (the default is info), and whether to include a named-generated time stamp, the cate-
gory name and/or severity level (the default is not to include any).

The null destination clause causes all messages sent to the channel to be discarded; in that case,
other options for the channel are meaningless.

The file destination clause directs the channel to a disk file. It can include additional arguments
to specify how large the file is allowed to become before it is rolled to a backup file (size), how
many backup versions of the file will be saved each time this happens (versions), and the format
to use for naming backup versions (suffix).

The size option is used to limit log file growth. If the file ever exceeds the specified size, then
named will stop writing to the file unless it has a versions option associated with it. If backup
versions are kept, the files are rolled as described below. If there is no versions option, no more
data will be written to the log until some out-of-band mechanism removes or truncates the log
to less than the maximum size. The default behavior is not to limit the size of the file.

File rolling only occurs when the file exceeds the size specified with the size option. No backup
versions are kept by default; any existing log file is simply appended. The versions option
specifies how many backup versions of the file should be kept. If set to unlimited, there is no
limit.

The suffix option can be set to either increment or timestamp. If set to timestamp, then
when a log file is rolled, it is saved with the current timestamp as a file suffix. If set to inc
rement, then backup files are saved with incrementing numbers as suffixes; older files are
renamed when rolling. For example, if versions is set to 3 and suffix to increment, then
when filename.log reaches the size specified by size, filename.log.1 is renamed to
filename.log.2, filename.log.0 is renamed to filename.log.1, and filename.log
is renamed to filename.log.0, whereupon a new filename.log is opened.

Example usage of the size, versions, and suffix options:

channel an_example_channel {
file "example.log" versions 3 size 20m suffix increment;
print-time yes;
print-category yes;

};

The syslog destination clause directs the channel to the system log. Its argument is a syslog
facility as described in the syslog man page. Known facilities are kern, user, mail, daemon,
auth, syslog, lpr, news, uucp, cron, authpriv, ftp, local0, local1, local2, local3, local4, local5,
local6 and local7, however not all facilities are supported on all operating systems. How syslog
will handle messages sent to this facility is described in the syslog.conf man page. If you have
a system which uses a very old version of syslog that only uses two arguments to the openlog()
function, then this clause is silently ignored.

On Windows machines syslog messages are directed to the EventViewer.

The severity clause works like syslog’s "priorities", except that they can also be used if you
are writing straight to a file rather than using syslog. Messages which are not at least of the
severity level given will not be selected for the channel; messages of higher severity levels will
be accepted.

59 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

If you are using syslog, then the syslog.conf priorities will also determine what eventually
passes through. For example, defining a channel facility and severity as daemon and debug
but only logging daemon.warning via syslog.conf will cause messages of severity info and
notice to be dropped. If the situation were reversed, with named writing messages of only
warning or higher, then syslogd would print all messages it received from the channel.

The stderr destination clause directs the channel to the server’s standard error stream. This
is intended for use when the server is running as a foreground process, for example when
debugging a configuration.

The server can supply extensive debugging information when it is in debugging mode. If the
server’s global debug level is greater than zero, then debugging mode will be active. The global
debug level is set either by starting the named server with the -d flag followed by a positive
integer, or by running rndc trace. The global debug level can be set to zero, and debugging
mode turned off, by running rndc notrace. All debugging messages in the server have a debug
level, and higher debug levels give more detailed output. Channels that specify a specific debug
severity, for example:

channel specific_debug_level {
file "foo";
severity debug 3;

};

will get debugging output of level 3 or less any time the server is in debugging mode, regardless
of the global debugging level. Channels with dynamic severity use the server’s global debug
level to determine what messages to print.

print-time can be set to yes, no, or a time format specifier, which may be one of local,
iso8601 or iso8601-utc. If set to no, then the date and time will not be logged. If set to
yes or local, the date and time are logged in a human readable format, using the local time
zone. If set to iso8601 the local time is logged in ISO8601 format. If set to iso8601-utc, then
the date and time are logged in ISO8601 format, with time zone set to UTC. The default is no.

print-time may be specified for a syslog channel, but it is usually pointless since syslog also
logs the date and time.

If print-category is requested, then the category of the message will be logged as well. Finally,
if print-severity is on, then the severity level of the message will be logged. The print- options
may be used in any combination, and will always be printed in the following order: time,
category, severity. Here is an example where all three print- options are on:

28-Feb-2000 15:05:32.863 general:notice:running

If buffered has been turned on the output to files will not be flushed after each log entry. By
default all log messages are flushed.

There are four predefined channels that are used for named’s default logging as follows. If
named is started with the -L then a fifth channel default_logfile is added. How they are used
is described in Section 5.2.

channel default_syslog {
// send to syslog’s daemon facility
syslog daemon;
// only send priority info and higher
severity info;

BIND 9.12.1rc2 60

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

channel default_debug {
// write to named.run in the working directory
// Note: stderr is used instead of "named.run" if
// the server is started with the ’-g’ option.
file "named.run";
// log at the server’s current debug level
severity dynamic;

};

channel default_stderr {
// writes to stderr
stderr;
// only send priority info and higher
severity info;

};

channel null {
// toss anything sent to this channel
null;

};

channel default_logfile {
// this channel is only present if named is
// started with the -L option, whose argument
// provides the file name
file "...";
// log at the server’s current debug level
severity dynamic;

};

The default_debug channel has the special property that it only produces output when the
server’s debug level is nonzero. It normally writes to a file called named.run in the server’s
working directory.

For security reasons, when the -u command line option is used, the named.run file is created
only after named has changed to the new UID, and any debug output generated while named
is starting up and still running as root is discarded. If you need to capture this output, you must
run the server with the -L option to specify a default logfile, or the -g option to log to standard
error which you can redirect to a file.

Once a channel is defined, it cannot be redefined. Thus you cannot alter the built-in channels
directly, but you can modify the default logging by pointing categories at channels you have
defined.

The category Phrase

There are many categories, so you can send the logs you want to see wherever you want, with-
out seeing logs you don’t want. If you don’t specify a list of channels for a category, then log
messages in that category will be sent to the default category instead. If you don’t specify a
default category, the following "default default" is used:

61 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

category default { default_syslog; default_debug; };

If you start named with the -L option then the default category is:

category default { default_logfile; default_debug; };

As an example, let’s say you want to log security events to a file, but you also want keep the
default logging behavior. You’d specify the following:

channel my_security_channel {
file "my_security_file";
severity info;

};
category security {

my_security_channel;
default_syslog;
default_debug;

};

To discard all messages in a category, specify the null channel:

category xfer-out { null; };
category notify { null; };

Following are the available categories and brief descriptions of the types of log information they
contain. More categories may be added in future BIND releases.

client Processing of client requests.

cname
Logs nameservers that are skipped due to them being
a CNAME rather than A / AAAA records.

config Configuration file parsing and processing.

database
Messages relating to the databases used internally by
the name server to store zone and cache data.

default

The default category defines the logging options for
those categories where no specific configuration has
been defined.

delegation-only

Delegation only. Logs queries that have been forced to
NXDOMAIN as the result of a delegation-only zone or
a delegation-only in a forward, hint or stub zone
declaration.

dispatch
Dispatching of incoming packets to the server
modules where they are to be processed.

dnssec DNSSEC and TSIG protocol processing.

BIND 9.12.1rc2 62

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

dnstap The "dnstap" DNS traffic capture system.

edns-disabled

Log queries that have been forced to use plain DNS
due to timeouts. This is often due to the remote servers
not being RFC 1034 compliant (not always returning
FORMERR or similar to EDNS queries and other
extensions to the DNS when they are not understood).
In other words, this is targeted at servers that fail to
respond to DNS queries that they don’t understand.
Note: the log message can also be due to packet loss.
Before reporting servers for non-RFC 1034 compliance
they should be re-tested to determine the nature of the
non-compliance. This testing should prevent or reduce
the number of false-positive reports.
Note: eventually named will have to stop treating
such timeouts as due to RFC 1034 non compliance and
start treating it as plain packet loss. Falsely classifying
packet loss as due to RFC 1034 non compliance
impacts on DNSSEC validation which requires EDNS
for the DNSSEC records to be returned.

general
The catch-all. Many things still aren’t classified into
categories, and they all end up here.

lame-servers

Lame servers. These are misconfigurations in remote
servers, discovered by BIND 9 when trying to query
those servers during resolution.

network Network operations.

notify The NOTIFY protocol.

63 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

queries

Specify where queries should be logged to.
At startup, specifying the category queries will also
enable query logging unless querylog option has been
specified.
The query log entry first reports a client object
identifier in @0x<hexadecimal-number> format. Next,
it reports the client’s IP address and port number, and
the query name, class and type. Next, it reports
whether the Recursion Desired flag was set (+ if set, -
if not set), whether the query was signed (S), whether
EDNS was in use along with the EDNS version
number (E(#)), whether TCP was used (T), whether
DO (DNSSEC Ok) was set (D), whether CD (Checking
Disabled) was set (C), whether a valid DNS Server
COOKIE was received (V), and whether a DNS
COOKIE option without a valid Server COOKIE was
present (K). After this the destination address the
query was sent to is reported. Finally, if any
CLIENT-SUBNET option was present in the client
query, it is included in square brackets in the format
[ECS address/source/scope].
client 127.0.0.1#62536 (www.example.
com):query:www.example.com IN AAAA +SE
client ::1#62537 (www.example.net):
query:www.example.net IN AAAA -SE
(The first part of this log message, showing the client
address/port number and query name, is repeated in
all subsequent log messages related to the same query.)

query-errors
Information about queries that resulted in some
failure.

rate-limit

The start, periodic, and final notices of the rate limiting
of a stream of responses are logged at info severity in
this category. These messages include a hash value of
the domain name of the response and the name itself,
except when there is insufficient memory to record the
name for the final notice The final notice is normally
delayed until about one minute after rate limit stops.
A lack of memory can hurry the final notice, in which
case it starts with an asterisk (*). Various internal
events are logged at debug 1 level and higher.
Rate limiting of individual requests is logged in the
query-errors category.

resolver

DNS resolution, such as the recursive lookups
performed on behalf of clients by a caching name
server.

BIND 9.12.1rc2 64

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

rpz

Information about errors in response policy zone files,
rewritten responses, and at the highest debug levels,
mere rewriting attempts.

security Approval and denial of requests.

spill

Logs queries that have been terminated, either by
dropping or responding with SERVFAIL, as a result of
a fetchlimit quota being exceeded.

trust-anchor-
telemetry

Logs trust-anchor-telemetry requests received by
named.

unmatched

Messages that named was unable to determine the
class of or for which there was no matching view. A
one line summary is also logged to the client category.
This category is best sent to a file or stderr, by default
it is sent to the null channel.

update Dynamic updates.

update-security Approval and denial of update requests.

xfer-in Zone transfers the server is receiving.

xfer-out Zone transfers the server is sending.

zoneload
Loading of zones and creation of automatic empty
zones.

The query-errors Category

The query-errors category is specifically intended for debugging purposes: To identify why
and how specific queries result in responses which indicate an error. Messages of this category
are therefore only logged with debug levels.

At the debug levels of 1 or higher, each response with the rcode of SERVFAIL is logged as
follows:

client 127.0.0.1#61502:query failed (SERVFAIL) for www.example.com/IN/
AAAA at query.c:3880

This means an error resulting in SERVFAIL was detected at line 3880 of source file query.c.
Log messages of this level will particularly help identify the cause of SERVFAIL for an authori-
tative server.

At the debug levels of 2 or higher, detailed context information of recursive resolutions that
resulted in SERVFAIL is logged. The log message will look like as follows:

fetch completed at resolver.c:2970 for www.example.com/A

65 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

in 30.000183: timed out/success [domain:example.com,
referral:2,restart:7,qrysent:8,timeout:5,lame:0,neterr:0,
badresp:1,adberr:0,findfail:0,valfail:0]

The first part before the colon shows that a recursive resolution for AAAA records of www.example.com
completed in 30.000183 seconds and the final result that led to the SERVFAIL was determined
at line 2970 of source file resolver.c.

The following part shows the detected final result and the latest result of DNSSEC validation.
The latter is always success when no validation attempt is made. In this example, this query
resulted in SERVFAIL probably because all name servers are down or unreachable, leading to a
timeout in 30 seconds. DNSSEC validation was probably not attempted.

The last part enclosed in square brackets shows statistics information collected for this particu-
lar resolution attempt. The domain field shows the deepest zone that the resolver reached; it is
the zone where the error was finally detected. The meaning of the other fields is summarized
in the following table.

referral

The number of referrals the resolver received
throughout the resolution process. In the above
example this is 2, which are most likely com and
example.com.

restart

The number of cycles that the resolver tried remote
servers at the domain zone. In each cycle the resolver
sends one query (possibly resending it, depending on
the response) to each known name server of the
domain zone.

qrysent
The number of queries the resolver sent at the domain
zone.

timeout
The number of timeouts since the resolver received the
last response.

lame

The number of lame servers the resolver detected at
the domain zone. A server is detected to be lame
either by an invalid response or as a result of lookup in
BIND9’s address database (ADB), where lame servers
are cached.

neterr

The number of erroneous results that the resolver
encountered in sending queries at the domain zone.
One common case is the remote server is unreachable
and the resolver receives an ICMP unreachable error
message.

badresp

The number of unexpected responses (other than
lame) to queries sent by the resolver at the domain
zone.

BIND 9.12.1rc2 66

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

adberr

Failures in finding remote server addresses of the
domain zone in the ADB. One common case of this is
that the remote server’s name does not have any
address records.

findfail

Failures of resolving remote server addresses. This is a
total number of failures throughout the resolution
process.

valfail

Failures of DNSSEC validation. Validation failures are
counted throughout the resolution process (not limited
to the domain zone), but should only happen in
domain.

At the debug levels of 3 or higher, the same messages as those at the debug 1 level are logged
for other errors than SERVFAIL. Note that negative responses such as NXDOMAIN are not
regarded as errors here.

At the debug levels of 4 or higher, the same messages as those at the debug 2 level are logged for
other errors than SERVFAIL. Unlike the above case of level 3, messages are logged for negative
responses. This is because any unexpected results can be difficult to debug in the recursion case.

masters Statement Grammar

masters string [port integer] [dscp
integer] { (masters | ipv4_address [
port integer] | ipv6_address [port
integer]) [key string]; ... };

masters Statement Definition and Usage

masters lists allow for a common set of masters to be easily used by multiple stub and slave
zones in their masters or also-notify lists.

options Statement Grammar

This is the grammar of the options statement in the named.conf file:

options {
allow-new-zones boolean;
allow-notify { address_match_element; ... };
allow-query { address_match_element; ... };
allow-query-cache { address_match_element; ... };
allow-query-cache-on { address_match_element; ... };
allow-query-on { address_match_element; ... };
allow-recursion { address_match_element; ... };

67 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

allow-recursion-on { address_match_element; ... };
allow-transfer { address_match_element; ... };
allow-update { address_match_element; ... };
allow-update-forwarding { address_match_element; ... };
also-notify [port integer] [dscp integer] { (masters |

ipv4_address [port integer] | ipv6_address [port
integer]) [key string]; ... };

alt-transfer-source (ipv4_address | *) [port (integer | *)
] [dscp integer];

alt-transfer-source-v6 (ipv6_address | *) [port (integer |

*)] [dscp integer];
attach-cache string;
auth-nxdomain boolean; // default changed
auto-dnssec (allow | maintain | off);
automatic-interface-scan boolean;
avoid-v4-udp-ports { portrange; ... };
avoid-v6-udp-ports { portrange; ... };
bindkeys-file quoted_string;
blackhole { address_match_element; ... };
cache-file quoted_string;
catalog-zones { zone quoted_string [default-masters [port

integer] [dscp integer] { (masters | ipv4_address [
port integer] | ipv6_address [port integer]) [key
string]; ... }] [zone-directory quoted_string] [
in-memory boolean] [min-update-interval integer]; ... };

check-dup-records (fail | warn | ignore);
check-integrity boolean;
check-mx (fail | warn | ignore);
check-mx-cname (fail | warn | ignore);
check-names (master | slave | response

) (fail | warn | ignore);
check-sibling boolean;
check-spf (warn | ignore);
check-srv-cname (fail | warn | ignore);
check-wildcard boolean;
cleaning-interval integer;
clients-per-query integer;
cookie-algorithm (aes | sha1 | sha256);
cookie-secret string;
coresize (default | unlimited | sizeval);
datasize (default | unlimited | sizeval);
deny-answer-addresses { address_match_element; ... } [

except-from { quoted_string; ... }];
deny-answer-aliases { quoted_string; ... } [except-from {

quoted_string; ... }];
dialup (notify | notify-passive | passive | refresh | boolean);
directory quoted_string;
disable-algorithms string { string;

... };
disable-ds-digests string { string;

... };
disable-empty-zone string;
dns64 netprefix {

BIND 9.12.1rc2 68

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

break-dnssec boolean;
clients { address_match_element; ... };
exclude { address_match_element; ... };
mapped { address_match_element; ... };
recursive-only boolean;
suffix ipv6_address;

};
dns64-contact string;
dns64-server string;
dnsrps-enable boolean;
dnsrps-options { unspecified-text };
dnssec-accept-expired boolean;
dnssec-dnskey-kskonly boolean;
dnssec-enable boolean;
dnssec-loadkeys-interval integer;
dnssec-lookaside (string trust-anchor

string | auto | no);
dnssec-must-be-secure string boolean;
dnssec-secure-to-insecure boolean;
dnssec-update-mode (maintain | no-resign);
dnssec-validation (yes | no | auto);
dnstap { (all | auth | client | forwarder |

resolver) [(query | response)]; ... };
dnstap-identity (quoted_string | none |

hostname);
dnstap-output (file | unix) quoted_string [

size (unlimited | size)] [versions (
unlimited | integer)] [suffix (increment
| timestamp)];

dnstap-version (quoted_string | none);
dscp integer;
dual-stack-servers [port integer] { (quoted_string [port

integer] [dscp integer] | ipv4_address [port
integer] [dscp integer] | ipv6_address [port
integer] [dscp integer]); ... };

dump-file quoted_string;
edns-udp-size integer;
empty-contact string;
empty-server string;
empty-zones-enable boolean;
fetch-quota-params integer fixedpoint fixedpoint fixedpoint;
fetches-per-server integer [(drop | fail)];
fetches-per-zone integer [(drop | fail)];
files (default | unlimited | sizeval);
filter-aaaa { address_match_element; ... };
filter-aaaa-on-v4 (break-dnssec | boolean);
filter-aaaa-on-v6 (break-dnssec | boolean);
flush-zones-on-shutdown boolean;
forward (first | only);
forwarders [port integer] [dscp integer] { (ipv4_address

| ipv6_address) [port integer] [dscp integer]; ... };
fstrm-set-buffer-hint integer;
fstrm-set-flush-timeout integer;

69 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

fstrm-set-input-queue-size integer;
fstrm-set-output-notify-threshold integer;
fstrm-set-output-queue-model (mpsc | spsc);
fstrm-set-output-queue-size integer;
fstrm-set-reopen-interval integer;
geoip-directory (quoted_string | none);
geoip-use-ecs boolean;
glue-cache boolean;
heartbeat-interval integer;
hostname (quoted_string | none);
inline-signing boolean;
interface-interval integer;
ixfr-from-differences (master | slave | boolean);
keep-response-order { address_match_element; ... };
key-directory quoted_string;
lame-ttl ttlval;
listen-on [port integer] [dscp

integer] {
address_match_element; ... };

listen-on-v6 [port integer] [dscp
integer] {
address_match_element; ... };

lmdb-mapsize sizeval;
lock-file (quoted_string | none);
managed-keys-directory quoted_string;
masterfile-format (map | raw | text);
masterfile-style (full | relative);
match-mapped-addresses boolean;
max-cache-size (default | unlimited | sizeval | percentage);
max-cache-ttl integer;
max-clients-per-query integer;
max-journal-size (default | unlimited | sizeval);
max-ncache-ttl integer;
max-records integer;
max-recursion-depth integer;
max-recursion-queries integer;
max-refresh-time integer;
max-retry-time integer;
max-rsa-exponent-size integer;
max-stale-ttl ttlval;
max-transfer-idle-in integer;
max-transfer-idle-out integer;
max-transfer-time-in integer;
max-transfer-time-out integer;
max-udp-size integer;
max-zone-ttl (unlimited | ttlval);
memstatistics boolean;
memstatistics-file quoted_string;
message-compression boolean;
min-refresh-time integer;
min-retry-time integer;
minimal-any boolean;
minimal-responses (no-auth | no-auth-recursive | boolean);

BIND 9.12.1rc2 70

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

multi-master boolean;
new-zones-directory quoted_string;
no-case-compress { address_match_element; ... };
nocookie-udp-size integer;
notify (explicit | master-only | boolean);
notify-delay integer;
notify-rate integer;
notify-source (ipv4_address | *) [port (integer | *)] [

dscp integer];
notify-source-v6 (ipv6_address | *) [port (integer | *)]

[dscp integer];
notify-to-soa boolean;
nta-lifetime ttlval;
nta-recheck ttlval;
nxdomain-redirect string;
pid-file (quoted_string | none);
port integer;
preferred-glue string;
prefetch integer [integer];
provide-ixfr boolean;
query-source (([address] (ipv4_address | *) [port (

integer | *)]) | ([[address] (ipv4_address | *)]
port (integer | *))) [dscp integer];

query-source-v6 (([address] (ipv6_address | *) [port (
integer | *)]) | ([[address] (ipv6_address | *)]
port (integer | *))) [dscp integer];

querylog boolean;
random-device (quoted_string | none);
rate-limit {
all-per-second integer;
errors-per-second integer;
exempt-clients { address_match_element; ... };
ipv4-prefix-length integer;
ipv6-prefix-length integer;
log-only boolean;
max-table-size integer;
min-table-size integer;
nodata-per-second integer;
nxdomains-per-second integer;
qps-scale integer;
referrals-per-second integer;
responses-per-second integer;
slip integer;
window integer;

};
recursing-file quoted_string;
recursion boolean;
recursive-clients integer;
request-expire boolean;
request-ixfr boolean;
request-nsid boolean;
require-server-cookie boolean;
reserved-sockets integer;

71 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

resolver-nonbackoff-tries integer;
resolver-query-timeout integer;
resolver-retry-interval integer;
response-padding { address_match_element; ... } block-size

integer;
response-policy { zone quoted_string [log boolean] [

max-policy-ttl integer] [min-update-interval integer] [
policy (cname | disabled | drop | given | no-op | nodata |
nxdomain | passthru | tcp-only quoted_string)] [
recursive-only boolean] [nsip-enable boolean] [
nsdname-enable boolean]; ... } [break-dnssec boolean] [
max-policy-ttl integer] [min-update-interval integer] [
min-ns-dots integer] [nsip-wait-recurse boolean] [
qname-wait-recurse boolean] [recursive-only boolean] [
nsip-enable boolean] [nsdname-enable boolean] [
dnsrps-enable boolean] [dnsrps-options { unspecified-text
}];

root-delegation-only [exclude { quoted_string; ... }];
rrset-order { [class string] [type string] [name

quoted_string] string string; ... };
secroots-file quoted_string;
send-cookie boolean;
serial-query-rate integer;
serial-update-method (date | increment | unixtime);
server-id (quoted_string | none | hostname);
servfail-ttl ttlval;
session-keyalg string;
session-keyfile (quoted_string | none);
session-keyname string;
sig-signing-nodes integer;
sig-signing-signatures integer;
sig-signing-type integer;
sig-validity-interval integer [integer];
sortlist { address_match_element; ... };
stacksize (default | unlimited | sizeval);
stale-answer-enable boolean;
stale-answer-ttl ttlval;
startup-notify-rate integer;
statistics-file quoted_string;
synth-from-dnssec boolean;
tcp-advertised-timeout integer;
tcp-clients integer;
tcp-idle-timeout integer;
tcp-initial-timeout integer;
tcp-keepalive-timeout integer;
tcp-listen-queue integer;
tkey-dhkey quoted_string integer;
tkey-domain quoted_string;
tkey-gssapi-credential quoted_string;
tkey-gssapi-keytab quoted_string;
transfer-format (many-answers | one-answer);
transfer-message-size integer;
transfer-source (ipv4_address | *) [port (integer | *)] [

BIND 9.12.1rc2 72

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

dscp integer];
transfer-source-v6 (ipv6_address | *) [port (integer | *)

] [dscp integer];
transfers-in integer;
transfers-out integer;
transfers-per-ns integer;
trust-anchor-telemetry boolean; // experimental
try-tcp-refresh boolean;
update-check-ksk boolean;
use-alt-transfer-source boolean;
use-v4-udp-ports { portrange; ... };
use-v6-udp-ports { portrange; ... };
v6-bias integer;
version (quoted_string | none);
zero-no-soa-ttl boolean;
zero-no-soa-ttl-cache boolean;
zone-statistics (full | terse | none | boolean);

};

options Statement Definition and Usage

The options statement sets up global options to be used by BIND. This statement may appear
only once in a configuration file. If there is no options statement, an options block with each
option set to its default will be used.

attach-cache
Allows multiple views to share a single cache database. Each view has its own cache
database by default, but if multiple views have the same operational policy for name
resolution and caching, those views can share a single cache to save memory and possibly
improve resolution efficiency by using this option.

The attach-cache option may also be specified in view statements, in which case it over-
rides the global attach-cache option.

The cache_name specifies the cache to be shared. When the named server configures
views which are supposed to share a cache, it creates a cache with the specified name for
the first view of these sharing views. The rest of the views will simply refer to the already
created cache.

One common configuration to share a cache would be to allow all views to share a single
cache. This can be done by specifying the attach-cache as a global option with an arbitrary
name.

Another possible operation is to allow a subset of all views to share a cache while the
others to retain their own caches. For example, if there are three views A, B, and C, and
only A and B should share a cache, specify the attach-cache option as a view A (or B)’s
option, referring to the other view name:

view "A" {
// this view has its own cache
...

};

73 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

view "B" {
// this view refers to A’s cache
attach-cache "A";

};
view "C" {
// this view has its own cache
...

};

Views that share a cache must have the same policy on configurable parameters that
may affect caching. The current implementation requires the following configurable op-
tions be consistent among these views: check-names, cleaning-interval, dnssec-accept-
expired, dnssec-validation, max-cache-ttl, max-ncache-ttl, max-stale-ttl, max-cache-size,
and zero-no-soa-ttl.

Note that there may be other parameters that may cause confusion if they are inconsistent
for different views that share a single cache. For example, if these views define different
sets of forwarders that can return different answers for the same question, sharing the an-
swer does not make sense or could even be harmful. It is administrator’s responsibility to
ensure configuration differences in different views do not cause disruption with a shared
cache.

directory
The working directory of the server. Any non-absolute pathnames in the configuration file
will be taken as relative to this directory. The default location for most server output files
(e.g. named.run) is this directory. If a directory is not specified, the working directory
defaults to `.’, the directory from which the server was started. The directory specified
should be an absolute path, and must be writable by the effective user ID of the named
process.

dnstap
dnstap is a fast, flexible method for capturing and logging DNS traffic. Developed by
Robert Edmonds at Farsight Security, Inc., and supported by multiple DNS implementa-
tions, dnstap uses libfstrm (a lightweight high-speed framing library, see https://github.com/farsightsec/fstrm)
to send event payloads which are encoded using Protocol Buffers (libprotobuf-c, a mecha-
nism for serializing structured data developed by Google, Inc.; see https://developers.google.com/protocol-
buffers).

To enable dnstap at compile time, the fstrm and protobuf-c libraries must be available,
and BIND must be configured with --enable-dnstap.

The dnstap option is a bracketed list of message types to be logged. These may be set
differently for each view. Supported types are client, auth, resolver, and forwar
der. Specifying type all will cause all dnstap messages to be logged, regardless of type.

Each type may take an additional argument to indicate whether to log query messages
or response messages; if not specified, both queries and responses are logged.

Example: To log all authoritative queries and responses, recursive client responses, and
upstream queries sent by the resolver, use:

dnstap {
auth;
client response;
resolver query;

BIND 9.12.1rc2 74

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

};

Logged dnstap messages can be parsed using the dnstap-read utility (see dnstap-read(1)
for details).

For more information on dnstap, see http://dnstap.info.

The fstrm library has a number of tunables that are exposed in named.conf, and can be
modified if necessary to improve performance or prevent loss of data. These are:

• fstrm-set-buffer-hint: The threshold number of bytes to accumulate in the output
buffer before forcing a buffer flush. The minimum is 1024, the maximum is 65536,
and the default is 8192.

• fstrm-set-flush-timeout: The number of seconds to allow unflushed data to remain
in the output buffer. The minimum is 1 second, the maximum is 600 seconds (10
minutes), and the default is 1 second.

• fstrm-set-output-notify-threshold: The number of outstanding queue entries to al-
low on an input queue before waking the I/O thread. The minimum is 1 and the
default is 32.

• fstrm-set-output-queue-model: Controls the queuing semantics to use for queue ob-
jects. The default is mpsc (multiple producer, single consumer); the other option is
spsc (single producer, single consumer).

• fstrm-set-input-queue-size: The number of queue entries to allocate for each input
queue. This value must be a power of 2. The minimum is 2, the maximum is 16384,
and the default is 512.

• fstrm-set-output-queue-size: The number of queue entries to allocate for each out-
put queue. The minimum is 2, the maximum is system-dependent and based on
IOV_MAX, and the default is 64.

• fstrm-set-reopen-interval: The number of seconds to wait between attempts to re-
open a closed output stream. The minimum is 1 second, the maximum is 600 seconds
(10 minutes), and the default is 5 seconds.

Note that all of the above minimum, maximum, and default values are set by the libfstrm
library, and may be subject to change in future versions of the library. See the libfstrm
documentation for more information.

dnstap-output
Configures the path to which the dnstap frame stream will be sent if dnstap is enabled at
compile time and active.

The first argument is either file or unix, indicating whether the destination is a file or a
UNIX domain socket. The second argument is the path of the file or socket. (Note: when
using a socket, dnstap messages will only be sent if another process such as fstrm_capture
(provided with libfstrm) is listening on the socket.)

If the first argument is file, then up to three additional options can be added: size in-
dicates the size to which a dnstap log file can grow before being rolled to a new file;
versions specifies the number of rolled log files to retain; and suffix indicates whether
to retain rolled log files with an incrementing counter as the suffix (increment) or with
the current timestamp (timestamp). These are similar to the size, versions, and suffix

75 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

options in a logging channel. The default is to allow dnstap log files to grow to any size
without rolling.

dnstap-output can only be set globally in options. Currently, it can only be set once while
named is running; once set, it cannot be changed by rndc reload or rndc reconfig.

dnstap-identity
Specifies an identity string to send in dnstap messages. If set to hostname, which is the
default, the server’s hostname will be sent. If set to none, no identity string will be sent.

dnstap-version
Specifies a version string to send in dnstap messages. The default is the version number
of the BIND release. If set to none, no version string will be sent.

geoip-directory
Specifies the directory containing GeoIP .dat database files for GeoIP initialization. By
default, this option is unset and the GeoIP support will use libGeoIP’s built-in directory.
(For details, see Section 5.2 about the geoip ACL.)

key-directory
When performing dynamic update of secure zones, the directory where the public and
private DNSSEC key files should be found, if different than the current working directory.
(Note that this option has no effect on the paths for files containing non-DNSSEC keys
such as bind.keys, rndc.key or session.key.)

lmdb-mapsize
When named is built with liblmdb, this option sets a maximum size for the memory map
of the new-zone database (NZD) in LMDB database format. This database is used to store
configuration information for zones added using rndc addzone. Note that this is not the
NZD database file size, but the largest size that the database may grow to.

Because the database file is memory mapped, its size is limited by the address space of the
named process. The default of 32 megabytes was chosen to be usable with 32-bit named
builds. The largest permitted value is 1 terabyte. Given typical zone configurations with-
out elaborate ACLs, a 32 MB NZD file ought to be able to hold configurations of about
100,000 zones.

managed-keys-directory
Specifies the directory in which to store the files that track managed DNSSEC keys. By
default, this is the working directory. The directory must be writable by the effective user
ID of the named process.

If named is not configured to use views, then managed keys for the server will be tracked
in a single file called managed-keys.bind. Otherwise, managed keys will be tracked
in separate files, one file per view; each file name will be the view name (or, if it contains
characters that are incompatible with use as a file name, the SHA256 hash of the view
name), followed by the extension .mkeys.

(Note: in previous releases, file names for views always used the SHA256 hash of the view
name. To ensure compatibility after upgrade, if a file using the old name format is found
to exist, it will be used instead of the new format.)

new-zones-directory
Specifies the directory in which to store the configuration parameters for zones added via

BIND 9.12.1rc2 76

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

rndc addzone. By default, this is the working directory. If set to a relative path, it will be
relative to the working directory. The directory must be writable by the effective user ID
of the named process.

named-xfer
This option is obsolete. It was used in BIND 8 to specify the pathname to the named-xfer
program. In BIND 9, no separate named-xfer program is needed; its functionality is built
into the name server.

tkey-gssapi-keytab
The KRB5 keytab file to use for GSS-TSIG updates. If this option is set and tkey-gssapi-
credential is not set, then updates will be allowed with any key matching a principal in
the specified keytab.

tkey-gssapi-credential
The security credential with which the server should authenticate keys requested by the
GSS-TSIG protocol. Currently only Kerberos 5 authentication is available and the cre-
dential is a Kerberos principal which the server can acquire through the default system
key file, normally /etc/krb5.keytab. The location keytab file can be overridden us-
ing the tkey-gssapi-keytab option. Normally this principal is of the form "DNS/server.
domain". To use GSS-TSIG, tkey-domain must also be set if a specific keytab is not set
with tkey-gssapi-keytab.

tkey-domain
The domain appended to the names of all shared keys generated with TKEY. When a
client requests a TKEY exchange, it may or may not specify the desired name for the key. If
present, the name of the shared key will be client specified part + tkey-domain.
Otherwise, the name of the shared key will be random hex digits + tkey-domain. In
most cases, the domainname should be the server’s domain name, or an otherwise non-
existent subdomain like "_tkey.domainname". If you are using GSS-TSIG, this variable
must be defined, unless you specify a specific keytab using tkey-gssapi-keytab.

tkey-dhkey
The Diffie-Hellman key used by the server to generate shared keys with clients using the
Diffie-Hellman mode of TKEY. The server must be able to load the public and private keys
from files in the working directory. In most cases, the key_name should be the server’s
host name.

cache-file
This is for testing only. Do not use.

dump-file
The pathname of the file the server dumps the database to when instructed to do so with
rndc dumpdb. If not specified, the default is named_dump.db.

memstatistics-file
The pathname of the file the server writes memory usage statistics to on exit. If not speci-
fied, the default is named.memstats.

lock-file
The pathname of a file on which named will attempt to acquire a file lock when starting
up for the first time; if unsuccessful, the server will will terminate, under the assumption

77 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

that another server is already running. If not specified, the default is /var/run/named/
named.lock.
Specifying lock-file none disables the use of a lock file. lock-file is ignored if named was
run using the -X option, which overrides it. Changes to lock-file are ignored if named is
being reloaded or reconfigured; it is only effective when the server is first started up.

pid-file
The pathname of the file the server writes its process ID in. If not specified, the default
is /var/run/named/named.pid. The PID file is used by programs that want to send
signals to the running name server. Specifying pid-file none disables the use of a PID
file --- no file will be written and any existing one will be removed. Note that none is a
keyword, not a filename, and therefore is not enclosed in double quotes.

recursing-file
The pathname of the file the server dumps the queries that are currently recursing when
instructed to do so with rndc recursing. If not specified, the default is named.recursing.

statistics-file
The pathname of the file the server appends statistics to when instructed to do so using
rndc stats. If not specified, the default is named.stats in the server’s current directory.
The format of the file is described in Section 5.4.

bindkeys-file
The pathname of a file to override the built-in trusted keys provided by named. See the
discussion of dnssec-validation for details. If not specified, the default is /etc/bind.
keys.

secroots-file
The pathname of the file the server dumps security roots to when instructed to do so with
rndc secroots. If not specified, the default is named.secroots.

session-keyfile
The pathname of the file into which to write a TSIG session key generated by named for
use by nsupdate -l. If not specified, the default is /var/run/named/session.key.
(See Section 5.2, and in particular the discussion of the update-policy statement’s local
option for more information about this feature.)

session-keyname
The key name to use for the TSIG session key. If not specified, the default is "local-ddns".

session-keyalg
The algorithm to use for the TSIG session key. Valid values are hmac-sha1, hmac-sha224,
hmac-sha256, hmac-sha384, hmac-sha512 and hmac-md5. If not specified, the default is
hmac-sha256.

port
The UDP/TCP port number the server uses for receiving and sending DNS protocol traf-
fic. The default is 53. This option is mainly intended for server testing; a server using a
port other than 53 will not be able to communicate with the global DNS.

dscp
The global Differentiated Services Code Point (DSCP) value to classify outgoing DNS traf-
fic on operating systems that support DSCP. Valid values are 0 through 63. It is not con-
figured by default.

BIND 9.12.1rc2 78

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

random-device
Specifies a source of entropy to be used by the server. This is a device or file from which
to read entropy. If it is a file, operations requiring entropy will fail when the file has been
exhausted.

Entropy is needed for cryptographic operations such as TKEY transactions, dynamic up-
date of signed zones, and generation of TSIG session keys. It is also used for seeding and
stirring the pseudo-random number generator, which is used for less critical functions
requiring randomness such as generation of DNS message transaction ID’s.

If random-device is not specified, or if it is set to none, entropy will be read from the
random number generation function supplied by the cryptographic library with which
BIND was linked (i.e. OpenSSL or a PKCS#11 provider).

The random-device option takes effect during the initial configuration load at server
startup time and is ignored on subsequent reloads.

If BIND is built with configure --disable-crypto-rand, then entropy is not sourced from
the cryptographic library. In this case, if random-device is not specified, the default value
is the system random device, /dev/random or the equivalent. This default can be over-
ridden with configure --with-randomdev. If no system random device exists, then no
entropy source will be configured, and named will only be able to use pseudo-random
numbers.

preferred-glue
If specified, the listed type (A or AAAA) will be emitted before other glue in the additional
section of a query response. The default is to prefer A records when responding to queries
that arrived via IPv4 and AAAA when responding to queries that arrived via IPv6.

root-delegation-only
Turn on enforcement of delegation-only in TLDs (top level domains) and root zones with
an optional exclude list.

DS queries are expected to be made to and be answered by delegation only zones. Such
queries and responses are treated as an exception to delegation-only processing and are
not converted to NXDOMAIN responses provided a CNAME is not discovered at the
query name.

If a delegation only zone server also serves a child zone it is not always possible to deter-
mine whether an answer comes from the delegation only zone or the child zone. SOA NS
and DNSKEY records are apex only records and a matching response that contains these
records or DS is treated as coming from a child zone. RRSIG records are also examined to
see if they are signed by a child zone or not. The authority section is also examined to see
if there is evidence that the answer is from the child zone. Answers that are determined
to be from a child zone are not converted to NXDOMAIN responses. Despite all these
checks there is still a possibility of false negatives when a child zone is being served.

Similarly false positives can arise from empty nodes (no records at the name) in the dele-
gation only zone when the query type is not ANY.

Note some TLDs are not delegation only (e.g. "DE", "LV", "US" and "MUSEUM"). This list
is not exhaustive.

options {
root-delegation-only exclude { "de"; "lv"; "us"; "museum"; };

};

79 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

disable-algorithms
Disable the specified DNSSEC algorithms at and below the specified name. Multiple
disable-algorithms statements are allowed. Only the best match disable-algorithms clause
will be used to determine which algorithms are used.

If all supported algorithms are disabled, the zones covered by the disable-algorithms will
be treated as insecure.

disable-ds-digests
Disable the specified DS/DLV digest types at and below the specified name. Multiple
disable-ds-digests statements are allowed. Only the best match disable-ds-digests clause
will be used to determine which digest types are used.

If all supported digest types are disabled, the zones covered by the disable-ds-digests
will be treated as insecure.

dnssec-lookaside
When set, dnssec-lookaside provides the validator with an alternate method to validate
DNSKEY records at the top of a zone. When a DNSKEY is at or below a domain specified
by the deepest dnssec-lookaside, and the normal DNSSEC validation has left the key
untrusted, the trust-anchor will be appended to the key name and a DLV record will be
looked up to see if it can validate the key. If the DLV record validates a DNSKEY (similarly
to the way a DS record does) the DNSKEY RRset is deemed to be trusted.

If dnssec-lookaside is set to no, then dnssec-lookaside is not used.

NOTE: The ISC-provided DLV service at dlv.isc.org, has been shut down. The dnssec-
lookaside auto; configuration option, which set named up to use ISC DLV with minimal
configuration, has accordingly been removed.

dnssec-must-be-secure
Specify hierarchies which must be or may not be secure (signed and validated). If yes,
then named will only accept answers if they are secure. If no, then normal DNSSEC val-
idation applies allowing for insecure answers to be accepted. The specified domain must
be under a trusted-keys or managed-keys statement, or dnssec-validation auto must be
active.

dns64
This directive instructs named to return mapped IPv4 addresses to AAAA queries when
there are no AAAA records. It is intended to be used in conjunction with a NAT64. Each
dns64 defines one DNS64 prefix. Multiple DNS64 prefixes can be defined.

Compatible IPv6 prefixes have lengths of 32, 40, 48, 56, 64 and 96 as per RFC 6052.

Additionally a reverse IP6.ARPA zone will be created for the prefix to provide a mapping
from the IP6.ARPA names to the corresponding IN-ADDR.ARPA names using synthe-
sized CNAMEs. dns64-server and dns64-contact can be used to specify the name of the
server and contact for the zones. These are settable at the view / options level. These are
not settable on a per-prefix basis.

Each dns64 supports an optional clients ACL that determines which clients are affected
by this directive. If not defined, it defaults to any;.

Each dns64 supports an optional mapped ACL that selects which IPv4 addresses are to
be mapped in the corresponding A RRset. If not defined it defaults to any;.

BIND 9.12.1rc2 80

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

Normally, DNS64 won’t apply to a domain name that owns one or more AAAA records;
these records will simply be returned. The optional exclude ACL allows specification of
a list of IPv6 addresses that will be ignored if they appear in a domain name’s AAAA
records, and DNS64 will be applied to any A records the domain name owns. If not
defined, exclude defaults to ::ffff:0.0.0.0/96.

A optional suffix can also be defined to set the bits trailing the mapped IPv4 address bits.
By default these bits are set to ::. The bits matching the prefix and mapped IPv4 address
must be zero.

If recursive-only is set to yes the DNS64 synthesis will only happen for recursive queries.
The default is no.

If break-dnssec is set to yes the DNS64 synthesis will happen even if the result, if vali-
dated, would cause a DNSSEC validation failure. If this option is set to no (the default),
the DO is set on the incoming query, and there are RRSIGs on the applicable records, then
synthesis will not happen.

acl rfc1918 { 10/8; 192.168/16; 172.16/12; };

dns64 64:FF9B::/96 {
clients { any; };
mapped { !rfc1918; any; };
exclude { 64:FF9B::/96; ::ffff:0000:0000/96; };
suffix ::;

};

dnssec-loadkeys-interval
When a zone is configured with auto-dnssec maintain; its key repository must be checked
periodically to see if any new keys have been added or any existing keys’ timing metadata
has been updated (see dnssec-keygen(8) and dnssec-settime(8)). The dnssec-loadkeys-
interval option sets the frequency of automatic repository checks, in minutes. The default
is 60 (1 hour), the minimum is 1 (1 minute), and the maximum is 1440 (24 hours); any
higher value is silently reduced.

dnssec-update-mode
If this option is set to its default value of maintain in a zone of type master which is
DNSSEC-signed and configured to allow dynamic updates (see Section 5.2), and if named
has access to the private signing key(s) for the zone, then named will automatically sign
all new or changed records and maintain signatures for the zone by regenerating RRSIG
records whenever they approach their expiration date.

If the option is changed to no-resign, then named will sign all new or changed records,
but scheduled maintenance of signatures is disabled.

With either of these settings, named will reject updates to a DNSSEC-signed zone when
the signing keys are inactive or unavailable to named. (A planned third option, exter
nal, will disable all automatic signing and allow DNSSEC data to be submitted into a
zone via dynamic update; this is not yet implemented.)

nta-lifetime
Species the default lifetime, in seconds, that will be used for negative trust anchors added
via rndc nta.

81 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

A negative trust anchor selectively disables DNSSEC validation for zones that are known
to be failing because of misconfiguration rather than an attack. When data to be validated
is at or below an active NTA (and above any other configured trust anchors), named will
abort the DNSSEC validation process and treat the data as insecure rather than bogus.
This continues until the NTA’s lifetime is elapsed. NTAs persist across named restarts.

For convenience, TTL-style time unit suffixes can be used to specify the NTA lifetime in
seconds, minutes or hours. nta-lifetime defaults to one hour. It cannot exceed one
week.

nta-recheck
Species how often to check whether negative trust anchors added via rndc nta are still
necessary.

A negative trust anchor is normally used when a domain has stopped validating due to
operator error; it temporarily disables DNSSEC validation for that domain. In the inter-
est of ensuring that DNSSEC validation is turned back on as soon as possible, named
will periodically send a query to the domain, ignoring negative trust anchors, to find out
whether it can now be validated. If so, the negative trust anchor is allowed to expire early.

Validity checks can be disabled for an individual NTA by using rndc nta -f, or for all NTAs
by setting nta-recheck to zero.

For convenience, TTL-style time unit suffixes can be used to specify the NTA recheck
interval in seconds, minutes or hours. The default is five minutes. It cannot be longer
than nta-lifetime (which cannot be longer than a week).

max-zone-ttl
Specifies a maximum permissible TTL value in seconds. For convenience, TTL-style time
unit suffixes may be used to specify the maximum value. When loading a zone file using
a masterfile-format of text or raw, any record encountered with a TTL higher than
max-zone-ttl will cause the zone to be rejected.

This is useful in DNSSEC-signed zones because when rolling to a new DNSKEY, the old
key needs to remain available until RRSIG records have expired from caches. The max-
zone-ttl option guarantees that the largest TTL in the zone will be no higher than the
set value.

(NOTE: Because map-format files load directly into memory, this option cannot be used
with them.)

The default value is unlimited. A max-zone-ttl of zero is treated as unlimited.

stale-answer-ttl
Specifies the TTL to be returned on stale answers. The default is 1 second. The minimum
allowed is also 1 second; a value of 0 will be updated silently to 1 second. For stale answers
to be returned, they must be enabled (either in the configuration file using stale-answer-
enable or via rndc), and max-stale-ttl must be set to a nonzero value.

serial-update-method
Zones configured for dynamic DNS may use this option to set the update method that
will be used for the zone serial number in the SOA record.

With the default setting of serial-update-method increment;, the SOA serial number will
be incremented by one each time the zone is updated.

BIND 9.12.1rc2 82

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

When set to serial-update-method unixtime;, the SOA serial number will be set to the
number of seconds since the UNIX epoch, unless the serial number is already greater than
or equal to that value, in which case it is simply incremented by one.

When set to serial-update-method date;, the new SOA serial number will be the current
date in the form "YYYYMMDD", followed by two zeroes, unless the existing serial number
is already greater than or equal to that value, in which case it is incremented by one.

zone-statistics
If full, the server will collect statistical data on all zones (unless specifically turned off
on a per-zone basis by specifying zone-statistics terse or zone-statistics none in the zone
statement). The default is terse, providing minimal statistics on zones (including name
and current serial number, but not query type counters).

These statistics may be accessed via the statistics-channel or using rndc stats, which will
dump them to the file listed in the statistics-file. See also Section 5.4.

For backward compatibility with earlier versions of BIND 9, the zone-statistics option can
also accept yes or no; yes has the same meaning as full. As of BIND 9.10, no has the
same meaning as none; previously, it was the same as terse.

Boolean Options

automatic-interface-scan
If yes and supported by the OS, automatically rescan network interfaces when the inter-
face addresses are added or removed. The default is yes.

Currently the OS needs to support routing sockets for automatic-interface-scan to be sup-
ported.

allow-new-zones
If yes, then zones can be added at runtime via rndc addzone. The default is no.

Newly added zones’ configuration parameters are stored so that they can persist after the
server is restarted. The configuration information is saved in a file called viewname.nzf
(or, if named is compiled with liblmdb, in an LMDB database file called viewname.nzd).
viewname is the name of the view, unless the view name contains characters that are in-
compatible with use as a file name, in which case a cryptographic hash of the view name
is used instead.

Zones added at runtime will have their configuration stored either in a new-zone file
(NZF) or a new-zone database (NZD) depending on whether named was linked with
liblmdb at compile time. See rndc(8) for further details about rndc addzone.

auth-nxdomain
If yes, then the AA bit is always set on NXDOMAIN responses, even if the server is not
actually authoritative. The default is no; this is a change from BIND 8. If you are using
very old DNS software, you may need to set it to yes.

deallocate-on-exit
This option was used in BIND 8 to enable checking for memory leaks on exit. BIND 9
ignores the option and always performs the checks.

83 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

memstatistics
Write memory statistics to the file specified by memstatistics-file at exit. The default is no
unless ’-m record’ is specified on the command line in which case it is yes.

dialup
If yes, then the server treats all zones as if they are doing zone transfers across a dial-on-
demand dialup link, which can be brought up by traffic originating from this server. This
has different effects according to zone type and concentrates the zone maintenance so that
it all happens in a short interval, once every heartbeat-interval and hopefully during the
one call. It also suppresses some of the normal zone maintenance traffic. The default is
no.

The dialup option may also be specified in the view and zone statements, in which case
it overrides the global dialup option.

If the zone is a master zone, then the server will send out a NOTIFY request to all the
slaves (default). This should trigger the zone serial number check in the slave (providing
it supports NOTIFY) allowing the slave to verify the zone while the connection is active.
The set of servers to which NOTIFY is sent can be controlled by notify and also-notify.

If the zone is a slave or stub zone, then the server will suppress the regular "zone up
to date" (refresh) queries and only perform them when the heartbeat-interval expires in
addition to sending NOTIFY requests.

Finer control can be achieved by using notify which only sends NOTIFY messages,
notify-passive which sends NOTIFY messages and suppresses the normal refresh
queries, refresh which suppresses normal refresh processing and sends refresh queries
when the heartbeat-interval expires, and passive which just disables normal refresh
processing.

dialup mode normal refresh heart-beat refresh heart-beat notify

no (default) yes no no

yes no yes yes

notify yes no yes

refresh no yes no

passive no no no

notify-passive no no yes

Note that normal NOTIFY processing is not affected by dialup.

fake-iquery
In BIND 8, this option enabled simulating the obsolete DNS query type IQUERY. BIND 9
never does IQUERY simulation.

fetch-glue
This option is obsolete. In BIND 8, fetch-glue yes caused the server to attempt to

BIND 9.12.1rc2 84

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

fetch glue resource records it didn’t have when constructing the additional data section of
a response. This is now considered a bad idea and BIND 9 never does it.

flush-zones-on-shutdown
When the nameserver exits due receiving SIGTERM, flush or do not flush any pending
zone writes. The default is flush-zones-on-shutdown no.

geoip-use-ecs
When BIND is compiled with GeoIP support and configured with "geoip" ACL elements,
this option indicates whether the EDNS Client Subnet option, if present in a request,
should be used for matching against the GeoIP database. The default is geoip-use-ecs
yes.

has-old-clients
This option was incorrectly implemented in BIND 8, and is ignored by BIND 9. To
achieve the intended effect of has-old-clients yes, specify the two separate options auth-
nxdomain yes and rfc2308-type1 no instead.

host-statistics
In BIND 8, this enabled keeping of statistics for every host that the name server interacts
with. Not implemented in BIND 9.

maintain-ixfr-base
This option is obsolete. It was used in BIND 8 to determine whether a transaction log was
kept for Incremental Zone Transfer. BIND 9 maintains a transaction log whenever possi-
ble. If you need to disable outgoing incremental zone transfers, use provide-ixfr no.

message-compression
If yes, DNS name compression is used in responses to regular queries (not including
AXFR or IXFR, which always uses compression). Setting this option to no reduces CPU
usage on servers and may improve throughput. However, it increases response size,
which may cause more queries to be processed using TCP; a server with compression
disabled is out of compliance with RFC 1123 Section 6.1.3.2. The default is yes.

minimal-responses
If set to yes, then when generating responses the server will only add records to the
authority and additional data sections when they are required (e.g. delegations, negative
responses). This may improve the performance of the server.

When set to no-auth, the server will omit records from the authority section unless
they are required, but it may still add records to the additional section. When set to
no-auth-recursive, this is only done if the query is recursive. When the query is
not recursive, the effect is same as if no was specified. These settings are useful when an-
swering stub clients, which usually ignore the authority section. no-auth-recursive is
designed for mixed-mode servers which handle both authoritative and recursive queries.

The default is no-auth-recursive.

glue-cache
When set to yes, a cache is used to improve query performance when adding address-
type (A and AAAA) glue records to the additional section of DNS response messages that
delegate to a child zone.

85 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

The glue cache uses memory proportional to the number of delegations in the zone. The
default setting is yes, which improves performance at the cost of increased memory usage
for the zone. If you don’t want this, set it to no.

minimal-any
If set to yes, then when generating a positive response to a query of type ANY over UDP,
the server will reply with only one of the RRsets for the query name, and its covering
RRSIGs if any, instead of replying with all known RRsets for the name. Similarly, a query
for type RRSIG will be answered with the RRSIG records covering only one type. This
can reduce the impact of some kinds of attack traffic, without harming legitimate clients.
(Note, however, that the RRset returned is the first one found in the database; it is not
necessarily the smallest available RRset.) Additionally, minimal-responses is turned
on for these queries, so no unnecessary records will be added to the authority or additional
sections. The default is no.

multiple-cnames
This option was used in BIND 8 to allow a domain name to have multiple CNAME records
in violation of the DNS standards. BIND 9.2 onwards always strictly enforces the CNAME
rules both in master files and dynamic updates.

notify
If yes (the default), DNS NOTIFY messages are sent when a zone the server is authorita-
tive for changes, see Section 4.1. The messages are sent to the servers listed in the zone’s
NS records (except the master server identified in the SOA MNAME field), and to any
servers listed in the also-notify option.

If master-only, notifies are only sent for master zones. If explicit, notifies are sent
only to servers explicitly listed using also-notify. If no, no notifies are sent.

The notify option may also be specified in the zone statement, in which case it overrides
the options notify statement. It would only be necessary to turn off this option if it caused
slaves to crash.

notify-to-soa
If yes do not check the nameservers in the NS RRset against the SOA MNAME. Normally
a NOTIFY message is not sent to the SOA MNAME (SOA ORIGIN) as it is supposed to
contain the name of the ultimate master. Sometimes, however, a slave is listed as the SOA
MNAME in hidden master configurations and in that case you would want the ultimate
master to still send NOTIFY messages to all the nameservers listed in the NS RRset.

recursion
If yes, and a DNS query requests recursion, then the server will attempt to do all the work
required to answer the query. If recursion is off and the server does not already know the
answer, it will return a referral response. The default is yes. Note that setting recursion
no does not prevent clients from getting data from the server’s cache; it only prevents new
data from being cached as an effect of client queries. Caching may still occur as an effect
the server’s internal operation, such as NOTIFY address lookups.

request-nsid
If yes, then an empty EDNS(0) NSID (Name Server Identifier) option is sent with all
queries to authoritative name servers during iterative resolution. If the authoritative
server returns an NSID option in its response, then its contents are logged in the resolver
category at level info. The default is no.

BIND 9.12.1rc2 86

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

request-sit
This experimental option is obsolete.

require-server-cookie
Require a valid server cookie before sending a full response to a UDP request from a
cookie aware client. BADCOOKIE is sent if there is a bad or no existent server cookie.

send-cookie
If yes, then a COOKIE EDNS option is sent along with the query. If the resolver has
previously talked to the server, the COOKIE returned in the previous transaction is sent.
This is used by the server to determine whether the resolver has talked to it before. A
resolver sending the correct COOKIE is assumed not to be an off-path attacker sending a
spoofed-source query; the query is therefore unlikely to be part of a reflection/amplifica-
tion attack, so resolvers sending a correct COOKIE option are not subject to response rate
limiting (RRL). Resolvers which do not send a correct COOKIE option may be limited to
receiving smaller responses via the nocookie-udp-size option.

stale-answer-enable
Enable the returning of stale answers when the nameservers for the zone are not answer-
ing. This is off by default, but can be enabled/disabled via rndc serve-stale on and rndc
serve-stale off, which override the named.conf setting. rndc serve-stale reset restores
the setting to the one specified in named.conf. Note that reloading or reconfiguring
named will not re-enable serving of stale records if they have been disabled via rndc.

nocookie-udp-size
Sets the maximum size of UDP responses that will be sent to queries without a valid server
COOKIE. A value below 128 will be silently raised to 128. The default value is 4096, but
the max-udp-size option may further limit the response size.

sit-secret
This experimental option is obsolete.

cookie-algorithm
Set the algorithm to be used when generating the server cookie. One of "aes", "sha1"
or "sha256". The default is "aes" if supported by the cryptographic library or otherwise
"sha256".

cookie-secret
If set, this is a shared secret used for generating and verifying EDNS COOKIE options
within an anycast cluster. If not set, the system will generate a random secret at startup.
The shared secret is encoded as a hex string and needs to be 128 bits for AES128, 160 bits
for SHA1 and 256 bits for SHA256.

If there are multiple secrets specified, the first one listed in named.conf is used to gener-
ate new server cookies. The others will only be used to verify returned cookies.

response-padding
The EDNS Padding option is intended to improve confidentiality when DNS queries are
sent over an encrypted channel by reducing the variability in packet sizes. If a query:

1. contains an EDNS Padding option,

2. includes a valid server cookie or uses TCP,

87 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

3. is not signed using TSIG or SIG(0), and

4. is from a client whose address matches the specified ACL,

then the response is padded with an EDNS Padding option to a multiple of block-size
bytes. If these conditions are not met, the response is not padded.

If block-size is 0 or the ACL is none;, then this feature is disabled and no padding will
occur; this is the default. If block-size is greater than 512, a warning is logged and
the value is truncated to 512. Block sizes are ordinarily expected to be powers of two (for
instance, 128), but this is not mandatory.

rfc2308-type1
Setting this to yes will cause the server to send NS records along with the SOA record for
negative answers. The default is no.

NOTE

Not yet implemented in BIND 9.

trust-anchor-telemetry
Causes named to send specially-formed queries once per day to domains for which trust
anchors have been configured via trusted-keys, managed-keys, or dnssec-validation auto.

The query name used for these queries has the form "_ta-xxxx(-xxxx)(...)".<domain>, where
each "xxxx" is a group of four hexadecimal digits representing the key ID of a trusted
DNSSEC key. The key IDs for each domain are sorted smallest to largest prior to encod-
ing. The query type is NULL.

By monitoring these queries, zone operators will be able to see which resolvers have been
updated to trust a new key; this may help them decide when it is safe to remove an old
one.

The default is yes.

use-id-pool
This option is obsolete. BIND 9 always allocates query IDs from a pool.

use-ixfr
This option is obsolete. If you need to disable IXFR to a particular server or servers, see the
information on the provide-ixfr option in Section 5.2. See also Section 4.3.

provide-ixfr
See the description of provide-ixfr in Section 5.2.

request-ixfr
See the description of request-ixfr in Section 5.2.

request-expire
See the description of request-expire in Section 5.2.

BIND 9.12.1rc2 88

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

treat-cr-as-space
This option was used in BIND 8 to make the server treat carriage return ("\r") characters
the same way as a space or tab character, to facilitate loading of zone files on a UNIX
system that were generated on an NT or DOS machine. In BIND 9, both UNIX "\n" and
NT/DOS "\r\n" newlines are always accepted, and the option is ignored.

match-mapped-addresses
If yes, then an IPv4-mapped IPv6 address will match any address match list entries that
match the corresponding IPv4 address.

This option was introduced to work around a kernel quirk in some operating systems
that causes IPv4 TCP connections, such as zone transfers, to be accepted on an IPv6 socket
using mapped addresses. This caused address match lists designed for IPv4 to fail to
match. However, named now solves this problem internally. The use of this option is
discouraged.

filter-aaaa-on-v4
This option is intended to help the transition from IPv4 to IPv6 by not giving IPv6 ad-
dresses to DNS clients unless they have connections to the IPv6 Internet. This is not rec-
ommended unless absolutely necessary. The default is no. The filter-aaaa-on-v4 option
may also be specified in view statements to override the global filter-aaaa-on-v4 option.

If yes, the DNS client is at an IPv4 address, in filter-aaaa, and if the response does not
include DNSSEC signatures, then all AAAA records are deleted from the response. This
filtering applies to all responses and not only authoritative responses.

If break-dnssec, then AAAA records are deleted even when DNSSEC is enabled. As
suggested by the name, this makes the response not verify, because the DNSSEC protocol
is designed detect deletions.

This mechanism can erroneously cause other servers to not give AAAA records to their
clients. A recursing server with both IPv6 and IPv4 network connections that queries an
authoritative server using this mechanism via IPv4 will be denied AAAA records even if
its client is using IPv6.

This mechanism is applied to authoritative as well as non-authoritative records. A client
using IPv4 that is not allowed recursion can erroneously be given AAAA records because
the server is not allowed to check for A records.

Some AAAA records are given to IPv4 clients in glue records. IPv4 clients that are servers
can then erroneously answer requests for AAAA records received via IPv4.

filter-aaaa-on-v6
Identical to filter-aaaa-on-v4, except it filters AAAA responses to queries from IPv6 clients
instead of IPv4 clients. To filter all responses, set both options to yes.

ixfr-from-differences
When yes and the server loads a new version of a master zone from its zone file or re-
ceives a new version of a slave file via zone transfer, it will compare the new version to
the previous one and calculate a set of differences. The differences are then logged in the
zone’s journal file such that the changes can be transmitted to downstream slaves as an
incremental zone transfer.

By allowing incremental zone transfers to be used for non-dynamic zones, this option
saves bandwidth at the expense of increased CPU and memory consumption at the mas-
ter. In particular, if the new version of a zone is completely different from the previous

89 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

one, the set of differences will be of a size comparable to the combined size of the old and
new zone version, and the server will need to temporarily allocate memory to hold this
complete difference set.

ixfr-from-differences also accepts master and slave at the view and options levels which
causes ixfr-from-differences to be enabled for all master or slave zones respectively. It is
off by default.

multi-master
This should be set when you have multiple masters for a zone and the addresses refer to
different machines. If yes, named will not log when the serial number on the master is
less than what named currently has. The default is no.

auto-dnssec
Zones configured for dynamic DNS may use this option to allow varying levels of auto-
matic DNSSEC key management. There are three possible settings:

auto-dnssec allow; permits keys to be updated and the zone fully re-signed whenever the
user issues the command rndc sign zonename.

auto-dnssec maintain; includes the above, but also automatically adjusts the zone’s DNSSEC
keys on schedule, according to the keys’ timing metadata (see dnssec-keygen(8) and dnssec-
settime(8)). The command rndc sign zonename causes named to load keys from the key
repository and sign the zone with all keys that are active. rndc loadkeys zonename causes
named to load keys from the key repository and schedule key maintenance events to oc-
cur in the future, but it does not sign the full zone immediately. Note: once keys have
been loaded for a zone the first time, the repository will be searched for changes period-
ically, regardless of whether rndc loadkeys is used. The recheck interval is defined by
dnssec-loadkeys-interval.)

The default setting is auto-dnssec off.

dnssec-enable
This indicates whether DNSSEC-related resource records are to be returned by named.
If set to no, named will not return DNSSEC-related resource records unless specifically
queried for. The default is yes.

dnssec-validation
Enable DNSSEC validation in named. Note dnssec-enable also needs to be set to yes to
be effective. If set to no, DNSSEC validation is disabled.

If set to auto, DNSSEC validation is enabled, and a default trust anchor for the DNS
root zone is used. If set to yes, DNSSEC validation is enabled, but a trust anchor must
be manually configured using a trusted-keys or managed-keys statement. The default is
yes.

The default root trust anchor is stored in the file bind.keys. named will load that key at
startup if dnssec-validation is set to auto. A copy of the file is installed along with BIND
9, and is current as of the release date. If the root key expires, a new copy of bind.keys
can be downloaded from https://www.isc.org/bind-keys.

To prevent problems if bind.keys is not found, the current trust anchor is also compiled
in to named. Relying on this is not recommended, however, as it requires named to be
recompiled with a new key when the root key expires.)

BIND 9.12.1rc2 90

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

NOTE

named only loads the root key from bind.keys. The file cannot be used to store
keys for other zones. The root key in bind.keys is ignored if dnssec-validation
auto is not in use.

Whenever the resolver sends out queries to an EDNS-compliant server, it always sets
the DO bit indicating it can support DNSSEC responses even if dnssec-validation is
off.

dnssec-accept-expired
Accept expired signatures when verifying DNSSEC signatures. The default is no. Setting
this option to yes leaves named vulnerable to replay attacks.

querylog
Specify whether query logging should be started when named starts. If querylog is not
specified, then the query logging is determined by the presence of the logging category
queries.

check-names
This option is used to restrict the character set and syntax of certain domain names in
master files and/or DNS responses received from the network. The default varies accord-
ing to usage area. For master zones the default is fail. For slave zones the default is warn.
For answers received from the network (response) the default is ignore.

The rules for legal hostnames and mail domains are derived from RFC 952 and RFC 821
as modified by RFC 1123.

check-names applies to the owner names of A, AAAA and MX records. It also applies to
the domain names in the RDATA of NS, SOA, MX, and SRV records. It also applies to the
RDATA of PTR records where the owner name indicated that it is a reverse lookup of a
hostname (the owner name ends in IN-ADDR.ARPA, IP6.ARPA, or IP6.INT).

check-dup-records
Check master zones for records that are treated as different by DNSSEC but are seman-
tically equal in plain DNS. The default is to warn. Other possible values are fail and
ignore.

check-mx
Check whether the MX record appears to refer to a IP address. The default is to warn.
Other possible values are fail and ignore.

check-wildcard
This option is used to check for non-terminal wildcards. The use of non-terminal wild-
cards is almost always as a result of a failure to understand the wildcard matching al-
gorithm (RFC 1034). This option affects master zones. The default (yes) is to check for
non-terminal wildcards and issue a warning.

91 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

check-integrity
Perform post load zone integrity checks on master zones. This checks that MX and SRV
records refer to address (A or AAAA) records and that glue address records exist for
delegated zones. For MX and SRV records only in-zone hostnames are checked (for out-
of-zone hostnames use named-checkzone). For NS records only names below top of zone
are checked (for out-of-zone names and glue consistency checks use named-checkzone).
The default is yes.

The use of the SPF record for publishing Sender Policy Framework is deprecated as the
migration from using TXT records to SPF records was abandoned. Enabling this option
also checks that a TXT Sender Policy Framework record exists (starts with "v=spf1") if
there is an SPF record. Warnings are emitted if the TXT record does not exist and can be
suppressed with check-spf.

check-mx-cname
If check-integrity is set then fail, warn or ignore MX records that refer to CNAMES. The
default is to warn.

check-srv-cname
If check-integrity is set then fail, warn or ignore SRV records that refer to CNAMES. The
default is to warn.

check-sibling
When performing integrity checks, also check that sibling glue exists. The default is yes.

check-spf
If check-integrity is set then check that there is a TXT Sender Policy Framework record
present (starts with "v=spf1") if there is an SPF record present. The default is warn.

zero-no-soa-ttl
When returning authoritative negative responses to SOA queries set the TTL of the SOA
record returned in the authority section to zero. The default is yes.

zero-no-soa-ttl-cache
When caching a negative response to a SOA query set the TTL to zero. The default is no.

update-check-ksk
When set to the default value of yes, check the KSK bit in each key to determine how the
key should be used when generating RRSIGs for a secure zone.

Ordinarily, zone-signing keys (that is, keys without the KSK bit set) are used to sign the
entire zone, while key-signing keys (keys with the KSK bit set) are only used to sign the
DNSKEY RRset at the zone apex. However, if this option is set to no, then the KSK bit is
ignored; KSKs are treated as if they were ZSKs and are used to sign the entire zone. This
is similar to the dnssec-signzone -z command line option.

When this option is set to yes, there must be at least two active keys for every algorithm
represented in the DNSKEY RRset: at least one KSK and one ZSK per algorithm. If there
is any algorithm for which this requirement is not met, this option will be ignored for that
algorithm.

dnssec-dnskey-kskonly
When this option and update-check-ksk are both set to yes, only key-signing keys (that
is, keys with the KSK bit set) will be used to sign the DNSKEY, CDNSKEY, and CDS RRsets

BIND 9.12.1rc2 92

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

at the zone apex. Zone-signing keys (keys without the KSK bit set) will be used to sign the
remainder of the zone, but not the DNSKEY RRset. This is similar to the dnssec-signzone
-x command line option.

The default is no. If update-check-ksk is set to no, this option is ignored.

try-tcp-refresh
Try to refresh the zone using TCP if UDP queries fail. For BIND 8 compatibility, the default
is yes.

dnssec-secure-to-insecure
Allow a dynamic zone to transition from secure to insecure (i.e., signed to unsigned) by
deleting all of the DNSKEY records. The default is no. If set to yes, and if the DNSKEY
RRset at the zone apex is deleted, all RRSIG and NSEC records will be removed from the
zone as well.

If the zone uses NSEC3, then it is also necessary to delete the NSEC3PARAM RRset from
the zone apex; this will cause the removal of all corresponding NSEC3 records. (It is
expected that this requirement will be eliminated in a future release.)

Note that if a zone has been configured with auto-dnssec maintain and the private keys
remain accessible in the key repository, then the zone will be automatically signed again
the next time named is started.

synth-from-dnssec
Synthesize answers from cached NSEC, NSEC3 and other RRsets that have been proved
to be correct using DNSSEC. The default is yes.

Note:

• DNSSEC validation must be enabled for this option to be effective.
This initial implementation only covers synthesis of answers from NSEC records.
Synthesis from NSEC3 is planned for the future. This will also be controlled by
synth-from-dnssec.

Forwarding

The forwarding facility can be used to create a large site-wide cache on a few servers, reducing
traffic over links to external name servers. It can also be used to allow queries by servers that do
not have direct access to the Internet, but wish to look up exterior names anyway. Forwarding
occurs only on those queries for which the server is not authoritative and does not have the
answer in its cache.

forward
This option is only meaningful if the forwarders list is not empty. A value of first, the
default, causes the server to query the forwarders first --- and if that doesn’t answer the
question, the server will then look for the answer itself. If only is specified, the server
will only query the forwarders.

forwarders
Specifies the IP addresses to be used for forwarding. The default is the empty list (no
forwarding).

93 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

Forwarding can also be configured on a per-domain basis, allowing for the global forwarding
options to be overridden in a variety of ways. You can set particular domains to use different
forwarders, or have a different forward only/first behavior, or not forward at all, see Section 5.2.

Dual-stack Servers

Dual-stack servers are used as servers of last resort to work around problems in reachability
due the lack of support for either IPv4 or IPv6 on the host machine.

dual-stack-servers
Specifies host names or addresses of machines with access to both IPv4 and IPv6 trans-
ports. If a hostname is used, the server must be able to resolve the name using only the
transport it has. If the machine is dual stacked, then the dual-stack-servers have no effect
unless access to a transport has been disabled on the command line (e.g. named -4).

Access Control

Access to the server can be restricted based on the IP address of the requesting system. See
Section 5.1 for details on how to specify IP address lists.

allow-notify
Specifies which hosts are allowed to notify this server, a slave, of zone changes in addition
to the zone masters. allow-notify may also be specified in the zone statement, in which
case it overrides the options allow-notify statement. It is only meaningful for a slave
zone. If not specified, the default is to process notify messages only from a zone’s master.

allow-query
Specifies which hosts are allowed to ask ordinary DNS questions. allow-query may also
be specified in the zone statement, in which case it overrides the options allow-query
statement. If not specified, the default is to allow queries from all hosts.

NOTE

allow-query-cache is now used to specify access to the cache.

allow-query-on
Specifies which local addresses can accept ordinary DNS questions. This makes it pos-
sible, for instance, to allow queries on internal-facing interfaces but disallow them on
external-facing ones, without necessarily knowing the internal network’s addresses.

Note that allow-query-on is only checked for queries that are permitted by allow-query.
A query must be allowed by both ACLs, or it will be refused.

allow-query-on may also be specified in the zone statement, in which case it overrides
the options allow-query-on statement.

BIND 9.12.1rc2 94

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

If not specified, the default is to allow queries on all addresses.

NOTE

allow-query-cache is used to specify access to the cache.

allow-query-cache
Specifies which hosts are allowed to get answers from the cache. If allow-query-cache is
not set then allow-recursion is used if set, otherwise allow-query is used if set unless re-
cursion no; is set in which case none; is used, otherwise the default (localnets; localhost;)
is used.

allow-query-cache-on
Specifies which local addresses can give answers from the cache. If not specified, the
default is to allow cache queries on any address, localnets and localhost.

allow-recursion
Specifies which hosts are allowed to make recursive queries through this server. If allow-
recursion is not set then allow-query-cache is used if set, otherwise allow-query is used
if set, otherwise the default (localnets; localhost;) is used.

allow-recursion-on
Specifies which local addresses can accept recursive queries. If not specified, the default
is to allow recursive queries on all addresses.

allow-update
Specifies which hosts are allowed to submit Dynamic DNS updates for master zones. The
default is to deny updates from all hosts. Note that allowing updates based on the re-
questor’s IP address is insecure; see Section 6.3 for details.

allow-update-forwarding
Specifies which hosts are allowed to submit Dynamic DNS updates to slave zones to be
forwarded to the master. The default is { none; }, which means that no update for-
warding will be performed. To enable update forwarding, specify allow-update-forwarding
{ any; };. Specifying values other than { none; } or { any; } is usually counter-
productive, since the responsibility for update access control should rest with the master
server, not the slaves.

Note that enabling the update forwarding feature on a slave server may expose master
servers relying on insecure IP address based access control to attacks; see Section 6.3 for
more details.

allow-v6-synthesis
This option was introduced for the smooth transition from AAAA to A6 and from "nibble
labels" to binary labels. However, since both A6 and binary labels were then deprecated,
this option was also deprecated. It is now ignored with some warning messages.

95 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

allow-transfer
Specifies which hosts are allowed to receive zone transfers from the server. allow-transfer
may also be specified in the zone statement, in which case it overrides the options allow-
transfer statement. If not specified, the default is to allow transfers to all hosts.

blackhole
Specifies a list of addresses that the server will not accept queries from or use to resolve a
query. Queries from these addresses will not be responded to. The default is none.

filter-aaaa
Specifies a list of addresses to which filter-aaaa-on-v4 and filter-aaaa-on-v6 apply. The
default is any.

keep-response-order
Specifies a list of addresses to which the server will send responses to TCP queries in the
same order in which they were received. This disables the processing of TCP queries in
parallel. The default is none.

no-case-compress
Specifies a list of addresses which require responses to use case-insensitive compression.
This ACL can be used when named needs to work with clients that do not comply with
the requirement in RFC 1034 to use case-insensitive name comparisons when checking for
matching domain names.

If left undefined, the ACL defaults to none: case-insensitive compression will be used for
all clients. If the ACL is defined and matches a client, then case will be ignored when
compressing domain names in DNS responses sent to that client.

This can result in slightly smaller responses: if a response contains the names "exam-
ple.com" and "example.COM", case-insensitive compression would treat the second one
as a duplicate. It also ensures that the case of the query name exactly matches the case of
the owner names of returned records, rather than matching the case of the records entered
in the zone file. This allows responses to exactly match the query, which is required by
some clients due to incorrect use of case-sensitive comparisons.

Case-insensitive compression is always used in AXFR and IXFR responses, regardless of
whether the client matches this ACL.

There are circumstances in which named will not preserve the case of owner names of
records: if a zone file defines records of different types with the same name, but the capital-
ization of the name is different (e.g., "www.example.com/A" and "WWW.EXAMPLE.COM/AAAA"),
then all responses for that name will use the first version of the name that was used in the
zone file. This limitation may be addressed in a future release. However, domain names
specified in the rdata of resource records (i.e., records of type NS, MX, CNAME, etc) will
always have their case preserved unless the client matches this ACL.

resolver-query-timeout
The amount of time in milliseconds that the resolver will spend attempting to resolve a
recursive query before failing. The default and minimum is 10000 and the maximum is
30000. Setting it to 0 will result in the default being used.

This value was originally specified in seconds. Values less than or equal to 300 will be be
treated as seconds and converted to milliseconds before applying the above limits.

BIND 9.12.1rc2 96

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

Interfaces

The interfaces and ports that the server will answer queries from may be specified using the
listen-on option. listen-on takes an optional port and an address_match_list of IPv4 ad-
dresses. (IPv6 addresses are ignored, with a logged warning.) The server will listen on all
interfaces allowed by the address match list. If a port is not specified, port 53 will be used.

Multiple listen-on statements are allowed. For example,

listen-on { 5.6.7.8; };
listen-on port 1234 { !1.2.3.4; 1.2/16; };

will enable the name server on port 53 for the IP address 5.6.7.8, and on port 1234 of an address
on the machine in net 1.2 that is not 1.2.3.4.

If no listen-on is specified, the server will listen on port 53 on all IPv4 interfaces.

The listen-on-v6 option is used to specify the interfaces and the ports on which the server will
listen for incoming queries sent using IPv6. If not specified, the server will listen on port 53 on
all IPv6 interfaces.

When

{ any; }

is specified as the address_match_list for the listen-on-v6 option, the server does not bind
a separate socket to each IPv6 interface address as it does for IPv4 if the operating system has
enough API support for IPv6 (specifically if it conforms to RFC 3493 and RFC 3542). Instead, it
listens on the IPv6 wildcard address. If the system only has incomplete API support for IPv6,
however, the behavior is the same as that for IPv4.

A list of particular IPv6 addresses can also be specified, in which case the server listens on a
separate socket for each specified address, regardless of whether the desired API is supported
by the system. IPv4 addresses specified in listen-on-v6 will be ignored, with a logged warning.

Multiple listen-on-v6 options can be used. For example,

listen-on-v6 { any; };
listen-on-v6 port 1234 { !2001:db8::/32; any; };

will enable the name server on port 53 for any IPv6 addresses (with a single wildcard socket),
and on port 1234 of IPv6 addresses that is not in the prefix 2001:db8::/32 (with separate sockets
for each matched address.)

To make the server not listen on any IPv6 address, use

listen-on-v6 { none; };

Query Address

If the server doesn’t know the answer to a question, it will query other name servers. query-
source specifies the address and port used for such queries. For queries sent over IPv6, there is

97 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

a separate query-source-v6 option. If address is * (asterisk) or is omitted, a wildcard IP address
(INADDR_ANY) will be used.

If port is * or is omitted, a random port number from a pre-configured range is picked up and
will be used for each query. The port range(s) is that specified in the use-v4-udp-ports (for IPv4)
and use-v6-udp-ports (for IPv6) options, excluding the ranges specified in the avoid-v4-udp-
ports and avoid-v6-udp-ports options, respectively.

The defaults of the query-source and query-source-v6 options are:

query-source address * port *;
query-source-v6 address * port *;

If use-v4-udp-ports or use-v6-udp-ports is unspecified, named will check if the operating sys-
tem provides a programming interface to retrieve the system’s default range for ephemeral
ports. If such an interface is available, named will use the corresponding system default range;
otherwise, it will use its own defaults:

use-v4-udp-ports { range 1024 65535; };
use-v6-udp-ports { range 1024 65535; };

Note: make sure the ranges be sufficiently large for security. A desirable size depends on vari-
ous parameters, but we generally recommend it contain at least 16384 ports (14 bits of entropy).
Note also that the system’s default range when used may be too small for this purpose, and
that the range may even be changed while named is running; the new range will automatically
be applied when named is reloaded. It is encouraged to configure use-v4-udp-ports and use-
v6-udp-ports explicitly so that the ranges are sufficiently large and are reasonably independent
from the ranges used by other applications.

Note: the operational configuration where named runs may prohibit the use of some ports. For
example, UNIX systems will not allow named running without a root privilege to use ports
less than 1024. If such ports are included in the specified (or detected) set of query ports, the
corresponding query attempts will fail, resulting in resolution failures or delay. It is therefore
important to configure the set of ports that can be safely used in the expected operational envi-
ronment.

The defaults of the avoid-v4-udp-ports and avoid-v6-udp-ports options are:

avoid-v4-udp-ports {};
avoid-v6-udp-ports {};

Note: BIND 9.5.0 introduced the use-queryport-pool option to support a pool of such random
ports, but this option is now obsolete because reusing the same ports in the pool may not be
sufficiently secure. For the same reason, it is generally strongly discouraged to specify a par-
ticular port for the query-source or query-source-v6 options; it implicitly disables the use of
randomized port numbers.

use-queryport-pool
This option is obsolete.

queryport-pool-ports
This option is obsolete.

BIND 9.12.1rc2 98

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

queryport-pool-updateinterval
This option is obsolete.

NOTE

The address specified in the query-source option is used for both UDP and TCP queries,
but the port applies only to UDP queries. TCP queries always use a random unprivileged
port.

NOTE

Solaris 2.5.1 and earlier does not support setting the source address for TCP sockets.

NOTE

See also transfer-source and notify-source.

Zone Transfers

BIND has mechanisms in place to facilitate zone transfers and set limits on the amount of load
that transfers place on the system. The following options apply to zone transfers.

also-notify
Defines a global list of IP addresses of name servers that are also sent NOTIFY messages
whenever a fresh copy of the zone is loaded, in addition to the servers listed in the zone’s
NS records. This helps to ensure that copies of the zones will quickly converge on stealth
servers. Optionally, a port may be specified with each also-notify address to send the
notify messages to a port other than the default of 53. An optional TSIG key can also be
specified with each address to cause the notify messages to be signed; this can be use-
ful when sending notifies to multiple views. In place of explicit addresses, one or more
named masters lists can be used.

If an also-notify list is given in a zone statement, it will override the options also-notify
statement. When a zone notify statement is set to no, the IP addresses in the global also-

99 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

notify list will not be sent NOTIFY messages for that zone. The default is the empty list
(no global notification list).

max-transfer-time-in
Inbound zone transfers running longer than this many minutes will be terminated. The
default is 120 minutes (2 hours). The maximum value is 28 days (40320 minutes).

max-transfer-idle-in
Inbound zone transfers making no progress in this many minutes will be terminated. The
default is 60 minutes (1 hour). The maximum value is 28 days (40320 minutes).

max-transfer-time-out
Outbound zone transfers running longer than this many minutes will be terminated. The
default is 120 minutes (2 hours). The maximum value is 28 days (40320 minutes).

max-transfer-idle-out
Outbound zone transfers making no progress in this many minutes will be terminated.
The default is 60 minutes (1 hour). The maximum value is 28 days (40320 minutes).

notify-rate
The rate at which NOTIFY requests will be sent during normal zone maintenance opera-
tions. (NOTIFY requests due to initial zone loading are subject to a separate rate limit; see
below.) The default is 20 per second. The lowest possible rate is one per second; when set
to zero, it will be silently raised to one.

startup-notify-rate
The rate at which NOTIFY requests will be sent when the name server is first starting up,
or when zones have been newly added to the nameserver. The default is 20 per second.
The lowest possible rate is one per second; when set to zero, it will be silently raised to
one.

serial-query-rate
Slave servers will periodically query master servers to find out if zone serial numbers have
changed. Each such query uses a minute amount of the slave server’s network bandwidth.
To limit the amount of bandwidth used, BIND 9 limits the rate at which queries are sent.
The value of the serial-query-rate option, an integer, is the maximum number of queries
sent per second. The default is 20 per second. The lowest possible rate is one per second;
when set to zero, it will be silently raised to one.

serial-queries
In BIND 8, the serial-queries option set the maximum number of concurrent serial num-
ber queries allowed to be outstanding at any given time. BIND 9 does not limit the number
of outstanding serial queries and ignores the serial-queries option. Instead, it limits the
rate at which the queries are sent as defined using the serial-query-rate option.

transfer-format
Zone transfers can be sent using two different formats, one-answer and many-answers.
The transfer-format option is used on the master server to determine which format it
sends. one-answer uses one DNS message per resource record transferred. many-answers
packs as many resource records as possible into a message. many-answers is more effi-
cient, but is only supported by relatively new slave servers, such as BIND 9, BIND 8.x and
BIND 4.9.5 onwards. The many-answers format is also supported by recent Microsoft

BIND 9.12.1rc2 100

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

Windows nameservers. The default is many-answers. transfer-format may be overrid-
den on a per-server basis by using the server statement.

transfer-message-size
This is an upper bound on the uncompressed size of DNS messages used in zone transfers
over TCP. If a message grows larger than this size, additional messages will be used to
complete the zone transfer. (Note, however, that this is a hint, not a hard limit; if a message
contains a single resource record whose RDATA does not fit within the size limit, a larger
message will be permitted so the record can be transferred.)

Valid values are between 512 and 65535 octets, and any values outside that range will
be adjusted to the nearest value within it. The default is 20480, which was selected to
improve message compression: most DNS messages of this size will compress to less than
16536 bytes. Larger messages cannot be compressed as effectively, because 16536 is the
largest permissible compression offset pointer in a DNS message.

This option is mainly intended for server testing; there is rarely any benefit in setting a
value other than the default.

transfers-in
The maximum number of inbound zone transfers that can be running concurrently. The
default value is 10. Increasing transfers-in may speed up the convergence of slave zones,
but it also may increase the load on the local system.

transfers-out
The maximum number of outbound zone transfers that can be running concurrently. Zone
transfer requests in excess of the limit will be refused. The default value is 10.

transfers-per-ns
The maximum number of inbound zone transfers that can be concurrently transferring
from a given remote name server. The default value is 2. Increasing transfers-per-ns
may speed up the convergence of slave zones, but it also may increase the load on the
remote name server. transfers-per-ns may be overridden on a per-server basis by using
the transfers phrase of the server statement.

transfer-source
transfer-source determines which local address will be bound to IPv4 TCP connections
used to fetch zones transferred inbound by the server. It also determines the source IPv4
address, and optionally the UDP port, used for the refresh queries and forwarded dy-
namic updates. If not set, it defaults to a system controlled value which will usually be
the address of the interface "closest to" the remote end. This address must appear in the
remote end’s allow-transfer option for the zone being transferred, if one is specified. This
statement sets the transfer-source for all zones, but can be overridden on a per-view or
per-zone basis by including a transfer-source statement within the view or zone block in
the configuration file.

101 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

NOTE

Solaris 2.5.1 and earlier does not support setting the source address for TCP sockets.

transfer-source-v6
The same as transfer-source, except zone transfers are performed using IPv6.

alt-transfer-source
An alternate transfer source if the one listed in transfer-source fails and use-alt-transfer-
source is set.

NOTE

If you do not wish the alternate transfer source to be used, you should set use-alt-
transfer-source appropriately and you should not depend upon getting an answer
back to the first refresh query.

alt-transfer-source-v6
An alternate transfer source if the one listed in transfer-source-v6 fails and use-alt-transfer-
source is set.

use-alt-transfer-source
Use the alternate transfer sources or not. If views are specified this defaults to no other-
wise it defaults to yes (for BIND 8 compatibility).

notify-source
notify-source determines which local source address, and optionally UDP port, will be
used to send NOTIFY messages. This address must appear in the slave server’s masters
zone clause or in an allow-notify clause. This statement sets the notify-source for all
zones, but can be overridden on a per-zone or per-view basis by including a notify-source
statement within the zone or view block in the configuration file.

NOTE

Solaris 2.5.1 and earlier does not support setting the source address for TCP sockets.

notify-source-v6
Like notify-source, but applies to notify messages sent to IPv6 addresses.

BIND 9.12.1rc2 102

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

UDP Port Lists

use-v4-udp-ports, avoid-v4-udp-ports, use-v6-udp-ports, and avoid-v6-udp-ports specify a
list of IPv4 and IPv6 UDP ports that will be used or not used as source ports for UDP mes-
sages. See Section 5.2 about how the available ports are determined. For example, with the
following configuration

use-v6-udp-ports { range 32768 65535; };
avoid-v6-udp-ports { 40000; range 50000 60000; };

UDP ports of IPv6 messages sent from named will be in one of the following ranges: 32768 to
39999, 40001 to 49999, and 60001 to 65535.

avoid-v4-udp-ports and avoid-v6-udp-ports can be used to prevent named from choosing as
its random source port a port that is blocked by your firewall or a port that is used by other
applications; if a query went out with a source port blocked by a firewall, the answer would
not get by the firewall and the name server would have to query again. Note: the desired range
can also be represented only with use-v4-udp-ports and use-v6-udp-ports, and the avoid- op-
tions are redundant in that sense; they are provided for backward compatibility and to possibly
simplify the port specification.

Operating System Resource Limits

The server’s usage of many system resources can be limited. Scaled values are allowed when
specifying resource limits. For example, 1G can be used instead of 1073741824 to specify a limit
of one gigabyte. unlimited requests unlimited use, or the maximum available amount. default
uses the limit that was in force when the server was started. See the description of size_spec in
Section 5.1.

The following options set operating system resource limits for the name server process. Some
operating systems don’t support some or any of the limits. On such systems, a warning will be
issued if the unsupported limit is used.

coresize
The maximum size of a core dump. The default is default.

datasize
The maximum amount of data memory the server may use. The default is default. This
is a hard limit on server memory usage. If the server attempts to allocate memory in excess
of this limit, the allocation will fail, which may in turn leave the server unable to perform
DNS service. Therefore, this option is rarely useful as a way of limiting the amount of
memory used by the server, but it can be used to raise an operating system data size limit
that is too small by default. If you wish to limit the amount of memory used by the server,
use the max-cache-size and recursive-clients options instead.

files
The maximum number of files the server may have open concurrently. The default is
unlimited.

stacksize
The maximum amount of stack memory the server may use. The default is default.

103 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

Server Resource Limits

The following options set limits on the server’s resource consumption that are enforced inter-
nally by the server rather than the operating system.

max-ixfr-log-size
This option is obsolete; it is accepted and ignored for BIND 8 compatibility. The option
max-journal-size performs a similar function in BIND 9.

max-journal-size
Sets a maximum size for each journal file (see Section 4.2), expressed in bytes or, if fol-
lowed by an optional unit suffix (’k’, ’m’, or ’g’), in kilobytes, megabytes, or gigabytes.
When the journal file approaches the specified size, some of the oldest transactions in
the journal will be automatically removed. The largest permitted value is 2 gigabytes.
Very small values are rounded up to 4096 bytes. You can specify unlimited, which also
means 2 gigabytes. If you set the limit to default or leave it unset, the journal is allowed
to grow up to twice as large as the zone. (There is little benefit in storing larger journals.)

This option may also be set on a per-zone basis.

max-records
The maximum number of records permitted in a zone. The default is zero which means
unlimited.

host-statistics-max
In BIND 8, specifies the maximum number of host statistics entries to be kept. Not imple-
mented in BIND 9.

recursive-clients
The maximum number ("hard quota") of simultaneous recursive lookups the server will
perform on behalf of clients. The default is 1000. Because each recursing client uses a fair
bit of memory (on the order of 20 kilobytes), the value of the recursive-clients option may
have to be decreased on hosts with limited memory.

recursive-clients defines a "hard quota" limit for pending recursive clients: when
more clients than this are pending, new incoming requests will not be accepted, and for
each incoming request a previous pending request will also be dropped.

A "soft quota" is also set. When this lower quota is exceeded, incoming requests are ac-
cepted, but for each one, a pending request will be dropped. If recursive-clients is
greater than 1000, the soft quota is set to recursive-clients minus 100; otherwise it
is set to 90% of recursive-clients.

tcp-clients
The maximum number of simultaneous client TCP connections that the server will accept.
The default is 150.

clients-per-query, max-clients-per-query
These set the initial value (minimum) and maximum number of recursive simultaneous
clients for any given query (<qname,qtype,qclass>) that the server will accept before drop-
ping additional clients. named will attempt to self tune this value and changes will be
logged. The default values are 10 and 100.

BIND 9.12.1rc2 104

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

This value should reflect how many queries come in for a given name in the time it takes to
resolve that name. If the number of queries exceed this value, named will assume that it is
dealing with a non-responsive zone and will drop additional queries. If it gets a response
after dropping queries, it will raise the estimate. The estimate will then be lowered in 20
minutes if it has remained unchanged.

If clients-per-query is set to zero, then there is no limit on the number of clients per query
and no queries will be dropped.

If max-clients-per-query is set to zero, then there is no upper bound other than imposed
by recursive-clients.

fetches-per-zone
The maximum number of simultaneous iterative queries to any one domain that the server
will permit before blocking new queries for data in or beneath that zone. This value
should reflect how many fetches would normally be sent to any one zone in the time
it would take to resolve them. It should be smaller than recursive-clients.

When many clients simultaneously query for the same name and type, the clients will
all be attached to the same fetch, up to the max-clients-per-query limit, and only
one iterative query will be sent. However, when clients are simultaneously querying for
different names or types, multiple queries will be sent and max-clients-per-query is
not effective as a limit.

Optionally, this value may be followed by the keyword drop or fail, indicating whether
queries which exceed the fetch quota for a zone will be dropped with no response, or
answered with SERVFAIL. The default is drop.

If fetches-per-zone is set to zero, then there is no limit on the number of fetches per query
and no queries will be dropped. The default is zero.

The current list of active fetches can be dumped by running rndc recursing. The list in-
cludes the number of active fetches for each domain and the number of queries that have
been passed or dropped as a result of the fetches-per-zone limit. (Note: these coun-
ters are not cumulative over time; whenever the number of active fetches for a domain
drops to zero, the counter for that domain is deleted, and the next time a fetch is sent to
that domain, it is recreated with the counters set to zero.)

fetches-per-server
The maximum number of simultaneous iterative queries that the server will allow to be
sent to a single upstream name server before blocking additional queries. This value
should reflect how many fetches would normally be sent to any one server in the time
it would take to resolve them. It should be smaller than recursive-clients.

Optionally, this value may be followed by the keyword drop or fail, indicating whether
queries will be dropped with no response, or answered with SERVFAIL, when all of the
servers authoritative for a zone are found to have exceeded the per-server quota. The
default is fail.

If fetches-per-server is set to zero, then there is no limit on the number of fetches per
query and no queries will be dropped. The default is zero.

The fetches-per-server quota is dynamically adjusted in response to detected congestion.
As queries are sent to a server and are either answered or time out, an exponentially
weighted moving average is calculated of the ratio of timeouts to responses. If the current
average timeout ratio rises above a "high" threshold, then fetches-per-server is reduced

105 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

for that server. If the timeout ratio drops below a "low" threshold, then fetches-per-server
is increased. The fetch-quota-params options can be used to adjust the parameters for
this calculation.

fetch-quota-params
Sets the parameters to use for dynamic resizing of the fetches-per-server quota in
response to detected congestion.

The first argument is an integer value indicating how frequently to recalculate the moving
average of the ratio of timeouts to responses for each server. The default is 100, meaning
we recalculate the average ratio after every 100 queries have either been answered or
timed out.

The remaining three arguments represent the "low" threshold (defaulting to a timeout
ratio of 0.1), the "high" threshold (defaulting to a timeout ratio of 0.3), and the discount
rate for the moving average (defaulting to 0.7). A higher discount rate causes recent events
to weigh more heavily when calculating the moving average; a lower discount rate causes
past events to weigh more heavily, smoothing out short-term blips in the timeout ratio.
These arguments are all fixed-point numbers with precision of 1/100: at most two places
after the decimal point are significant.

reserved-sockets
The number of file descriptors reserved for TCP, stdio, etc. This needs to be big enough
to cover the number of interfaces named listens on, tcp-clients as well as to provide room
for outgoing TCP queries and incoming zone transfers. The default is 512. The minimum
value is 128 and the maximum value is 128 less than maxsockets (-S). This option may
be removed in the future.

This option has little effect on Windows.

max-cache-size
The maximum amount of memory to use for the server’s cache, in bytes or % of total
physical memory. When the amount of data in the cache reaches this limit, the server
will cause records to expire prematurely based on an LRU based strategy so that the limit
is not exceeded. The keyword unlimited, or the value 0, will place no limit on cache
size; records will be purged from the cache only when their TTLs expire. Any positive
values less than 2MB will be ignored and reset to 2MB. In a server with multiple views,
the limit applies separately to the cache of each view. The default is 90%. On systems
where detection of amount of physical memory is not supported values represented as
% fall back to unlimited. Note that the detection of physical memory is done only once
at startup, so named will not adjust the cache size if the amount of physical memory is
changed during runtime.

tcp-listen-queue
The listen queue depth. The default and minimum is 10. If the kernel supports the accept
filter "dataready" this also controls how many TCP connections that will be queued in
kernel space waiting for some data before being passed to accept. Nonzero values less
than 10 will be silently raised. A value of 0 may also be used; on most platforms this sets
the listen queue length to a system-defined default value.

tcp-initial-timeout
The amount of time (in units of 100 milliseconds) the server waits on a new TCP connec-
tion for the first message from the client. The default is 300 (30 seconds), the minimum

BIND 9.12.1rc2 106

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

is 25 (2.5 seconds), and the maximum is 1200 (two minutes). Values above the maximum
or below the minimum will be adjusted with a logged warning. (Note: This value must
be greater than the expected round trip delay time; otherwise no client will ever have
enough time to submit a message.) This value can be updated at runtime by using rndc
tcp-timeouts.

tcp-idle-timeout
The amount of time (in units of 100 milliseconds) the server waits on an idle TCP connec-
tion before closing it when the client is not using the EDNS TCP keepalive option. The
default is 300 (30 seconds), the maximum is 1200 (two minutes), and the minimum is 1
(one tenth of a second). Values above the maximum or below the minimum will be ad-
justed with a logged warning. See tcp-keepalive-timeout for clients using the EDNS TCP
keepalive option. This value can be updated at runtime by using rndc tcp-timeouts.

tcp-keepalive-timeout
The amount of time (in units of 100 milliseconds) the server waits on an idle TCP connec-
tion before closing it when the client is using the EDNS TCP keepalive option. The default
is 300 (30 seconds), the maximum is 65535 (about 1.8 hours), and the minimum is 1 (one
tenth of a second). Values above the maximum or below the minimum will be adjusted
with a logged warning. This value may be greater than tcp-idle-timeout, because clients
using the EDNS TCP keepalive option are expected to use TCP connections for more than
one message. This value can be updated at runtime by using rndc tcp-timeouts.

tcp-advertised-timeout
The timeout value (in units of 100 milliseconds) the server will send in respones contain-
ing the EDNS TCP keepalive option. This informs a client of the amount of time it may
keep the session open. The default is 300 (30 seconds), the maximum is 65535 (about 1.8
hours), and the minimum is 0, which signals that the clients must close TCP connections
immediately. Ordinarily this should be set to the same value as tcp-keepalive-timeout.
This value can be updated at runtime by using rndc tcp-timeouts.

Periodic Task Intervals

cleaning-interval
This interval is effectively obsolete. Previously, the server would remove expired resource
records from the cache every cleaning-interval minutes. BIND 9 now manages cache
memory in a more sophisticated manner and does not rely on the periodic cleaning any
more. Specifying this option therefore has no effect on the server’s behavior.

heartbeat-interval
The server will perform zone maintenance tasks for all zones marked as dialup whenever
this interval expires. The default is 60 minutes. Reasonable values are up to 1 day (1440
minutes). The maximum value is 28 days (40320 minutes). If set to 0, no zone maintenance
for these zones will occur.

interface-interval
The server will scan the network interface list every interface-interval minutes. The de-
fault is 60 minutes. The maximum value is 28 days (40320 minutes). If set to 0, interface
scanning will only occur when the configuration file is loaded. After the scan, the server

107 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

will begin listening for queries on any newly discovered interfaces (provided they are al-
lowed by the listen-on configuration), and will stop listening on interfaces that have gone
away.

statistics-interval
Name server statistics will be logged every statistics-interval minutes. The default is 60.
The maximum value is 28 days (40320 minutes). If set to 0, no statistics will be logged.

NOTE

Not yet implemented in BIND 9.

topology
In BIND 8, this option indicated network topology so that preferential treatment could
be given to the topologicaly closest name servers when sending queries. It is not imple-
mented in BIND 9.

The sortlist Statement

The response to a DNS query may consist of multiple resource records (RRs) forming a resource
record set (RRset). The name server will normally return the RRs within the RRset in an indeter-
minate order (but see the rrset-order statement in Section 5.2). The client resolver code should
rearrange the RRs as appropriate, that is, using any addresses on the local net in preference to
other addresses. However, not all resolvers can do this or are correctly configured. When a
client is using a local server, the sorting can be performed in the server, based on the client’s
address. This only requires configuring the name servers, not all the clients.

The sortlist statement (see below) takes an address_match_list and interprets it in a special
way. Each top level statement in the sortlist must itself be an explicit address_match_list with
one or two elements. The first element (which may be an IP address, an IP prefix, an ACL name
or a nested address_match_list) of each top level list is checked against the source address of
the query until a match is found.

Once the source address of the query has been matched, if the top level statement contains only
one element, the actual primitive element that matched the source address is used to select the
address in the response to move to the beginning of the response. If the statement is a list of two
elements, then the second element is interpreted as a topology preference list. Each top level
element is assigned a distance and the address in the response with the minimum distance is
moved to the beginning of the response.

In the following example, any queries received from any of the addresses of the host itself
will get responses preferring addresses on any of the locally connected networks. Next most
preferred are addresses on the 192.168.1/24 network, and after that either the 192.168.2/24 or
192.168.3/24 network with no preference shown between these two networks. Queries received
from a host on the 192.168.1/24 network will prefer other addresses on that network to the

BIND 9.12.1rc2 108

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

192.168.2/24 and 192.168.3/24 networks. Queries received from a host on the 192.168.4/24 or
the 192.168.5/24 network will only prefer other addresses on their directly connected networks.

sortlist {
// IF the local host
// THEN first fit on the following nets
{ localhost;

{ localnets;
192.168.1/24;
{ 192.168.2/24; 192.168.3/24; }; }; };

// IF on class C 192.168.1 THEN use .1, or .2 or .3
{ 192.168.1/24;

{ 192.168.1/24;
{ 192.168.2/24; 192.168.3/24; }; }; };

// IF on class C 192.168.2 THEN use .2, or .1 or .3
{ 192.168.2/24;

{ 192.168.2/24;
{ 192.168.1/24; 192.168.3/24; }; }; };

// IF on class C 192.168.3 THEN use .3, or .1 or .2
{ 192.168.3/24;

{ 192.168.3/24;
{ 192.168.1/24; 192.168.2/24; }; }; };

// IF .4 or .5 THEN prefer that net
{ { 192.168.4/24; 192.168.5/24; };
};

};

The following example will give reasonable behavior for the local host and hosts on directly
connected networks. It is similar to the behavior of the address sort in BIND 4.9.x. Responses
sent to queries from the local host will favor any of the directly connected networks. Responses
sent to queries from any other hosts on a directly connected network will prefer addresses on
that same network. Responses to other queries will not be sorted.

sortlist {
{ localhost; localnets; };
{ localnets; };

};

RRset Ordering

When multiple records are returned in an answer it may be useful to configure the order of
the records placed into the response. The rrset-order statement permits configuration of the
ordering of the records in a multiple-record response. See also the sortlist statement, Section 5.2.

An order_spec is defined as follows:

[class class_name] [type type_name] [name "domain_name"] order ordering

If no class is specified, the default is ANY. If no type is specified, the default is ANY. If no name
is specified, the default is "*" (asterisk).

The legal values for ordering are:

109 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

fixed

Records are returned in the order they are defined in the zone
file. This option is only available if BIND is configured with
"--enable-fixed-rrset" at compile time.

random Records are returned in some random order.

cyclic

Records are returned in a cyclic round-robin order, rotating
by one record per query.
If BIND is configured with "--enable-fixed-rrset" at compile
time, then the initial ordering of the RRset will match the one
specified in the zone file; otherwise the initial ordering is
indeterminate.

none

Records are returned in whatever order they were retrieved
from the database. This order is indeterminate, but will be
consistent as long as the database is not modified. When no
ordering is specified, this is the default.

For example:

rrset-order {
class IN type A name "host.example.com" order random;
order cyclic;

};

will cause any responses for type A records in class IN that have "host.example.com" as a
suffix, to always be returned in random order. All other records are returned in cyclic order.

If multiple rrset-order statements appear, they are not combined --- the last one applies.

By default, records are returned in indeterminate but consistent order (see none above).

NOTE

In this release of BIND 9, the rrset-order statement does not support "fixed" ordering by
default. Fixed ordering can be enabled at compile time by specifying "--enable-fixed-rrset"
on the "configure" command line.

Tuning

lame-ttl
Sets the number of seconds to cache a lame server indication. 0 disables caching. (This is

BIND 9.12.1rc2 110

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

NOT recommended.) The default is 600 (10 minutes) and the maximum value is 1800
(30 minutes).

servfail-ttl
Sets the number of seconds to cache a SERVFAIL response due to DNSSEC validation
failure or other general server failure. If set to 0, SERVFAIL caching is disabled. The
SERVFAIL cache is not consulted if a query has the CD (Checking Disabled) bit set; this
allows a query that failed due to DNSSEC validation to be retried without waiting for the
SERVFAIL TTL to expire.

The maximum value is 30 seconds; any higher value will be silently reduced. The default
is 1 second.

max-ncache-ttl
To reduce network traffic and increase performance, the server stores negative answers.
max-ncache-ttl is used to set a maximum retention time for these answers in the server in
seconds. The default max-ncache-ttl is 10800 seconds (3 hours). max-ncache-ttl cannot
exceed 7 days and will be silently truncated to 7 days if set to a greater value.

max-cache-ttl
Sets the maximum time for which the server will cache ordinary (positive) answers in
seconds. The default is 604800 (one week). A value of zero may cause all queries to return
SERVFAIL, because of lost caches of intermediate RRsets (such as NS and glue AAAA/A
records) in the resolution process.

max-stale-ttl
Sets the maximum time for which the server will retain records past their normal expiry
to return them as stale records when the servers for those records are not reachable. The
default is to not retain the record.

rndc serve-stale can be used to disable and re-enable the serving of stale records at run-
time. Reloading or reconfiguring named will not re-enable serving of stale records if they
have been disabled via rndc.

min-roots
The minimum number of root servers that is required for a request for the root servers to
be accepted. The default is 2.

NOTE

Not implemented in BIND 9.

sig-validity-interval
Specifies the number of days into the future when DNSSEC signatures automatically gen-
erated as a result of dynamic updates (Section 4.2) will expire. There is an optional second
field which specifies how long before expiry that the signatures will be regenerated. If
not specified, the signatures will be regenerated at 1/4 of base interval. The second field

111 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

is specified in days if the base interval is greater than 7 days otherwise it is specified in
hours. The default base interval is 30 days giving a re-signing interval of 7 1/2 days. The
maximum values are 10 years (3660 days).

The signature inception time is unconditionally set to one hour before the current time to
allow for a limited amount of clock skew.

The sig-validity-interval should be, at least, several multiples of the SOA expire interval
to allow for reasonable interaction between the various timer and expiry dates.

sig-signing-nodes
Specify the maximum number of nodes to be examined in each quantum when signing a
zone with a new DNSKEY. The default is 100.

sig-signing-signatures
Specify a threshold number of signatures that will terminate processing a quantum when
signing a zone with a new DNSKEY. The default is 10.

sig-signing-type
Specify a private RDATA type to be used when generating signing state records. The
default is 65534.

It is expected that this parameter may be removed in a future version once there is a
standard type.

Signing state records are used to internally by named to track the current state of a zone-
signing process, i.e., whether it is still active or has been completed. The records can be
inspected using the command rndc signing -list zone. Once named has finished signing
a zone with a particular key, the signing state record associated with that key can be re-
moved from the zone by running rndc signing -clear keyid/algorithm zone. To clear all
of the completed signing state records for a zone, use rndc signing -clear all zone.

min-refresh-time, max-refresh-time, min-retry-time, max-retry-time
These options control the server’s behavior on refreshing a zone (querying for SOA changes)
or retrying failed transfers. Usually the SOA values for the zone are used, up to a hard-
coded maximum expiry of 24 weeks. However, these values are set by the master, giving
slave server administrators little control over their contents.

These options allow the administrator to set a minimum and maximum refresh and retry
time in seconds per-zone, per-view, or globally. These options are valid for slave and stub
zones, and clamp the SOA refresh and retry times to the specified values.

The following defaults apply. min-refresh-time 300 seconds, max-refresh-time 2419200
seconds (4 weeks), min-retry-time 500 seconds, and max-retry-time 1209600 seconds (2
weeks).

edns-udp-size
Sets the maximum advertised EDNS UDP buffer size in bytes, to control the size of packets
received from authoritative servers in response to recursive queries. Valid values are 512
to 4096 (values outside this range will be silently adjusted to the nearest value within it).
The default value is 4096.

The usual reason for setting edns-udp-size to a non-default value is to get UDP answers
to pass through broken firewalls that block fragmented packets and/or block UDP DNS
packets that are greater than 512 bytes.

BIND 9.12.1rc2 112

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

When named first queries a remote server, it will advertise a UDP buffer size of 512, as
this has the greatest chance of success on the first try.

If the initial response times out, named will try again with plain DNS, and if that is suc-
cessful, it will be taken as evidence that the server does not support EDNS. After enough
failures using EDNS and successes using plain DNS, named will default to plain DNS for
future communications with that server. (Periodically, named will send an EDNS query
to see if the situation has improved.)

However, if the initial query is successful with EDNS advertising a buffer size of 512,
then named will advertise progressively larger buffer sizes on successive queries, until
responses begin timing out or edns-udp-size is reached.

The default buffer sizes used by named are 512, 1232, 1432, and 4096, but never exceeding
edns-udp-size. (The values 1232 and 1432 are chosen to allow for an IPv4/IPv6 encap-
sulated UDP message to be sent without fragmentation at the minimum MTU sizes for
Ethernet and IPv6 networks.)

max-udp-size
Sets the maximum EDNS UDP message size named will send in bytes. Valid values are
512 to 4096 (values outside this range will be silently adjusted to the nearest value within
it). The default value is 4096.

This value applies to responses sent by a server; to set the advertised buffer size in queries,
see edns-udp-size.

The usual reason for setting max-udp-size to a non-default value is to get UDP answers to
pass through broken firewalls that block fragmented packets and/or block UDP packets
that are greater than 512 bytes. This is independent of the advertised receive buffer (edns-
udp-size).

Setting this to a low value will encourage additional TCP traffic to the nameserver.

masterfile-format
Specifies the file format of zone files (see Section 5.3). The default value is text, which
is the standard textual representation, except for slave zones, in which the default value
is raw. Files in other formats than text are typically expected to be generated by the
named-compilezone tool, or dumped by named.

Note that when a zone file in a different format than text is loaded, named may omit
some of the checks which would be performed for a file in the text format. In particular,
check-names checks do not apply for the raw format. This means a zone file in the raw
format must be generated with the same check level as that specified in the named config-
uration file. Also, map format files are loaded directly into memory via memory mapping,
with only minimal checking.

This statement sets the masterfile-format for all zones, but can be overridden on a per-
zone or per-view basis by including a masterfile-format statement within the zone or
view block in the configuration file.

masterfile-style
Specifies the formatting of zone files during dump when the masterfile-format is
text. (This option is ignored with any other masterfile-format.)

When set to relative, records are printed in a multi-line format with owner names
expressed relative to a shared origin. When set to full, records are printed in a single-
line format with absolute owner names. The full format is most suitable when a zone file

113 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

needs to be processed automatically by a script. The relative format is more human-
readable, and is thus suitable when a zone is to be edited by hand. The default is relat
ive.

max-recursion-depth
Sets the maximum number of levels of recursion that are permitted at any one time while
servicing a recursive query. Resolving a name may require looking up a name server
address, which in turn requires resolving another name, etc; if the number of indirections
exceeds this value, the recursive query is terminated and returns SERVFAIL. The default
is 7.

max-recursion-queries
Sets the maximum number of iterative queries that may be sent while servicing a recursive
query. If more queries are sent, the recursive query is terminated and returns SERVFAIL.
Queries to look up top level domains such as "com" and "net" and the DNS root zone are
exempt from this limitation. The default is 75.

notify-delay
The delay, in seconds, between sending sets of notify messages for a zone. The default is
five (5) seconds.

The overall rate that NOTIFY messages are sent for all zones is controlled by serial-query-
rate.

max-rsa-exponent-size
The maximum RSA exponent size, in bits, that will be accepted when validating. Valid
values are 35 to 4096 bits. The default zero (0) is also accepted and is equivalent to 4096.

prefetch
When a query is received for cached data which is to expire shortly, named can refresh
the data from the authoritative server immediately, ensuring that the cache always has an
answer available.

The prefetch specifies the "trigger" TTL value at which prefetch of the current query
will take place: when a cache record with a lower TTL value is encountered during query
processing, it will be refreshed. Valid trigger TTL values are 1 to 10 seconds. Values larger
than 10 seconds will be silently reduced to 10. Setting a trigger TTL to zero (0) causes
prefetch to be disabled. The default trigger TTL is 2.

An optional second argument specifies the "eligibility" TTL: the smallest original TTL
value that will be accepted for a record to be eligible for prefetching. The eligibility TTL
must be at least six seconds longer than the trigger TTL; if it isn’t, named will silently
adjust it upward. The default eligibility TTL is 9.

v6-bias
When determining the next nameserver to try preference IPv6 nameservers by this many
milliseconds. The default is 50 milliseconds.

Built-in server information zones

The server provides some helpful diagnostic information through a number of built-in zones
under the pseudo-top-level-domain bind in the CHAOS class. These zones are part of a built-in
view (see Section 5.2) of class CHAOS which is separate from the default view of class IN. Most

BIND 9.12.1rc2 114

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

global configuration options (allow-query, etc) will apply to this view, but some are locally
overridden: notify, recursion and allow-new-zones are always set to no, and rate-limit is set
to allow three responses per second.

If you need to disable these zones, use the options below, or hide the built-in CHAOS view by
defining an explicit view of class CHAOS that matches all clients.

version
The version the server should report via a query of the name version.bind with type
TXT, class CHAOS. The default is the real version number of this server. Specifying
version none disables processing of the queries.

hostname
The hostname the server should report via a query of the name hostname.bind with
type TXT, class CHAOS. This defaults to the hostname of the machine hosting the name
server as found by the gethostname() function. The primary purpose of such queries is to
identify which of a group of anycast servers is actually answering your queries. Specifying
hostname none; disables processing of the queries.

server-id
The ID the server should report when receiving a Name Server Identifier (NSID) query,
or a query of the name ID.SERVER with type TXT, class CHAOS. The primary purpose
of such queries is to identify which of a group of anycast servers is actually answering
your queries. Specifying server-id none; disables processing of the queries. Specifying
server-id hostname; will cause named to use the hostname as found by the gethostname()
function. The default server-id is none.

Built-in Empty Zones

The named server has some built-in empty zones (SOA and NS records only). These are for
zones that should normally be answered locally and which queries should not be sent to the
Internet’s root servers. The official servers which cover these namespaces return NXDOMAIN
responses to these queries. In particular, these cover the reverse namespaces for addresses from
RFC 1918, RFC 4193, RFC 5737 and RFC 6598. They also include the reverse namespace for
IPv6 local address (locally assigned), IPv6 link local addresses, the IPv6 loopback address and
the IPv6 unknown address.

The server will attempt to determine if a built-in zone already exists or is active (covered by a
forward-only forwarding declaration) and will not create an empty zone in that case.

The current list of empty zones is:

• 10.IN-ADDR.ARPA

• 16.172.IN-ADDR.ARPA

• 17.172.IN-ADDR.ARPA

• 18.172.IN-ADDR.ARPA

• 19.172.IN-ADDR.ARPA

• 20.172.IN-ADDR.ARPA

115 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

• 21.172.IN-ADDR.ARPA

• 22.172.IN-ADDR.ARPA

• 23.172.IN-ADDR.ARPA

• 24.172.IN-ADDR.ARPA

• 25.172.IN-ADDR.ARPA

• 26.172.IN-ADDR.ARPA

• 27.172.IN-ADDR.ARPA

• 28.172.IN-ADDR.ARPA

• 29.172.IN-ADDR.ARPA

• 30.172.IN-ADDR.ARPA

• 31.172.IN-ADDR.ARPA

• 168.192.IN-ADDR.ARPA

• 64.100.IN-ADDR.ARPA

• 65.100.IN-ADDR.ARPA

• 66.100.IN-ADDR.ARPA

• 67.100.IN-ADDR.ARPA

• 68.100.IN-ADDR.ARPA

• 69.100.IN-ADDR.ARPA

• 70.100.IN-ADDR.ARPA

• 71.100.IN-ADDR.ARPA

• 72.100.IN-ADDR.ARPA

• 73.100.IN-ADDR.ARPA

• 74.100.IN-ADDR.ARPA

• 75.100.IN-ADDR.ARPA

• 76.100.IN-ADDR.ARPA

• 77.100.IN-ADDR.ARPA

• 78.100.IN-ADDR.ARPA

• 79.100.IN-ADDR.ARPA

• 80.100.IN-ADDR.ARPA

• 81.100.IN-ADDR.ARPA

BIND 9.12.1rc2 116

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

• 82.100.IN-ADDR.ARPA

• 83.100.IN-ADDR.ARPA

• 84.100.IN-ADDR.ARPA

• 85.100.IN-ADDR.ARPA

• 86.100.IN-ADDR.ARPA

• 87.100.IN-ADDR.ARPA

• 88.100.IN-ADDR.ARPA

• 89.100.IN-ADDR.ARPA

• 90.100.IN-ADDR.ARPA

• 91.100.IN-ADDR.ARPA

• 92.100.IN-ADDR.ARPA

• 93.100.IN-ADDR.ARPA

• 94.100.IN-ADDR.ARPA

• 95.100.IN-ADDR.ARPA

• 96.100.IN-ADDR.ARPA

• 97.100.IN-ADDR.ARPA

• 98.100.IN-ADDR.ARPA

• 99.100.IN-ADDR.ARPA

• 100.100.IN-ADDR.ARPA

• 101.100.IN-ADDR.ARPA

• 102.100.IN-ADDR.ARPA

• 103.100.IN-ADDR.ARPA

• 104.100.IN-ADDR.ARPA

• 105.100.IN-ADDR.ARPA

• 106.100.IN-ADDR.ARPA

• 107.100.IN-ADDR.ARPA

• 108.100.IN-ADDR.ARPA

• 109.100.IN-ADDR.ARPA

• 110.100.IN-ADDR.ARPA

• 111.100.IN-ADDR.ARPA

117 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

• 112.100.IN-ADDR.ARPA

• 113.100.IN-ADDR.ARPA

• 114.100.IN-ADDR.ARPA

• 115.100.IN-ADDR.ARPA

• 116.100.IN-ADDR.ARPA

• 117.100.IN-ADDR.ARPA

• 118.100.IN-ADDR.ARPA

• 119.100.IN-ADDR.ARPA

• 120.100.IN-ADDR.ARPA

• 121.100.IN-ADDR.ARPA

• 122.100.IN-ADDR.ARPA

• 123.100.IN-ADDR.ARPA

• 124.100.IN-ADDR.ARPA

• 125.100.IN-ADDR.ARPA

• 126.100.IN-ADDR.ARPA

• 127.100.IN-ADDR.ARPA

• 0.IN-ADDR.ARPA

• 127.IN-ADDR.ARPA

• 254.169.IN-ADDR.ARPA

• 2.0.192.IN-ADDR.ARPA

• 100.51.198.IN-ADDR.ARPA

• 113.0.203.IN-ADDR.ARPA

• 255.255.255.255.IN-ADDR.ARPA

• 0.IP6.ARPA

• 1.0.IP6.ARPA

• 8.B.D.0.1.0.0.2.IP6.ARPA

• D.F.IP6.ARPA

• 8.E.F.IP6.ARPA

• 9.E.F.IP6.ARPA

• A.E.F.IP6.ARPA

BIND 9.12.1rc2 118

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

• B.E.F.IP6.ARPA

Empty zones are settable at the view level and only apply to views of class IN. Disabled empty
zones are only inherited from options if there are no disabled empty zones specified at the view
level. To override the options list of disabled zones, you can disable the root zone at the view
level, for example:

disable-empty-zone ".";

If you are using the address ranges covered here, you should already have reverse zones cover-
ing the addresses you use. In practice this appears to not be the case with many queries being
made to the infrastructure servers for names in these spaces. So many in fact that sacrificial
servers were needed to be deployed to channel the query load away from the infrastructure
servers.

NOTE

The real parent servers for these zones should disable all empty zone under the parent zone
they serve. For the real root servers, this is all built-in empty zones. This will enable them to
return referrals to deeper in the tree.

empty-server
Specify what server name will appear in the returned SOA record for empty zones. If
none is specified, then the zone’s name will be used.

empty-contact
Specify what contact name will appear in the returned SOA record for empty zones. If
none is specified, then "." will be used.

empty-zones-enable
Enable or disable all empty zones. By default, they are enabled.

disable-empty-zone
Disable individual empty zones. By default, none are disabled. This option can be speci-
fied multiple times.

Content Filtering

BIND 9 provides the ability to filter out DNS responses from external DNS servers containing
certain types of data in the answer section. Specifically, it can reject address (A or AAAA)
records if the corresponding IPv4 or IPv6 addresses match the given address_match_list
of the deny-answer-addresses option. It can also reject CNAME or DNAME records if the
"alias" name (i.e., the CNAME alias or the substituted query name due to DNAME) matches
the given namelist of the deny-answer-aliases option, where "match" means the alias name

119 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

is a subdomain of one of the name_list elements. If the optional namelist is specified with
except-from, records whose query name matches the list will be accepted regardless of the filter
setting. Likewise, if the alias name is a subdomain of the corresponding zone, the deny-answer-
aliases filter will not apply; for example, even if "example.com" is specified for deny-answer-
aliases,

www.example.com. CNAME xxx.example.com.

returned by an "example.com" server will be accepted.

In the address_match_list of the deny-answer-addresses option, only ip_addr and ip_p
refix are meaningful; any key_id will be silently ignored.

If a response message is rejected due to the filtering, the entire message is discarded without
being cached, and a SERVFAIL error will be returned to the client.

This filtering is intended to prevent "DNS rebinding attacks," in which an attacker, in response
to a query for a domain name the attacker controls, returns an IP address within your own
network or an alias name within your own domain. A naive web browser or script could
then serve as an unintended proxy, allowing the attacker to get access to an internal node of
your local network that couldn’t be externally accessed otherwise. See the paper available at
http://portal.acm.org/citation.cfm?id=1315245.1315298 for more details about the attacks.

For example, if you own a domain named "example.net" and your internal network uses an
IPv4 prefix 192.0.2.0/24, you might specify the following rules:

deny-answer-addresses { 192.0.2.0/24; } except-from { "example.net"; };
deny-answer-aliases { "example.net"; };

If an external attacker lets a web browser in your local network look up an IPv4 address of
"attacker.example.com", the attacker’s DNS server would return a response like this:

attacker.example.com. A 192.0.2.1

in the answer section. Since the rdata of this record (the IPv4 address) matches the specified
prefix 192.0.2.0/24, this response will be ignored.

On the other hand, if the browser looks up a legitimate internal web server "www.example.net"
and the following response is returned to the BIND 9 server

www.example.net. A 192.0.2.2

it will be accepted since the owner name "www.example.net" matches the except-from element,
"example.net".

Note that this is not really an attack on the DNS per se. In fact, there is nothing wrong for
an "external" name to be mapped to your "internal" IP address or domain name from the DNS
point of view. It might actually be provided for a legitimate purpose, such as for debugging.
As long as the mapping is provided by the correct owner, it is not possible or does not make
sense to detect whether the intent of the mapping is legitimate or not within the DNS. The
"rebinding" attack must primarily be protected at the application that uses the DNS. For a large
site, however, it may be difficult to protect all possible applications at once. This filtering feature
is provided only to help such an operational environment; it is generally discouraged to turn

BIND 9.12.1rc2 120

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

it on unless you are very sure you have no other choice and the attack is a real threat for your
applications.

Care should be particularly taken if you want to use this option for addresses within 127.0.0.0/8.
These addresses are obviously "internal", but many applications conventionally rely on a DNS
mapping from some name to such an address. Filtering out DNS records containing this address
spuriously can break such applications.

Response Policy Zone (RPZ) Rewriting

BIND 9 includes a limited mechanism to modify DNS responses for requests analogous to email
anti-spam DNS blacklists. Responses can be changed to deny the existence of domains (NX-
DOMAIN), deny the existence of IP addresses for domains (NODATA), or contain other IP
addresses or data.

Response policy zones are named in the response-policy option for the view or among the
global options if there is no response-policy option for the view. Response policy zones are
ordinary DNS zones containing RRsets that can be queried normally if allowed. It is usually
best to restrict those queries with something like allow-query { localhost; };. Note that zones
using masterfile-format map cannot be used as policy zones.

A response-policy option can support multiple policy zones. To maximize performance, a radix
tree is used to quickly identify response policy zones containing triggers that match the current
query. This imposes an upper limit of 32 on the number of policy zones in a single response-
policy option; more than that is a configuration error.

Five policy triggers can be encoded in RPZ records.

RPZ-CLIENT-IP
IP records are triggered by the IP address of the DNS client. Client IP address triggers
are encoded in records that have owner names that are subdomains of rpz-client-ip rela-
tivized to the policy zone origin name and encode an address or address block. IPv4 ad-
dresses are represented as prefixlength.B4.B3.B2.B1.rpz-client-ip. The IPv4
prefix length must be between 1 and 32. All four bytes, B4, B3, B2, and B1, must be
present. B4 is the decimal value of the least significant byte of the IPv4 address as in
IN-ADDR.ARPA.

IPv6 addresses are encoded in a format similar to the standard IPv6 text representation,
prefixlength.W8.W7.W6.W5.W4.W3.W2.W1.rpz-client-ip. Each of W8,...,W1 is
a one to four digit hexadecimal number representing 16 bits of the IPv6 address as in the
standard text representation of IPv6 addresses, but reversed as in IP6.ARPA. (Note that
this representation of IPv6 address is different from IP6.ARPA where each hex digit occu-
pies a label.) All 8 words must be present except when one set of consecutive zero words
is replaced with .zz. analogous to double colons (::) in standard IPv6 text encodings.
The IPv6 prefix length must be between 1 and 128.

QNAME
QNAME policy records are triggered by query names of requests and targets of CNAME
records resolved to generate the response. The owner name of a QNAME policy record is
the query name relativized to the policy zone.

121 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

RPZ-IP
IP triggers are IP addresses in an A or AAAA record in the ANSWER section of a response.
They are encoded like client-IP triggers except as subdomains of rpz-ip.

RPZ-NSDNAME
NSDNAME triggers match names of authoritative servers for the query name, a parent of
the query name, a CNAME for query name, or a parent of a CNAME. They are encoded
as subdomains of rpz-nsdname relativized to the RPZ origin name. NSIP triggers match
IP addresses in A and AAAA RRsets for domains that can be checked against NSDNAME
policy records. The nsdname-enable phrase turns NSDNAME triggers off or on for a
single policy zone or all zones.

RPZ-NSIP
NSIP triggers match the IP addresses of authoritative servers. They are enncoded like IP
triggers, except as subdomains of rpz-nsip. NSDNAME and NSIP triggers are checked
only for names with at least min-ns-dots dots. The default value of min-ns-dots is 1, to
exclude top level domains. The nsip-enable phrase turns NSIP triggers off or on for a
single policy zone or all zones.
If a name server’s IP address is not yet known, named will recursively look up the IP
address before applying an RPZ-NSIP rule. This can cause a processing delay. To speed
up processing at the cost of precision, the nsip-wait-recurse option can be used: when set
to no, RPZ-NSIP rules will only be applied when a name servers’s IP address has already
been looked up and cached. If a server’s IP address is not in the cache, then the RPZ-
NSIP rule will be ignored, but the address will be looked up in the background, and the
rule will be applied to subsequent queries. The default is yes, meaning RPZ-NSIP rules
should always be applied even if an address needs to be looked up first.

The query response is checked against all response policy zones, so two or more policy records
can be triggered by a response. Because DNS responses are rewritten according to at most
one policy record, a single record encoding an action (other than DISABLED actions) must be
chosen. Triggers or the records that encode them are chosen for the rewriting in the following
order:

1. Choose the triggered record in the zone that appears first in the response-policy option.

2. Prefer CLIENT-IP to QNAME to IP to NSDNAME to NSIP triggers in a single zone.

3. Among NSDNAME triggers, prefer the trigger that matches the smallest name under the
DNSSEC ordering.

4. Among IP or NSIP triggers, prefer the trigger with the longest prefix.

5. Among triggers with the same prefix length, prefer the IP or NSIP trigger that matches
the smallest IP address.

When the processing of a response is restarted to resolve DNAME or CNAME records and a
policy record set has not been triggered, all response policy zones are again consulted for the
DNAME or CNAME names and addresses.

RPZ record sets are any types of DNS record except DNAME or DNSSEC that encode actions
or responses to individual queries. Any of the policies can be used with any of the triggers. For
example, while the TCP-only policy is commonly used with client-IP triggers, it can be used
with any type of trigger to force the use of TCP for responses with owner names in a zone.

BIND 9.12.1rc2 122

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

PASSTHRU
The whitelist policy is specified by a CNAME whose target is rpz-passthru. It causes the
response to not be rewritten and is most often used to "poke holes" in policies for CIDR
blocks.

DROP
The blacklist policy is specified by a CNAME whose target is rpz-drop. It causes the
response to be discarded. Nothing is sent to the DNS client.

TCP-Only
The "slip" policy is specified by a CNAME whose target is rpz-tcp-only. It changes UDP
responses to short, truncated DNS responses that require the DNS client to try again with
TCP. It is used to mitigate distributed DNS reflection attacks.

NXDOMAIN
The domain undefined response is encoded by a CNAME whose target is the root domain
(.)

NODATA
The empty set of resource records is specified by CNAME whose target is the wildcard
top-level domain (*.). It rewrites the response to NODATA or ANCOUNT=1.

Local Data
A set of ordinary DNS records can be used to answer queries. Queries for record types
not the set are answered with NODATA.

A special form of local data is a CNAME whose target is a wildcard such as *.example.com.
It is used as if were an ordinary CNAME after the asterisk (*) has been replaced with the
query name. The purpose for this special form is query logging in the walled garden’s
authority DNS server.

All of the actions specified in all of the individual records in a policy zone can be overridden
with a policy clause in the response-policy option. An organization using a policy zone pro-
vided by another organization might use this mechanism to redirect domains to its own walled
garden.

GIVEN
The placeholder policy says "do not override but perform the action specified in the zone."

DISABLED
The testing override policy causes policy zone records to do nothing but log what they
would have done if the policy zone were not disabled. The response to the DNS query
will be written (or not) according to any triggered policy records that are not disabled.
Disabled policy zones should appear first, because they will often not be logged if a higher
precedence trigger is found first.

PASSTHRU, DROP, TCP-Only, NXDOMAIN, NODATA
override with the corresponding per-record policy.

CNAME domain
causes all RPZ policy records to act as if they were "cname domain" records.

123 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

By default, the actions encoded in a response policy zone are applied only to queries that ask
for recursion (RD=1). That default can be changed for a single policy zone or all response policy
zones in a view with a recursive-only no clause. This feature is useful for serving the same zone
files both inside and outside an RFC 1918 cloud and using RPZ to delete answers that would
otherwise contain RFC 1918 values on the externally visible name server or view.

Also by default, RPZ actions are applied only to DNS requests that either do not request DNSSEC
metadata (DO=0) or when no DNSSEC records are available for request name in the original
zone (not the response policy zone). This default can be changed for all response policy zones
in a view with a break-dnssec yes clause. In that case, RPZ actions are applied regardless of
DNSSEC. The name of the clause option reflects the fact that results rewritten by RPZ actions
cannot verify.

No DNS records are needed for a QNAME or Client-IP trigger. The name or IP address itself
is sufficient, so in principle the query name need not be recursively resolved. However, not
resolving the requested name can leak the fact that response policy rewriting is in use and that
the name is listed in a policy zone to operators of servers for listed names. To prevent that infor-
mation leak, by default any recursion needed for a request is done before any policy triggers are
considered. Because listed domains often have slow authoritative servers, this behavior can cost
significant time. The qname-wait-recurse yes option overrides the default and enables that be-
havior when recursion cannot change a non-error response. The option does not affect QNAME
or client-IP triggers in policy zones listed after other zones containing IP, NSIP and NSDNAME
triggers, because those may depend on the A, AAAA, and NS records that would be found dur-
ing recursive resolution. It also does not affect DNSSEC requests (DO=1) unless break-dnssec
yes is in use, because the response would depend on whether or not RRSIG records were found
during resolution. Using this option can cause error responses such as SERVFAIL to appear to
be rewritten, since no recursion is being done to discover problems at the authoritative server.

The dnsrps-enable yes option turns on the DNS Rsponse Policy Service (DNSRPS) interface, if
it has been compiled in to named using configure --enable-dnsrps.

The dnsrps-options block provides additional RPZ configuration settings, which are passed
through to the DNSRPS provider library. Multiple DNSRPS settings in an dnsrps-options string
should be separated with semi-colons. The DNSRPS provider, librpz, is passed a configura-
tion string consisting of the dnsrps-options text, concatenated with settings derived from the
response-policy statement.

Note: The dnsrps-options text should only include configuration settings that are specific to
the DNSRPS provider. For example, the DNSRPS provider from Farsight Security takes options
such as dnsrpzd-conf, dnsrpzd-sock, and dnzrpzd-args (for details of these options, see the
librpz documentation). Other RPZ configuration settings could be included in dnsrps-options
as well, but if named were switched back to traditional RPZ by setting dnsrps-enable to "no",
those options would be ignored.

The TTL of a record modified by RPZ policies is set from the TTL of the relevant record in policy
zone. It is then limited to a maximum value. The max-policy-ttl clause changes the maximum
seconds from its default of 5.

For example, you might use this option statement

response-policy { zone "badlist"; };

and this zone statement

BIND 9.12.1rc2 124

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

zone "badlist" {type master; file "master/badlist"; allow-query {none ←↩
;}; };

with this zone file

$TTL 1H
@ SOA LOCALHOST. named-mgr.example.com (1 1h 15m 30d ←↩

2h)
NS LOCALHOST.

; QNAME policy records. There are no periods (.) after the owner names.
nxdomain.domain.com CNAME . ; NXDOMAIN policy

*.nxdomain.domain.com CNAME . ; NXDOMAIN policy
nodata.domain.com CNAME *. ; NODATA policy

*.nodata.domain.com CNAME *. ; NODATA policy
bad.domain.com A 10.0.0.1 ; redirect to a walled ←↩

garden
AAAA 2001:2::1

bzone.domain.com CNAME garden.example.com.

; do not rewrite (PASSTHRU) OK.DOMAIN.COM
ok.domain.com CNAME rpz-passthru.

; redirect x.bzone.domain.com to x.bzone.domain.com.garden.example.com

*.bzone.domain.com CNAME *.garden.example.com.

; IP policy records that rewrite all responses containing A records in ←↩
127/8

; except 127.0.0.1
8.0.0.0.127.rpz-ip CNAME .
32.1.0.0.127.rpz-ip CNAME rpz-passthru.

; NSDNAME and NSIP policy records
ns.domain.com.rpz-nsdname CNAME .
48.zz.2.2001.rpz-nsip CNAME .

; blacklist and whitelist some DNS clients
112.zz.2001.rpz-client-ip CNAME rpz-drop.
8.0.0.0.127.rpz-client-ip CNAME rpz-drop.

; force some DNS clients and responses in the example.com zone to TCP
16.0.0.1.10.rpz-client-ip CNAME rpz-tcp-only.
example.com CNAME rpz-tcp-only.

*.example.com CNAME rpz-tcp-only.

RPZ can affect server performance. Each configured response policy zone requires the server to
perform one to four additional database lookups before a query can be answered. For example,
a DNS server with four policy zones, each with all four kinds of response triggers, QNAME, IP,
NSIP, and NSDNAME, requires a total of 17 times as many database lookups as a similar DNS
server with no response policy zones. A BIND9 server with adequate memory and one response

125 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

policy zone with QNAME and IP triggers might achieve a maximum queries-per-second rate
about 20% lower. A server with four response policy zones with QNAME and IP triggers might
have a maximum QPS rate about 50% lower.

Responses rewritten by RPZ are counted in the RPZRewrites statistics.

The log clause can be used to optionally turn off rewrite logging for a particular response policy
zone. By default, all rewrites are logged.

Updates to RPZ zones are processed asynchronously; if there is more than one update pending
they are bundled together. If an update to a RPZ zone (for example, via IXFR) happens less
than min-update-interval seconds after the most recent update, then the changes will not
be carried out until this interval has elapsed. The default is 5 seconds.

Response Rate Limiting

Excessive almost identical UDP responses can be controlled by configuring a rate-limit clause in
an options or view statement. This mechanism keeps authoritative BIND 9 from being used in
amplifying reflection denial of service (DoS) attacks. Short truncated (TC=1) responses can be
sent to provide rate-limited responses to legitimate clients within a range of forged, attacked IP
addresses. Legitimate clients react to dropped or truncated response by retrying with UDP or
with TCP respectively.

This mechanism is intended for authoritative DNS servers. It can be used on recursive servers
but can slow applications such as SMTP servers (mail receivers) and HTTP clients (web browsers)
that repeatedly request the same domains. When possible, closing "open" recursive servers is
better.

Response rate limiting uses a "credit" or "token bucket" scheme. Each combination of identical
response and client has a conceptual account that earns a specified number of credits every
second. A prospective response debits its account by one. Responses are dropped or truncated
while the account is negative. Responses are tracked within a rolling window of time which
defaults to 15 seconds, but can be configured with the window option to any value from 1 to
3600 seconds (1 hour). The account cannot become more positive than the per-second limit or
more negative than window times the per-second limit. When the specified number of credits
for a class of responses is set to 0, those responses are not rate limited.

The notions of "identical response" and "DNS client" for rate limiting are not simplistic. All
responses to an address block are counted as if to a single client. The prefix lengths of addresses
blocks are specified with ipv4-prefix-length (default 24) and ipv6-prefix-length (default 56).

All non-empty responses for a valid domain name (qname) and record type (qtype) are iden-
tical and have a limit specified with responses-per-second (default 0 or no limit). All empty
(NODATA) responses for a valid domain, regardless of query type, are identical. Responses in
the NODATA class are limited by nodata-per-second (default responses-per-second). Requests
for any and all undefined subdomains of a given valid domain result in NXDOMAIN errors,
and are identical regardless of query type. They are limited by nxdomains-per-second (default
responses-per-second). This controls some attacks using random names, but can be relaxed
or turned off (set to 0) on servers that expect many legitimate NXDOMAIN responses, such as
from anti-spam blacklists. Referrals or delegations to the server of a given domain are identical
and are limited by referrals-per-second (default responses-per-second).

BIND 9.12.1rc2 126

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

Responses generated from local wildcards are counted and limited as if they were for the parent
domain name. This controls flooding using random.wild.example.com.

All requests that result in DNS errors other than NXDOMAIN, such as SERVFAIL and FOR-
MERR, are identical regardless of requested name (qname) or record type (qtype). This controls
attacks using invalid requests or distant, broken authoritative servers. By default the limit on
errors is the same as the responses-per-second value, but it can be set separately with errors-
per-second.

Many attacks using DNS involve UDP requests with forged source addresses. Rate limiting
prevents the use of BIND 9 to flood a network with responses to requests with forged source
addresses, but could let a third party block responses to legitimate requests. There is a mecha-
nism that can answer some legitimate requests from a client whose address is being forged in a
flood. Setting slip to 2 (its default) causes every other UDP request to be answered with a small
truncated (TC=1) response. The small size and reduced frequency, and so lack of amplification,
of "slipped" responses make them unattractive for reflection DoS attacks. slip must be between
0 and 10. A value of 0 does not "slip": no truncated responses are sent due to rate limiting, all
responses are dropped. A value of 1 causes every response to slip; values between 2 and 10
cause every n’th response to slip. Some error responses including REFUSED and SERVFAIL
cannot be replaced with truncated responses and are instead leaked at the slip rate.

(NOTE: Dropped responses from an authoritative server may reduce the difficulty of a third
party successfully forging a response to a recursive resolver. The best security against forged
responses is for authoritative operators to sign their zones using DNSSEC and for resolver oper-
ators to validate the responses. When this is not an option, operators who are more concerned
with response integrity than with flood mitigation may consider setting slip to 1, causing all
rate-limited responses to be truncated rather than dropped. This reduces the effectiveness of
rate-limiting against reflection attacks.)

When the approximate query per second rate exceeds the qps-scale value, then the responses-
per-second, errors-per-second, nxdomains-per-second and all-per-second values are reduced
by the ratio of the current rate to the qps-scale value. This feature can tighten defenses during
attacks. For example, with qps-scale 250; responses-per-second 20; and a total query rate of
1000 queries/second for all queries from all DNS clients including via TCP, then the effective
responses/second limit changes to (250/1000)*20 or 5. Responses sent via TCP are not limited
but are counted to compute the query per second rate.

Rate limiters for different name spaces maintain separate counters: If, for example, there is a
rate-limit statement for "com" and another for "example.com", queries matching "example.com"
will not be debited against the rate limiter for "com".

If a rate-limit statement does not specify a domain, then it applies to the root domain (".")
and thus affects the entire DNS namespace, except those portions covered by other rate-limit
statements.

Communities of DNS clients can be given their own parameters or no rate limiting by putting
rate-limit statements in view statements instead of the global option statement. A rate-limit
statement in a view replaces, rather than supplementing, a rate-limit statement among the main
options. DNS clients within a view can be exempted from rate limits with the exempt-clients
clause.

UDP responses of all kinds can be limited with the all-per-second phrase. This rate limiting is
unlike the rate limiting provided by responses-per-second, errors-per-second, and nxdomains-
per-second on a DNS server which are often invisible to the victim of a DNS reflection attack.

127 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

Unless the forged requests of the attack are the same as the legitimate requests of the victim,
the victim’s requests are not affected. Responses affected by an all-per-second limit are always
dropped; the slip value has no effect. An all-per-second limit should be at least 4 times as
large as the other limits, because single DNS clients often send bursts of legitimate requests.
For example, the receipt of a single mail message can prompt requests from an SMTP server for
NS, PTR, A, and AAAA records as the incoming SMTP/TCP/IP connection is considered. The
SMTP server can need additional NS, A, AAAA, MX, TXT, and SPF records as it considers the
STMP Mail From command. Web browsers often repeatedly resolve the same names that are
repeated in HTML tags in a page. all-per-second is similar to the rate limiting offered
by firewalls but often inferior. Attacks that justify ignoring the contents of DNS responses are
likely to be attacks on the DNS server itself. They usually should be discarded before the DNS
server spends resources make TCP connections or parsing DNS requests, but that rate limiting
must be done before the DNS server sees the requests.

The maximum size of the table used to track requests and rate limit responses is set with max-
table-size. Each entry in the table is between 40 and 80 bytes. The table needs approximately
as many entries as the number of requests received per second. The default is 20,000. To reduce
the cold start of growing the table, min-table-size (default 500) can set the minimum table size.
Enable rate-limit category logging to monitor expansions of the table and inform choices for
the initial and maximum table size.

Use log-only yes to test rate limiting parameters without actually dropping any requests.

Responses dropped by rate limits are included in the RateDropped and QryDropped statistics.
Responses that truncated by rate limits are included in RateSlipped and RespTruncated.

N

amed supports NXDOMAIN redirection via two methods:

• Redirect zone Section 5.2

• Redirect namespace

With both methods when named gets a NXDOMAIN response it examines a separate names-
pace to see if the NXDOMAIN response should be replaced with an alternative response.

With a redirect zone (zone "." { type redirect; };), the data used to replace the NXDOMAIN is
held in a single zone which is not part of the normal namespace. All the redirect information is
contained in the zone; there are no delegations.

With a redirect namespace (option { nxdomain-redirect <suffix> };) the data used to replace
the NXDOMAIN is part of the normal namespace and is looked up by appending the specified
suffix to the original query name. This roughly doubles the cache required to process NXDO-
MAIN responses as you have the original NXDOMAIN response and the replacement data or
a NXDOMAIN indicating that there is no replacement.

If both a redirect zone and a redirect namespace are configured, the redirect zone is tried first.

server Statement Grammar

BIND 9.12.1rc2 128

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

server netprefix {
bogus boolean;
edns boolean;
edns-udp-size integer;
edns-version integer;
keys server_key;
max-udp-size integer;
notify-source (ipv4_address | *) [port (integer | *)] [

dscp integer];
notify-source-v6 (ipv6_address | *) [port (integer | *)]

[dscp integer];
padding integer;
provide-ixfr boolean;
query-source (([address] (ipv4_address | *) [port (

integer | *)]) | ([[address] (ipv4_address | *)]
port (integer | *))) [dscp integer];

query-source-v6 (([address] (ipv6_address | *) [port (
integer | *)]) | ([[address] (ipv6_address | *)]
port (integer | *))) [dscp integer];

request-expire boolean;
request-ixfr boolean;
request-nsid boolean;
send-cookie boolean;
tcp-keepalive boolean;
tcp-only boolean;
transfer-format (many-answers | one-answer);
transfer-source (ipv4_address | *) [port (integer | *)] [

dscp integer];
transfer-source-v6 (ipv6_address | *) [port (integer | *)

] [dscp integer];
transfers integer;

};

server Statement Definition and Usage

The server statement defines characteristics to be associated with a remote name server. If a
prefix length is specified, then a range of servers is covered. Only the most specific server
clause applies regardless of the order in named.conf.

The server statement can occur at the top level of the configuration file or inside a view state-
ment. If a view statement contains one or more server statements, only those apply to the view
and any top-level ones are ignored. If a view contains no server statements, any top-level server
statements are used as defaults.

If you discover that a remote server is giving out bad data, marking it as bogus will prevent
further queries to it. The default value of bogus is no.

The provide-ixfr clause determines whether the local server, acting as master, will respond
with an incremental zone transfer when the given remote server, a slave, requests it. If set to
yes, incremental transfer will be provided whenever possible. If set to no, all transfers to the
remote server will be non-incremental. If not set, the value of the provide-ixfr option in the
view or global options block is used as a default.

129 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

The request-ixfr clause determines whether the local server, acting as a slave, will request in-
cremental zone transfers from the given remote server, a master. If not set, the value of the
request-ixfr option in the view or global options block is used as a default. It may also be set in
the zone block and, if set there, it will override the global or view setting for that zone.

IXFR requests to servers that do not support IXFR will automatically fall back to AXFR. There-
fore, there is no need to manually list which servers support IXFR and which ones do not; the
global default of yes should always work. The purpose of the provide-ixfr and request-ixfr
clauses is to make it possible to disable the use of IXFR even when both master and slave claim
to support it, for example if one of the servers is buggy and crashes or corrupts data when IXFR
is used.

The request-expire clause determines whether the local server, when acting as a slave, will re-
quest the EDNS EXPIRE value. The EDNS EXPIRE value indicates the remaining time before
the zone data will expire and need to be be refreshed. This is used when a secondary server
transfers a zone from another secondary server; when transferring from the primary, the expi-
ration timer is set from the EXPIRE field of the SOA record instead. The default is yes.

The edns clause determines whether the local server will attempt to use EDNS when commu-
nicating with the remote server. The default is yes.

The edns-udp-size option sets the EDNS UDP size that is advertised by named when querying
the remote server. Valid values are 512 to 4096 bytes (values outside this range will be silently
adjusted to the nearest value within it). This option is useful when you wish to advertise a
different value to this server than the value you advertise globally, for example, when there is a
firewall at the remote site that is blocking large replies. (Note: Currently, this sets a single UDP
size for all packets sent to the server; named will not deviate from this value. This differs from
the behavior of edns-udp-size in options or view statements, where it specifies a maximum
value. The server statement behavior may be brought into conformance with the options/view
behavior in future releases.)

The edns-version option sets the maximum EDNS VERSION that will be sent to the server(s)
by the resolver. The actual EDNS version sent is still subject to normal EDNS version negotia-
tion rules (see RFC 6891), the maximum EDNS version supported by the server, and any other
heuristics that indicate that a lower version should be sent. This option is intended to be used
when a remote server reacts badly to a given EDNS version or higher; it should be set to the
highest version the remote server is known to support. Valid values are 0 to 255; higher values
will be silently adjusted. This option will not be needed until higher EDNS versions than 0 are
in use.

The max-udp-size option sets the maximum EDNS UDP message size named will send. Valid
values are 512 to 4096 bytes (values outside this range will be silently adjusted). This option is
useful when you know that there is a firewall that is blocking large replies from named.

The padding option adds EDNS Padding options to outgoing messages, increasing the packet
size to a multiple of the specified block size. Valid block sizes range from 0 (the default, which
disables the use of EDNS Padding) to 512 bytes. Larger values will be reduced to 512, with a
logged warning. Note: This option is not currently compatible with no TSIG or SIG(0), as the
EDNS OPT record containing the padding would have to be added to the packet after it had
already been signed.

The tcp-only option sets the transport protocol to TCP. The default is to use the UDP transport
and to fallback on TCP only when a truncated response is received.

BIND 9.12.1rc2 130

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

The tcp-keepalive option adds EDNS TCP keepalive to messages sent over TCP. Note currently
idle timeouts in responses are ignored.

The server supports two zone transfer methods. The first, one-answer, uses one DNS message
per resource record transferred. many-answers packs as many resource records as possible
into a message. many-answers is more efficient, but is only known to be understood by BIND
9, BIND 8.x, and patched versions of BIND 4.9.5. You can specify which method to use for a
server with the transfer-format option. If transfer-format is not specified, the transfer-format
specified by the options statement will be used.

transfers is used to limit the number of concurrent inbound zone transfers from the specified
server. If no transfers clause is specified, the limit is set according to the transfers-per-ns option.

The keys clause identifies a key_id defined by the key statement, to be used for transaction
security (TSIG, Section 4.5) when talking to the remote server. When a request is sent to the
remote server, a request signature will be generated using the key specified here and appended
to the message. A request originating from the remote server is not required to be signed by
this key.

Only a single key per server is currently supported.

The transfer-source and transfer-source-v6 clauses specify the IPv4 and IPv6 source address to
be used for zone transfer with the remote server, respectively. For an IPv4 remote server, only
transfer-source can be specified. Similarly, for an IPv6 remote server, only transfer-source-v6
can be specified. For more details, see the description of transfer-source and transfer-source-v6
in Section 5.2.

The notify-source and notify-source-v6 clauses specify the IPv4 and IPv6 source address to be
used for notify messages sent to remote servers, respectively. For an IPv4 remote server, only
notify-source can be specified. Similarly, for an IPv6 remote server, only notify-source-v6 can
be specified.

The query-source and query-source-v6 clauses specify the IPv4 and IPv6 source address to be
used for queries sent to remote servers, respectively. For an IPv4 remote server, only query-
source can be specified. Similarly, for an IPv6 remote server, only query-source-v6 can be spec-
ified.

The request-nsid clause determines whether the local server will add a NSID EDNS option to
requests sent to the server. This overrides request-nsid set at the view or option level.

The send-cookie clause determines whether the local server will add a COOKIE EDNS option
to requests sent to the server. This overrides send-cookie set at the view or option level. The
named server may determine that COOKIE is not supported by the remote server and not add
a COOKIE EDNS option to requests.

statistics-channels Statement Grammar

statistics-channels {
inet (ipv4_address | ipv6_address |

*) [port (integer | *)] [
allow { address_match_element; ...
}];

};

131 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

statistics-channels Statement Definition and Usage

The statistics-channels statement declares communication channels to be used by system ad-
ministrators to get access to statistics information of the name server.

This statement intends to be flexible to support multiple communication protocols in the future,
but currently only HTTP access is supported. It requires that BIND 9 be compiled with libxml2
and/or json-c (also known as libjson0); the statistics-channels statement is still accepted even
if it is built without the library, but any HTTP access will fail with an error.

An inet control channel is a TCP socket listening at the specified ip_port on the specified
ip_addr, which can be an IPv4 or IPv6 address. An ip_addr of * (asterisk) is interpreted as
the IPv4 wildcard address; connections will be accepted on any of the system’s IPv4 addresses.
To listen on the IPv6 wildcard address, use an ip_addr of ::.

If no port is specified, port 80 is used for HTTP channels. The asterisk "*" cannot be used for
ip_port.

The attempt of opening a statistics channel is restricted by the optional allow clause. Connec-
tions to the statistics channel are permitted based on the address_match_list. If no allow clause
is present, named accepts connection attempts from any address; since the statistics may con-
tain sensitive internal information, it is highly recommended to restrict the source of connection
requests appropriately.

If no statistics-channels statement is present, named will not open any communication chan-
nels.

The statistics are available in various formats and views depending on the URI used to access
them. For example, if the statistics channel is configured to listen on 127.0.0.1 port 8888, then the
statistics are accessible in XML format at http://127.0.0.1:8888/ or http://127.0.0.1:8888/xml.
A CSS file is included which can format the XML statistics into tables when viewed with a
stylesheet-capable browser, and into charts and graphs using the Google Charts API when using
a javascript-capable browser.

Applications that depend on a particular XML schema can request http://127.0.0.1:8888/xml/v2
for version 2 of the statistics XML schema or http://127.0.0.1:8888/xml/v3 for version 3. If the
requested schema is supported by the server, then it will respond; if not, it will return a "page
not found" error.

Broken-out subsets of the statistics can be viewed at http://127.0.0.1:8888/xml/v3/status (server
uptime and last reconfiguration time), http://127.0.0.1:8888/xml/v3/server (server and re-
solver statistics), http://127.0.0.1:8888/xml/v3/zones (zone statistics), http://127.0.0.1:8888/xml/v3/net
(network status and socket statistics), http://127.0.0.1:8888/xml/v3/mem (memory manager
statistics), http://127.0.0.1:8888/xml/v3/tasks (task manager statistics), and http://127.0.0.1:8888/xml/v3/traffic
(traffic sizes).

The full set of statistics can also be read in JSON format at http://127.0.0.1:8888/json, with the
broken-out subsets at http://127.0.0.1:8888/json/v1/status (server uptime and last reconfigu-
ration time), http://127.0.0.1:8888/json/v1/server (server and resolver statistics), http://127.0.0.1:8888/json/v1/zones
(zone statistics), http://127.0.0.1:8888/json/v1/net (network status and socket statistics), http://127.0.0.1:8888/json/v1/mem
(memory manager statistics), http://127.0.0.1:8888/json/v1/tasks (task manager statistics), and
http://127.0.0.1:8888/json/v1/traffic (traffic sizes).

BIND 9.12.1rc2 132

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

trusted-keys Statement Grammar

trusted-keys { string integer integer
integer quoted_string; ... };

trusted-keys Statement Definition and Usage

The trusted-keys statement defines DNSSEC security roots. DNSSEC is described in Section 4.8.
A security root is defined when the public key for a non-authoritative zone is known, but cannot
be securely obtained through DNS, either because it is the DNS root zone or because its parent
zone is unsigned. Once a key has been configured as a trusted key, it is treated as if it had
been validated and proven secure. The resolver attempts DNSSEC validation on all DNS data
in subdomains of a security root.

All keys (and corresponding zones) listed in trusted-keys are deemed to exist regardless of
what parent zones say. Similarly for all keys listed in trusted-keys only those keys are used to
validate the DNSKEY RRset. The parent’s DS RRset will not be used.

The trusted-keys statement can contain multiple key entries, each consisting of the key’s do-
main name, flags, protocol, algorithm, and the Base64 representation of the key data. Spaces,
tabs, newlines and carriage returns are ignored in the key data, so the configuration may be
split up into multiple lines.

trusted-keys may be set at the top level of named.conf or within a view. If it is set in both
places, they are additive: keys defined at the top level are inherited by all views, but keys
defined in a view are only used within that view.

Validation below specified names can be temporarily disabled by using rndc nta.

managed-keys Statement Grammar

managed-keys { string string integer
integer integer quoted_string; ... };

managed-keys Statement Definition and Usage

The managed-keys statement, like trusted-keys, defines DNSSEC security roots. The differ-
ence is that managed-keys can be kept up to date automatically, without intervention from the
resolver operator.

Suppose, for example, that a zone’s key-signing key was compromised, and the zone owner had
to revoke and replace the key. A resolver which had the old key in a trusted-keys statement
would be unable to validate this zone any longer; it would reply with a SERVFAIL response
code. This would continue until the resolver operator had updated the trusted-keys statement
with the new key.

If, however, the zone were listed in a managed-keys statement instead, then the zone owner
could add a "stand-by" key to the zone in advance. named would store the stand-by key, and

133 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

when the original key was revoked, named would be able to transition smoothly to the new
key. It would also recognize that the old key had been revoked, and cease using that key to
validate answers, minimizing the damage that the compromised key could do.

A managed-keys statement contains a list of the keys to be managed, along with information
about how the keys are to be initialized for the first time. The only initialization method cur-
rently supported is initial-key. This means the managed-keys statement must contain a
copy of the initializing key. (Future releases may allow keys to be initialized by other methods,
eliminating this requirement.)

Consequently, a managed-keys statement appears similar to a trusted-keys, differing in the
presence of the second field, containing the keyword initial-key. The difference is, whereas
the keys listed in a trusted-keys continue to be trusted until they are removed from named.
conf, an initializing key listed in a managed-keys statement is only trusted once: for as long as
it takes to load the managed key database and start the RFC 5011 key maintenance process.

The first time named runs with a managed key configured in named.conf, it fetches the
DNSKEY RRset directly from the zone apex, and validates it using the key specified in the
managed-keys statement. If the DNSKEY RRset is validly signed, then it is used as the basis for
a new managed keys database.

From that point on, whenever named runs, it sees the managed-keys statement, checks to make
sure RFC 5011 key maintenance has already been initialized for the specified domain, and if so,
it simply moves on. The key specified in the managed-keys statement is not used to validate
answers; it has been superseded by the key or keys stored in the managed keys database.

The next time named runs after a name has been removed from the managed-keys statement,
the corresponding zone will be removed from the managed keys database, and RFC 5011 key
maintenance will no longer be used for that domain.

In the current implementation, the managed keys database is stored as a master-format zone
file.

On servers which do not use views, this file is named managed-keys.bind. When views are
in use, there will be a separate managed keys database for each view; the filename will be the
view name (or, if a view name contains characters which would make it illegal as a filename, a
hash of the view name), followed by the suffix .mkeys.

When the key database is changed, the zone is updated. As with any other dynamic zone,
changes will be written into a journal file, e.g., managed-keys.bind.jnl or internal.
mkeys.jnl. Changes are committed to the master file as soon as possible afterward; this will
usually occur within 30 seconds. So, whenever named is using automatic key maintenance,
the zone file and journal file can be expected to exist in the working directory. (For this reason
among others, the working directory should be always be writable by named.)

If the dnssec-validation option is set to auto, named will automatically initialize a managed
key for the root zone. The key that is used to initialize the key maintenance process is stored
in bind.keys; the location of this file can be overridden with the bindkeys-file option. As a
fallback in the event no bind.keys can be found, the initializing key is also compiled directly
into named.

view Statement Grammar

BIND 9.12.1rc2 134

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

view view_name [class] {
match-clients { address_match_list } ;
match-destinations { address_match_list } ;
match-recursive-only yes_or_no ;

[view_option ; ...]
[zone_statement ; ...]

} ;

view Statement Definition and Usage

The view statement is a powerful feature of BIND 9 that lets a name server answer a DNS
query differently depending on who is asking. It is particularly useful for implementing split
DNS setups without having to run multiple servers.

Each view statement defines a view of the DNS namespace that will be seen by a subset of
clients. A client matches a view if its source IP address matches the address_match_list
of the view’s match-clients clause and its destination IP address matches the address_mat
ch_list of the view’s match-destinations clause. If not specified, both match-clients and
match-destinations default to matching all addresses. In addition to checking IP addresses
match-clients and match-destinations can also take keys which provide an mechanism for the
client to select the view. A view can also be specified as match-recursive-only, which means
that only recursive requests from matching clients will match that view. The order of the view
statements is significant --- a client request will be resolved in the context of the first view that
it matches.

Zones defined within a view statement will only be accessible to clients that match the view.
By defining a zone of the same name in multiple views, different zone data can be given to
different clients, for example, "internal" and "external" clients in a split DNS setup.

Many of the options given in the options statement can also be used within a view statement,
and then apply only when resolving queries with that view. When no view-specific value is
given, the value in the options statement is used as a default. Also, zone options can have
default values specified in the view statement; these view-specific defaults take precedence
over those in the options statement.

Views are class specific. If no class is given, class IN is assumed. Note that all non-IN views
must contain a hint zone, since only the IN class has compiled-in default hints.

If there are no view statements in the config file, a default view that matches any client is auto-
matically created in class IN. Any zone statements specified on the top level of the configuration
file are considered to be part of this default view, and the options statement will apply to the
default view. If any explicit view statements are present, all zone statements must occur inside
view statements.

Here is an example of a typical split DNS setup implemented using view statements:

view "internal" {
// This should match our internal networks.
match-clients { 10.0.0.0/8; };

// Provide recursive service to internal
// clients only.

135 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

recursion yes;

// Provide a complete view of the example.com
// zone including addresses of internal hosts.
zone "example.com" {

type master;
file "example-internal.db";

};
};

view "external" {
// Match all clients not matched by the
// previous view.
match-clients { any; };

// Refuse recursive service to external clients.
recursion no;

// Provide a restricted view of the example.com
// zone containing only publicly accessible hosts.
zone "example.com" {

type master;
file "example-external.db";

};
};

zone Statement Grammar

zone string [class] {
type (master | primary);
allow-query { address_match_element; ... };
allow-query-on { address_match_element; ... };
allow-transfer { address_match_element; ... };
allow-update { address_match_element; ... };
also-notify [port integer] [dscp integer] { (masters | ipv4_address ←↩

[port integer] | ipv6_address [port integer]) [key string]; ←↩
... };

alt-transfer-source (ipv4_address | *) [port (integer | *)] [dscp ←↩
integer];

alt-transfer-source-v6 (ipv6_address | *) [port (integer | *)] [←↩
dscp integer];

auto-dnssec (allow | maintain | off);
check-dup-records (fail | warn | ignore);
check-integrity boolean;
check-mx (fail | warn | ignore);
check-mx-cname (fail | warn | ignore);
check-names (fail | warn | ignore);
check-sibling boolean;
check-spf (warn | ignore);
check-srv-cname (fail | warn | ignore);
check-wildcard boolean;
database string;

BIND 9.12.1rc2 136

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

dialup (notify | notify-passive | passive | refresh | boolean);
dlz string;
dnssec-dnskey-kskonly boolean;
dnssec-loadkeys-interval integer;
dnssec-secure-to-insecure boolean;
dnssec-update-mode (maintain | no-resign);
file quoted_string;
forward (first | only);
forwarders [port integer] [dscp integer] { (ipv4_address | ←↩

ipv6_address) [port integer] [dscp integer]; ... };
inline-signing boolean;
ixfr-from-differences boolean;
journal quoted_string;
key-directory quoted_string;
masterfile-format (map | raw | text);
masterfile-style (full | relative);
max-journal-size (default | unlimited | sizeval);
max-records integer;
max-transfer-idle-out integer;
max-transfer-time-out integer;
max-zone-ttl (unlimited | ttlval);
notify (explicit | master-only | boolean);
notify-delay integer;
notify-source (ipv4_address | *) [port (integer | *)] [dscp ←↩

integer];
notify-source-v6 (ipv6_address | *) [port (integer | *)] [dscp ←↩

integer];
notify-to-soa boolean;
serial-update-method (date | increment | unixtime);
sig-signing-nodes integer;
sig-signing-signatures integer;
sig-signing-type integer;
sig-validity-interval integer [integer];
update-check-ksk boolean;
update-policy (local | { (deny | grant) string (6to4-self | external ←↩

| krb5-self | krb5-subdomain | ms-self | ms-subdomain | name | self ←↩
| selfsub | selfwild | subdomain | tcp-self | wildcard | zonesub) ←↩

[string] rrtypelist; ... };
zero-no-soa-ttl boolean;
zone-statistics (full | terse | none | boolean);

};

zone string [class] {
type (slave | secondary);
allow-notify { address_match_element; ... };
allow-query { address_match_element; ... };
allow-query-on { address_match_element; ... };
allow-transfer { address_match_element; ... };
allow-update-forwarding { address_match_element; ... };
also-notify [port integer] [dscp integer] { (masters | ipv4_address ←↩

[port integer] | ipv6_address [port integer]) [key string]; ←↩
... };

alt-transfer-source (ipv4_address | *) [port (integer | *)] [dscp ←↩

137 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

integer];
alt-transfer-source-v6 (ipv6_address | *) [port (integer | *)] [←↩

dscp integer];
auto-dnssec (allow | maintain | off);
check-names (fail | warn | ignore);
database string;
dialup (notify | notify-passive | passive | refresh | boolean);
dlz string;
dnssec-dnskey-kskonly boolean;
dnssec-loadkeys-interval integer;
dnssec-update-mode (maintain | no-resign);
file quoted_string;
forward (first | only);
forwarders [port integer] [dscp integer] { (ipv4_address | ←↩

ipv6_address) [port integer] [dscp integer]; ... };
inline-signing boolean;
ixfr-from-differences boolean;
journal quoted_string;
key-directory quoted_string;
masterfile-format (map | raw | text);
masterfile-style (full | relative);
masters [port integer] [dscp integer] { (masters | ipv4_address [←↩

port integer] | ipv6_address [port integer]) [key string]; ... ←↩
};

max-journal-size (default | unlimited | sizeval);
max-records integer;
max-refresh-time integer;
max-retry-time integer;
max-transfer-idle-in integer;
max-transfer-idle-out integer;
max-transfer-time-in integer;
max-transfer-time-out integer;
min-refresh-time integer;
min-retry-time integer;
multi-master boolean;
notify (explicit | master-only | boolean);
notify-delay integer;
notify-source (ipv4_address | *) [port (integer | *)] [dscp ←↩

integer];
notify-source-v6 (ipv6_address | *) [port (integer | *)] [dscp ←↩

integer];
notify-to-soa boolean;
request-expire boolean;
request-ixfr boolean;
sig-signing-nodes integer;
sig-signing-signatures integer;
sig-signing-type integer;
sig-validity-interval integer [integer];
transfer-source (ipv4_address | *) [port (integer | *)] [dscp ←↩

integer];
transfer-source-v6 (ipv6_address | *) [port (integer | *)] [dscp ←↩

integer];
try-tcp-refresh boolean;

BIND 9.12.1rc2 138

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

update-check-ksk boolean;
use-alt-transfer-source boolean;
zero-no-soa-ttl boolean;
zone-statistics (full | terse | none | boolean);

};

zone string [class] {
type hint;
check-names (fail | warn | ignore);
delegation-only boolean;
file quoted_string;

};

zone string [class] {
type stub;
allow-query { address_match_element; ... };
allow-query-on { address_match_element; ... };
check-names (fail | warn | ignore);
database string;
delegation-only boolean;
dialup (notify | notify-passive | passive | refresh | boolean);
file quoted_string;
forward (first | only);
forwarders [port integer] [dscp integer] { (ipv4_address | ←↩

ipv6_address) [port integer] [dscp integer]; ... };
masterfile-format (map | raw | text);
masterfile-style (full | relative);
masters [port integer] [dscp integer] { (masters | ipv4_address [←↩

port integer] | ipv6_address [port integer]) [key string]; ... ←↩
};

max-records integer;
max-refresh-time integer;
max-retry-time integer;
max-transfer-idle-in integer;
max-transfer-time-in integer;
min-refresh-time integer;
min-retry-time integer;
multi-master boolean;
transfer-source (ipv4_address | *) [port (integer | *)] [dscp ←↩

integer];
transfer-source-v6 (ipv6_address | *) [port (integer | *)] [dscp ←↩

integer];
use-alt-transfer-source boolean;
zone-statistics (full | terse | none | boolean);

};

zone string [class] {
type static-stub;
allow-query { address_match_element; ... };
allow-query-on { address_match_element; ... };
forward (first | only);
forwarders [port integer] [dscp integer] { (ipv4_address | ←↩

ipv6_address) [port integer] [dscp integer]; ... };

139 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

max-records integer;
server-addresses { (ipv4_address | ipv6_address) [port integer]; ... ←↩

};
server-names { quoted_string; ... };
zone-statistics (full | terse | none | boolean);

};

zone string [class] {
type forward;
delegation-only boolean;
forward (first | only);
forwarders [port integer] [dscp integer] { (ipv4_address | ←↩

ipv6_address) [port integer] [dscp integer]; ... };
};

zone string [class] {
type redirect;
allow-query { address_match_element; ... };
allow-query-on { address_match_element; ... };
dlz string;
file quoted_string;
masterfile-format (map | raw | text);
masterfile-style (full | relative);
masters [port integer] [dscp integer] { (masters | ipv4_address [←↩

port integer] | ipv6_address [port integer]) [key string]; ... ←↩
};

max-records integer;
max-zone-ttl (unlimited | ttlval);
zone-statistics (full | terse | none | boolean);

};

zone string [class] {
type delegation-only;

};

zone string [class] {
in-view string;

};

zone Statement Definition and Usage

Zone Types

The type keyword is required for the zone configuration unless it is an in-view configura-
tion. Its acceptable values include: delegation-only, forward, hint, master, redirect,
slave, static-stub, and stub.

BIND 9.12.1rc2 140

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

master
The server has a master copy of the data for the zone and will be
able to provide authoritative answers for it.

slave

A slave zone is a replica of a master zone. The masters list
specifies one or more IP addresses of master servers that the slave
contacts to update its copy of the zone. Masters list elements can
also be names of other masters lists. By default, transfers are
made from port 53 on the servers; this can be changed for all
servers by specifying a port number before the list of IP
addresses, or on a per-server basis after the IP address.
Authentication to the master can also be done with per-server
TSIG keys. If a file is specified, then the replica will be written to
this file whenever the zone is changed, and reloaded from this file
on a server restart. Use of a file is recommended, since it often
speeds server startup and eliminates a needless waste of
bandwidth. Note that for large numbers (in the tens or hundreds
of thousands) of zones per server, it is best to use a two-level
naming scheme for zone filenames. For example, a slave server
for the zone example.com might place the zone contents into a
file called ex/example.com where ex/ is just the first two
letters of the zone name. (Most operating systems behave very
slowly if you put 100000 files into a single directory.)

stub

A stub zone is similar to a slave zone, except that it replicates
only the NS records of a master zone instead of the entire zone.
Stub zones are not a standard part of the DNS; they are a feature
specific to the BIND implementation.
Stub zones can be used to eliminate the need for glue NS record
in a parent zone at the expense of maintaining a stub zone entry
and a set of name server addresses in named.conf. This usage is
not recommended for new configurations, and BIND 9 supports
it only in a limited way. In BIND 4/8, zone transfers of a parent
zone included the NS records from stub children of that zone.
This meant that, in some cases, users could get away with
configuring child stubs only in the master server for the parent
zone. BIND 9 never mixes together zone data from different
zones in this way. Therefore, if a BIND 9 master serving a parent
zone has child stub zones configured, all the slave servers for the
parent zone also need to have the same child stub zones
configured.
Stub zones can also be used as a way of forcing the resolution of a
given domain to use a particular set of authoritative servers. For
example, the caching name servers on a private network using
RFC1918 addressing may be configured with stub zones for 10.
in-addr.arpa to use a set of internal name servers as the
authoritative servers for that domain.

141 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

static-stub

A static-stub zone is similar to a stub zone with the following
exceptions: the zone data is statically configured, rather than
transferred from a master server; when recursion is necessary for
a query that matches a static-stub zone, the locally configured
data (nameserver names and glue addresses) is always used even
if different authoritative information is cached.
Zone data is configured via the server-addresses and
server-names zone options.
The zone data is maintained in the form of NS and (if necessary)
glue A or AAAA RRs internally, which can be seen by dumping
zone databases by rndc dumpdb -all. The configured RRs are
considered local configuration parameters rather than public
data. Non recursive queries (i.e., those with the RD bit off) to a
static-stub zone are therefore prohibited and will be responded
with REFUSED.
Since the data is statically configured, no zone maintenance
action takes place for a static-stub zone. For example, there is no
periodic refresh attempt, and an incoming notify message will be
rejected with an rcode of NOTAUTH.
Each static-stub zone is configured with internally generated NS
and (if necessary) glue A or AAAA RRs

forward

A "forward zone" is a way to configure forwarding on a
per-domain basis. A zone statement of type forward can contain
a forward and/or forwarders statement, which will apply to
queries within the domain given by the zone name. If no
forwarders statement is present or an empty list for forwarders is
given, then no forwarding will be done for the domain, canceling
the effects of any forwarders in the options statement. Thus if
you want to use this type of zone to change the behavior of the
global forward option (that is, "forward first" to, then "forward
only", or vice versa, but want to use the same servers as set
globally) you need to re-specify the global forwarders.

hint

The initial set of root name servers is specified using a "hint
zone". When the server starts up, it uses the root hints to find a
root name server and get the most recent list of root name servers.
If no hint zone is specified for class IN, the server uses a
compiled-in default set of root servers hints. Classes other than
IN have no built-in defaults hints.

BIND 9.12.1rc2 142

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

redirect

Redirect zones are used to provide answers to queries when
normal resolution would result in NXDOMAIN being returned.
Only one redirect zone is supported per view. allow-query can be
used to restrict which clients see these answers.
If the client has requested DNSSEC records (DO=1) and the
NXDOMAIN response is signed then no substitution will occur.
To redirect all NXDOMAIN responses to 100.100.100.2 and
2001:ffff:ffff::100.100.100.2, one would configure a type redirect
zone named ".", with the zone file containing wildcard records
that point to the desired addresses: "*.IN A 100.100.100.2"
and "*.IN AAAA 2001:ffff:ffff::100.100.100.2".
To redirect all Spanish names (under .ES) one would use similar
entries but with the names "*.ES." instead of "*.". To redirect all
commercial Spanish names (under COM.ES) one would use
wildcard entries called "*.COM.ES.".
Note that the redirect zone supports all possible types; it is not
limited to A and AAAA records.
If a redirect zone is configured with a masters option, then it is
transfered in as if it were a slave zone. Otherwise, it is loaded
from a file as if it were a master zone.
Because redirect zones are not referenced directly by name, they
are not kept in the zone lookup table with normal master and
slave zones. To reload a redirect zone, use rndc reload -redirect,
and to retransfer a redirect zone configured as slave, use rndc
retransfer -redirect. When using rndc reload without specifying
a zone name, redirect zones will be reloaded along with other
zones.

delegation-only

This is used to enforce the delegation-only status of infrastructure
zones (e.g. COM, NET, ORG). Any answer that is received
without an explicit or implicit delegation in the authority section
will be treated as NXDOMAIN. This does not apply to the zone
apex. This should not be applied to leaf zones.
delegation-only has no effect on answers received from
forwarders.
See caveats in root-delegation-only.

Class

The zone’s name may optionally be followed by a class. If a class is not specified, class IN (for
Internet), is assumed. This is correct for the vast majority of cases.

The hesiod class is named for an information service from MIT’s Project Athena. It is used to
share information about various systems databases, such as users, groups, printers and so on.
The keyword HS is a synonym for hesiod.

Another MIT development is Chaosnet, a LAN protocol created in the mid-1970s. Zone data
for it can be specified with the CHAOS class.

143 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

Zone Options

allow-notify
See the description of allow-notify in Section 5.2.

allow-query
See the description of allow-query in Section 5.2.

allow-query-on
See the description of allow-query-on in Section 5.2.

allow-transfer
See the description of allow-transfer in Section 5.2.

allow-update
See the description of allow-update in Section 5.2.

update-policy
Specifies a "Simple Secure Update" policy. See Section 5.2.

allow-update-forwarding
See the description of allow-update-forwarding in Section 5.2.

also-notify
Only meaningful if notify is active for this zone. The set of machines that will receive a
DNS NOTIFY message for this zone is made up of all the listed name servers (other than
the primary master) for the zone plus any IP addresses specified with also-notify. A port
may be specified with each also-notify address to send the notify messages to a port other
than the default of 53. A TSIG key may also be specified to cause the NOTIFY to be signed
by the given key. also-notify is not meaningful for stub zones. The default is the empty
list.

check-names
This option is used to restrict the character set and syntax of certain domain names in mas-
ter files and/or DNS responses received from the network. The default varies according
to zone type. For master zones the default is fail. For slave zones the default is warn. It
is not implemented for hint zones.

check-mx
See the description of check-mx in Section 5.2.

check-spf
See the description of check-spf in Section 5.2.

check-wildcard
See the description of check-wildcard in Section 5.2.

check-integrity
See the description of check-integrity in Section 5.2.

check-sibling
See the description of check-sibling in Section 5.2.

BIND 9.12.1rc2 144

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

zero-no-soa-ttl
See the description of zero-no-soa-ttl in Section 5.2.

update-check-ksk
See the description of update-check-ksk in Section 5.2.

dnssec-loadkeys-interval
See the description of dnssec-loadkeys-interval in Section 5.2.

dnssec-update-mode
See the description of dnssec-update-mode in Section 5.2.

dnssec-dnskey-kskonly
See the description of dnssec-dnskey-kskonly in Section 5.2.

try-tcp-refresh
See the description of try-tcp-refresh in Section 5.2.

database
Specify the type of database to be used for storing the zone data. The string following the
database keyword is interpreted as a list of whitespace-delimited words. The first word
identifies the database type, and any subsequent words are passed as arguments to the
database to be interpreted in a way specific to the database type.

The default is "rbt", BIND 9’s native in-memory red-black-tree database. This database
does not take arguments.

Other values are possible if additional database drivers have been linked into the server.
Some sample drivers are included with the distribution but none are linked in by default.

dialup
See the description of dialup in Section 5.2.

delegation-only
The flag only applies to forward, hint and stub zones. If set to yes, then the zone will also
be treated as if it is also a delegation-only type zone.

See caveats in root-delegation-only.

file
Set the zone’s filename. In master, hint, and redirect zones which do not have masters
defined, zone data is loaded from this file. In slave, stub, and redirect zones which do
have masters defined, zone data is retrieved from another server and saved in this file.
This option is not applicable to other zone types.

forward
Only meaningful if the zone has a forwarders list. The only value causes the lookup to
fail after trying the forwarders and getting no answer, while first would allow a normal
lookup to be tried.

forwarders
Used to override the list of global forwarders. If it is not specified in a zone of type for-
ward, no forwarding is done for the zone and the global options are not used.

145 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

ixfr-base
Was used in BIND 8 to specify the name of the transaction log (journal) file for dynamic
update and IXFR. BIND 9 ignores the option and constructs the name of the journal file
by appending ".jnl" to the name of the zone file.

ixfr-tmp-file
Was an undocumented option in BIND 8. Ignored in BIND 9.

journal
Allow the default journal’s filename to be overridden. The default is the zone’s filename
with ".jnl" appended. This is applicable to master and slave zones.

max-journal-size
See the description of max-journal-size in Section 5.2.

max-records
See the description of max-records in Section 5.2.

max-transfer-time-in
See the description of max-transfer-time-in in Section 5.2.

max-transfer-idle-in
See the description of max-transfer-idle-in in Section 5.2.

max-transfer-time-out
See the description of max-transfer-time-out in Section 5.2.

max-transfer-idle-out
See the description of max-transfer-idle-out in Section 5.2.

notify
See the description of notify in Section 5.2.

notify-delay
See the description of notify-delay in Section 5.2.

notify-to-soa
See the description of notify-to-soa in Section 5.2.

pubkey
In BIND 8, this option was intended for specifying a public zone key for verification of
signatures in DNSSEC signed zones when they are loaded from disk. BIND 9 does not
verify signatures on load and ignores the option.

zone-statistics
See the description of zone-statistics in Section 5.2.

server-addresses
Only meaningful for static-stub zones. This is a list of IP addresses to which queries
should be sent in recursive resolution for the zone. A non empty list for this option will
internally configure the apex NS RR with associated glue A or AAAA RRs.

For example, if "example.com" is configured as a static-stub zone with 192.0.2.1 and 2001:db8::1234
in a server-addresses option, the following RRs will be internally configured.

BIND 9.12.1rc2 146

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

example.com. NS example.com.
example.com. A 192.0.2.1
example.com. AAAA 2001:db8::1234

These records are internally used to resolve names under the static-stub zone. For in-
stance, if the server receives a query for "www.example.com" with the RD bit on, the
server will initiate recursive resolution and send queries to 192.0.2.1 and/or 2001:db8::1234.

server-names
Only meaningful for static-stub zones. This is a list of domain names of nameservers
that act as authoritative servers of the static-stub zone. These names will be resolved to IP
addresses when named needs to send queries to these servers. To make this supplemental
resolution successful, these names must not be a subdomain of the origin name of static-
stub zone. That is, when "example.net" is the origin of a static-stub zone, "ns.example" and
"master.example.com" can be specified in the server-names option, but "ns.example.net"
cannot, and will be rejected by the configuration parser.

A non empty list for this option will internally configure the apex NS RR with the specified
names. For example, if "example.com" is configured as a static-stub zone with "ns1.example.net"
and "ns2.example.net" in a server-names option, the following RRs will be internally con-
figured.

example.com. NS ns1.example.net.
example.com. NS ns2.example.net.

These records are internally used to resolve names under the static-stub zone. For in-
stance, if the server receives a query for "www.example.com" with the RD bit on, the
server initiate recursive resolution, resolve "ns1.example.net" and/or "ns2.example.net"
to IP addresses, and then send queries to (one or more of) these addresses.

sig-validity-interval
See the description of sig-validity-interval in Section 5.2.

sig-signing-nodes
See the description of sig-signing-nodes in Section 5.2.

sig-signing-signatures
See the description of sig-signing-signatures in Section 5.2.

sig-signing-type
See the description of sig-signing-type in Section 5.2.

transfer-source
See the description of transfer-source in Section 5.2.

transfer-source-v6
See the description of transfer-source-v6 in Section 5.2.

alt-transfer-source
See the description of alt-transfer-source in Section 5.2.

alt-transfer-source-v6
See the description of alt-transfer-source-v6 in Section 5.2.

147 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

use-alt-transfer-source
See the description of use-alt-transfer-source in Section 5.2.

notify-source
See the description of notify-source in Section 5.2.

notify-source-v6
See the description of notify-source-v6 in Section 5.2.

min-refresh-time, max-refresh-time, min-retry-time, max-retry-time
See the description in Section 5.2.

ixfr-from-differences
See the description of ixfr-from-differences in Section 5.2. (Note that the ixfr-from-differences
master and slave choices are not available at the zone level.)

key-directory
See the description of key-directory in Section 5.2.

auto-dnssec
See the description of auto-dnssec in Section 5.2.

serial-update-method
See the description of serial-update-method in Section 5.2.

inline-signing
If yes, this enables "bump in the wire" signing of a zone, where a unsigned zone is trans-
ferred in or loaded from disk and a signed version of the zone is served, with possibly, a
different serial number. This behavior is disabled by default.

multi-master
See the description of multi-master in Section 5.2.

masterfile-format
See the description of masterfile-format in Section 5.2.

max-zone-ttl
See the description of max-zone-ttl in Section 5.2.

dnssec-secure-to-insecure
See the description of dnssec-secure-to-insecure in Section 5.2.

Dynamic Update Policies

BIND 9 supports two alternative methods of granting clients the right to perform dynamic
updates to a zone, configured by the allow-update and update-policy option, respectively.

The allow-update clause works the same way as in previous versions of BIND. It grants given
clients the permission to update any record of any name in the zone.

The update-policy clause allows more fine-grained control over what updates are allowed. A
set of rules is specified, where each rule either grants or denies permissions for one or more
names to be updated by one or more identities. If the dynamic update request message is signed
(that is, it includes either a TSIG or SIG(0) record), the identity of the signer can be determined.

BIND 9.12.1rc2 148

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

Rules are specified in the update-policy zone option, and are only meaningful for master zones.
When the update-policy statement is present, it is a configuration error for the allow-update
statement to be present. The update-policy statement (except when set to local) only exam-
ines the signer of a message; the source address is not relevant.

A pre-defined update-policy rule can be switched on with the command update-policy local;.
Switching on this rule in a zone causes named to generate a TSIG session key and place it in a
file. That key will then be allowed to update the zone, if the update request is sent from local-
host. By default, the session key is stored in the file /var/run/named/session.key; the key
name is "local-ddns" and the key algorithm is HMAC-SHA256. These values are configurable
with the session-keyfile, session-keyname and session-keyalg options, respectively).

A client on the local system, if it is run with appropriate permissions, may read the session key
from the key file and use the key to sign update requests. The zone’s update policy will be set
to allow that key to change any record within the zone. Assuming the key name is "local-ddns",
this policy is:

update-policy { grant local-ddns zonesub any; };

...with an additional restriction that only clients connecting from the local system will be per-
mitted to send updates.

Note that only one session key is generated; all zones configured to use update-policy local will
accept the same key.

The command nsupdate -l implements this feature, sending requests to localhost and signing
them using the key retrieved from the session key file.

Other rule definitions look like this:

(grant | deny) identity nametype name types

Each rule grants or denies privileges. Once a message has successfully matched a rule, the op-
eration is immediately granted or denied and no further rules are examined. A rule is matched
when the signer matches the identity field, the name matches the name field in accordance with
the nametype field, and the type matches the types specified in the type field.

No signer is required for tcp-self or 6to4-self however the standard reverse mapping /
prefix conversion must match the identity field.

The identity field specifies a name or a wildcard name. Normally, this is the name of the
TSIG or SIG(0) key used to sign the update request. When a TKEY exchange has been used
to create a shared secret, the identity of the shared secret is the same as the identity of the
key used to authenticate the TKEY exchange. TKEY is also the negotiation method used by
GSS-TSIG, which establishes an identity that is the Kerberos principal of the client, such as
"user@host.domain". When the identity field specifies a wildcard name, it is subject to
DNS wildcard expansion, so the rule will apply to multiple identities. The identity field must
contain a fully-qualified domain name.

For nametypes krb5-self, ms-self, krb5-subdomain, and ms-subdomain the identity

field specifies the Windows or Kerberos realm of the machine belongs to.

The nametype field has 13 values: name, subdomain, wildcard, self, selfsub, selfwild,
krb5-self, ms-self, krb5-subdomain, ms-subdomain, tcp-self, 6to4-self, zone
sub, and external.

149 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

name
Exact-match semantics. This rule matches when the name
being updated is identical to the contents of the name field.

subdomain
This rule matches when the name being updated is a
subdomain of, or identical to, the contents of the name field.

zonesub

This rule is similar to subdomain, except that it matches
when the name being updated is a subdomain of the zone in
which the update-policy statement appears. This obviates
the need to type the zone name twice, and enables the use of
a standard update-policy statement in multiple zones
without modification.
When this rule is used, the name field is omitted.

wildcard

The name field is subject to DNS wildcard expansion, and
this rule matches when the name being updated is a valid
expansion of the wildcard.

self

This rule matches when the name being updated matches
the contents of the identity field. The name field is
ignored, but should be the same as the identity field or "."
The self nametype is most useful when allowing using
one key per name to update, where the key has the same
name as the name to be updated. The identity would be
specified as * (an asterisk) in this case.

selfsub
This rule is similar to self except that subdomains of self
can also be updated.

selfwild
This rule is similar to self except that only subdomains of
self can be updated.

ms-self

This rule takes a Windows machine principal
(machine$@REALM) for machine in REALM and and
converts it machine.realm allowing the machine to update
machine.realm. The REALM to be matched is specified in
the identity field. The name field should be set to "."

ms-
subdomain

This rule takes a Windows machine principal
(machine$@REALM) for machine in REALM and converts it
to machine.realm allowing the machine to update
subdomains of machine.realm. The REALM to be matched
is specified in the identity field.

BIND 9.12.1rc2 150

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

krb5-self

This rule takes a Kerberos machine principal
(host/machine@REALM) for machine in REALM and and
converts it machine.realm allowing the machine to update
machine.realm. The REALM to be matched is specified in
the identity field. The name field should be set to "."

krb5-
subdomain

This rule takes a Kerberos machine principal
(host/machine@REALM) for machine in REALM and
converts it to machine.realm allowing the machine to
update subdomains of machine.realm. The REALM to be
matched is specified in the identity field. The name field
should be set to "."

tcp-self

Allow updates that have been sent via TCP and for which
the standard mapping from the initiating IP address into the
IN-ADDR.ARPA and IP6.ARPA namespaces match the
name to be updated. The name field should be set to "."

NOTE

It is theoretically possible to spoof these TCP ses-
sions.

6to4-self

Allow the 6to4 prefix to be update by any TCP connection
from the 6to4 network or from the corresponding IPv4
address. This is intended to allow NS or DNAME RRsets to
be added to the reverse tree.

NOTE

It is theoretically possible to spoof these TCP ses-
sions.

151 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.2. CONFIGURATION FILE GRAMMAR

external

This rule allows named to defer the decision of whether to
allow a given update to an external daemon.
The method of communicating with the daemon is specified
in the identity field, the format of which is "local:path",
where path is the location of a UNIX-domain socket.
(Currently, "local" is the only supported mechanism.)
Requests to the external daemon are sent over the
UNIX-domain socket as datagrams with the following
format:

Protocol version number (4 bytes, network ←↩
byte order, currently 1)
Request length (4 bytes, network byte order ←↩
)
Signer (null-terminated string)
Name (null-terminated string)
TCP source address (null-terminated string)
Rdata type (null-terminated string)
Key (null-terminated string)
TKEY token length (4 bytes, network byte ←↩
order)
TKEY token (remainder of packet)

The daemon replies with a four-byte value in network byte
order, containing either 0 or 1; 0 indicates that the specified
update is not permitted, and 1 indicates that it is.

In all cases, the name field must specify a fully-qualified domain name.

If no types are explicitly specified, this rule matches all types except RRSIG, NS, SOA, NSEC
and NSEC3. Types may be specified by name, including "ANY" (ANY matches all types except
NSEC and NSEC3, which can never be updated). Note that when an attempt is made to delete
all records associated with a name, the rules are checked for each existing record type.

Multiple views

When multiple views are in use, a zone may be referenced by more than one of them. Often,
the views will contain different zones with the same name, allowing different clients to receive
different answers for the same queries. At times, however, it is desirable for multiple views to
contain identical zones. The in-view zone option provides an efficient way to do this: it allows
a view to reference a zone that was defined in a previously configured view. Example:

view internal {
match-clients { 10/8; };

zone example.com {
type master;
file "example-external.db";

};
};

BIND 9.12.1rc2 152

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.3. ZONE FILE

view external {
match-clients { any; };

zone example.com {
in-view internal;

};
};

An in-view option cannot refer to a view that is configured later in the configuration file.

A zone statement which uses the in-view option may not use any other options with the ex-
ception of forward and forwarders. (These options control the behavior of the containing view,
rather than changing the zone object itself.)

Zone level acls (e.g. allow-query, allow-transfer) and other configuration details of the zone are
all set in the view the referenced zone is defined in. Care need to be taken to ensure that acls are
wide enough for all views referencing the zone.

An in-view zone cannot be used as a response policy zone.

An in-view zone is not intended to reference a forward zone.

5.3 ZONE FILE

Types of Resource Records and When to Use Them

This section, largely borrowed from RFC 1034, describes the concept of a Resource Record (RR)
and explains when each is used. Since the publication of RFC 1034, several new RRs have been
identified and implemented in the DNS. These are also included.

Resource Records

A domain name identifies a node. Each node has a set of resource information, which may
be empty. The set of resource information associated with a particular name is composed of
separate RRs. The order of RRs in a set is not significant and need not be preserved by name
servers, resolvers, or other parts of the DNS. However, sorting of multiple RRs is permitted for
optimization purposes, for example, to specify that a particular nearby server be tried first. See
Section 5.2 and Section 5.2.

The components of a Resource Record are:

owner name The domain name where the RR is found.

type An encoded 16-bit value that specifies the type of the
resource record.

153 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.3. ZONE FILE

TTL

The time-to-live of the RR. This field is a 32-bit integer in
units of seconds, and is primarily used by resolvers
when they cache RRs. The TTL describes how long a RR
can be cached before it should be discarded.

class An encoded 16-bit value that identifies a protocol family
or instance of a protocol.

RDATA The resource data. The format of the data is type (and
sometimes class) specific.

The following are types of valid RRs:

A A host address. In the IN class, this is a 32-bit IP address.
Described in RFC 1035.

AAAA IPv6 address. Described in RFC 1886.

A6
IPv6 address. This can be a partial address (a suffix) and an
indirection to the name where the rest of the address (the
prefix) can be found. Experimental. Described in RFC 2874.

AFSDB Location of AFS database servers. Experimental. Described
in RFC 1183.

APL Address prefix list. Experimental. Described in RFC 3123.

ATMA ATM Address.

AVC Application Visibility and Control record.

CAA
Identifies which Certificate Authorities can issue
certificates for this domain and what rules they need to
follow when doing so. Defined in RFC 6844.

CDNSKEY Identifies which DNSKEY records should be published as
DS records in the parent zone.

CDS Contains the set of DS records that should be published by
the parent zone.

CERT Holds a digital certificate. Described in RFC 2538.

CNAME Identifies the canonical name of an alias. Described in RFC
1035.

BIND 9.12.1rc2 154

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.3. ZONE FILE

CSYNC Child-to-Parent Synchronization in DNS as described in
RFC 7477.

DHCID Is used for identifying which DHCP client is associated
with this name. Described in RFC 4701.

DLV
A DNS Look-aside Validation record which contains the
records that are used as trust anchors for zones in a DLV
namespace. Described in RFC 4431.

DNAME

Replaces the domain name specified with another name to
be looked up, effectively aliasing an entire subtree of the
domain name space rather than a single record as in the
case of the CNAME RR. Described in RFC 2672.

DNSKEY Stores a public key associated with a signed DNS zone.
Described in RFC 4034.

DOA Implements the Digital Object Architecture over DNS.
Experimental.

DS Stores the hash of a public key associated with a signed
DNS zone. Described in RFC 4034.

EID End Point Identifier.

EUI48 A 48-bit EUI address. Described in RFC 7043.

EUI64 A 64-bit EUI address. Described in RFC 7043.

GID Reserved.

GPOS Specifies the global position. Superseded by LOC.

HINFO Identifies the CPU and OS used by a host. Described in
RFC 1035.

HIP Host Identity Protocol Address. Described in RFC 5205.

IPSECKEY Provides a method for storing IPsec keying material in
DNS. Described in RFC 4025.

ISDN Representation of ISDN addresses. Experimental.
Described in RFC 1183.

KEY
Stores a public key associated with a DNS name. Used in
original DNSSEC; replaced by DNSKEY in DNSSECbis, but
still used with SIG(0). Described in RFCs 2535 and 2931.

155 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.3. ZONE FILE

KX Identifies a key exchanger for this DNS name. Described in
RFC 2230.

L32 Holds 32-bit Locator values for Identifier-Locator Network
Protocol. Described in RFC 6742.

L64 Holds 64-bit Locator values for Identifier-Locator Network
Protocol. Described in RFC 6742.

LOC For storing GPS info. Described in RFC 1876.
Experimental.

LP Identifier-Locator Network Protocol. Described in RFC
6742.

MB Mail Box. Historical.

MD Mail Destination. Historical.

MF Mail Forwarder. Historical.

MG Mail Group. Historical.

MINFO Mail Information.

MR Mail Rename. Historical.

MX

Identifies a mail exchange for the domain with a 16-bit
preference value (lower is better) followed by the host
name of the mail exchange. Described in RFC 974, RFC
1035.

NAPTR Name authority pointer. Described in RFC 2915.

NID Holds values for Node Identifiers in Identifier-Locator
Network Protocol. Described in RFC 6742.

NINFO Contains zone status information.

NIMLOC Nimrod Locator.

NSAP A network service access point. Described in RFC 1706.

NSAP-PTR Historical.

NS The authoritative name server for the domain. Described
in RFC 1035.

BIND 9.12.1rc2 156

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.3. ZONE FILE

NSEC

Used in DNSSECbis to securely indicate that RRs with an
owner name in a certain name interval do not exist in a
zone and indicate what RR types are present for an existing
name. Described in RFC 4034.

NSEC3

Used in DNSSECbis to securely indicate that RRs with an
owner name in a certain name interval do not exist in a
zone and indicate what RR types are present for an existing
name. NSEC3 differs from NSEC in that it prevents zone
enumeration but is more computationally expensive on
both the server and the client than NSEC. Described in RFC
5155.

NSEC3PARAM Used in DNSSECbis to tell the authoritative server which
NSEC3 chains are available to use. Described in RFC 5155.

NULL This is an opaque container.

NXT

Used in DNSSEC to securely indicate that RRs with an
owner name in a certain name interval do not exist in a
zone and indicate what RR types are present for an existing
name. Used in original DNSSEC; replaced by NSEC in
DNSSECbis. Described in RFC 2535.

OPENPGPKEY Used to hold an OPENPGPKEY.

PTR A pointer to another part of the domain name space.
Described in RFC 1035.

PX Provides mappings between RFC 822 and X.400 addresses.
Described in RFC 2163.

RKEY Resource key.

RP Information on persons responsible for the domain.
Experimental. Described in RFC 1183.

RRSIG Contains DNSSECbis signature data. Described in RFC
4034.

RT
Route-through binding for hosts that do not have their
own direct wide area network addresses. Experimental.
Described in RFC 1183.

SIG
Contains DNSSEC signature data. Used in original
DNSSEC; replaced by RRSIG in DNSSECbis, but still used
for SIG(0). Described in RFCs 2535 and 2931.

157 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.3. ZONE FILE

SINK The kitchen sink record.

SMIMEA The S/MIME Security Certificate Association.

SOA Identifies the start of a zone of authority. Described in RFC
1035.

SPF Contains the Sender Policy Framework information for a
given email domain. Described in RFC 4408.

SRV Information about well known network services (replaces
WKS). Described in RFC 2782.

SSHFP Provides a way to securely publish a secure shell key’s
fingerprint. Described in RFC 4255.

TA Trust Anchor. Experimental.

TALINK Trust Anchor Link. Experimental.

TLSA Transport Layer Security Certificate Association. Described
in RFC 6698.

TXT Text records. Described in RFC 1035.

UID Reserved.

UINFO Reserved.

UNSPEC Reserved. Historical.

URI Holds a URI. Described in RFC 7553.

WKS Information about which well known network services,
such as SMTP, that a domain supports. Historical.

X25 Representation of X.25 network addresses. Experimental.
Described in RFC 1183.

The following classes of resource records are currently valid in the DNS:

IN The Internet.

CH

Chaosnet, a LAN protocol created at MIT in the mid-1970s.
Rarely used for its historical purpose, but reused for
BIND’s built-in server information zones, e.g., version.
bind.

BIND 9.12.1rc2 158

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.3. ZONE FILE

HS

Hesiod, an information service developed by MIT’s Project
Athena. It is used to share information about various
systems databases, such as users, groups, printers and so
on.

The owner name is often implicit, rather than forming an integral part of the RR. For example,
many name servers internally form tree or hash structures for the name space, and chain RRs
off nodes. The remaining RR parts are the fixed header (type, class, TTL) which is consistent for
all RRs, and a variable part (RDATA) that fits the needs of the resource being described.

The meaning of the TTL field is a time limit on how long an RR can be kept in a cache. This limit
does not apply to authoritative data in zones; it is also timed out, but by the refreshing policies
for the zone. The TTL is assigned by the administrator for the zone where the data originates.
While short TTLs can be used to minimize caching, and a zero TTL prohibits caching, the re-
alities of Internet performance suggest that these times should be on the order of days for the
typical host. If a change can be anticipated, the TTL can be reduced prior to the change to min-
imize inconsistency during the change, and then increased back to its former value following
the change.

The data in the RDATA section of RRs is carried as a combination of binary strings and domain
names. The domain names are frequently used as "pointers" to other data in the DNS.

Textual expression of RRs

RRs are represented in binary form in the packets of the DNS protocol, and are usually repre-
sented in highly encoded form when stored in a name server or resolver. In the examples pro-
vided in RFC 1034, a style similar to that used in master files was employed in order to show
the contents of RRs. In this format, most RRs are shown on a single line, although continuation
lines are possible using parentheses.

The start of the line gives the owner of the RR. If a line begins with a blank, then the owner is
assumed to be the same as that of the previous RR. Blank lines are often included for readability.

Following the owner, we list the TTL, type, and class of the RR. Class and type use the mnemon-
ics defined above, and TTL is an integer before the type field. In order to avoid ambiguity in
parsing, type and class mnemonics are disjoint, TTLs are integers, and the type mnemonic is
always last. The IN class and TTL values are often omitted from examples in the interests of
clarity.

The resource data or RDATA section of the RR are given using knowledge of the typical repre-
sentation for the data.

For example, we might show the RRs carried in a message as:

ISI.EDU. MX 10 VENERA.ISI.EDU.

MX 10 VAXA.ISI.EDU

VENERA.ISI.EDU A 128.9.0.32

A 10.1.0.52

159 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.3. ZONE FILE

VAXA.ISI.EDU A 10.2.0.27

A 128.9.0.33

The MX RRs have an RDATA section which consists of a 16-bit number followed by a domain
name. The address RRs use a standard IP address format to contain a 32-bit internet address.

The above example shows six RRs, with two RRs at each of three domain names.

Similarly we might see:

XX.LCS.MIT.EDU. IN A 10.0.0.44
CH A MIT.EDU.2420

This example shows two addresses for XX.LCS.MIT.EDU, each of a different class.

Discussion of MX Records

As described above, domain servers store information as a series of resource records, each of
which contains a particular piece of information about a given domain name (which is usually,
but not always, a host). The simplest way to think of a RR is as a typed pair of data, a domain
name matched with a relevant datum, and stored with some additional type information to
help systems determine when the RR is relevant.

MX records are used to control delivery of email. The data specified in the record is a priority
and a domain name. The priority controls the order in which email delivery is attempted, with
the lowest number first. If two priorities are the same, a server is chosen randomly. If no
servers at a given priority are responding, the mail transport agent will fall back to the next
largest priority. Priority numbers do not have any absolute meaning --- they are relevant only
respective to other MX records for that domain name. The domain name given is the machine
to which the mail will be delivered. It must have an associated address record (A or AAAA) ---
CNAME is not sufficient.

For a given domain, if there is both a CNAME record and an MX record, the MX record is in
error, and will be ignored. Instead, the mail will be delivered to the server specified in the MX
record pointed to by the CNAME. For example:

example.com. IN MX 10 mail.example.com.

IN MX 10 mail2.example.com.

IN MX 20 mail.backup.org.

mail.example.com. IN A 10.0.0.1

mail2.example.com. IN A 10.0.0.2

Mail delivery will be attempted to mail.example.com and mail2.example.com (in any
order), and if neither of those succeed, delivery to mail.backup.org will be attempted.

BIND 9.12.1rc2 160

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.3. ZONE FILE

Setting TTLs

The time-to-live of the RR field is a 32-bit integer represented in units of seconds, and is primar-
ily used by resolvers when they cache RRs. The TTL describes how long a RR can be cached
before it should be discarded. The following three types of TTL are currently used in a zone file.

SOA

The last field in the SOA is the negative caching TTL. This controls how
long other servers will cache no-such-domain (NXDOMAIN) responses
from you.
The maximum time for negative caching is 3 hours (3h).

$TTL The $TTL directive at the top of the zone file (before the SOA) gives a
default TTL for every RR without a specific TTL set.

RR TTLs Each RR can have a TTL as the second field in the RR, which will
control how long other servers can cache it.

All of these TTLs default to units of seconds, though units can be explicitly specified, for exam-
ple, 1h30m.

Inverse Mapping in IPv4

Reverse name resolution (that is, translation from IP address to name) is achieved by means of
the in-addr.arpa domain and PTR records. Entries in the in-addr.arpa domain are made in least-
to-most significant order, read left to right. This is the opposite order to the way IP addresses are
usually written. Thus, a machine with an IP address of 10.1.2.3 would have a corresponding in-
addr.arpa name of 3.2.1.10.in-addr.arpa. This name should have a PTR resource record whose
data field is the name of the machine or, optionally, multiple PTR records if the machine has
more than one name. For example, in the [example.com] domain:

$ORIGIN 2.1.10.in-addr.arpa
3 IN PTR foo.example.com.

NOTE

The $ORIGIN lines in the examples are for providing context to the examples only --- they
do not necessarily appear in the actual usage. They are only used here to indicate that the
example is relative to the listed origin.

161 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.3. ZONE FILE

Other Zone File Directives

The Master File Format was initially defined in RFC 1035 and has subsequently been extended.
While the Master File Format itself is class independent all records in a Master File must be of
the same class.

Master File Directives include $ORIGIN, $INCLUDE, and $TTL.

The @ (at-sign)

When used in the label (or name) field, the asperand or at-sign (@) symbol represents the current
origin. At the start of the zone file, it is the <zone_name> (followed by trailing dot).

The $ORIGIN Directive

Syntax: $ORIGIN domain-name [comment]

$ORIGIN sets the domain name that will be appended to any unqualified records. When a
zone is first read in there is an implicit $ORIGIN <zone_name>. (followed by trailing dot).
The current $ORIGIN is appended to the domain specified in the $ORIGIN argument if it is
not absolute.

$ORIGIN example.com.
WWW CNAME MAIN-SERVER

is equivalent to

WWW.EXAMPLE.COM. CNAME MAIN-SERVER.EXAMPLE.COM.

The $INCLUDE Directive

Syntax: $INCLUDE filename [origin] [comment]

Read and process the file filename as if it were included into the file at this point. If origin is
specified the file is processed with $ORIGIN set to that value, otherwise the current $ORIGIN
is used.

The origin and the current domain name revert to the values they had prior to the $INCLUDE
once the file has been read.

NOTE

RFC 1035 specifies that the current origin should be restored after an $INCLUDE, but it is
silent on whether the current domain name should also be restored. BIND 9 restores both of
them. This could be construed as a deviation from RFC 1035, a feature, or both.

BIND 9.12.1rc2 162

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.3. ZONE FILE

The $TTL Directive

Syntax: $TTL default-ttl [comment]

Set the default Time To Live (TTL) for subsequent records with undefined TTLs. Valid TTLs are
of the range 0-2147483647 seconds.

$TTL is defined in RFC 2308.

BIND Master File Extension: the $GENERATE Directive

Syntax: $GENERATE range lhs [ttl] [class] type rhs [comment]

$GENERATE is used to create a series of resource records that only differ from each other by
an iterator. $GENERATE can be used to easily generate the sets of records required to support
sub /24 reverse delegations described in RFC 2317: Classless IN-ADDR.ARPA delegation.

$ORIGIN 0.0.192.IN-ADDR.ARPA.
$GENERATE 1-2 @ NS SERVER$.EXAMPLE.
$GENERATE 1-127 $ CNAME $.0

is equivalent to

0.0.0.192.IN-ADDR.ARPA. NS SERVER1.EXAMPLE.
0.0.0.192.IN-ADDR.ARPA. NS SERVER2.EXAMPLE.
1.0.0.192.IN-ADDR.ARPA. CNAME 1.0.0.0.192.IN-ADDR.ARPA.
2.0.0.192.IN-ADDR.ARPA. CNAME 2.0.0.0.192.IN-ADDR.ARPA.
...
127.0.0.192.IN-ADDR.ARPA. CNAME 127.0.0.0.192.IN-ADDR.ARPA.

Generate a set of A and MX records. Note the MX’s right hand side is a quoted string. The
quotes will be stripped when the right hand side is processed.

$ORIGIN EXAMPLE.
$GENERATE 1-127 HOST-$ A 1.2.3.$
$GENERATE 1-127 HOST-$ MX "0 ."

is equivalent to

HOST-1.EXAMPLE. A 1.2.3.1
HOST-1.EXAMPLE. MX 0 .
HOST-2.EXAMPLE. A 1.2.3.2
HOST-2.EXAMPLE. MX 0 .
HOST-3.EXAMPLE. A 1.2.3.3
HOST-3.EXAMPLE. MX 0 .
...
HOST-127.EXAMPLE. A 1.2.3.127
HOST-127.EXAMPLE. MX 0 .

163 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.3. ZONE FILE

range

This can be one of two forms: start-stop or start-stop/step. If the first
form is used, then step is set to 1. start, stop and step must be positive
integers between 0 and (2ˆ31)-1. start must not be larger than stop.

lhs

This describes the owner name of the resource records to be created.
Any single $ (dollar sign) symbols within the lhs string are replaced
by the iterator value. To get a $ in the output, you need to escape the
$ using a backslash \, e.g. \$. The $ may optionally be followed by
modifiers which change the offset from the iterator, field width and
base. Modifiers are introduced by a { (left brace) immediately
following the $ as ${offset[,width[,base]]}. For example, ${-20,3,d}
subtracts 20 from the current value, prints the result as a decimal in a
zero-padded field of width 3. Available output forms are decimal (d),
octal (o), hexadecimal (x or X for uppercase) and nibble (n or N\ for
uppercase). The default modifier is ${0,0,d}. If the lhs is not absolute,
the current $ORIGIN is appended to the name.
In nibble mode the value will be treated as if it was a reversed
hexadecimal string with each hexadecimal digit as a separate label.
The width field includes the label separator.
For compatibility with earlier versions, $$ is still recognized as
indicating a literal $ in the output.

ttl

Specifies the time-to-live of the generated records. If not specified this
will be inherited using the normal TTL inheritance rules.
class and ttl can be entered in either order.

class

Specifies the class of the generated records. This must match the zone
class if it is specified.
class and ttl can be entered in either order.

type Any valid type.

rhs rhs, optionally, quoted string.

The $GENERATE directive is a BIND extension and not part of the standard zone file format.

BIND 8 did not support the optional TTL and CLASS fields.

Additional File Formats

In addition to the standard textual format, BIND 9 supports the ability to read or dump to zone
files in other formats.

The raw format is a binary representation of zone data in a manner similar to that used in zone
transfers. Since it does not require parsing text, load time is significantly reduced.

An even faster alternative is the map format, which is an image of a BIND 9 in-memory zone
database; it is capable of being loaded directly into memory via the mmap() function; the zone
can begin serving queries almost immediately.

BIND 9.12.1rc2 164

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.4. BIND9 STATISTICS

For a primary server, a zone file in raw or map format is expected to be generated from a textual
zone file by the named-compilezone command. For a secondary server or for a dynamic zone,
it is automatically generated (if this format is specified by the masterfile-format option) when
named dumps the zone contents after zone transfer or when applying prior updates.

If a zone file in a binary format needs manual modification, it first must be converted to a textual
form by the named-compilezone command. All necessary modification should go to the text
file, which should then be converted to the binary form by the named-compilezone command
again.

Note that map format is extremely architecture-specific. A map file cannot be used on a sys-
tem with different pointer size, endianness or data alignment than the system on which it was
generated, and should in general be used only inside a single system. While raw format uses
network byte order and avoids architecture-dependent data alignment so that it is as portable
as possible, it is also primarily expected to be used inside the same single system. To export a
zone file in either raw or map format, or make a portable backup of such a file, conversion to
text format is recommended.

5.4 BIND9 STATISTICS

BIND 9 maintains lots of statistics information and provides several interfaces for users to get
access to the statistics. The available statistics include all statistics counters that were available
in BIND 8 and are meaningful in BIND 9, and other information that is considered useful.

The statistics information is categorized into the following sections.

Incoming Requests
The number of incoming DNS requests for
each OPCODE.

Incoming Queries
The number of incoming queries for each
RR type.

Outgoing Queries

The number of outgoing queries for each
RR type sent from the internal resolver.
Maintained per view.

Name Server Statistics
Statistics counters about incoming request
processing.

Zone Maintenance Statistics

Statistics counters regarding zone
maintenance operations such as zone
transfers.

Resolver Statistics

Statistics counters about name resolution
performed in the internal resolver.
Maintained per view.

165 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.4. BIND9 STATISTICS

Cache DB RRsets

The number of RRsets per RR type and
nonexistent names stored in the cache
database. If the exclamation mark (!) is
printed for a RR type, it means that
particular type of RRset is known to be
nonexistent (this is also known as
"NXRRSET"). If a hash mark (#) is present
then the RRset is marked for garbage
collection. Maintained per view.

Socket I/O Statistics
Statistics counters about network related
events.

A subset of Name Server Statistics is collected and shown per zone for which the server has
the authority when zone-statistics is set to full (or yes for backward compatibility. See the
description of zone-statistics in Section 5.2 for further details.

These statistics counters are shown with their zone and view names. The view name is omitted
when the server is not configured with explicit views.

There are currently two user interfaces to get access to the statistics. One is in the plain text
format dumped to the file specified by the statistics-file configuration option. The other is
remotely accessible via a statistics channel when the statistics-channels statement is specified
in the configuration file (see Section 5.2.)

The Statistics File

The text format statistics dump begins with a line, like:

+++ Statistics Dump +++ (973798949)

The number in parentheses is a standard Unix-style timestamp, measured as seconds since
January 1, 1970. Following that line is a set of statistics information, which is categorized as
described above. Each section begins with a line, like:

++ Name Server Statistics ++

Each section consists of lines, each containing the statistics counter value followed by its textual
description. See below for available counters. For brevity, counters that have a value of 0 are
not shown in the statistics file.

The statistics dump ends with the line where the number is identical to the number in the
beginning line; for example:

--- Statistics Dump --- (973798949)

Statistics Counters

The following tables summarize statistics counters that BIND 9 provides. For each row of the
tables, the leftmost column is the abbreviated symbol name of that counter. These symbols

BIND 9.12.1rc2 166

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.4. BIND9 STATISTICS

are shown in the statistics information accessed via an HTTP statistics channel. The rightmost
column gives the description of the counter, which is also shown in the statistics file (but, in this
document, possibly with slight modification for better readability). Additional notes may also
be provided in this column. When a middle column exists between these two columns, it gives
the corresponding counter name of the BIND 8 statistics, if applicable.

Name Server Statistics Counters

Symbol BIND8 Symbol Description

Requestv4 RQ
IPv4 requests received. Note: this also counts non
query requests.

Requestv6 RQ
IPv6 requests received. Note: this also counts non
query requests.

ReqEdns0 Requests with EDNS(0) received.

ReqBadEDNSVer Requests with unsupported EDNS version received.

ReqTSIG Requests with TSIG received.

ReqSIG0 Requests with SIG(0) received.

ReqBadSIG Requests with invalid (TSIG or SIG(0)) signature.

ReqTCP RTCP TCP requests received.

AuthQryRej RUQ Authoritative (non recursive) queries rejected.

RecQryRej RURQ Recursive queries rejected.

XfrRej RUXFR Zone transfer requests rejected.

UpdateRej RUUpd Dynamic update requests rejected.

Response SAns Responses sent.

RespTruncated Truncated responses sent.

RespEDNS0 Responses with EDNS(0) sent.

RespTSIG Responses with TSIG sent.

RespSIG0 Responses with SIG(0) sent.

167 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.4. BIND9 STATISTICS

QrySuccess

Queries resulted in a successful answer. This means
the query which returns a NOERROR response with at
least one answer RR. This corresponds to the success
counter of previous versions of BIND 9.

QryAuthAns Queries resulted in authoritative answer.

QryNoauthAns SNaAns Queries resulted in non authoritative answer.

QryReferral
Queries resulted in referral answer. This corresponds
to the referral counter of previous versions of BIND 9.

QryNxrrset

Queries resulted in NOERROR responses with no
data. This corresponds to the nxrrset counter of
previous versions of BIND 9.

QrySERVFAIL SFail Queries resulted in SERVFAIL.

QryFORMERR SFErr Queries resulted in FORMERR.

QryNXDOMAIN SNXD
Queries resulted in NXDOMAIN. This corresponds to
the nxdomain counter of previous versions of BIND 9.

QryRecursion RFwdQ

Queries which caused the server to perform recursion
in order to find the final answer. This corresponds to
the recursion counter of previous versions of BIND 9.

QryDuplicate RDupQ

Queries which the server attempted to recurse but
discovered an existing query with the same IP address,
port, query ID, name, type and class already being
processed. This corresponds to the duplicate counter
of previous versions of BIND 9.

QryDropped

Recursive queries for which the server discovered an
excessive number of existing recursive queries for the
same name, type and class and were subsequently
dropped. This is the number of dropped queries due
to the reason explained with the clients-per-query and
max-clients-per-query options (see the description
about clients-per-query.) This corresponds to the
dropped counter of previous versions of BIND 9.

BIND 9.12.1rc2 168

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.4. BIND9 STATISTICS

QryFailure

Other query failures. This corresponds to the failure
counter of previous versions of BIND 9. Note: this
counter is provided mainly for backward
compatibility with the previous versions. Normally a
more fine-grained counters such as AuthQryRej and
RecQryRej that would also fall into this counter are
provided, and so this counter would not be of much
interest in practice.

QryNXRedir Queries resulted in NXDOMAIN that were redirected.

QryNXRedirRLookup
Queries resulted in NXDOMAIN that were redirected
and resulted in a successful remote lookup.

XfrReqDone Requested zone transfers completed.

UpdateReqFwd Update requests forwarded.

UpdateRespFwd Update responses forwarded.

UpdateFwdFail Dynamic update forward failed.

UpdateDone Dynamic updates completed.

UpdateFail Dynamic updates failed.

UpdateBadPrereq Dynamic updates rejected due to prerequisite failure.

RateDropped Responses dropped by rate limits.

RateSlipped Responses truncated by rate limits.

RPZRewrites Response policy zone rewrites.

Zone Maintenance Statistics Counters

Symbol Description

NotifyOutv4 IPv4 notifies sent.

NotifyOutv6 IPv6 notifies sent.

NotifyInv4 IPv4 notifies received.

NotifyInv6 IPv6 notifies received.

NotifyRej Incoming notifies rejected.

169 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.4. BIND9 STATISTICS

SOAOutv4 IPv4 SOA queries sent.

SOAOutv6 IPv6 SOA queries sent.

AXFRReqv4 IPv4 AXFR requested.

AXFRReqv6 IPv6 AXFR requested.

IXFRReqv4 IPv4 IXFR requested.

IXFRReqv6 IPv6 IXFR requested.

XfrSuccess Zone transfer requests succeeded.

XfrFail Zone transfer requests failed.

Resolver Statistics Counters

Symbol BIND8 Symbol Description

Queryv4 SFwdQ IPv4 queries sent.

Queryv6 SFwdQ IPv6 queries sent.

Responsev4 RR IPv4 responses received.

Responsev6 RR IPv6 responses received.

NXDOMAIN RNXD NXDOMAIN received.

SERVFAIL RFail SERVFAIL received.

FORMERR RFErr FORMERR received.

OtherError RErr Other errors received.

EDNS0Fail EDNS(0) query failures.

Mismatch RDupR

Mismatch responses received. The DNS ID, response’s
source address, and/or the response’s source port
does not match what was expected. (The port must be
53 or as defined by the port option.) This may be an
indication of a cache poisoning attempt.

Truncated Truncated responses received.

Lame RLame Lame delegations received.

BIND 9.12.1rc2 170

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.4. BIND9 STATISTICS

Retry SDupQ Query retries performed.

QueryAbort Queries aborted due to quota control.

QuerySockFail

Failures in opening query sockets. One common
reason for such failures is a failure of opening a new
socket due to a limitation on file descriptors.

QueryTimeout Query timeouts.

GlueFetchv4 SSysQ IPv4 NS address fetches invoked.

GlueFetchv6 SSysQ IPv6 NS address fetches invoked.

GlueFetchv4Fail IPv4 NS address fetch failed.

GlueFetchv6Fail IPv6 NS address fetch failed.

ValAttempt DNSSEC validation attempted.

ValOk DNSSEC validation succeeded.

ValNegOk
DNSSEC validation on negative information
succeeded.

ValFail DNSSEC validation failed.

QryRTTnn

Frequency table on round trip times (RTTs) of queries.
Each nn specifies the corresponding frequency. In the
sequence of nn_1, nn_2, ..., nn_m, the value of nn_i is
the number of queries whose RTTs are between
nn_(i-1) (inclusive) and nn_i (exclusive) milliseconds.
For the sake of convenience we define nn_0 to be 0.
The last entry should be represented as nn_m+, which
means the number of queries whose RTTs are equal to
or over nn_m milliseconds.

Socket I/O Statistics Counters

Socket I/O statistics counters are defined per socket types, which are UDP4 (UDP/IPv4), UDP6
(UDP/IPv6), TCP4 (TCP/IPv4), TCP6 (TCP/IPv6), Unix (Unix Domain), and FDwatch (sockets
opened outside the socket module). In the following table <TYPE> represents a socket type.
Not all counters are available for all socket types; exceptions are noted in the description field.

Symbol Description

<TYPE>Open
Sockets opened successfully. This counter is not
applicable to the FDwatch type.

171 BIND 9.12.1rc2

CHAPTER 5. BIND 9 CONFIGURATION . . . 5.4. BIND9 STATISTICS

<TYPE>OpenFail
Failures of opening sockets. This counter is not
applicable to the FDwatch type.

<TYPE>Close Sockets closed.

<TYPE>BindFail Failures of binding sockets.

<TYPE>ConnFail Failures of connecting sockets.

<TYPE>Conn Connections established successfully.

<TYPE>AcceptFail

Failures of accepting incoming connection requests.
This counter is not applicable to the UDP and
FDwatch types.

<TYPE>Accept

Incoming connections successfully accepted. This
counter is not applicable to the UDP and FDwatch
types.

<TYPE>SendErr
Errors in socket send operations. This counter
corresponds to SErr counter of BIND 8.

<TYPE>RecvErr

Errors in socket receive operations. This includes
errors of send operations on a connected UDP socket
notified by an ICMP error message.

Compatibility with BIND 8 Counters

Most statistics counters that were available in BIND 8 are also supported in BIND 9 as shown
in the above tables. Here are notes about other counters that do not appear in these tables.

RFwdR,SFwdR
These counters are not supported because BIND 9 does not adopt the notion of forwarding
as BIND 8 did.

RAXFR
This counter is accessible in the Incoming Queries section.

RIQ
This counter is accessible in the Incoming Requests section.

ROpts
This counter is not supported because BIND 9 does not care about IP options in the first
place.

BIND 9.12.1rc2 172

6 BIND 9 Security Considerations

6.1 ACCESS CONTROL LISTS

Access Control Lists (ACLs) are address match lists that you can set up and nickname for future
use in allow-notify, allow-query, allow-query-on, allow-recursion, blackhole, allow-transfer,
match-clients, etc.

Using ACLs allows you to have finer control over who can access your name server, without
cluttering up your config files with huge lists of IP addresses.

It is a good idea to use ACLs, and to control access to your server. Limiting access to your server
by outside parties can help prevent spoofing and denial of service (DoS) attacks against your
server.

ACLs match clients on the basis of up to three characteristics: 1) The client’s IP address; 2) the
TSIG or SIG(0) key that was used to sign the request, if any; and 3) an address prefix encoded
in an EDNS Client Subnet option, if any.

Here is an example of ACLs based on client addresses:

// Set up an ACL named "bogusnets" that will block
// RFC1918 space and some reserved space, which is
// commonly used in spoofing attacks.
acl bogusnets {

0.0.0.0/8; 192.0.2.0/24; 224.0.0.0/3;
10.0.0.0/8; 172.16.0.0/12; 192.168.0.0/16;

};

// Set up an ACL called our-nets. Replace this with the
// real IP numbers.
acl our-nets { x.x.x.x/24; x.x.x.x/21; };
options {

...

...
allow-query { our-nets; };
allow-recursion { our-nets; };
...
blackhole { bogusnets; };
...

};

173 BIND 9.12.1rc2

CHAPTER 6. BIND 9 SECURITY . . . 6.1. ACCESS CONTROL LISTS

zone "example.com" {
type master;
file "m/example.com";
allow-query { any; };

};

This allows authoritative queries for "example.com" from any address, but recursive queries
only from the networks specified in "our-nets", and no queries at all from the networks specified
in "bogusnets".

In addition to network addresses and prefixes, which are matched against the source address of
the DNS request, ACLs may include key elements, which specify the name of a TSIG or SIG(0)
key, or ecs elements, which specify a network prefix but are only matched if that prefix matches
an EDNS client subnet option included in the request.

The EDNS Client Subnet (ECS) option is used by a recursive resolver to inform an authoritative
name server of the network address block from which the original query was received, enabling
authoritative servers to give different answers to the same resolver for different resolver clients.
An ACL containing an element of the form ecs prefix will match if a request arrives in con-
taining an ECS option encoding an address within that prefix. If the request has no ECS option,
then "ecs" elements are simply ignored. Addresses in ACLs that are not prefixed with "ecs" are
matched only against the source address.

NOTE

(Note: The authoritative ECS implementation in named is based on an early version of the
specification, and is known to have incompatibilities with other implementations. It is also
inefficient, requiring a separate view for each client subnet to be sent different answers, and
it is unable to correct for overlapping subnets in the configuration. It can be used for testing
purposes, but is not recommended for production use.)

When BIND 9 is built with GeoIP support, ACLs can also be used for geographic access re-
strictions. This is done by specifying an ACL element of the form: geoip [db database] field
value

The field indicates which field to search for a match. Available fields are "country", "region",
"city", "continent", "postal" (postal code), "metro" (metro code), "area" (area code), "tz" (time-
zone), "isp", "org", "asnum", "domain" and "netspeed".

value is the value to search for within the database. A string may be quoted if it contains spaces
or other special characters. If this is an "asnum" search, then the leading "ASNNNN" string
can be used, otherwise the full description must be used (e.g. "ASNNNN Example Company
Name"). If this is a "country" search and the string is two characters long, then it must be a
standard ISO-3166-1 two-letter country code, and if it is three characters long then it must be
an ISO-3166-1 three-letter country code; otherwise it is the full name of the country. Similarly,
if this is a "region" search and the string is two characters long, then it must be a standard
two-letter state or province abbreviation; otherwise it is the full name of the state or province.

BIND 9.12.1rc2 174

CHAPTER 6. BIND 9 SECURITY . . . 6.2. CHROOT AND SETUID

The database field indicates which GeoIP database to search for a match. In most cases this
is unnecessary, because most search fields can only be found in a single database. However,
searches for country can be answered from the "city", "region", or "country" databases, and
searches for region (i.e., state or province) can be answered from the "city" or "region" databases.
For these search types, specifying a database will force the query to be answered from that
database and no other. If database is not specified, then these queries will be answered from
the "city", database if it is installed, or the "region" database if it is installed, or the "country"
database, in that order.

By default, if a DNS query includes an EDNS Client Subnet (ECS) option which encodes a non-
zero address prefix, then GeoIP ACLs will be matched against that address prefix. Otherwise,
they are matched against the source address of the query. To prevent GeoIP ACLs from match-
ing against ECS options, set the geoip-use-ecs to no.

Some example GeoIP ACLs:

geoip country US;
geoip country JAP;
geoip db country country Canada;
geoip db region region WA;
geoip city "San Francisco";
geoip region Oklahoma;
geoip postal 95062;
geoip tz "America/Los_Angeles";
geoip org "Internet Systems Consortium";

ACLs use a "first-match" logic rather than "best-match": if an address prefix matches an ACL ele-
ment, then that ACL is considered to have matched even if a later element would have matched
more specifically. For example, the ACL { 10/8; !10.0.0.1; } would actually match a query from
10.0.0.1, because the first element indicated that the query should be accepted, and the second
element is ignored.

When using "nested" ACLs (that is, ACLs included or referenced within other ACLs), a negative
match of a nested ACL will the containing ACL to continue looking for matches. This enables
complex ACLs to be constructed, in which multiple client characteristics can be checked at the
same time. For example, to construct an ACL which allows queries only when it originates from
a particular network and only when it is signed with a particular key, use:

allow-query { !{ !10/8; any; }; key example; };

Within the nested ACL, any address that is not in the 10/8 network prefix will be rejected, and
this will terminate processing of the ACL. Any address that is in the 10/8 network prefix will be
accepted, but this causes a negative match of the nested ACL, so the containing ACL continues
processing. The query will then be accepted if it is signed by the key "example", and rejected
otherwise. The ACL, then, will only matches when both conditions are true.

6.2 CHROOT AND SETUID

On UNIX servers, it is possible to run BIND in a chrooted environment (using the chroot() func-
tion) by specifying the -t option for named. This can help improve system security by placing
BIND in a "sandbox", which will limit the damage done if a server is compromised.

175 BIND 9.12.1rc2

CHAPTER 6. BIND 9 SECURITY . . . 6.3. DYNAMIC UPDATE SECURITY

Another useful feature in the UNIX version of BIND is the ability to run the daemon as an
unprivileged user (-u user). We suggest running as an unprivileged user when using the
chroot feature.

Here is an example command line to load BIND in a chroot sandbox, /var/named, and to run
named setuid to user 202:

/usr/local/sbin/named -u 202 -t /var/named

The chroot Environment

In order for a chroot environment to work properly in a particular directory (for example,
/var/named), you will need to set up an environment that includes everything BIND needs to
run. From BIND’s point of view, /var/named is the root of the filesystem. You will need to
adjust the values of options like directory and pid-file to account for this.

Unlike with earlier versions of BIND, you typically will not need to compile named statically nor
install shared libraries under the new root. However, depending on your operating system, you
may need to set up things like /dev/zero, /dev/random, /dev/log, and /etc/localtime.

Using the setuid Function

Prior to running the named daemon, use the touch utility (to change file access and modification
times) or the chown utility (to set the user id and/or group id) on files to which you want BIND
to write.

NOTE

If the named daemon is running as an unprivileged user, it will not be able to bind to new
restricted ports if the server is reloaded.

6.3 DYNAMIC UPDATE SECURITY

Access to the dynamic update facility should be strictly limited. In earlier versions of BIND, the
only way to do this was based on the IP address of the host requesting the update, by listing
an IP address or network prefix in the allow-update zone option. This method is insecure since
the source address of the update UDP packet is easily forged. Also note that if the IP addresses
allowed by the allow-update option include the address of a slave server which performs for-
warding of dynamic updates, the master can be trivially attacked by sending the update to the
slave, which will forward it to the master with its own source IP address causing the master to
approve it without question.

BIND 9.12.1rc2 176

CHAPTER 6. BIND 9 SECURITY . . . 6.3. DYNAMIC UPDATE SECURITY

For these reasons, we strongly recommend that updates be cryptographically authenticated by
means of transaction signatures (TSIG). That is, the allow-update option should list only TSIG
key names, not IP addresses or network prefixes. Alternatively, the new update-policy option
can be used.

Some sites choose to keep all dynamically-updated DNS data in a subdomain and delegate that
subdomain to a separate zone. This way, the top-level zone containing critical data such as the
IP addresses of public web and mail servers need not allow dynamic update at all.

177 BIND 9.12.1rc2

7 Troubleshooting

7.1 COMMON PROBLEMS

It’s not working; how can I figure out what’s wrong?

The best solution to solving installation and configuration issues is to take preventative mea-
sures by setting up logging files beforehand. The log files provide a source of hints and infor-
mation that can be used to figure out what went wrong and how to fix the problem.

7.2 INCREMENTING AND CHANGING THE SERIAL NUMBER

Zone serial numbers are just numbers --- they aren’t date related. A lot of people set them to
a number that represents a date, usually of the form YYYYMMDDRR. Occasionally they will
make a mistake and set them to a "date in the future" then try to correct them by setting them
to the "current date". This causes problems because serial numbers are used to indicate that a
zone has been updated. If the serial number on the slave server is lower than the serial number
on the master, the slave server will attempt to update its copy of the zone.

Setting the serial number to a lower number on the master server than the slave server means
that the slave will not perform updates to its copy of the zone.

The solution to this is to add 2147483647 (2ˆ31-1) to the number, reload the zone and make sure
all slaves have updated to the new zone serial number, then reset the number to what you want
it to be, and reload the zone again.

7.3 WHERE CAN I GET HELP?

The Internet Systems Consortium (ISC) offers a wide range of support and service agreements
for BIND and DHCP servers. Four levels of premium support are available and each level
includes support for all ISC programs, significant discounts on products and training, and a
recognized priority on bug fixes and non-funded feature requests. In addition, ISC offers a
standard support agreement package which includes services ranging from bug fix announce-
ments to remote support. It also includes training in BIND and DHCP.

To discuss arrangements for support, contact info@isc.org or visit the ISC web page at http://www.isc.org/services/support/
to read more.

179 BIND 9.12.1rc2

8 Manual pages

8.1 ARPANAME

arpaname — translate IP addresses to the corresponding ARPA names

Synopsis

arpaname ipaddress ...

DESCRIPTION

arpaname translates IP addresses (IPv4 and IPv6) to the corresponding IN-ADDR.ARPA or
IP6.ARPA names.

SEE ALSO

BIND 9 Administrator Reference Manual.

8.2 DDNS-CONFGEN

ddns-confgen — ddns key generation tool

Synopsis

tsig-keygen [-a algorithm] [-h] [-r randomfile] [name]

ddns-confgen [-a algorithm] [-h] [-k keyname] [-q] [-r randomfile] [-s name | -z zone]

181 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.2. DDNS-CONFGEN

DESCRIPTION

tsig-keygen and ddns-confgen are invocation methods for a utility that generates keys for use
in TSIG signing. The resulting keys can be used, for example, to secure dynamic DNS updates
to a zone or for the rndc command channel.

When run as tsig-keygen, a domain name can be specified on the command line which will be
used as the name of the generated key. If no name is specified, the default is tsig-key.

When run as ddns-confgen, the generated key is accompanied by configuration text and in-
structions that can be used with nsupdate and named when setting up dynamic DNS, includ-
ing an example update-policy statement. (This usage similar to the rndc-confgen command for
setting up command channel security.)

Note that named itself can configure a local DDNS key for use with nsupdate -l: it does this
when a zone is configured with update-policy local;. ddns-confgen is only needed when a
more elaborate configuration is required: for instance, if nsupdate is to be used from a remote
system.

OPTIONS

-a algorithm
Specifies the algorithm to use for the TSIG key. Available choices are: hmac-md5, hmac-
sha1, hmac-sha224, hmac-sha256, hmac-sha384 and hmac-sha512. The default is hmac-
sha256. Options are case-insensitive, and the "hmac-" prefix may be omitted.

-h
Prints a short summary of options and arguments.

-k keyname
Specifies the key name of the DDNS authentication key. The default is ddns-key when
neither the -s nor -z option is specified; otherwise, the default is ddns-key as a separate
label followed by the argument of the option, e.g., ddns-key.example.com. The key
name must have the format of a valid domain name, consisting of letters, digits, hyphens
and periods.

-q
(ddns-confgen only.) Quiet mode: Print only the key, with no explanatory text or usage
examples; This is essentially identical to tsig-keygen.

-r randomfile
Specifies a source of random data for generating the authorization. If the operating system
does not provide a /dev/random or equivalent device, the default source of randomness
is keyboard input. randomdev specifies the name of a character device or file containing
random data to be used instead of the default. The special value keyboard indicates that
keyboard input should be used.

-s name
(ddns-confgen only.) Generate configuration example to allow dynamic updates of a sin-
gle hostname. The example named.conf text shows how to set an update policy for the
specified name using the "name" nametype. The default key name is ddns-key.name. Note

BIND 9.12.1rc2 182

CHAPTER 8. MANUAL PAGES 8.3. DELV

that the "self" nametype cannot be used, since the name to be updated may differ from the
key name. This option cannot be used with the -z option.

-z zone
(ddns-confgen only.) Generate configuration example to allow dynamic updates of a
zone: The example named.conf text shows how to set an update policy for the specified
zone using the "zonesub" nametype, allowing updates to all subdomain names within
that zone. This option cannot be used with the -s option.

SEE ALSO

nsupdate(1), named.conf(5), named(8), BIND 9 Administrator Reference Manual.

8.3 DELV

delv — DNS lookup and validation utility

Synopsis

delv [@server] [-4 | -6] [-a anchor-file] [-b address] [-c class] [-d level] [-i] [-m]
[-p port#] [-q name] [-t type] [-x addr] [name] [type] [class] [queryopt...]

delv [-h]

delv [-v]

delv [queryopt...] [query...]

DESCRIPTION

delv is a tool for sending DNS queries and validating the results, using the same internal re-
solver and validator logic as named.

delv will send to a specified name server all queries needed to fetch and validate the requested
data; this includes the original requested query, subsequent queries to follow CNAME or DNAME
chains, and queries for DNSKEY, DS and DLV records to establish a chain of trust for DNSSEC
validation. It does not perform iterative resolution, but simulates the behavior of a name server
configured for DNSSEC validating and forwarding.

By default, responses are validated using built-in DNSSEC trust anchor for the root zone (".").
Records returned by delv are either fully validated or were not signed. If validation fails, an
explanation of the failure is included in the output; the validation process can be traced in
detail. Because delv does not rely on an external server to carry out validation, it can be used
to check the validity of DNS responses in environments where local name servers may not be
trustworthy.

Unless it is told to query a specific name server, delv will try each of the servers listed in /etc/
resolv.conf. If no usable server addresses are found, delv will send queries to the localhost
addresses (127.0.0.1 for IPv4, ::1 for IPv6).

183 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.3. DELV

When no command line arguments or options are given, delv will perform an NS query for "."
(the root zone).

SIMPLE USAGE

A typical invocation of delv looks like:

delv @server name type

where:

server
is the name or IP address of the name server to query. This can be an IPv4 address in
dotted-decimal notation or an IPv6 address in colon-delimited notation. When the sup-
plied server argument is a hostname, delv resolves that name before querying that name
server (note, however, that this initial lookup is not validated by DNSSEC).

If no server argument is provided, delv consults /etc/resolv.conf; if an address is
found there, it queries the name server at that address. If either of the -4 or -6 options
are in use, then only addresses for the corresponding transport will be tried. If no usable
addresses are found, delv will send queries to the localhost addresses (127.0.0.1 for IPv4,
::1 for IPv6).

name
is the domain name to be looked up.

type
indicates what type of query is required --- ANY, A, MX, etc. type can be any valid query
type. If no type argument is supplied, delv will perform a lookup for an A record.

OPTIONS

-a anchor-file
Specifies a file from which to read DNSSEC trust anchors. The default is /etc/bind.
keys, which is included with BIND 9 and contains one or more trust anchors for the root
zone (".").

Keys that do not match the root zone name are ignored. An alternate key name can be
specified using the +root=NAME options. DNSSEC Lookaside Validation can also be
turned on by using the +dlv=NAME to specify the name of a zone containing DLV records.

Note: When reading the trust anchor file, delv treats managed-keys statements and tru
sted-keys statements identically. That is, for a managed key, it is the initial key that is
trusted; RFC 5011 key management is not supported. delv will not consult the managed-
keys database maintained by named. This means that if either of the keys in /etc/bind.
keys is revoked and rolled over, it will be necessary to update /etc/bind.keys to use
DNSSEC validation in delv.

-b address
Sets the source IP address of the query to address. This must be a valid address on one of
the host’s network interfaces or "0.0.0.0" or "::". An optional source port may be specified
by appending "#<port>"

BIND 9.12.1rc2 184

CHAPTER 8. MANUAL PAGES 8.3. DELV

-c class
Sets the query class for the requested data. Currently, only class "IN" is supported in delv
and any other value is ignored.

-d level
Set the systemwide debug level to level. The allowed range is from 0 to 99. The default
is 0 (no debugging). Debugging traces from delv become more verbose as the debug
level increases. See the +mtrace, +rtrace, and +vtrace options below for additional
debugging details.

-h
Display the delv help usage output and exit.

-i
Insecure mode. This disables internal DNSSEC validation. (Note, however, this does not
set the CD bit on upstream queries. If the server being queried is performing DNSSEC
validation, then it will not return invalid data; this can cause delv to time out. When it is
necessary to examine invalid data to debug a DNSSEC problem, use dig +cd.)

-m
Enables memory usage debugging.

-p port#
Specifies a destination port to use for queries instead of the standard DNS port number
53. This option would be used with a name server that has been configured to listen for
queries on a non-standard port number.

-q name
Sets the query name to name. While the query name can be specified without using the
-q, it is sometimes necessary to disambiguate names from types or classes (for example,
when looking up the name "ns", which could be misinterpreted as the type NS, or "ch",
which could be misinterpreted as class CH).

-t type
Sets the query type to type, which can be any valid query type supported in BIND 9 except
for zone transfer types AXFR and IXFR. As with -q, this is useful to distinguish query
name type or class when they are ambiguous. it is sometimes necessary to disambiguate
names from types.

The default query type is "A", unless the -x option is supplied to indicate a reverse lookup,
in which case it is "PTR".

-v
Print the delv version and exit.

-x addr
Performs a reverse lookup, mapping an addresses to a name. addr is an IPv4 address in
dotted-decimal notation, or a colon-delimited IPv6 address. When -x is used, there is no
need to provide the name or type arguments. delv automatically performs a lookup for a
name like 11.12.13.10.in-addr.arpa and sets the query type to PTR. IPv6 addresses
are looked up using nibble format under the IP6.ARPA domain.

-4
Forces delv to only use IPv4.

185 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.3. DELV

-6
Forces delv to only use IPv6.

QUERY OPTIONS

delv provides a number of query options which affect the way results are displayed, and in
some cases the way lookups are performed.

Each query option is identified by a keyword preceded by a plus sign (+). Some keywords
set or reset an option. These may be preceded by the string no to negate the meaning of that
keyword. Other keywords assign values to options like the timeout interval. They have the
form +keyword=value. The query options are:

+[no]cdflag
Controls whether to set the CD (checking disabled) bit in queries sent by delv. This may
be useful when troubleshooting DNSSEC problems from behind a validating resolver.
A validating resolver will block invalid responses, making it difficult to retrieve them for
analysis. Setting the CD flag on queries will cause the resolver to return invalid responses,
which delv can then validate internally and report the errors in detail.

+[no]class
Controls whether to display the CLASS when printing a record. The default is to display
the CLASS.

+[no]ttl
Controls whether to display the TTL when printing a record. The default is to display the
TTL.

+[no]rtrace
Toggle resolver fetch logging. This reports the name and type of each query sent by delv in
the process of carrying out the resolution and validation process: this includes including
the original query and all subsequent queries to follow CNAMEs and to establish a chain
of trust for DNSSEC validation.

This is equivalent to setting the debug level to 1 in the "resolver" logging category. Setting
the systemwide debug level to 1 using the -d option will product the same output (but
will affect other logging categories as well).

+[no]mtrace
Toggle message logging. This produces a detailed dump of the responses received by delv
in the process of carrying out the resolution and validation process.

This is equivalent to setting the debug level to 10 for the "packets" module of the "re-
solver" logging category. Setting the systemwide debug level to 10 using the -d option
will produce the same output (but will affect other logging categories as well).

+[no]vtrace
Toggle validation logging. This shows the internal process of the validator as it determines
whether an answer is validly signed, unsigned, or invalid.

This is equivalent to setting the debug level to 3 for the "validator" module of the "dnssec"
logging category. Setting the systemwide debug level to 3 using the -d option will pro-
duce the same output (but will affect other logging categories as well).

BIND 9.12.1rc2 186

CHAPTER 8. MANUAL PAGES 8.3. DELV

+[no]short
Provide a terse answer. The default is to print the answer in a verbose form.

+[no]comments
Toggle the display of comment lines in the output. The default is to print comments.

+[no]rrcomments
Toggle the display of per-record comments in the output (for example, human-readable
key information about DNSKEY records). The default is to print per-record comments.

+[no]crypto
Toggle the display of cryptographic fields in DNSSEC records. The contents of these field
are unnecessary to debug most DNSSEC validation failures and removing them makes it
easier to see the common failures. The default is to display the fields. When omitted they
are replaced by the string "[omitted]" or in the DNSKEY case the key id is displayed as the
replacement, e.g. "[key id = value]".

+[no]trust
Controls whether to display the trust level when printing a record. The default is to dis-
play the trust level.

+[no]split[=W]
Split long hex- or base64-formatted fields in resource records into chunks of W characters
(where W is rounded up to the nearest multiple of 4). +nosplit or +split=0 causes fields
not to be split at all. The default is 56 characters, or 44 characters when multiline mode is
active.

+[no]all
Set or clear the display options +[no]comments, +[no]rrcomments, and +[no]trust
as a group.

+[no]multiline
Print long records (such as RRSIG, DNSKEY, and SOA records) in a verbose multi-line
format with human-readable comments. The default is to print each record on a single
line, to facilitate machine parsing of the delv output.

+[no]dnssec
Indicates whether to display RRSIG records in the delv output. The default is to do so.
Note that (unlike in dig) this does not control whether to request DNSSEC records or
whether to validate them. DNSSEC records are always requested, and validation will
always occur unless suppressed by the use of -i or +noroot and +nodlv.

+[no]root[=ROOT]
Indicates whether to perform conventional (non-lookaside) DNSSEC validation, and if so,
specifies the name of a trust anchor. The default is to validate using a trust anchor of "."
(the root zone), for which there is a built-in key. If specifying a different trust anchor, then
-a must be used to specify a file containing the key.

+[no]dlv[=DLV]
Indicates whether to perform DNSSEC lookaside validation, and if so, specifies the name
of the DLV trust anchor. The -a option must also be used to specify a file containing the
DLV key.

187 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.4. DIG

+[no]tcp
Controls whether to use TCP when sending queries. The default is to use UDP unless a
truncated response has been received.

+[no]unknownformat
Print all RDATA in unknown RR type presentation format (RFC 3597). The default is to
print RDATA for known types in the type’s presentation format.

FILES

/etc/bind.keys

/etc/resolv.conf

SEE ALSO

dig(1), named(8), RFC4034, RFC4035, RFC4431, RFC5074, RFC5155.

8.4 DIG

dig — DNS lookup utility

Synopsis

dig [@server] [-b address] [-c class] [-f filename] [-k filename] [-m] [-p port#] [-q
name] [-t type] [-v] [-x addr] [-y [hmac:]name:key] [-4 | -6] [name] [type] [class] [query-
opt...]

dig [-h]

dig [global-queryopt...] [query...]

DESCRIPTION

dig is a flexible tool for interrogating DNS name servers. It performs DNS lookups and displays
the answers that are returned from the name server(s) that were queried. Most DNS adminis-
trators use dig to troubleshoot DNS problems because of its flexibility, ease of use and clarity of
output. Other lookup tools tend to have less functionality than dig.

Although dig is normally used with command-line arguments, it also has a batch mode of oper-
ation for reading lookup requests from a file. A brief summary of its command-line arguments
and options is printed when the -h option is given. Unlike earlier versions, the BIND 9 imple-
mentation of dig allows multiple lookups to be issued from the command line.

Unless it is told to query a specific name server, dig will try each of the servers listed in /etc/
resolv.conf. If no usable server addresses are found, dig will send the query to the local
host.

BIND 9.12.1rc2 188

CHAPTER 8. MANUAL PAGES 8.4. DIG

When no command line arguments or options are given, dig will perform an NS query for "."
(the root).

It is possible to set per-user defaults for dig via ${HOME}/.digrc. This file is read and any
options in it are applied before the command line arguments.

The IN and CH class names overlap with the IN and CH top level domain names. Either use
the -t and -c options to specify the type and class, use the -q the specify the domain name, or
use "IN." and "CH." when looking up these top level domains.

SIMPLE USAGE

A typical invocation of dig looks like:

dig @server name type

where:

server
is the name or IP address of the name server to query. This can be an IPv4 address in
dotted-decimal notation or an IPv6 address in colon-delimited notation. When the sup-
plied server argument is a hostname, dig resolves that name before querying that name
server.

If no server argument is provided, dig consults /etc/resolv.conf; if an address is
found there, it queries the name server at that address. If either of the -4 or -6 options
are in use, then only addresses for the corresponding transport will be tried. If no usable
addresses are found, dig will send the query to the local host. The reply from the name
server that responds is displayed.

name
is the name of the resource record that is to be looked up.

type
indicates what type of query is required --- ANY, A, MX, SIG, etc. type can be any valid
query type. If no type argument is supplied, dig will perform a lookup for an A record.

OPTIONS

-4
Use IPv4 only.

-6
Use IPv6 only.

-b address[#port]
Set the source IP address of the query. The address must be a valid address on one of
the host’s network interfaces, or "0.0.0.0" or "::". An optional port may be specified by
appending "#<port>"

189 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.4. DIG

-c class
Set the query class. The default class is IN; other classes are HS for Hesiod records or
CH for Chaosnet records.

-f file
Batch mode: dig reads a list of lookup requests to process from the given file. Each line
in the file should be organized in the same way they would be presented as queries to dig
using the command-line interface.

-i
Do reverse IPv6 lookups using the obsolete RFC1886 IP6.INT domain, which is no longer
in use. Obsolete bit string label queries (RFC2874) are not attempted.

-k keyfile
Sign queries using TSIG using a key read from the given file. Key files can be generated
using tsig-keygen(8). When using TSIG authentication with dig, the name server that is
queried needs to know the key and algorithm that is being used. In BIND, this is done by
providing appropriate key and server statements in named.conf.

-m
Enable memory usage debugging.

-p port
Send the query to a non-standard port on the server, instead of the default port 53. This
option would be used to test a name server that has been configured to listen for queries
on a non-standard port number.

-q name
The domain name to query. This is useful to distinguish the name from other arguments.

-t type
The resource record type to query. It can be any valid query type which is supported
in BIND 9. The default query type is "A", unless the -x option is supplied to indicate a
reverse lookup. A zone transfer can be requested by specifying a type of AXFR. When
an incremental zone transfer (IXFR) is required, set the type to ixfr=N. The incremental
zone transfer will contain the changes made to the zone since the serial number in the
zone’s SOA record was N .

-u
Print query times in microseconds instead of milliseconds.

-v
Print the version number and exit.

-x addr
Simplified reverse lookups, for mapping addresses to names. The addr is an IPv4 address
in dotted-decimal notation, or a colon-delimited IPv6 address. When the -x is used, there
is no need to provide the name, class and type arguments. dig automatically performs a
lookup for a name like 94.2.0.192.in-addr.arpa and sets the query type and class
to PTR and IN respectively. IPv6 addresses are looked up using nibble format under the
IP6.ARPA domain (but see also the -i option).

BIND 9.12.1rc2 190

CHAPTER 8. MANUAL PAGES 8.4. DIG

-y [hmac:]keyname:secret
Sign queries using TSIG with the given authentication key. keyname is the name of the
key, and secret is the base64 encoded shared secret. hmac is the name of the key algo-
rithm; valid choices are hmac-md5, hmac-sha1, hmac-sha224, hmac-sha256, hmac-
sha384, or hmac-sha512. If hmac is not specified, the default is hmac-md5 or if MD5
was disabled hmac-sha256.

NOTE: You should use the -k option and avoid the -y option, because with -y the shared
secret is supplied as a command line argument in clear text. This may be visible in the
output from ps(1) or in a history file maintained by the user’s shell.

QUERY OPTIONS

dig provides a number of query options which affect the way in which lookups are made and
the results displayed. Some of these set or reset flag bits in the query header, some determine
which sections of the answer get printed, and others determine the timeout and retry strategies.

Each query option is identified by a keyword preceded by a plus sign (+). Some keywords set or
reset an option. These may be preceded by the string no to negate the meaning of that keyword.
Other keywords assign values to options like the timeout interval. They have the form +key
word=value. Keywords may be abbreviated, provided the abbreviation is unambiguous; for
example, +cd is equivalent to +cdflag. The query options are:

+[no]aaflag
A synonym for +[no]aaonly.

+[no]aaonly
Sets the "aa" flag in the query.

+[no]additional
Display [do not display] the additional section of a reply. The default is to display it.

+[no]adflag
Set [do not set] the AD (authentic data) bit in the query. This requests the server to re-
turn whether all of the answer and authority sections have all been validated as secure
according to the security policy of the server. AD=1 indicates that all records have been
validated as secure and the answer is not from a OPT-OUT range. AD=0 indicate that
some part of the answer was insecure or not validated. This bit is set by default.

+[no]all
Set or clear all display flags.

+[no]answer
Display [do not display] the answer section of a reply. The default is to display it.

+[no]authority
Display [do not display] the authority section of a reply. The default is to display it.

+[no]badcookie
Retry lookup with the new server cookie if a BADCOOKIE response is received.

191 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.4. DIG

+[no]besteffort
Attempt to display the contents of messages which are malformed. The default is to not
display malformed answers.

+bufsize=B
Set the UDP message buffer size advertised using EDNS0 to B bytes. The maximum and
minimum sizes of this buffer are 65535 and 0 respectively. Values outside this range are
rounded up or down appropriately. Values other than zero will cause a EDNS query to be
sent.

+[no]cdflag
Set [do not set] the CD (checking disabled) bit in the query. This requests the server to not
perform DNSSEC validation of responses.

+[no]class
Display [do not display] the CLASS when printing the record.

+[no]cmd
Toggles the printing of the initial comment in the output identifying the version of dig
and the query options that have been applied. This comment is printed by default.

+[no]comments
Toggle the display of comment lines in the output. The default is to print comments.

+[no]cookie[=####]
Send a COOKIE EDNS option, with optional value. Replaying a COOKIE from a previous
response will allow the server to identify a previous client. The default is +cookie.

+cookie is also set when +trace is set to better emulate the default queries from a name-
server.

+[no]crypto
Toggle the display of cryptographic fields in DNSSEC records. The contents of these field
are unnecessary to debug most DNSSEC validation failures and removing them makes it
easier to see the common failures. The default is to display the fields. When omitted they
are replaced by the string "[omitted]" or in the DNSKEY case the key id is displayed as the
replacement, e.g. "[key id = value]".

+[no]defname
Deprecated, treated as a synonym for +[no]search

+[no]dnssec
Requests DNSSEC records be sent by setting the DNSSEC OK bit (DO) in the OPT record
in the additional section of the query.

+domain=somename
Set the search list to contain the single domain somename, as if specified in a domain di-
rective in /etc/resolv.conf, and enable search list processing as if the +search option
were given.

+dscp=value
Set the DSCP code point to be used when sending the query. Valid DSCP code points are
in the range [0..63]. By default no code point is explicitly set.

BIND 9.12.1rc2 192

CHAPTER 8. MANUAL PAGES 8.4. DIG

+[no]edns[=#]
Specify the EDNS version to query with. Valid values are 0 to 255. Setting the EDNS ver-
sion will cause a EDNS query to be sent. +noedns clears the remembered EDNS version.
EDNS is set to 0 by default.

+[no]ednsflags[=#]
Set the must-be-zero EDNS flags bits (Z bits) to the specified value. Decimal, hex and
octal encodings are accepted. Setting a named flag (e.g. DO) will silently be ignored. By
default, no Z bits are set.

+[no]ednsnegotiation
Enable / disable EDNS version negotiation. By default EDNS version negotiation is en-
abled.

+[no]ednsopt[=code[:value]]
Specify EDNS option with code point code and optionally payload of value as a hex-
adecimal string. code can be either an EDNS option name (for example, NSID or ECS), or
an arbitrary numeric value. +noednsopt clears the EDNS options to be sent.

+[no]expire
Send an EDNS Expire option.

+[no]fail
Do not try the next server if you receive a SERVFAIL. The default is to not try the next
server which is the reverse of normal stub resolver behavior.

+[no]header-only
Send a query with a DNS header without a question section. The default is to add a
question section. The query type and query name are ignored when this is set.

+[no]identify
Show [or do not show] the IP address and port number that supplied the answer when
the +short option is enabled. If short form answers are requested, the default is not to
show the source address and port number of the server that provided the answer.

+[no]idnout
Convert [do not convert] puny code on output. This requires IDN SUPPORT to have been
enabled at compile time. The default is to convert output.

+[no]ignore
Ignore truncation in UDP responses instead of retrying with TCP. By default, TCP retries
are performed.

+[no]keepalive
Send [or do not send] an EDNS Keepalive option.

+[no]keepopen
Keep the TCP socket open between queries and reuse it rather than creating a new TCP
socket for each lookup. The default is +nokeepopen.

+[no]mapped
Allow mapped IPv4 over IPv6 addresses to be used. The default is +mapped.

193 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.4. DIG

+[no]multiline
Print records like the SOA records in a verbose multi-line format with human-readable
comments. The default is to print each record on a single line, to facilitate machine parsing
of the dig output.

+ndots=D
Set the number of dots that have to appear in name to D for it to be considered absolute.
The default value is that defined using the ndots statement in /etc/resolv.conf, or
1 if no ndots statement is present. Names with fewer dots are interpreted as relative
names and will be searched for in the domains listed in the search or domain directive
in /etc/resolv.conf if +search is set.

+[no]nsid
Include an EDNS name server ID request when sending a query.

+[no]nssearch
When this option is set, dig attempts to find the authoritative name servers for the zone
containing the name being looked up and display the SOA record that each name server
has for the zone.

+[no]onesoa
Print only one (starting) SOA record when performing an AXFR. The default is to print
both the starting and ending SOA records.

+[no]opcode=value
Set [restore] the DNS message opcode to the specified value. The default value is QUERY
(0).

+padding=value
Pad the size of the query packet using the EDNS Padding option to blocks of value bytes.
For example, +padding=32 would cause a 48-byte query to be padded to 64 bytes. The
default block size is 0, which disables padding. The maximum is 512. Values are ordinarily
expected to be powers of two, such as 128; however, this is not mandatory. Responses to
padded queries may also be padded, but only if the query uses TCP or DNS COOKIE.

+[no]qr
Print [do not print] the query as it is sent. By default, the query is not printed.

+[no]question
Print [do not print] the question section of a query when an answer is returned. The
default is to print the question section as a comment.

+[no]rdflag
A synonym for +[no]recurse.

+[no]recurse
Toggle the setting of the RD (recursion desired) bit in the query. This bit is set by default,
which means dig normally sends recursive queries. Recursion is automatically disabled
when the +nssearch or +trace query options are used.

+retry=T
Sets the number of times to retry UDP queries to server to T instead of the default, 2.
Unlike +tries, this does not include the initial query.

BIND 9.12.1rc2 194

CHAPTER 8. MANUAL PAGES 8.4. DIG

+[no]rrcomments
Toggle the display of per-record comments in the output (for example, human-readable
key information about DNSKEY records). The default is not to print record comments
unless multiline mode is active.

+[no]search
Use [do not use] the search list defined by the searchlist or domain directive in resolv.
conf (if any). The search list is not used by default.

’ndots’ from resolv.conf (default 1) which may be overridden by +ndots determines
if the name will be treated as relative or not and hence whether a search is eventually
performed or not.

+[no]short
Provide a terse answer. The default is to print the answer in a verbose form.

+[no]showsearch
Perform [do not perform] a search showing intermediate results.

+[no]sigchase
This feature is now obsolete and has been removed; use delv instead.

+split=W
Split long hex- or base64-formatted fields in resource records into chunks of W characters
(where W is rounded up to the nearest multiple of 4). +nosplit or +split=0 causes fields
not to be split at all. The default is 56 characters, or 44 characters when multiline mode is
active.

+[no]stats
This query option toggles the printing of statistics: when the query was made, the size of
the reply and so on. The default behavior is to print the query statistics.

+[no]subnet=addr[/prefix-length]
Send (don’t send) an EDNS Client Subnet option with the specified IP address or network
prefix.

dig +subnet=0.0.0.0/0, or simply dig +subnet=0 for short, sends an EDNS CLIENT-SUBNET
option with an empty address and a source prefix-length of zero, which signals a resolver
that the client’s address information must not be used when resolving this query.

+[no]tcp
Use [do not use] TCP when querying name servers. The default behavior is to use UDP
unless a type any or ixfr=N query is requested, in which case the default is TCP. AXFR
queries always use TCP.

+timeout=T
Sets the timeout for a query to T seconds. The default timeout is 5 seconds. An attempt to
set T to less than 1 will result in a query timeout of 1 second being applied.

+[no]topdown
This feature is related to dig +sigchase, which is obsolete and has been removed. Use
delv instead.

195 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.4. DIG

+[no]trace
Toggle tracing of the delegation path from the root name servers for the name being
looked up. Tracing is disabled by default. When tracing is enabled, dig makes iterative
queries to resolve the name being looked up. It will follow referrals from the root servers,
showing the answer from each server that was used to resolve the lookup.

If @server is also specified, it affects only the initial query for the root zone name servers.

+dnssec is also set when +trace is set to better emulate the default queries from a name-
server.

+tries=T
Sets the number of times to try UDP queries to server to T instead of the default, 3. If T is
less than or equal to zero, the number of tries is silently rounded up to 1.

+trusted-key=####
Formerly specified trusted keys for use with dig +sigchase. This feature is now obsolete
and has been removed; use delv instead.

+[no]ttlid
Display [do not display] the TTL when printing the record.

+[no]ttlunits
Display [do not display] the TTL in friendly human-readable time units of "s", "m", "h",
"d", and "w", representing seconds, minutes, hours, days and weeks. Implies +ttlid.

+[no]unknownformat
Print all RDATA in unknown RR type presentation format (RFC 3597). The default is to
print RDATA for known types in the type’s presentation format.

+[no]vc
Use [do not use] TCP when querying name servers. This alternate syntax to +[no]tcp is
provided for backwards compatibility. The "vc" stands for "virtual circuit".

+[no]zflag
Set [do not set] the last unassigned DNS header flag in a DNS query. This flag is off by
default.

MULTIPLE QUERIES

The BIND 9 implementation of dig supports specifying multiple queries on the command line
(in addition to supporting the -f batch file option). Each of those queries can be supplied with
its own set of flags, options and query options.

In this case, each query argument represent an individual query in the command-line syntax
described above. Each consists of any of the standard options and flags, the name to be looked
up, an optional query type and class and any query options that should be applied to that query.

A global set of query options, which should be applied to all queries, can also be supplied.
These global query options must precede the first tuple of name, class, type, options, flags, and
query options supplied on the command line. Any global query options (except +[no]cmd and
+[no]short options) can be overridden by a query-specific set of query options. For example:

dig +qr www.isc.org any -x 127.0.0.1 isc.org ns +noqr

BIND 9.12.1rc2 196

CHAPTER 8. MANUAL PAGES 8.5. DNSSEC-CDS

shows how dig could be used from the command line to make three lookups: an ANY query
for www.isc.org, a reverse lookup of 127.0.0.1 and a query for the NS records of isc.org.
A global query option of +qr is applied, so that dig shows the initial query it made for each
lookup. The final query has a local query option of +noqr which means that dig will not print
the initial query when it looks up the NS records for isc.org.

IDN SUPPORT

If dig has been built with IDN (internationalized domain name) support, it can accept and
display non-ASCII domain names. dig appropriately converts character encoding of domain
name before sending a request to DNS server or displaying a reply from the server. If you’d like
to turn off the IDN support for some reason, defines the IDN_DISABLE environment variable.
The IDN support is disabled if the variable is set when dig runs.

FILES

/etc/resolv.conf

${HOME}/.digrc

SEE ALSO

delv(1), host(1), named(8), dnssec-keygen(8), RFC1035.

BUGS

There are probably too many query options.

8.5 DNSSEC-CDS

dnssec-cds — change DS records for a child zone based on CDS/CDNSKEY

Synopsis

dnssec-cds [-a alg...] [-c class] [-D] -d dsset-file -f child-file [-i [extension]]
[-s start-time] [-T ttl] [-u] [-v level] [-V] domain

DESCRIPTION

The dnssec-cds command changes DS records at a delegation point based on CDS or CDNSKEY
records published in the child zone. If both CDS and CDNSKEY records are present in the child
zone, the CDS is preferred. This enables a child zone to inform its parent of upcoming changes

197 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.5. DNSSEC-CDS

to its key-signing keys; by polling periodically with dnssec-cds, the parent can keep the DS
records up to date and enable automatic rolling of KSKs.

Two input files are required. The -f child-file option specifies a file containing the child’s
CDS and/or CDNSKEY records, plus RRSIG and DNSKEY records so that they can be authenti-
cated. The -d path option specifies the location of a file containing the current DS records. For
example, this could be a dsset- file generated by dnssec-signzone, or the output of dnssec-
dsfromkey, or the output of a previous run of dnssec-cds.

The dnssec-cds command uses special DNSSEC validation logic specified by RFC 7344. It re-
quires that the CDS and/or CDNSKEY records are validly signed by a key represented in the
existing DS records. This will typicially be the pre-existing key-signing key (KSK).

For protection against replay attacks, the signatures on the child records must not be older than
they were on a previous run of dnssec-cds. This time is obtained from the modification time of
the dsset- file, or from the -s option.

To protect against breaking the delegation, dnssec-cds ensures that the DNSKEY RRset can be
verified by every key algorithm in the new DS RRset, and that the same set of keys are covered
by every DS digest type.

By default, replacement DS records are written to the standard output; with the -i option the
input file is overwritten in place. The replacement DS records will be the same as the existing
records when no change is required. The output can be empty if the CDS / CDNSKEY records
specify that the child zone wants to go insecure.

Warning: Be careful not to delete the DS records when dnssec-cds fails!

Alternatively, dnssec-cds -u writes an nsupdate script to the standard output. You can use the
-u and -i options together to maintain a dsset- file as well as emit an nsupdate script.

OPTIONS

-a algorithm
Specify a digest algorithm to use when converting CDNSKEY records to DS records. This
option can be repeated, so that multiple DS records are created for each CDNSKEY record.
This option has no effect when using CDS records.

The algorithm must be one of SHA-1 (SHA1), SHA-256 (SHA256), GOST, or SHA-384
(SHA384). These values are case insensitive. If no algorithm is specified, the default is
SHA-256.

-c class
Specifies the DNS class of the zones.

-D
Generate DS records from CDNSKEY records if both CDS and CDNSKEY records are
present in the child zone. By default CDS records are preferred.

-d path
Location of the parent DS records. The path can be the name of a file containing the DS
records, or if it is a directory, dnssec-cds looks for a dsset- file for the domain inside the
directory.

BIND 9.12.1rc2 198

CHAPTER 8. MANUAL PAGES 8.5. DNSSEC-CDS

To protect against replay attacks, child records are rejected if they were signed earlier than
the modification time of the dsset- file. This can be adjusted with the -s option.

-f child-file
File containing the child’s CDS and/or CDNSKEY records, plus its DNSKEY records and
the covering RRSIG records so that they can be authenticated.

The EXAMPLES below describe how to generate this file.

-i[extension]
Update the dsset- file in place, instead of writing DS records to the standard output.

There must be no space between the -i and the extension. If you provide no extension

then the old dsset- is discarded. If an extension is present, a backup of the old dsset-
file is kept with the extension appended to its filename.

To protect against replay attacks, the modification time of the dsset- file is set to match
the signature inception time of the child records, provided that is later than the file’s cur-
rent modification time.

-s start-time
Specify the date and time after which RRSIG records become acceptable. This can be
either an absolute or relative time. An absolute start time is indicated by a number in
YYYYMMDDHHMMSS notation; 20170827133700 denotes 13:37:00 UTC on August 27th,
2017. A time relative to the dsset- file is indicated with -N, which is N seconds before
the file modification time. A time relative to the current time is indicated with now+N.

If no start-time is specified, the modification time of the dsset- file is used.

-T ttl
Specifies a TTL to be used for new DS records. If not specified, the default is the TTL of the
old DS records. If they had no explicit TTL then the new DS records also have no explicit
TTL.

-u
Write an nsupdate script to the standard output, instead of printing the new DS reords.
The output will be empty if no change is needed.

Note: The TTL of new records needs to be specified, either in the original dsset- file, or
with the -T option, or using the nsupdate ttl command.

-V
Print version information.

-v level
Sets the debugging level. Level 1 is intended to be usefully verbose for general users;
higher levels are intended for developers.

domain
The name of the delegation point / child zone apex.

EXIT STATUS

The dnssec-cds command exits 0 on success, or non-zero if an error occurred.

In the success case, the DS records might or might not need to be changed.

199 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.6. DNSSEC-CHECKDS

EXAMPLES

Before running dnssec-signzone, you can ensure that the delegations are up-to-date by running
dnssec-cds on every dsset- file.

To fetch the child records required by dnssec-cds you can invoke dig as in the script below. It’s
okay if the dig fails since dnssec-cds performs all the necessary checking.

for f in dsset-*
do

d=${f#dsset-}
dig +dnssec +noall +answer $d DNSKEY $d CDNSKEY $d CDS |
dnssec-cds -i -f /dev/stdin -d $f $d

done

When the parent zone is automatically signed by named, you can use dnssec-cds with nsupdate
to maintain a delegation as follows. The dsset- file allows the script to avoid having to fetch
and validate the parent DS records, and it keeps the replay attack protection time.

dig +dnssec +noall +answer $d DNSKEY $d CDNSKEY $d CDS |
dnssec-cds -u -i -f /dev/stdin -d $f $d |
nsupdate -l

SEE ALSO

dig(1), dnssec-settime(8), dnssec-signzone(8), nsupdate(1), BIND 9 Administrator Reference Man-
ual, RFC 7344.

8.6 DNSSEC-CHECKDS

dnssec-checkds — DNSSEC delegation consistency checking tool

Synopsis

dnssec-checkds [-d dig path] [-D dsfromkey path] [-f file] [-l domain] [-s file]
zone

DESCRIPTION

dnssec-checkds verifies the correctness of Delegation Signer (DS) or DNSSEC Lookaside Vali-
dation (DLV) resource records for keys in a specified zone.

BIND 9.12.1rc2 200

CHAPTER 8. MANUAL PAGES 8.7. DNSSEC-COVERAGE

OPTIONS

-f file
If a file is specified, then the zone is read from that file to find the DNSKEY records. If
not, then the DNSKEY records for the zone are looked up in the DNS.

-l domain
Check for a DLV record in the specified lookaside domain, instead of checking for a DS
record in the zone’s parent.

-s file
Specifies a prepared dsset file, such as would be generated by dnssec-signzone, to use as
a source for the DS RRset instead of querying the parent.

-d dig path
Specifies a path to a dig binary. Used for testing.

-D dsfromkey path
Specifies a path to a dnssec-dsfromkey binary. Used for testing.

SEE ALSO

dnssec-dsfromkey(8), dnssec-keygen(8), dnssec-signzone(8),

8.7 DNSSEC-COVERAGE

dnssec-coverage — checks future DNSKEY coverage for a zone

Synopsis

dnssec-coverage [-K directory] [-l length] [-f file] [-d DNSKEY TTL] [-m max TTL]
[-r interval] [-c compilezone path] [-k] [-z] [zone...]

DESCRIPTION

dnssec-coverage verifies that the DNSSEC keys for a given zone or a set of zones have timing
metadata set properly to ensure no future lapses in DNSSEC coverage.

If zone is specified, then keys found in the key repository matching that zone are scanned, and
an ordered list is generated of the events scheduled for that key (i.e., publication, activation, in-
activation, deletion). The list of events is walked in order of occurrence. Warnings are generated
if any event is scheduled which could cause the zone to enter a state in which validation failures
might occur: for example, if the number of published or active keys for a given algorithm drops
to zero, or if a key is deleted from the zone too soon after a new key is rolled, and cached data
signed by the prior key has not had time to expire from resolver caches.

If zone is not specified, then all keys in the key repository will be scanned, and all zones for
which there are keys will be analyzed. (Note: This method of reporting is only accurate if all
the zones that have keys in a given repository share the same TTL parameters.)

201 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.7. DNSSEC-COVERAGE

OPTIONS

-K directory
Sets the directory in which keys can be found. Defaults to the current working directory.

-f file
If a file is specified, then the zone is read from that file; the largest TTL and the DNSKEY
TTL are determined directly from the zone data, and the -m and -d options do not need
to be specified on the command line.

-l duration
The length of time to check for DNSSEC coverage. Key events scheduled further into the
future than duration will be ignored, and assumed to be correct.

The value of duration can be set in seconds, or in larger units of time by adding a suffix:
’mi’ for minutes, ’h’ for hours, ’d’ for days, ’w’ for weeks, ’mo’ for months, ’y’ for years.

-m maximum TTL
Sets the value to be used as the maximum TTL for the zone or zones being analyzed when
determining whether there is a possibility of validation failure. When a zone-signing key
is deactivated, there must be enough time for the record in the zone with the longest TTL
to have expired from resolver caches before that key can be purged from the DNSKEY
RRset. If that condition does not apply, a warning will be generated.

The length of the TTL can be set in seconds, or in larger units of time by adding a suffix:
’mi’ for minutes, ’h’ for hours, ’d’ for days, ’w’ for weeks, ’mo’ for months, ’y’ for years.

This option is not necessary if the -f has been used to specify a zone file. If -f has been
specified, this option may still be used; it will override the value found in the file.

If this option is not used and the maximum TTL cannot be retrieved from a zone file, a
warning is generated and a default value of 1 week is used.

-d DNSKEY TTL
Sets the value to be used as the DNSKEY TTL for the zone or zones being analyzed when
determining whether there is a possibility of validation failure. When a key is rolled (that
is, replaced with a new key), there must be enough time for the old DNSKEY RRset to
have expired from resolver caches before the new key is activated and begins generating
signatures. If that condition does not apply, a warning will be generated.

The length of the TTL can be set in seconds, or in larger units of time by adding a suffix:
’mi’ for minutes, ’h’ for hours, ’d’ for days, ’w’ for weeks, ’mo’ for months, ’y’ for years.

This option is not necessary if -f has been used to specify a zone file from which the TTL
of the DNSKEY RRset can be read, or if a default key TTL was set using ith the -L to
dnssec-keygen. If either of those is true, this option may still be used; it will override the
values found in the zone file or the key file.

If this option is not used and the key TTL cannot be retrieved from the zone file or the key
file, then a warning is generated and a default value of 1 day is used.

-r resign interval
Sets the value to be used as the resign interval for the zone or zones being analyzed when
determining whether there is a possibility of validation failure. This value defaults to 22.5

BIND 9.12.1rc2 202

CHAPTER 8. MANUAL PAGES 8.8. DNSSEC-DSFROMKEY

days, which is also the default in named. However, if it has been changed by the sig-
validity-interval option in named.conf, then it should also be changed here.

The length of the interval can be set in seconds, or in larger units of time by adding a
suffix: ’mi’ for minutes, ’h’ for hours, ’d’ for days, ’w’ for weeks, ’mo’ for months, ’y’ for
years.

-k
Only check KSK coverage; ignore ZSK events. Cannot be used with -z.

-z
Only check ZSK coverage; ignore KSK events. Cannot be used with -k.

-c compilezone path
Specifies a path to a named-compilezone binary. Used for testing.

SEE ALSO

dnssec-checkds(8), dnssec-dsfromkey(8), dnssec-keygen(8), dnssec-signzone(8)

8.8 DNSSEC-DSFROMKEY

dnssec-dsfromkey — DNSSEC DS RR generation tool

Synopsis

dnssec-dsfromkey [-v level] [-1] [-2] [-a alg] [-C] [-l domain] [-T TTL] keyfile

dnssec-dsfromkey -s [-1] [-2] [-a alg] [-K directory] [-l domain] [-s] [-c class] [-
T TTL] [-f file] [-A] [-v level] dnsname

dnssec-dsfromkey [-h] [-V]

DESCRIPTION

dnssec-dsfromkey outputs the Delegation Signer (DS) resource record (RR), as defined in RFC
3658 and RFC 4509, for the given key(s).

OPTIONS

-1
Use SHA-1 as the digest algorithm (the default is to use both SHA-1 and SHA-256).

-2
Use SHA-256 as the digest algorithm.

203 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.8. DNSSEC-DSFROMKEY

-a algorithm
Select the digest algorithm. The value of algorithm must be one of SHA-1 (SHA1),
SHA-256 (SHA256), GOST or SHA-384 (SHA384). These values are case insensitive.

-C
Generate CDS records rather than DS records. This is mutually exclusive with generating
lookaside records.

-T TTL
Specifies the TTL of the DS records.

-K directory
Look for key files (or, in keyset mode, keyset- files) in directory.

-f file
Zone file mode: in place of the keyfile name, the argument is the DNS domain name of
a zone master file, which can be read from file. If the zone name is the same as file,
then it may be omitted.

If file is set to "-", then the zone data is read from the standard input. This makes it
possible to use the output of the dig command as input, as in:

dig dnskey example.com | dnssec-dsfromkey -f - example.com

-A
Include ZSKs when generating DS records. Without this option, only keys which have the
KSK flag set will be converted to DS records and printed. Useful only in zone file mode.

-l domain
Generate a DLV set instead of a DS set. The specified domain is appended to the name for
each record in the set. The DNSSEC Lookaside Validation (DLV) RR is described in RFC
4431. This is mutually exclusive with generating CDS records.

-s
Keyset mode: in place of the keyfile name, the argument is the DNS domain name of a
keyset file.

-c class
Specifies the DNS class (default is IN). Useful only in keyset or zone file mode.

-v level
Sets the debugging level.

-h
Prints usage information.

-V
Prints version information.

EXAMPLE

To build the SHA-256 DS RR from the Kexample.com.+003+26160 keyfile name, the follow-
ing command would be issued:

BIND 9.12.1rc2 204

CHAPTER 8. MANUAL PAGES 8.9. DNSSEC-IMPORTKEY

dnssec-dsfromkey -2 Kexample.com.+003+26160

The command would print something like:

example.com. IN DS 26160 5 2 3A1EADA7A74B8D0BA86726B0C227AA85AB8BBD2B2004F41A868A54F0
C5EA0B94

FILES

The keyfile can be designed by the key identification Knnnn.+aaa+iiiii or the full file name
Knnnn.+aaa+iiiii.key as generated by dnssec-keygen(8).

The keyset file name is built from the directory, the string keyset- and the dnsname.

CAVEAT

A keyfile error can give a "file not found" even if the file exists.

SEE ALSO

dnssec-keygen(8), dnssec-signzone(8), BIND 9 Administrator Reference Manual, RFC 3658, RFC
4431. RFC 4509.

8.9 DNSSEC-IMPORTKEY

dnssec-importkey — import DNSKEY records from external systems so they can be managed

Synopsis

dnssec-importkey [-K directory] [-L ttl] [-P date/offset] [-P sync date/offset]
[-D date/offset] [-D sync date/offset] [-h] [-v level] [-V] keyfile

dnssec-importkey -f filename [-K directory] [-L ttl] [-P date/offset] [-P sync
date/offset] [-D date/offset] [-D sync date/offset] [-h] [-v level] [-V] [dnsname]

DESCRIPTION

dnssec-importkey reads a public DNSKEY record and generates a pair of .key/.private files.
The DNSKEY record may be read from an existing .key file, in which case a corresponding
.private file will be generated, or it may be read from any other file or from the standard input,
in which case both .key and .private files will be generated.

The newly-created .private file does not contain private key data, and cannot be used for sign-
ing. However, having a .private file makes it possible to set publication (-P) and deletion (-D)
times for the key, which means the public key can be added to and removed from the DNSKEY
RRset on schedule even if the true private key is stored offline.

205 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.9. DNSSEC-IMPORTKEY

OPTIONS

-f filename
Zone file mode: instead of a public keyfile name, the argument is the DNS domain name
of a zone master file, which can be read from file. If the domain name is the same as
file, then it may be omitted.

If file is set to "-", then the zone data is read from the standard input.

-K directory
Sets the directory in which the key files are to reside.

-L ttl
Sets the default TTL to use for this key when it is converted into a DNSKEY RR. If the key
is imported into a zone, this is the TTL that will be used for it, unless there was already a
DNSKEY RRset in place, in which case the existing TTL would take precedence. Setting
the default TTL to 0 or none removes it.

-h
Emit usage message and exit.

-v level
Sets the debugging level.

-V
Prints version information.

TIMING OPTIONS

Dates can be expressed in the format YYYYMMDD or YYYYMMDDHHMMSS. If the argument
begins with a ’+’ or ’-’, it is interpreted as an offset from the present time. For convenience, if
such an offset is followed by one of the suffixes ’y’, ’mo’, ’w’, ’d’, ’h’, or ’mi’, then the offset
is computed in years (defined as 365 24-hour days, ignoring leap years), months (defined as
30 24-hour days), weeks, days, hours, or minutes, respectively. Without a suffix, the offset is
computed in seconds. To explicitly prevent a date from being set, use ’none’ or ’never’.

-P date/offset
Sets the date on which a key is to be published to the zone. After that date, the key will be
included in the zone but will not be used to sign it.

-P sync date/offset
Sets the date on which CDS and CDNSKEY records that match this key are to be published
to the zone.

-D date/offset
Sets the date on which the key is to be deleted. After that date, the key will no longer be
included in the zone. (It may remain in the key repository, however.)

-D sync date/offset
Sets the date on which the CDS and CDNSKEY records that match this key are to be
deleted.

BIND 9.12.1rc2 206

CHAPTER 8. MANUAL PAGES 8.10. DNSSEC-KEYFROMLABEL

FILES

A keyfile can be designed by the key identification Knnnn.+aaa+iiiii or the full file name
Knnnn.+aaa+iiiii.key as generated by dnssec-keygen(8).

SEE ALSO

dnssec-keygen(8), dnssec-signzone(8), BIND 9 Administrator Reference Manual, RFC 5011.

8.10 DNSSEC-KEYFROMLABEL

dnssec-keyfromlabel — DNSSEC key generation tool

Synopsis

dnssec-keyfromlabel -l label [-3] [-a algorithm] [-A date/offset] [-c class] [-D
date/offset] [-D sync date/offset] [-E engine] [-f flag] [-G] [-I date/offset] [-i
interval] [-k] [-K directory] [-L ttl] [-n nametype] [-P date/offset] [-P sync date/

offset] [-p protocol] [-R date/offset] [-S key] [-t type] [-v level] [-V] [-y] name

DESCRIPTION

dnssec-keyfromlabel generates a key pair of files that referencing a key object stored in a cryp-
tographic hardware service module (HSM). The private key file can be used for DNSSEC sign-
ing of zone data as if it were a conventional signing key created by dnssec-keygen, but the key
material is stored within the HSM, and the actual signing takes place there.

The name of the key is specified on the command line. This must match the name of the zone
for which the key is being generated.

OPTIONS

-a algorithm
Selects the cryptographic algorithm. The value of algorithm must be one of RSAMD5,
RSASHA1, DSA, NSEC3RSASHA1, NSEC3DSA, RSASHA256, RSASHA512, ECCGOST,
ECDSAP256SHA256, ECDSAP384SHA384, ED25519 or ED448.

If no algorithm is specified, then RSASHA1 will be used by default, unless the -3 option
is specified, in which case NSEC3RSASHA1 will be used instead. (If -3 is used and an
algorithm is specified, that algorithm will be checked for compatibility with NSEC3.)

These values are case insensitive. In some cases, abbreviations are supported, such as
ECDSA256 for ECDSAP256SHA256 and ECDSA384 for ECDSAP384SHA384. If RSASHA1
or DSA is specified along with the -3 option, then NSEC3RSASHA1 or NSEC3DSA will
be used instead.

207 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.10. DNSSEC-KEYFROMLABEL

As of BIND 9.12.0, this option is mandatory except when using the -S option (which
copies the algorithm from the predecessory key). Previously, the default for newly gener-
ated keys was RSASHA1.

-3
Use an NSEC3-capable algorithm to generate a DNSSEC key. If this option is used with an
algorithm that has both NSEC and NSEC3 versions, then the NSEC3 version will be used;
for example, dnssec-keygen -3a RSASHA1 specifies the NSEC3RSASHA1 algorithm.

-E engine
Specifies the cryptographic hardware to use.

When BIND is built with OpenSSL PKCS#11 support, this defaults to the string "pkcs11",
which identifies an OpenSSL engine that can drive a cryptographic accelerator or hard-
ware service module. When BIND is built with native PKCS#11 cryptography (--enable-
native-pkcs11), it defaults to the path of the PKCS#11 provider library specified via "--
with-pkcs11".

-l label
Specifies the label for a key pair in the crypto hardware.

When BIND 9 is built with OpenSSL-based PKCS#11 support, the label is an arbitrary
string that identifies a particular key. It may be preceded by an optional OpenSSL engine
name, followed by a colon, as in "pkcs11:keylabel".

When BIND 9 is built with native PKCS#11 support, the label is a PKCS#11 URI string
in the format "pkcs11:keyword=value[;keyword=value;...]" Keywords include "token",
which identifies the HSM; "object", which identifies the key; and "pin-source", which iden-
tifies a file from which the HSM’s PIN code can be obtained. The label will be stored in
the on-disk "private" file.

If the label contains a pin-source field, tools using the generated key files will be able to
use the HSM for signing and other operations without any need for an operator to manu-
ally enter a PIN. Note: Making the HSM’s PIN accessible in this manner may reduce the
security advantage of using an HSM; be sure this is what you want to do before making
use of this feature.

-n nametype
Specifies the owner type of the key. The value of nametype must either be ZONE (for a
DNSSEC zone key (KEY/DNSKEY)), HOST or ENTITY (for a key associated with a host
(KEY)), USER (for a key associated with a user(KEY)) or OTHER (DNSKEY). These values
are case insensitive.

-C
Compatibility mode: generates an old-style key, without any metadata. By default, dnssec-
keyfromlabel will include the key’s creation date in the metadata stored with the private
key, and other dates may be set there as well (publication date, activation date, etc). Keys
that include this data may be incompatible with older versions of BIND; the -C option
suppresses them.

-c class
Indicates that the DNS record containing the key should have the specified class. If not
specified, class IN is used.

BIND 9.12.1rc2 208

CHAPTER 8. MANUAL PAGES 8.10. DNSSEC-KEYFROMLABEL

-f flag
Set the specified flag in the flag field of the KEY/DNSKEY record. The only recognized
flags are KSK (Key Signing Key) and REVOKE.

-G
Generate a key, but do not publish it or sign with it. This option is incompatible with -P
and -A.

-h
Prints a short summary of the options and arguments to dnssec-keyfromlabel.

-K directory
Sets the directory in which the key files are to be written.

-k
Generate KEY records rather than DNSKEY records.

-L ttl
Sets the default TTL to use for this key when it is converted into a DNSKEY RR. If the key
is imported into a zone, this is the TTL that will be used for it, unless there was already a
DNSKEY RRset in place, in which case the existing TTL would take precedence. Setting
the default TTL to 0 or none removes it.

-p protocol
Sets the protocol value for the key. The protocol is a number between 0 and 255. The
default is 3 (DNSSEC). Other possible values for this argument are listed in RFC 2535 and
its successors.

-S key
Generate a key as an explicit successor to an existing key. The name, algorithm, size, and
type of the key will be set to match the predecessor. The activation date of the new key
will be set to the inactivation date of the existing one. The publication date will be set to
the activation date minus the prepublication interval, which defaults to 30 days.

-t type
Indicates the use of the key. typemust be one of AUTHCONF, NOAUTHCONF, NOAUTH,
or NOCONF. The default is AUTHCONF. AUTH refers to the ability to authenticate data,
and CONF the ability to encrypt data.

-v level
Sets the debugging level.

-V
Prints version information.

-y
Allows DNSSEC key files to be generated even if the key ID would collide with that of
an existing key, in the event of either key being revoked. (This is only safe to use if you
are sure you won’t be using RFC 5011 trust anchor maintenance with either of the keys
involved.)

209 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.10. DNSSEC-KEYFROMLABEL

TIMING OPTIONS

Dates can be expressed in the format YYYYMMDD or YYYYMMDDHHMMSS. If the argument
begins with a ’+’ or ’-’, it is interpreted as an offset from the present time. For convenience, if
such an offset is followed by one of the suffixes ’y’, ’mo’, ’w’, ’d’, ’h’, or ’mi’, then the offset
is computed in years (defined as 365 24-hour days, ignoring leap years), months (defined as
30 24-hour days), weeks, days, hours, or minutes, respectively. Without a suffix, the offset is
computed in seconds. To explicitly prevent a date from being set, use ’none’ or ’never’.

-P date/offset
Sets the date on which a key is to be published to the zone. After that date, the key will be
included in the zone but will not be used to sign it. If not set, and if the -G option has not
been used, the default is "now".

-P sync date/offset
Sets the date on which the CDS and CDNSKEY records which match this key are to be
published to the zone.

-A date/offset
Sets the date on which the key is to be activated. After that date, the key will be included
in the zone and used to sign it. If not set, and if the -G option has not been used, the
default is "now".

-R date/offset
Sets the date on which the key is to be revoked. After that date, the key will be flagged as
revoked. It will be included in the zone and will be used to sign it.

-I date/offset
Sets the date on which the key is to be retired. After that date, the key will still be included
in the zone, but it will not be used to sign it.

-D date/offset
Sets the date on which the key is to be deleted. After that date, the key will no longer be
included in the zone. (It may remain in the key repository, however.)

-D sync date/offset
Sets the date on which the CDS and CDNSKEY records which match this key are to be
deleted.

-i interval
Sets the prepublication interval for a key. If set, then the publication and activation dates
must be separated by at least this much time. If the activation date is specified but the
publication date isn’t, then the publication date will default to this much time before the
activation date; conversely, if the publication date is specified but activation date isn’t,
then activation will be set to this much time after publication.

If the key is being created as an explicit successor to another key, then the default prepub-
lication interval is 30 days; otherwise it is zero.

As with date offsets, if the argument is followed by one of the suffixes ’y’, ’mo’, ’w’, ’d’,
’h’, or ’mi’, then the interval is measured in years, months, weeks, days, hours, or minutes,
respectively. Without a suffix, the interval is measured in seconds.

BIND 9.12.1rc2 210

CHAPTER 8. MANUAL PAGES 8.11. DNSSEC-KEYGEN

GENERATED KEY FILES

When dnssec-keyfromlabel completes successfully, it prints a string of the form Knnnn.+aaa+
iiiii to the standard output. This is an identification string for the key files it has generated.

• nnnn is the key name.

• aaa is the numeric representation of the algorithm.

• iiiii is the key identifier (or footprint).

dnssec-keyfromlabel creates two files, with names based on the printed string. Knnnn.+aaa+
iiiii.key contains the public key, and Knnnn.+aaa+iiiii.private contains the private
key.

The .key file contains a DNS KEY record that can be inserted into a zone file (directly or with
a $INCLUDE statement).

The .private file contains algorithm-specific fields. For obvious security reasons, this file
does not have general read permission.

SEE ALSO

dnssec-keygen(8), dnssec-signzone(8), BIND 9 Administrator Reference Manual, RFC 4034, The
PKCS#11 URI Scheme (draft-pechanec-pkcs11uri-13).

8.11 DNSSEC-KEYGEN

dnssec-keygen — DNSSEC key generation tool

Synopsis

dnssec-keygen [-a algorithm] [-b keysize] [-n nametype] [-3] [-A date/offset] [-
C] [-c class] [-D date/offset] [-D sync date/offset] [-E engine] [-f flag] [-G] [-g
generator] [-h] [-I date/offset] [-i interval] [-K directory] [-k] [-L ttl] [-P date/

offset] [-P sync date/offset] [-p protocol] [-q] [-R date/offset] [-r randomdev] [-
S key] [-s strength] [-t type] [-V] [-v level] [-z] name

DESCRIPTION

dnssec-keygen generates keys for DNSSEC (Secure DNS), as defined in RFC 2535 and RFC
4034. It can also generate keys for use with TSIG (Transaction Signatures) as defined in RFC
2845, or TKEY (Transaction Key) as defined in RFC 2930.

The name of the key is specified on the command line. For DNSSEC keys, this must match the
name of the zone for which the key is being generated.

The dnssec-keymgr command acts as a wrapper around dnssec-keygen, generating and updat-
ing keys as needed to enforce defined security policies such as key rollover scheduling. Using
dnssec-keymgr may be preferable to direct use of dnssec-keygen.

211 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.11. DNSSEC-KEYGEN

OPTIONS

-a algorithm
Selects the cryptographic algorithm. For DNSSEC keys, the value of algorithm must be
one of RSAMD5, RSASHA1, DSA, NSEC3RSASHA1, NSEC3DSA, RSASHA256, RSASHA512,
ECCGOST, ECDSAP256SHA256, ECDSAP384SHA384, ED25519 or ED448. For TKEY, the
value must be DH (Diffie Hellman); specifying his value will automatically set the -T
KEY option as well.

TSIG keys can also be generated by setting the value to one of HMAC-MD5, HMAC-
SHA1, HMAC-SHA224, HMAC-SHA256, HMAC-SHA384, or HMAC-SHA512. As with
DH, specifying these values will automatically set -T KEY. Note, however, that tsig-
keygen produces TSIG keys in a more useful format. These algorithms have been depre-
cated in dnssec-keygen, and will be removed in a future release.

These values are case insensitive. In some cases, abbreviations are supported, such as
ECDSA256 for ECDSAP256SHA256 and ECDSA384 for ECDSAP384SHA384. If RSASHA1
or DSA is specified along with the -3 option, then NSEC3RSASHA1 or NSEC3DSA will
be used instead.

As of BIND 9.12.0, this option is mandatory except when using the -S option, which
copies the algorithm from the predecessor key. Previously, the default for newly generated
keys was RSASHA1.

-b keysize
Specifies the number of bits in the key. The choice of key size depends on the algorithm
used. RSA keys must be between 1024 and 2048 bits. Diffie Hellman keys must be between
128 and 4096 bits. DSA keys must be between 512 and 1024 bits and an exact multiple of
64. HMAC keys must be between 1 and 512 bits. Elliptic curve algorithms don’t need this
parameter.

If the key size is not specified, some algorithms have pre-defined defaults. For example,
RSA keys for use as DNSSEC zone signing keys have a default size of 1024 bits; RSA keys
for use as key signing keys (KSKs, generated with -f KSK) default to 2048 bits.

-n nametype
Specifies the owner type of the key. The value of nametype must either be ZONE (for a
DNSSEC zone key (KEY/DNSKEY)), HOST or ENTITY (for a key associated with a host
(KEY)), USER (for a key associated with a user(KEY)) or OTHER (DNSKEY). These values
are case insensitive. Defaults to ZONE for DNSKEY generation.

-3
Use an NSEC3-capable algorithm to generate a DNSSEC key. If this option is used with an
algorithm that has both NSEC and NSEC3 versions, then the NSEC3 version will be used;
for example, dnssec-keygen -3a RSASHA1 specifies the NSEC3RSASHA1 algorithm.

-C
Compatibility mode: generates an old-style key, without any metadata. By default, dnssec-
keygen will include the key’s creation date in the metadata stored with the private key,
and other dates may be set there as well (publication date, activation date, etc). Keys
that include this data may be incompatible with older versions of BIND; the -C option
suppresses them.

BIND 9.12.1rc2 212

CHAPTER 8. MANUAL PAGES 8.11. DNSSEC-KEYGEN

-c class
Indicates that the DNS record containing the key should have the specified class. If not
specified, class IN is used.

-E engine
Specifies the cryptographic hardware to use, when applicable.

When BIND is built with OpenSSL PKCS#11 support, this defaults to the string "pkcs11",
which identifies an OpenSSL engine that can drive a cryptographic accelerator or hard-
ware service module. When BIND is built with native PKCS#11 cryptography (--enable-
native-pkcs11), it defaults to the path of the PKCS#11 provider library specified via "--
with-pkcs11".

-f flag
Set the specified flag in the flag field of the KEY/DNSKEY record. The only recognized
flags are KSK (Key Signing Key) and REVOKE.

-G
Generate a key, but do not publish it or sign with it. This option is incompatible with -P
and -A.

-g generator
If generating a Diffie Hellman key, use this generator. Allowed values are 2 and 5. If no
generator is specified, a known prime from RFC 2539 will be used if possible; otherwise
the default is 2.

-h
Prints a short summary of the options and arguments to dnssec-keygen.

-K directory
Sets the directory in which the key files are to be written.

-k
Deprecated in favor of -T KEY.

-L ttl
Sets the default TTL to use for this key when it is converted into a DNSKEY RR. If the key
is imported into a zone, this is the TTL that will be used for it, unless there was already
a DNSKEY RRset in place, in which case the existing TTL would take precedence. If this
value is not set and there is no existing DNSKEY RRset, the TTL will default to the SOA
TTL. Setting the default TTL to 0 or none is the same as leaving it unset.

-p protocol
Sets the protocol value for the generated key. The protocol is a number between 0 and 255.
The default is 3 (DNSSEC). Other possible values for this argument are listed in RFC 2535
and its successors.

-q
Quiet mode: Suppresses unnecessary output, including progress indication. Without this
option, when dnssec-keygen is run interactively to generate an RSA or DSA key pair, it
will print a string of symbols to stderr indicating the progress of the key generation.
A ’.’ indicates that a random number has been found which passed an initial sieve test;
’+’ means a number has passed a single round of the Miller-Rabin primality test; a space
means that the number has passed all the tests and is a satisfactory key.

213 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.11. DNSSEC-KEYGEN

-r randomdev
Specifies a source of randomness. Normally, when generating DNSSEC keys, this option
has no effect; the random number generation function provided by the cryptographic
library will be used.
If that behavior is disabled at compile time, however, the specified file will be used as
entropy source for key generation. randomdev is the name of a character device or file
containing random data to be used. The special value keyboard indicates that keyboard
input should be used.
The default is /dev/random if the operating system provides it or an equivalent device;
if not, the default source of randomness is keyboard input.

-S key
Create a new key which is an explicit successor to an existing key. The name, algorithm,
size, and type of the key will be set to match the existing key. The activation date of the
new key will be set to the inactivation date of the existing one. The publication date will
be set to the activation date minus the prepublication interval, which defaults to 30 days.

-s strength
Specifies the strength value of the key. The strength is a number between 0 and 15, and
currently has no defined purpose in DNSSEC.

-T rrtype
Specifies the resource record type to use for the key. rrtype must be either DNSKEY or
KEY. The default is DNSKEY when using a DNSSEC algorithm, but it can be overridden
to KEY for use with SIG(0).
Specifying any TSIG algorithm (HMAC-* or DH) with -a forces this option to KEY.

-t type
Indicates the use of the key. typemust be one of AUTHCONF, NOAUTHCONF, NOAUTH,
or NOCONF. The default is AUTHCONF. AUTH refers to the ability to authenticate data,
and CONF the ability to encrypt data.

-v level
Sets the debugging level.

-V
Prints version information.

TIMING OPTIONS

Dates can be expressed in the format YYYYMMDD or YYYYMMDDHHMMSS. If the argument
begins with a ’+’ or ’-’, it is interpreted as an offset from the present time. For convenience, if
such an offset is followed by one of the suffixes ’y’, ’mo’, ’w’, ’d’, ’h’, or ’mi’, then the offset
is computed in years (defined as 365 24-hour days, ignoring leap years), months (defined as
30 24-hour days), weeks, days, hours, or minutes, respectively. Without a suffix, the offset is
computed in seconds. To explicitly prevent a date from being set, use ’none’ or ’never’.

-P date/offset
Sets the date on which a key is to be published to the zone. After that date, the key will be
included in the zone but will not be used to sign it. If not set, and if the -G option has not
been used, the default is "now".

BIND 9.12.1rc2 214

CHAPTER 8. MANUAL PAGES 8.11. DNSSEC-KEYGEN

-P sync date/offset
Sets the date on which CDS and CDNSKEY records that match this key are to be published
to the zone.

-A date/offset
Sets the date on which the key is to be activated. After that date, the key will be included
in the zone and used to sign it. If not set, and if the -G option has not been used, the
default is "now". If set, if and -P is not set, then the publication date will be set to the
activation date minus the prepublication interval.

-R date/offset
Sets the date on which the key is to be revoked. After that date, the key will be flagged as
revoked. It will be included in the zone and will be used to sign it.

-I date/offset
Sets the date on which the key is to be retired. After that date, the key will still be included
in the zone, but it will not be used to sign it.

-D date/offset
Sets the date on which the key is to be deleted. After that date, the key will no longer be
included in the zone. (It may remain in the key repository, however.)

-D sync date/offset
Sets the date on which the CDS and CDNSKEY records that match this key are to be
deleted.

-i interval
Sets the prepublication interval for a key. If set, then the publication and activation dates
must be separated by at least this much time. If the activation date is specified but the
publication date isn’t, then the publication date will default to this much time before the
activation date; conversely, if the publication date is specified but activation date isn’t,
then activation will be set to this much time after publication.

If the key is being created as an explicit successor to another key, then the default prepub-
lication interval is 30 days; otherwise it is zero.

As with date offsets, if the argument is followed by one of the suffixes ’y’, ’mo’, ’w’, ’d’,
’h’, or ’mi’, then the interval is measured in years, months, weeks, days, hours, or minutes,
respectively. Without a suffix, the interval is measured in seconds.

GENERATED KEYS

When dnssec-keygen completes successfully, it prints a string of the form Knnnn.+aaa+iiiii
to the standard output. This is an identification string for the key it has generated.

• nnnn is the key name.

• aaa is the numeric representation of the algorithm.

• iiiii is the key identifier (or footprint).

215 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.12. DNSSEC-KEYMGR

dnssec-keygen creates two files, with names based on the printed string. Knnnn.+aaa+iiiii.
key contains the public key, and Knnnn.+aaa+iiiii.private contains the private key.

The .key file contains a DNS KEY record that can be inserted into a zone file (directly or with
a $INCLUDE statement).

The .private file contains algorithm-specific fields. For obvious security reasons, this file
does not have general read permission.

Both .key and .private files are generated for symmetric cryptography algorithms such as
HMAC-MD5, even though the public and private key are equivalent.

EXAMPLE

To generate a 768-bit DSA key for the domain example.com, the following command would
be issued:

dnssec-keygen -a DSA -b 768 -n ZONE example.com

The command would print a string of the form:

Kexample.com.+003+26160

In this example, dnssec-keygen creates the files Kexample.com.+003+26160.key and Kexample.
com.+003+26160.private.

SEE ALSO

dnssec-signzone(8), BIND 9 Administrator Reference Manual, RFC 2539, RFC 2845, RFC 4034.

8.12 DNSSEC-KEYMGR

dnssec-keymgr — Ensures correct DNSKEY coverage for a zone based on a defined policy

Synopsis

dnssec-keymgr [-K directory] [-c file] [-f] [-k] [-q] [-v] [-z] [-g path] [-r path] [-
s path] [zone...]

DESCRIPTION

dnssec-keymgr is a high level Python wrapper to facilitate the key rollover process for zones
handled by BIND. It uses the BIND commands for manipulating DNSSEC key metadata: dnssec-
keygen and dnssec-settime.

DNSSEC policy can be read from a configuration file (default /etc/dnssec-policy.conf),
from which the key parameters, publication and rollover schedule, and desired coverage dura-
tion for any given zone can be determined. This file may be used to define individual DNSSEC
policies on a per-zone basis, or to set a default policy used for all zones.

BIND 9.12.1rc2 216

CHAPTER 8. MANUAL PAGES 8.12. DNSSEC-KEYMGR

When dnssec-keymgr runs, it examines the DNSSEC keys for one or more zones, comparing
their timing metadata against the policies for those zones. If key settings do not conform to
the DNSSEC policy (for example, because the policy has been changed), they are automatically
corrected.

A zone policy can specify a duration for which we want to ensure the key correctness (cover
age). It can also specify a rollover period (roll-period). If policy indicates that a key should
roll over before the coverage period ends, then a successor key will automatically be created
and added to the end of the key series.

If zones are specified on the command line, dnssec-keymgr will examine only those zones. If a
specified zone does not already have keys in place, then keys will be generated for it according
to policy.

If zones are not specified on the command line, then dnssec-keymgr will search the key direc-
tory (either the current working directory or the directory set by the -K option), and check the
keys for all the zones represented in the directory.

It is expected that this tool will be run automatically and unattended (for example, by cron).

OPTIONS

-c file
If -c is specified, then the DNSSEC policy is read from file. (If not specified, then
the policy is read from /etc/dnssec-policy.conf; if that file doesn’t exist, a built-in
global default policy is used.)

-f
Force: allow updating of key events even if they are already in the past. This is not recom-
mended for use with zones in which keys have already been published. However, if a set
of keys has been generated all of which have publication and activation dates in the past,
but the keys have not been published in a zone as yet, then this option can be used to clean
them up and turn them into a proper series of keys with appropriate rollover intervals.

-g keygen-path
Specifies a path to a dnssec-keygen binary. Used for testing. See also the -s option.

-h
Print the dnssec-keymgr help summary and exit.

-K directory
Sets the directory in which keys can be found. Defaults to the current working directory.

-k
Only apply policies to KSK keys. See also the -z option.

-q
Quiet: suppress printing of dnssec-keygen and dnssec-settime.

-r randomdev
Specifies a path to a file containing random data. This is passed to the dnssec-keygen
binary using its -r option.

217 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.12. DNSSEC-KEYMGR

-s settime-path
Specifies a path to a dnssec-settime binary. Used for testing. See also the -g option.

-v
Print the dnssec-keymgr version and exit.

-z
Only apply policies to ZSK keys. See also the -k option.

POLICY CONFIGURATION

The dnssec-policy.conf file can specify three kinds of policies:

• Policy classes (policy name { ...};) can be inherited by zone policies or other policy
classes; these can be used to create sets of different security profiles. For example, a policy
class normal might specify 1024-bit key sizes, but a class extra might specify 2048 bits
instead; extra would be used for zones that had unusually high security needs.

• Algorithm policies: (algorithm-policy algorithm { ...};) override default per-
algorithm settings. For example, by default, RSASHA256 keys use 2048-bit key sizes for
both KSK and ZSK. This can be modified using algorithm-policy, and the new key sizes
would then be used for any key of type RSASHA256.

• Zone policies: (zone name { ...};) set policy for a single zone by name. A zone
policy can inherit a policy class by including a policy option. Zone names beginning
with digits (i.e., 0-9) must be quoted.

Options that can be specified in policies:

algorithm
The key algorithm. If no policy is defined, the default is RSASHA256.

coverage
The length of time to ensure that keys will be correct; no action will be taken to create new
keys to be activated after this time. This can be represented as a number of seconds, or as
a duration using human-readable units (examples: "1y" or "6 months"). A default value
for this option can be set in algorithm policies as well as in policy classes or zone policies.
If no policy is configured, the default is six months.

directory
Specifies the directory in which keys should be stored.

key-size
Specifies the number of bits to use in creating keys. Takes two arguments: keytype (eihter
"zsk" or "ksk") and size. A default value for this option can be set in algorithm policies as
well as in policy classes or zone policies. If no policy is configured, the default is 1024 bits
for DSA keys and 2048 for RSA.

keyttl
The key TTL. If no policy is defined, the default is one hour.

BIND 9.12.1rc2 218

CHAPTER 8. MANUAL PAGES 8.13. DNSSEC-REVOKE

post-publish
How long after inactivation a key should be deleted from the zone. Note: If roll-per
iod is not set, this value is ignored. Takes two arguments: keytype (eihter "zsk" or "ksk")
and a duration. A default value for this option can be set in algorithm policies as well as
in policy classes or zone policies. The default is one month.

pre-publish
How long before activation a key should be published. Note: If roll-period is not set,
this value is ignored. Takes two arguments: keytype (either "zsk" or "ksk") and a duration.
A default value for this option can be set in algorithm policies as well as in policy classes
or zone policies. The default is one month.

roll-period
How frequently keys should be rolled over. Takes two arguments: keytype (eihter "zsk"
or "ksk") and a duration. A default value for this option can be set in algorithm policies as
well as in policy classes or zone policies. If no policy is configured, the default is one year
for ZSK’s. KSK’s do not roll over by default.

standby
Not yet implemented.

REMAINING WORK

• Enable scheduling of KSK rollovers using the -P sync and -D sync options to dnssec-
keygen and dnssec-settime. Check the parent zone (as in dnssec-checkds) to determine
when it’s safe for the key to roll.

• Allow configuration of standby keys and use of the REVOKE bit, for keys that use RFC
5011 semantics.

SEE ALSO

dnssec-coverage(8), dnssec-keygen(8), dnssec-settime(8), dnssec-checkds(8)

8.13 DNSSEC-REVOKE

dnssec-revoke — set the REVOKED bit on a DNSSEC key

Synopsis

dnssec-revoke [-hr] [-v level] [-V] [-K directory] [-E engine] [-f] [-R] keyfile

DESCRIPTION

dnssec-revoke reads a DNSSEC key file, sets the REVOKED bit on the key as defined in RFC
5011, and creates a new pair of key files containing the now-revoked key.

219 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.14. DNSSEC-SETTIME

OPTIONS

-h
Emit usage message and exit.

-K directory
Sets the directory in which the key files are to reside.

-r
After writing the new keyset files remove the original keyset files.

-v level
Sets the debugging level.

-V
Prints version information.

-E engine
Specifies the cryptographic hardware to use, when applicable.

When BIND is built with OpenSSL PKCS#11 support, this defaults to the string "pkcs11",
which identifies an OpenSSL engine that can drive a cryptographic accelerator or hard-
ware service module. When BIND is built with native PKCS#11 cryptography (--enable-
native-pkcs11), it defaults to the path of the PKCS#11 provider library specified via "--
with-pkcs11".

-f
Force overwrite: Causes dnssec-revoke to write the new key pair even if a file already
exists matching the algorithm and key ID of the revoked key.

-R
Print the key tag of the key with the REVOKE bit set but do not revoke the key.

SEE ALSO

dnssec-keygen(8), BIND 9 Administrator Reference Manual, RFC 5011.

8.14 DNSSEC-SETTIME

dnssec-settime — set the key timing metadata for a DNSSEC key

Synopsis

dnssec-settime [-f] [-K directory] [-L ttl] [-P date/offset] [-P sync date/offset]
[-A date/offset] [-R date/offset] [-I date/offset] [-D date/offset] [-D sync date/

offset] [-S key] [-i interval] [-h] [-V] [-v level] [-E engine] keyfile

BIND 9.12.1rc2 220

CHAPTER 8. MANUAL PAGES 8.14. DNSSEC-SETTIME

DESCRIPTION

dnssec-settime reads a DNSSEC private key file and sets the key timing metadata as specified
by the -P, -A, -R, -I, and -D options. The metadata can then be used by dnssec-signzone or
other signing software to determine when a key is to be published, whether it should be used
for signing a zone, etc.

If none of these options is set on the command line, then dnssec-settime simply prints the key
timing metadata already stored in the key.

When key metadata fields are changed, both files of a key pair (Knnnn.+aaa+iiiii.key and
Knnnn.+aaa+iiiii.private) are regenerated. Metadata fields are stored in the private file.
A human-readable description of the metadata is also placed in comments in the key file. The
private file’s permissions are always set to be inaccessible to anyone other than the owner (mode
0600).

OPTIONS

-f
Force an update of an old-format key with no metadata fields. Without this option,
dnssec-settime will fail when attempting to update a legacy key. With this option, the
key will be recreated in the new format, but with the original key data retained. The key’s
creation date will be set to the present time. If no other values are specified, then the key’s
publication and activation dates will also be set to the present time.

-K directory
Sets the directory in which the key files are to reside.

-L ttl
Sets the default TTL to use for this key when it is converted into a DNSKEY RR. If the key
is imported into a zone, this is the TTL that will be used for it, unless there was already
a DNSKEY RRset in place, in which case the existing TTL would take precedence. If this
value is not set and there is no existing DNSKEY RRset, the TTL will default to the SOA
TTL. Setting the default TTL to 0 or none removes it from the key.

-h
Emit usage message and exit.

-V
Prints version information.

-v level
Sets the debugging level.

-E engine
Specifies the cryptographic hardware to use, when applicable.

When BIND is built with OpenSSL PKCS#11 support, this defaults to the string "pkcs11",
which identifies an OpenSSL engine that can drive a cryptographic accelerator or hard-
ware service module. When BIND is built with native PKCS#11 cryptography (--enable-
native-pkcs11), it defaults to the path of the PKCS#11 provider library specified via "--
with-pkcs11".

221 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.14. DNSSEC-SETTIME

TIMING OPTIONS

Dates can be expressed in the format YYYYMMDD or YYYYMMDDHHMMSS. If the argument
begins with a ’+’ or ’-’, it is interpreted as an offset from the present time. For convenience, if
such an offset is followed by one of the suffixes ’y’, ’mo’, ’w’, ’d’, ’h’, or ’mi’, then the offset
is computed in years (defined as 365 24-hour days, ignoring leap years), months (defined as
30 24-hour days), weeks, days, hours, or minutes, respectively. Without a suffix, the offset is
computed in seconds. To unset a date, use ’none’ or ’never’.

-P date/offset
Sets the date on which a key is to be published to the zone. After that date, the key will be
included in the zone but will not be used to sign it.

-P sync date/offset
Sets the date on which CDS and CDNSKEY records that match this key are to be published
to the zone.

-A date/offset
Sets the date on which the key is to be activated. After that date, the key will be included
in the zone and used to sign it.

-R date/offset
Sets the date on which the key is to be revoked. After that date, the key will be flagged as
revoked. It will be included in the zone and will be used to sign it.

-I date/offset
Sets the date on which the key is to be retired. After that date, the key will still be included
in the zone, but it will not be used to sign it.

-D date/offset
Sets the date on which the key is to be deleted. After that date, the key will no longer be
included in the zone. (It may remain in the key repository, however.)

-D sync date/offset
Sets the date on which the CDS and CDNSKEY records that match this key are to be
deleted.

-S predecessor key
Select a key for which the key being modified will be an explicit successor. The name, al-
gorithm, size, and type of the predecessor key must exactly match those of the key being
modified. The activation date of the successor key will be set to the inactivation date of
the predecessor. The publication date will be set to the activation date minus the prepub-
lication interval, which defaults to 30 days.

-i interval
Sets the prepublication interval for a key. If set, then the publication and activation dates
must be separated by at least this much time. If the activation date is specified but the
publication date isn’t, then the publication date will default to this much time before the
activation date; conversely, if the publication date is specified but activation date isn’t,
then activation will be set to this much time after publication.

If the key is being set to be an explicit successor to another key, then the default prepubli-
cation interval is 30 days; otherwise it is zero.

BIND 9.12.1rc2 222

CHAPTER 8. MANUAL PAGES 8.15. DNSSEC-SIGNZONE

As with date offsets, if the argument is followed by one of the suffixes ’y’, ’mo’, ’w’, ’d’,
’h’, or ’mi’, then the interval is measured in years, months, weeks, days, hours, or minutes,
respectively. Without a suffix, the interval is measured in seconds.

PRINTING OPTIONS

dnssec-settime can also be used to print the timing metadata associated with a key.

-u
Print times in UNIX epoch format.

-p C/P/Psync/A/R/I/D/Dsync/all
Print a specific metadata value or set of metadata values. The -p option may be followed
by one or more of the following letters or strings to indicate which value or values to print:
C for the creation date, P for the publication date, Psync for the CDS and CDNSKEY
publication date, A for the activation date, R for the revocation date, I for the inactivation
date, D for the deletion date, and Dsync for the CDS and CDNSKEY deletion date To print
all of the metadata, use -p all.

SEE ALSO

dnssec-keygen(8), dnssec-signzone(8), BIND 9 Administrator Reference Manual, RFC 5011.

8.15 DNSSEC-SIGNZONE

dnssec-signzone — DNSSEC zone signing tool

Synopsis

dnssec-signzone [-a] [-c class] [-d directory] [-D] [-E engine] [-e end-time] [-f
output-file] [-g] [-h] [-i interval] [-I input-format] [-j jitter] [-K directory] [-k
key] [-L serial] [-l domain] [-M maxttl] [-N soa-serial-format] [-o origin] [-O out

put-format] [-P] [-p] [-Q] [-R] [-r randomdev] [-S] [-s start-time] [-T ttl] [-t] [-u] [-
v level] [-V] [-X extended end-time] [-x] [-z] [-3 salt] [-H iterations] [-A] zonefile
[key...]

DESCRIPTION

dnssec-signzone signs a zone. It generates NSEC and RRSIG records and produces a signed
version of the zone. The security status of delegations from the signed zone (that is, whether
the child zones are secure or not) is determined by the presence or absence of a keyset file for
each child zone.

223 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.15. DNSSEC-SIGNZONE

OPTIONS

-a
Verify all generated signatures.

-c class
Specifies the DNS class of the zone.

-C
Compatibility mode: Generate a keyset-zonename file in addition to dsset-zonename
when signing a zone, for use by older versions of dnssec-signzone.

-d directory
Look for dsset- or keyset- files in directory.

-D
Output only those record types automatically managed by dnssec-signzone, i.e. RRSIG,
NSEC, NSEC3 and NSEC3PARAM records. If smart signing (-S) is used, DNSKEY records
are also included. The resulting file can be included in the original zone file with $IN-
CLUDE. This option cannot be combined with -O raw, -O map, or serial number updat-
ing.

-E engine
When applicable, specifies the hardware to use for cryptographic operations, such as a
secure key store used for signing.

When BIND is built with OpenSSL PKCS#11 support, this defaults to the string "pkcs11",
which identifies an OpenSSL engine that can drive a cryptographic accelerator or hard-
ware service module. When BIND is built with native PKCS#11 cryptography (--enable-
native-pkcs11), it defaults to the path of the PKCS#11 provider library specified via "--
with-pkcs11".

-g
Generate DS records for child zones from dsset- or keyset- file. Existing DS records
will be removed.

-K directory
Key repository: Specify a directory to search for DNSSEC keys. If not specified, defaults
to the current directory.

-k key
Treat specified key as a key signing key ignoring any key flags. This option may be speci-
fied multiple times.

-l domain
Generate a DLV set in addition to the key (DNSKEY) and DS sets. The domain is ap-
pended to the name of the records.

-M maxttl
Sets the maximum TTL for the signed zone. Any TTL higher than maxttl in the input
zone will be reduced to maxttl in the output. This provides certainty as to the largest
possible TTL in the signed zone, which is useful to know when rolling keys because it
is the longest possible time before signatures that have been retrieved by resolvers will

BIND 9.12.1rc2 224

CHAPTER 8. MANUAL PAGES 8.15. DNSSEC-SIGNZONE

expire from resolver caches. Zones that are signed with this option should be configured
to use a matching max-zone-ttl in named.conf. (Note: This option is incompatible
with -D, because it modifies non-DNSSEC data in the output zone.)

-s start-time
Specify the date and time when the generated RRSIG records become valid. This can
be either an absolute or relative time. An absolute start time is indicated by a number
in YYYYMMDDHHMMSS notation; 20000530144500 denotes 14:45:00 UTC on May 30th,
2000. A relative start time is indicated by +N, which is N seconds from the current time.
If no start-time is specified, the current time minus 1 hour (to allow for clock skew) is
used.

-e end-time
Specify the date and time when the generated RRSIG records expire. As with start-
time, an absolute time is indicated in YYYYMMDDHHMMSS notation. A time relative
to the start time is indicated with +N, which is N seconds from the start time. A time
relative to the current time is indicated with now+N. If no end-time is specified, 30 days
from the start time is used as a default. end-time must be later than start-time.

-X extended end-time
Specify the date and time when the generated RRSIG records for the DNSKEY RRset will
expire. This is to be used in cases when the DNSKEY signatures need to persist longer
than signatures on other records; e.g., when the private component of the KSK is kept
offline and the KSK signature is to be refreshed manually.

As with start-time, an absolute time is indicated in YYYYMMDDHHMMSS notation.
A time relative to the start time is indicated with +N, which is N seconds from the start
time. A time relative to the current time is indicated with now+N. If no extended end-
time is specified, the value of end-time is used as the default. (end-time, in turn,
defaults to 30 days from the start time.) extended end-timemust be later than start-
time.

-f output-file
The name of the output file containing the signed zone. The default is to append .signed
to the input filename. If output-file is set to "-", then the signed zone is written to
the standard output, with a default output format of "full".

-h
Prints a short summary of the options and arguments to dnssec-signzone.

-V
Prints version information.

-i interval
When a previously-signed zone is passed as input, records may be resigned. The inter
val option specifies the cycle interval as an offset from the current time (in seconds). If a
RRSIG record expires after the cycle interval, it is retained. Otherwise, it is considered to
be expiring soon, and it will be replaced.

The default cycle interval is one quarter of the difference between the signature end and
start times. So if neither end-time or start-time are specified, dnssec-signzone gen-
erates signatures that are valid for 30 days, with a cycle interval of 7.5 days. Therefore, if
any existing RRSIG records are due to expire in less than 7.5 days, they would be replaced.

225 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.15. DNSSEC-SIGNZONE

-I input-format
The format of the input zone file. Possible formats are "text" (default), "raw", and "map".
This option is primarily intended to be used for dynamic signed zones so that the dumped
zone file in a non-text format containing updates can be signed directly. The use of this
option does not make much sense for non-dynamic zones.

-j jitter
When signing a zone with a fixed signature lifetime, all RRSIG records issued at the time
of signing expires simultaneously. If the zone is incrementally signed, i.e. a previously-
signed zone is passed as input to the signer, all expired signatures have to be regenerated
at about the same time. The jitter option specifies a jitter window that will be used to
randomize the signature expire time, thus spreading incremental signature regeneration
over time.

Signature lifetime jitter also to some extent benefits validators and servers by spreading
out cache expiration, i.e. if large numbers of RRSIGs don’t expire at the same time from
all caches there will be less congestion than if all validators need to refetch at mostly the
same time.

-L serial
When writing a signed zone to "raw" or "map" format, set the "source serial" value in the
header to the specified serial number. (This is expected to be used primarily for testing
purposes.)

-n ncpus
Specifies the number of threads to use. By default, one thread is started for each detected
CPU.

-N soa-serial-format
The SOA serial number format of the signed zone. Possible formats are "keep" (default),
"increment", "unixtime", and "date".

"keep"
Do not modify the SOA serial number.

"increment"
Increment the SOA serial number using RFC 1982 arithmetics.

"unixtime"
Set the SOA serial number to the number of seconds since epoch.

"date"
Set the SOA serial number to today’s date in YYYYMMDDNN format.

-o origin
The zone origin. If not specified, the name of the zone file is assumed to be the origin.

-O output-format
The format of the output file containing the signed zone. Possible formats are "text" (de-
fault), which is the standard textual representation of the zone; "full", which is text output
in a format suitable for processing by external scripts; and "map", "raw", and "raw=N",
which store the zone in binary formats for rapid loading by named. "raw=N" specifies the
format version of the raw zone file: if N is 0, the raw file can be read by any version of
named; if N is 1, the file can be read by release 9.9.0 or higher; the default is 1.

BIND 9.12.1rc2 226

CHAPTER 8. MANUAL PAGES 8.15. DNSSEC-SIGNZONE

-p
Use pseudo-random data when signing the zone. This is faster, but less secure, than us-
ing real random data. This option may be useful when signing large zones or when the
entropy source is limited.

-P
Disable post sign verification tests.

The post sign verification test ensures that for each algorithm in use there is at least one
non revoked self signed KSK key, that all revoked KSK keys are self signed, and that all
records in the zone are signed by the algorithm. This option skips these tests.

-Q
Remove signatures from keys that are no longer active.

Normally, when a previously-signed zone is passed as input to the signer, and a DNSKEY
record has been removed and replaced with a new one, signatures from the old key that
are still within their validity period are retained. This allows the zone to continue to
validate with cached copies of the old DNSKEY RRset. The -Q forces dnssec-signzone to
remove signatures from keys that are no longer active. This enables ZSK rollover using
the procedure described in RFC 4641, section 4.2.1.1 ("Pre-Publish Key Rollover").

-R
Remove signatures from keys that are no longer published.

This option is similar to -Q, except it forces dnssec-signzone to signatures from keys that
are no longer published. This enables ZSK rollover using the procedure described in RFC
4641, section 4.2.1.2 ("Double Signature Zone Signing Key Rollover").

-r randomdev
Specifies the source of randomness. If the operating system does not provide a /dev/
random or equivalent device, the default source of randomness is keyboard input. randomdev
specifies the name of a character device or file containing random data to be used instead
of the default. The special value keyboard indicates that keyboard input should be used.

-S
Smart signing: Instructs dnssec-signzone to search the key repository for keys that match
the zone being signed, and to include them in the zone if appropriate.

When a key is found, its timing metadata is examined to determine how it should be used,
according to the following rules. Each successive rule takes priority over the prior ones:

If no timing metadata has been set for the key, the key is published in the zone and
used to sign the zone.

If the key’s publication date is set and is in the past, the key is published in the zone.

If the key’s activation date is set and in the past, the key is published (regardless of
publication date) and used to sign the zone.

If the key’s revocation date is set and in the past, and the key is published, then the
key is revoked, and the revoked key is used to sign the zone.

227 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.15. DNSSEC-SIGNZONE

If either of the key’s unpublication or deletion dates are set and in the past, the key
is NOT published or used to sign the zone, regardless of any other metadata.

If key’s sync publication date is set and in the past, synchronization records (type
CDS and/or CDNSKEY) are created.

If key’s sync deletion date is set and in the past, synchronization records (type CDS
and/or CDNSKEY) are removed.

-T ttl
Specifies a TTL to be used for new DNSKEY records imported into the zone from the key
repository. If not specified, the default is the TTL value from the zone’s SOA record. This
option is ignored when signing without -S, since DNSKEY records are not imported from
the key repository in that case. It is also ignored if there are any pre-existing DNSKEY
records at the zone apex, in which case new records’ TTL values will be set to match
them, or if any of the imported DNSKEY records had a default TTL value. In the event of
a a conflict between TTL values in imported keys, the shortest one is used.

-t
Print statistics at completion.

-u
Update NSEC/NSEC3 chain when re-signing a previously signed zone. With this option,
a zone signed with NSEC can be switched to NSEC3, or a zone signed with NSEC3 can
be switch to NSEC or to NSEC3 with different parameters. Without this option, dnssec-
signzone will retain the existing chain when re-signing.

-v level
Sets the debugging level.

-x
Only sign the DNSKEY, CDNSKEY, and CDS RRsets with key-signing keys, and omit
signatures from zone-signing keys. (This is similar to the dnssec-dnskey-kskonly yes;
zone option in named.)

-z
Ignore KSK flag on key when determining what to sign. This causes KSK-flagged keys to
sign all records, not just the DNSKEY RRset. (This is similar to the update-check-ksk no;
zone option in named.)

-3 salt
Generate an NSEC3 chain with the given hex encoded salt. A dash (salt) can be used to
indicate that no salt is to be used when generating the NSEC3 chain.

-H iterations
When generating an NSEC3 chain, use this many iterations. The default is 10.

-A
When generating an NSEC3 chain set the OPTOUT flag on all NSEC3 records and do not
generate NSEC3 records for insecure delegations.
Using this option twice (i.e., -AA) turns the OPTOUT flag off for all records. This is useful
when using the -u option to modify an NSEC3 chain which previously had OPTOUT set.

BIND 9.12.1rc2 228

CHAPTER 8. MANUAL PAGES 8.16. DNSSEC-VERIFY

zonefile
The file containing the zone to be signed.

key
Specify which keys should be used to sign the zone. If no keys are specified, then the zone
will be examined for DNSKEY records at the zone apex. If these are found and there are
matching private keys, in the current directory, then these will be used for signing.

EXAMPLE

The following command signs the example.com zone with the DSA key generated by dnssec-
keygen (Kexample.com.+003+17247). Because the -S option is not being used, the zone’s keys
must be in the master file (db.example.com). This invocation looks for dsset files, in the
current directory, so that DS records can be imported from them (-g).

% dnssec-signzone -g -o example.com db.example.com \
Kexample.com.+003+17247
db.example.com.signed
%

In the above example, dnssec-signzone creates the file db.example.com.signed. This file
should be referenced in a zone statement in a named.conf file.

This example re-signs a previously signed zone with default parameters. The private keys are
assumed to be in the current directory.

% cp db.example.com.signed db.example.com
% dnssec-signzone -o example.com db.example.com
db.example.com.signed
%

SEE ALSO

dnssec-keygen(8), BIND 9 Administrator Reference Manual, RFC 4033, RFC 4641.

8.16 DNSSEC-VERIFY

dnssec-verify — DNSSEC zone verification tool

Synopsis

dnssec-verify [-c class] [-E engine] [-I input-format] [-o origin] [-v level] [-V]
[-x] [-z] zonefile

DESCRIPTION

dnssec-verify verifies that a zone is fully signed for each algorithm found in the DNSKEY RRset
for the zone, and that the NSEC / NSEC3 chains are complete.

229 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.16. DNSSEC-VERIFY

OPTIONS

-c class
Specifies the DNS class of the zone.

-E engine
Specifies the cryptographic hardware to use, when applicable.

When BIND is built with OpenSSL PKCS#11 support, this defaults to the string "pkcs11",
which identifies an OpenSSL engine that can drive a cryptographic accelerator or hard-
ware service module. When BIND is built with native PKCS#11 cryptography (--enable-
native-pkcs11), it defaults to the path of the PKCS#11 provider library specified via "--
with-pkcs11".

-I input-format
The format of the input zone file. Possible formats are "text" (default) and "raw". This
option is primarily intended to be used for dynamic signed zones so that the dumped
zone file in a non-text format containing updates can be verified independently. The use
of this option does not make much sense for non-dynamic zones.

-o origin
The zone origin. If not specified, the name of the zone file is assumed to be the origin.

-v level
Sets the debugging level.

-V
Prints version information.

-x
Only verify that the DNSKEY RRset is signed with key-signing keys. Without this flag,
it is assumed that the DNSKEY RRset will be signed by all active keys. When this flag is
set, it will not be an error if the DNSKEY RRset is not signed by zone-signing keys. This
corresponds to the -x option in dnssec-signzone.

-z
Ignore the KSK flag on the keys when determining whether the zone if correctly signed.
Without this flag it is assumed that there will be a non-revoked, self-signed DNSKEY
with the KSK flag set for each algorithm and that RRsets other than DNSKEY RRset will
be signed with a different DNSKEY without the KSK flag set.

With this flag set, we only require that for each algorithm, there will be at least one non-
revoked, self-signed DNSKEY, regardless of the KSK flag state, and that other RRsets will
be signed by a non-revoked key for the same algorithm that includes the self-signed key;
the same key may be used for both purposes. This corresponds to the -z option in dnssec-
signzone.

zonefile
The file containing the zone to be signed.

SEE ALSO

dnssec-signzone(8), BIND 9 Administrator Reference Manual, RFC 4033.

BIND 9.12.1rc2 230

CHAPTER 8. MANUAL PAGES 8.17. DNSTAP-READ

8.17 DNSTAP-READ

dnstap-read — print dnstap data in human-readable form

Synopsis

dnstap-read [-m] [-p] [-x] [-y] file

DESCRIPTION

dnstap-read reads dnstap data from a specified file and prints it in a human-readable format.
By default, dnstap data is printed in a short summary format, but if the -y option is specified,
then a longer and more detailed YAML format is used instead.

OPTIONS

-m
Trace memory allocations; used for debugging memory leaks.

-p
After printing the dnstap data, print the text form of the DNS message that was encapsu-
lated in the dnstap frame.

-x
After printing the dnstap data, print a hex dump of the wire form of the DNS message
that was encapsulated in the dnstap frame.

-y
Print dnstap data in a detailed YAML format.

SEE ALSO

named(8), rndc(8), BIND 9 Administrator Reference Manual.

8.18 GENRANDOM

genrandom — generate a file containing random data

Synopsis

genrandom [-n number] size filename

231 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.19. HOST

DESCRIPTION

genrandom generates a file or a set of files containing a specified quantity of pseudo-random
data, which can be used as a source of entropy for other commands on systems with no random
device.

ARGUMENTS

-n number
In place of generating one file, generates number (from 2 to 9) files, appending number
to the name.

size
The size of the file, in kilobytes, to generate.

filename
The file name into which random data should be written.

SEE ALSO

rand(3), arc4random(3)

8.19 HOST

host — DNS lookup utility

Synopsis

host [-aACdlnrsTUwv] [-c class] [-N ndots] [-R number] [-t type] [-W wait] [-m flag]
[-4 | -6] [-v] [-V] name [server]

DESCRIPTION

host is a simple utility for performing DNS lookups. It is normally used to convert names
to IP addresses and vice versa. When no arguments or options are given, host prints a short
summary of its command line arguments and options.

name is the domain name that is to be looked up. It can also be a dotted-decimal IPv4 address or
a colon-delimited IPv6 address, in which case host will by default perform a reverse lookup for
that address. server is an optional argument which is either the name or IP address of the name
server that host should query instead of the server or servers listed in /etc/resolv.conf.

BIND 9.12.1rc2 232

CHAPTER 8. MANUAL PAGES 8.19. HOST

OPTIONS

-4
Use IPv4 only for query transport. See also the -6 option.

-6
Use IPv6 only for query transport. See also the -4 option.

-a
"All". The -a option is normally equivalent to -v -t ANY. It also affects the behaviour
of the -l list zone option.

-A
"Almost all". The -A option is equivalent to -a except RRSIG, NSEC, and NSEC3 records
are omitted from the output.

-c class
Query class: This can be used to lookup HS (Hesiod) or CH (Chaosnet) class resource
records. The default class is IN (Internet).

-C
Check consistency: host will query the SOA records for zone name from all the listed
authoritative name servers for that zone. The list of name servers is defined by the NS
records that are found for the zone.

-d
Print debugging traces. Equivalent to the -v verbose option.

-i
Obsolete. Use the IP6.INT domain for reverse lookups of IPv6 addresses as defined in
RFC1886 and deprecated in RFC4159. The default is to use IP6.ARPA as specified in
RFC3596.

-l
List zone: The host command performs a zone transfer of zone name and prints out the
NS, PTR and address records (A/AAAA).

Together, the -l -a options print all records in the zone.

-N ndots
The number of dots that have to be in name for it to be considered absolute. The default
value is that defined using the ndots statement in /etc/resolv.conf, or 1 if no ndots
statement is present. Names with fewer dots are interpreted as relative names and will
be searched for in the domains listed in the search or domain directive in /etc/resolv.
conf.

-r
Non-recursive query: Setting this option clears the RD (recursion desired) bit in the query.
This should mean that the name server receiving the query will not attempt to resolve
name. The -r option enables host to mimic the behavior of a name server by making non-
recursive queries and expecting to receive answers to those queries that can be referrals
to other name servers.

233 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.19. HOST

-R number
Number of retries for UDP queries: If number is negative or zero, the number of retries
will default to 1. The default value is 1, or the value of the attempts option in /etc/
resolv.conf, if set.

-s
Do not send the query to the next nameserver if any server responds with a SERVFAIL
response, which is the reverse of normal stub resolver behavior.

-t type
Query type: The type argument can be any recognized query type: CNAME, NS, SOA,
TXT, DNSKEY, AXFR, etc.

When no query type is specified, host automatically selects an appropriate query type. By
default, it looks for A, AAAA, and MX records. If the -C option is given, queries will be
made for SOA records. If name is a dotted-decimal IPv4 address or colon-delimited IPv6
address, host will query for PTR records.

If a query type of IXFR is chosen the starting serial number can be specified by appending
an equal followed by the starting serial number (like -t IXFR=12345678).

-T, -U
TCP/UDP: By default, host uses UDP when making queries. The -T option makes it use
a TCP connection when querying the name server. TCP will be automatically selected for
queries that require it, such as zone transfer (AXFR) requests. Type ANY queries default
to TCP but can be forced to UDP initially using -U.

-m flag
Memory usage debugging: the flag can be record, usage, or trace. You can specify the
-m option more than once to set multiple flags.

-v
Verbose output. Equivalent to the -d debug option. Verbose output can also be enabled
by setting the debug option in /etc/resolv.conf.

-V
Print the version number and exit.

-w
Wait forever: The query timeout is set to the maximum possible. See also the -W option.

-W wait
Timeout: Wait for up to wait seconds for a reply. If wait is less than one, the wait interval
is set to one second.

By default, host will wait for 5 seconds for UDP responses and 10 seconds for TCP connec-
tions. These defaults can be overridden by the timeout option in /etc/resolv.conf.

See also the -w option.

IDN SUPPORT

If host has been built with IDN (internationalized domain name) support, it can accept and
display non-ASCII domain names. host appropriately converts character encoding of domain

BIND 9.12.1rc2 234

CHAPTER 8. MANUAL PAGES 8.20. MDIG

name before sending a request to DNS server or displaying a reply from the server. If you’d like
to turn off the IDN support for some reason, defines the IDN_DISABLE environment variable.
The IDN support is disabled if the variable is set when host runs.

FILES

/etc/resolv.conf

SEE ALSO

dig(1), named(8).

8.20 MDIG

mdig — DNS pipelined lookup utility

Synopsis

mdig @server [-f filename] [-h] [-v] [-4 | -6] [-m] [-b address] [-p port#] [-c class]
[-t type] [-i] [-x addr] [plusopt...]

mdig -h

mdig [@server] global-opt... local-opt... query...

DESCRIPTION

mdig is a multiple/pipelined query version of dig: instead of waiting for a response after send-
ing each query, it begins by sending all queries. Responses are displayed in the order in which
they are received, not in the order the corresponding queries were sent.

mdig options are a subset of the dig options, and are divided into "anywhere options" which
can occur anywhere, "global options" which must occur before the query name (or they are
ignored with a warning), and "local options" which apply to the next query on the command
line.

The @server option is a mandatory global option. It is the name or IP address of the name
server to query. (Unlike dig, this value is not retrieved from /etc/resolv.conf.) It can be
an IPv4 address in dotted-decimal notation, an IPv6 address in colon-delimited notation, or a
hostname. When the supplied server argument is a hostname, mdig resolves that name before
querying the name server.

mdig provides a number of query options which affect the way in which lookups are made and
the results displayed. Some of these set or reset flag bits in the query header, some determine
which sections of the answer get printed, and others determine the timeout and retry strategies.

Each query option is identified by a keyword preceded by a plus sign (+). Some keywords
set or reset an option. These may be preceded by the string no to negate the meaning of that
keyword. Other keywords assign values to options like the timeout interval. They have the
form +keyword=value.

235 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.20. MDIG

ANYWHERE OPTIONS

The -f option makes mdig operate in batch mode by reading a list of lookup requests to process
from the file filename. The file contains a number of queries, one per line. Each entry in the
file should be organized in the same way they would be presented as queries to mdig using the
command-line interface.

The -h causes mdig to print the detailed help with the full list of options and exit.

The -v causes mdig to print the version number and exit.

GLOBAL OPTIONS

The -4 option forces mdig to only use IPv4 query transport.

The -6 option forces mdig to only use IPv6 query transport.

The -b option sets the source IP address of the query to address. This must be a valid address
on one of the host’s network interfaces or "0.0.0.0" or "::". An optional port may be specified by
appending "#<port>"

The -m option enables memory usage debugging.

The -p option is used when a non-standard port number is to be queried. port# is the port
number that mdig will send its queries instead of the standard DNS port number 53. This
option would be used to test a name server that has been configured to listen for queries on a
non-standard port number.

The global query options are:

+[no]additional
Display [do not display] the additional section of a reply. The default is to display it.

+[no]all
Set or clear all display flags.

+[no]answer
Display [do not display] the answer section of a reply. The default is to display it.

+[no]authority
Display [do not display] the authority section of a reply. The default is to display it.

+[no]besteffort
Attempt to display the contents of messages which are malformed. The default is to not
display malformed answers.

+[no]cl
Display [do not display] the CLASS when printing the record.

+[no]comments
Toggle the display of comment lines in the output. The default is to print comments.

+[no]continue
Continue on errors (e.g. timeouts).

BIND 9.12.1rc2 236

CHAPTER 8. MANUAL PAGES 8.20. MDIG

+[no]crypto
Toggle the display of cryptographic fields in DNSSEC records. The contents of these field
are unnecessary to debug most DNSSEC validation failures and removing them makes it
easier to see the common failures. The default is to display the fields. When omitted they
are replaced by the string "[omitted]" or in the DNSKEY case the key id is displayed as the
replacement, e.g. "[key id = value]".

+dscp[=value]
Set the DSCP code point to be used when sending the query. Valid DSCP code points are
in the range [0..63]. By default no code point is explicitly set.

+[no]multiline
Print records like the SOA records in a verbose multi-line format with human-readable
comments. The default is to print each record on a single line, to facilitate machine parsing
of the mdig output.

+[no]question
Print [do not print] the question section of a query when an answer is returned. The
default is to print the question section as a comment.

+[no]rrcomments
Toggle the display of per-record comments in the output (for example, human-readable
key information about DNSKEY records). The default is not to print record comments
unless multiline mode is active.

+[no]short
Provide a terse answer. The default is to print the answer in a verbose form.

+split=W
Split long hex- or base64-formatted fields in resource records into chunks of W characters
(where W is rounded up to the nearest multiple of 4). +nosplit or +split=0 causes fields
not to be split at all. The default is 56 characters, or 44 characters when multiline mode is
active.

+[no]tcp
Use [do not use] TCP when querying name servers. The default behavior is to use UDP.

+[no]ttlid
Display [do not display] the TTL when printing the record.

+[no]ttlunits
Display [do not display] the TTL in friendly human-readable time units of "s", "m", "h",
"d", and "w", representing seconds, minutes, hours, days and weeks. Implies +ttlid.

+[no]vc
Use [do not use] TCP when querying name servers. This alternate syntax to +[no]tcp is
provided for backwards compatibility. The "vc" stands for "virtual circuit".

LOCAL OPTIONS

The -c option sets the query class to class. It can be any valid query class which is supported
in BIND 9. The default query class is "IN".

237 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.20. MDIG

The -t option sets the query type to type. It can be any valid query type which is supported
in BIND 9. The default query type is "A", unless the -x option is supplied to indicate a reverse
lookup with the "PTR" query type.

The -i option sets the reverse domain for IPv6 addresses to IP6.INT.

Reverse lookups --- mapping addresses to names --- are simplified by the -x option. addr is an
IPv4 address in dotted-decimal notation, or a colon-delimited IPv6 address. mdig automatically
performs a lookup for a query name like 11.12.13.10.in-addr.arpa and sets the query
type and class to PTR and IN respectively. By default, IPv6 addresses are looked up using
nibble format under the IP6.ARPA domain. To use the older RFC1886 method using the IP6.INT
domain specify the -i option.

The local query options are:

+[no]aaflag
A synonym for +[no]aaonly.

+[no]aaonly
Sets the "aa" flag in the query.

+[no]adflag
Set [do not set] the AD (authentic data) bit in the query. This requests the server to re-
turn whether all of the answer and authority sections have all been validated as secure
according to the security policy of the server. AD=1 indicates that all records have been
validated as secure and the answer is not from a OPT-OUT range. AD=0 indicate that
some part of the answer was insecure or not validated. This bit is set by default.

+bufsize=B
Set the UDP message buffer size advertised using EDNS0 to B bytes. The maximum and
minimum sizes of this buffer are 65535 and 0 respectively. Values outside this range are
rounded up or down appropriately. Values other than zero will cause a EDNS query to be
sent.

+[no]cdflag
Set [do not set] the CD (checking disabled) bit in the query. This requests the server to not
perform DNSSEC validation of responses.

+[no]cookie[=####]
Send a COOKIE EDNS option, with optional value. Replaying a COOKIE from a previous
response will allow the server to identify a previous client. The default is +nocookie.

+[no]dnssec
Requests DNSSEC records be sent by setting the DNSSEC OK bit (DO) in the OPT record
in the additional section of the query.

+[no]edns[=#]
Specify the EDNS version to query with. Valid values are 0 to 255. Setting the EDNS ver-
sion will cause a EDNS query to be sent. +noedns clears the remembered EDNS version.
EDNS is set to 0 by default.

+[no]ednsflags[=#]
Set the must-be-zero EDNS flags bits (Z bits) to the specified value. Decimal, hex and
octal encodings are accepted. Setting a named flag (e.g. DO) will silently be ignored. By
default, no Z bits are set.

BIND 9.12.1rc2 238

CHAPTER 8. MANUAL PAGES 8.21. NAMED-CHECKCONF

+[no]ednsopt[=code[:value]]
Specify EDNS option with code point code and optionally payload of value as a hex-
adecimal string. +noednsopt clears the EDNS options to be sent.

+[no]expire
Send an EDNS Expire option.

+[no]nsid
Include an EDNS name server ID request when sending a query.

+[no]recurse
Toggle the setting of the RD (recursion desired) bit in the query. This bit is set by default,
which means mdig normally sends recursive queries.

+retry=T
Sets the number of times to retry UDP queries to server to T instead of the default, 2.
Unlike +tries, this does not include the initial query.

+[no]subnet=addr[/prefix-length]
Send (don’t send) an EDNS Client Subnet option with the specified IP address or network
prefix.
mdig +subnet=0.0.0.0/0, or simply mdig +subnet=0 for short, sends an EDNS client-
subnet option with an empty address and a source prefix-length of zero, which signals a
resolver that the client’s address information must not be used when resolving this query.

+timeout=T
Sets the timeout for a query to T seconds. The default timeout is 5 seconds for UDP
transport and 10 for TCP. An attempt to set T to less than 1 will result in a query timeout
of 1 second being applied.

+tries=T
Sets the number of times to try UDP queries to server to T instead of the default, 3. If T is
less than or equal to zero, the number of tries is silently rounded up to 1.

+udptimeout=T
Sets the timeout between UDP query retries.

+[no]unknownformat
Print all RDATA in unknown RR type presentation format (RFC 3597). The default is to
print RDATA for known types in the type’s presentation format.

+[no]zflag
Set [do not set] the last unassigned DNS header flag in a DNS query. This flag is off by
default.

SEE ALSO

dig(1), RFC1035.

8.21 NAMED-CHECKCONF

named-checkconf — named configuration file syntax checking tool

239 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.21. NAMED-CHECKCONF

Synopsis

named-checkconf [-hjlvz] [-p [-x]] [-t directory] filename

DESCRIPTION

named-checkconf checks the syntax, but not the semantics, of a named configuration file. The
file is parsed and checked for syntax errors, along with all files included by it. If no file is
specified, /etc/named.conf is read by default.

Note: files that named reads in separate parser contexts, such as rndc.key and bind.keys,
are not automatically read by named-checkconf. Configuration errors in these files may cause
named to fail to run, even if named-checkconf was successful. named-checkconf can be run
on these files explicitly, however.

OPTIONS

-h
Print the usage summary and exit.

-j
When loading a zonefile read the journal if it exists.

-l
List all the configured zones. Each line of output contains the zone name, class (e.g. IN),
view, and type (e.g. master or slave).

-p
Print out the named.conf and included files in canonical form if no errors were detected.
See also the -x option.

-t directory
Chroot to directory so that include directives in the configuration file are processed as
if run by a similarly chrooted named.

-v
Print the version of the named-checkconf program and exit.

-x
When printing the configuration files in canonical form, obscure shared secrets by replac-
ing them with strings of question marks (’?’). This allows the contents of named.conf
and related files to be shared --- for example, when submitting bug reports --- without
compromising private data. This option cannot be used without -p.

-z
Perform a test load of all master zones found in named.conf.

filename
The name of the configuration file to be checked. If not specified, it defaults to /etc/
named.conf.

BIND 9.12.1rc2 240

CHAPTER 8. MANUAL PAGES 8.22. NAMED-CHECKZONE

RETURN VALUES

named-checkconf returns an exit status of 1 if errors were detected and 0 otherwise.

SEE ALSO

named(8), named-checkzone(8), BIND 9 Administrator Reference Manual.

8.22 NAMED-CHECKZONE

named-checkzone, named-compilezone — zone file validity checking or converting tool

Synopsis

named-checkzone [-d] [-h] [-j] [-q] [-v] [-c class] [-f format] [-F format] [-J file

name] [-i mode] [-k mode] [-m mode] [-M mode] [-n mode] [-l ttl] [-L serial] [-o file

name] [-r mode] [-s style] [-S mode] [-t directory] [-T mode] [-w directory] [-D] [-W
mode] zonename filename

named-compilezone [-d] [-j] [-q] [-v] [-c class] [-C mode] [-f format] [-F format]
[-J filename] [-i mode] [-k mode] [-m mode] [-n mode] [-l ttl] [-L serial] [-r mode]
[-s style] [-t directory] [-T mode] [-w directory] [-D] [-W mode] -o filename zone-
name filename

DESCRIPTION

named-checkzone checks the syntax and integrity of a zone file. It performs the same checks as
named does when loading a zone. This makes named-checkzone useful for checking zone files
before configuring them into a name server.

named-compilezone is similar to named-checkzone, but it always dumps the zone contents
to a specified file in a specified format. Additionally, it applies stricter check levels by default,
since the dump output will be used as an actual zone file loaded by named. When manually
specified otherwise, the check levels must at least be as strict as those specified in the named
configuration file.

OPTIONS

-d
Enable debugging.

-h
Print the usage summary and exit.

-q
Quiet mode - exit code only.

241 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.22. NAMED-CHECKZONE

-v
Print the version of the named-checkzone program and exit.

-j
When loading a zone file, read the journal if it exists. The journal file name is assumed to
be the zone file name appended with the string .jnl.

-J filename
When loading the zone file read the journal from the given file, if it exists. (Implies -j.)

-c class
Specify the class of the zone. If not specified, "IN" is assumed.

-i mode
Perform post-load zone integrity checks. Possible modes are "full" (default), "full-sibling",
"local", "local-sibling" and "none".

Mode "full" checks that MX records refer to A or AAAA record (both in-zone and out-of-
zone hostnames). Mode "local" only checks MX records which refer to in-zone hostnames.

Mode "full" checks that SRV records refer to A or AAAA record (both in-zone and out-
of-zone hostnames). Mode "local" only checks SRV records which refer to in-zone host-
names.

Mode "full" checks that delegation NS records refer to A or AAAA record (both in-zone
and out-of-zone hostnames). It also checks that glue address records in the zone match
those advertised by the child. Mode "local" only checks NS records which refer to in-zone
hostnames or that some required glue exists, that is when the nameserver is in a child
zone.

Mode "full-sibling" and "local-sibling" disable sibling glue checks but are otherwise the
same as "full" and "local" respectively.

Mode "none" disables the checks.

-f format
Specify the format of the zone file. Possible formats are "text" (default), "raw", and "map".

-F format
Specify the format of the output file specified. For named-checkzone, this does not cause
any effects unless it dumps the zone contents.

Possible formats are "text" (default), which is the standard textual representation of the
zone, and "map", "raw", and "raw=N", which store the zone in a binary format for rapid
loading by named. "raw=N" specifies the format version of the raw zone file: if N is 0, the
raw file can be read by any version of named; if N is 1, the file can be read by release 9.9.0
or higher; the default is 1.

-k mode
Perform "check-names" checks with the specified failure mode. Possible modes are "fail"
(default for named-compilezone), "warn" (default for named-checkzone) and "ignore".

-l ttl
Sets a maximum permissible TTL for the input file. Any record with a TTL higher than
this value will cause the zone to be rejected. This is similar to using the max-zone-ttl
option in named.conf.

BIND 9.12.1rc2 242

CHAPTER 8. MANUAL PAGES 8.22. NAMED-CHECKZONE

-L serial
When compiling a zone to "raw" or "map" format, set the "source serial" value in the
header to the specified serial number. (This is expected to be used primarily for testing
purposes.)

-m mode
Specify whether MX records should be checked to see if they are addresses. Possible
modes are "fail", "warn" (default) and "ignore".

-M mode
Check if a MX record refers to a CNAME. Possible modes are "fail", "warn" (default) and
"ignore".

-n mode
Specify whether NS records should be checked to see if they are addresses. Possible modes
are "fail" (default for named-compilezone), "warn" (default for named-checkzone) and
"ignore".

-o filename
Write zone output to filename. If filename is - then write to standard out. This is
mandatory for named-compilezone.

-r mode
Check for records that are treated as different by DNSSEC but are semantically equal in
plain DNS. Possible modes are "fail", "warn" (default) and "ignore".

-s style
Specify the style of the dumped zone file. Possible styles are "full" (default) and "relative".
The full format is most suitable for processing automatically by a separate script. On the
other hand, the relative format is more human-readable and is thus suitable for editing
by hand. For named-checkzone this does not cause any effects unless it dumps the zone
contents. It also does not have any meaning if the output format is not text.

-S mode
Check if a SRV record refers to a CNAME. Possible modes are "fail", "warn" (default) and
"ignore".

-t directory
Chroot to directory so that include directives in the configuration file are processed as
if run by a similarly chrooted named.

-T mode
Check if Sender Policy Framework (SPF) records exist and issues a warning if an SPF-
formatted TXT record is not also present. Possible modes are "warn" (default), "ignore".

-w directory
chdir to directory so that relative filenames in master file $INCLUDE directives work.
This is similar to the directory clause in named.conf.

-D
Dump zone file in canonical format. This is always enabled for named-compilezone.

243 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.23. NAMED-JOURNALPRINT

-W mode
Specify whether to check for non-terminal wildcards. Non-terminal wildcards are almost
always the result of a failure to understand the wildcard matching algorithm (RFC 1034).
Possible modes are "warn" (default) and "ignore".

zonename
The domain name of the zone being checked.

filename
The name of the zone file.

RETURN VALUES

named-checkzone returns an exit status of 1 if errors were detected and 0 otherwise.

SEE ALSO

named(8), named-checkconf(8), RFC 1035, BIND 9 Administrator Reference Manual.

8.23 NAMED-JOURNALPRINT

named-journalprint — print zone journal in human-readable form

Synopsis

named-journalprint journal

DESCRIPTION

named-journalprint prints the contents of a zone journal file in a human-readable form.

Journal files are automatically created by named when changes are made to dynamic zones
(e.g., by nsupdate). They record each addition or deletion of a resource record, in binary format,
allowing the changes to be re-applied to the zone when the server is restarted after a shutdown
or crash. By default, the name of the journal file is formed by appending the extension .jnl to
the name of the corresponding zone file.

named-journalprint converts the contents of a given journal file into a human-readable text
format. Each line begins with "add" or "del", to indicate whether the record was added or
deleted, and continues with the resource record in master-file format.

SEE ALSO

named(8), nsupdate(1), BIND 9 Administrator Reference Manual.

BIND 9.12.1rc2 244

CHAPTER 8. MANUAL PAGES 8.24. NAMED-NZD2NZF

8.24 NAMED-NZD2NZF

named-nzd2nzf — Convert an NZD database to NZF text format

Synopsis

named-nzd2nzf filename

DESCRIPTION

named-nzd2nzf converts an NZD database to NZF format and prints it to standard output. This
can be used to review the configuration of zones that were added to named via rndc addzone.
It can also be used to restore the old file format when rolling back from a newer version of BIND
to an older version.

ARGUMENTS

filename
The name of the .nzd file whose contents should be printed.

SEE ALSO

BIND 9 Administrator Reference Manual

AUTHOR

Internet Systems Consortium

8.25 NAMED-RRCHECKER

named-rrchecker — syntax checker for individual DNS resource records

Synopsis

named-rrchecker [-h] [-o origin] [-p] [-u] [-C] [-T] [-P]

245 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

DESCRIPTION

named-rrchecker read a individual DNS resource record from standard input and checks if it is
syntactically correct.

The -h prints out the help menu.

The -o origin option specifies a origin to be used when interpreting the record.

The -p prints out the resulting record in canonical form. If there is no canonical form defined
then the record will be printed in unknown record format.

The -u prints out the resulting record in unknown record form.

The -C, -T and -P print out the known class, standard type and private type mnemonics re-
spectively.

SEE ALSO

RFC 1034, RFC 1035, named(8)

8.26 NAMED.CONF

named.conf — configuration file for named

Synopsis

named.conf

DESCRIPTION

named.conf is the configuration file for named. Statements are enclosed in braces and termi-
nated with a semi-colon. Clauses in the statements are also semi-colon terminated. The usual
comment styles are supported:

C style: /* */

C++ style: // to end of line

Unix style: # to end of line

ACL

acl string { address_match_element; ... };

BIND 9.12.1rc2 246

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

CONTROLS

controls {
inet (ipv4_address | ipv6_address |

*) [port (integer | *)] allow
{ address_match_element; ... } [
keys { string; ... }] [read-only
boolean];

unix quoted_string perm integer
owner integer group integer [
keys { string; ... }] [read-only
boolean];

};

DLZ

dlz string {
database string;
search boolean;

};

DYNDB

dyndb string quoted_string {
unspecified-text };

KEY

key string {
algorithm string;
secret string;

};

LOGGING

logging {
category string { string; ... };
channel string {

buffered boolean;
file quoted_string [versions (unlimited | integer)]

[size size] [suffix (increment | timestamp)];
null;

247 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

print-category boolean;
print-severity boolean;
print-time (iso8601 | iso8601-utc | local | boolean);
severity log_severity;
stderr;
syslog [syslog_facility];

};
};

MANAGED-KEYS

managed-keys { string string integer
integer integer quoted_string; ... };

MASTERS

masters string [port integer] [dscp
integer] { (masters | ipv4_address [
port integer] | ipv6_address [port
integer]) [key string]; ... };

OPTIONS

options {
allow-new-zones boolean;
allow-notify { address_match_element; ... };
allow-query { address_match_element; ... };
allow-query-cache { address_match_element; ... };
allow-query-cache-on { address_match_element; ... };
allow-query-on { address_match_element; ... };
allow-recursion { address_match_element; ... };
allow-recursion-on { address_match_element; ... };
allow-transfer { address_match_element; ... };
allow-update { address_match_element; ... };
allow-update-forwarding { address_match_element; ... };
also-notify [port integer] [dscp integer] { (masters |

ipv4_address [port integer] | ipv6_address [port
integer]) [key string]; ... };

alt-transfer-source (ipv4_address | *) [port (integer | *)
] [dscp integer];

alt-transfer-source-v6 (ipv6_address | *) [port (integer |

*)] [dscp integer];
attach-cache string;
auth-nxdomain boolean; // default changed

BIND 9.12.1rc2 248

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

auto-dnssec (allow | maintain | off);
automatic-interface-scan boolean;
avoid-v4-udp-ports { portrange; ... };
avoid-v6-udp-ports { portrange; ... };
bindkeys-file quoted_string;
blackhole { address_match_element; ... };
cache-file quoted_string;
catalog-zones { zone quoted_string [default-masters [port

integer] [dscp integer] { (masters | ipv4_address [
port integer] | ipv6_address [port integer]) [key
string]; ... }] [zone-directory quoted_string] [
in-memory boolean] [min-update-interval integer]; ... };

check-dup-records (fail | warn | ignore);
check-integrity boolean;
check-mx (fail | warn | ignore);
check-mx-cname (fail | warn | ignore);
check-names (master | slave | response

) (fail | warn | ignore);
check-sibling boolean;
check-spf (warn | ignore);
check-srv-cname (fail | warn | ignore);
check-wildcard boolean;
cleaning-interval integer;
clients-per-query integer;
cookie-algorithm (aes | sha1 | sha256);
cookie-secret string;
coresize (default | unlimited | sizeval);
datasize (default | unlimited | sizeval);
deny-answer-addresses { address_match_element; ... } [

except-from { quoted_string; ... }];
deny-answer-aliases { quoted_string; ... } [except-from {

quoted_string; ... }];
dialup (notify | notify-passive | passive | refresh | boolean) ←↩

;
directory quoted_string;
disable-algorithms string { string;

... };
disable-ds-digests string { string;

... };
disable-empty-zone string;
dns64 netprefix {

break-dnssec boolean;
clients { address_match_element; ... };
exclude { address_match_element; ... };
mapped { address_match_element; ... };
recursive-only boolean;
suffix ipv6_address;

};
dns64-contact string;

249 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

dns64-server string;
dnsrps-enable boolean;
dnsrps-options { unspecified-text };
dnssec-accept-expired boolean;
dnssec-dnskey-kskonly boolean;
dnssec-enable boolean;
dnssec-loadkeys-interval integer;
dnssec-lookaside (string trust-anchor

string | auto | no);
dnssec-must-be-secure string boolean;
dnssec-secure-to-insecure boolean;
dnssec-update-mode (maintain | no-resign);
dnssec-validation (yes | no | auto);
dnstap { (all | auth | client | forwarder |

resolver) [(query | response)]; ... };
dnstap-identity (quoted_string | none |

hostname);
dnstap-output (file | unix) quoted_string [

size (unlimited | size)] [versions (
unlimited | integer)] [suffix (increment
| timestamp)];

dnstap-version (quoted_string | none);
dscp integer;
dual-stack-servers [port integer] { (quoted_string [port

integer] [dscp integer] | ipv4_address [port
integer] [dscp integer] | ipv6_address [port
integer] [dscp integer]); ... };

dump-file quoted_string;
edns-udp-size integer;
empty-contact string;
empty-server string;
empty-zones-enable boolean;
fetch-quota-params integer fixedpoint fixedpoint fixedpoint;
fetches-per-server integer [(drop | fail)];
fetches-per-zone integer [(drop | fail)];
files (default | unlimited | sizeval);
filter-aaaa { address_match_element; ... };
filter-aaaa-on-v4 (break-dnssec | boolean);
filter-aaaa-on-v6 (break-dnssec | boolean);
flush-zones-on-shutdown boolean;
forward (first | only);
forwarders [port integer] [dscp integer] { (ipv4_address

| ipv6_address) [port integer] [dscp integer]; ... };
fstrm-set-buffer-hint integer;
fstrm-set-flush-timeout integer;
fstrm-set-input-queue-size integer;
fstrm-set-output-notify-threshold integer;
fstrm-set-output-queue-model (mpsc | spsc);
fstrm-set-output-queue-size integer;

BIND 9.12.1rc2 250

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

fstrm-set-reopen-interval integer;
geoip-directory (quoted_string | none);
geoip-use-ecs boolean;
glue-cache boolean;
heartbeat-interval integer;
hostname (quoted_string | none);
inline-signing boolean;
interface-interval integer;
ixfr-from-differences (master | slave | boolean);
keep-response-order { address_match_element; ... };
key-directory quoted_string;
lame-ttl ttlval;
listen-on [port integer] [dscp

integer] {
address_match_element; ... };

listen-on-v6 [port integer] [dscp
integer] {
address_match_element; ... };

lmdb-mapsize sizeval;
lock-file (quoted_string | none);
managed-keys-directory quoted_string;
masterfile-format (map | raw | text);
masterfile-style (full | relative);
match-mapped-addresses boolean;
max-cache-size (default | unlimited | sizeval | percentage);
max-cache-ttl integer;
max-clients-per-query integer;
max-journal-size (default | unlimited | sizeval);
max-ncache-ttl integer;
max-records integer;
max-recursion-depth integer;
max-recursion-queries integer;
max-refresh-time integer;
max-retry-time integer;
max-rsa-exponent-size integer;
max-stale-ttl ttlval;
max-transfer-idle-in integer;
max-transfer-idle-out integer;
max-transfer-time-in integer;
max-transfer-time-out integer;
max-udp-size integer;
max-zone-ttl (unlimited | ttlval);
memstatistics boolean;
memstatistics-file quoted_string;
message-compression boolean;
min-refresh-time integer;
min-retry-time integer;
minimal-any boolean;
minimal-responses (no-auth | no-auth-recursive | boolean);

251 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

multi-master boolean;
new-zones-directory quoted_string;
no-case-compress { address_match_element; ... };
nocookie-udp-size integer;
notify (explicit | master-only | boolean);
notify-delay integer;
notify-rate integer;
notify-source (ipv4_address | *) [port (integer | *)] [

dscp integer];
notify-source-v6 (ipv6_address | *) [port (integer | *)]

[dscp integer];
notify-to-soa boolean;
nta-lifetime ttlval;
nta-recheck ttlval;
nxdomain-redirect string;
pid-file (quoted_string | none);
port integer;
preferred-glue string;
prefetch integer [integer];
provide-ixfr boolean;
query-source (([address] (ipv4_address | *) [port (

integer | *)]) | ([[address] (ipv4_address | *)]
port (integer | *))) [dscp integer];

query-source-v6 (([address] (ipv6_address | *) [port (
integer | *)]) | ([[address] (ipv6_address | *)]
port (integer | *))) [dscp integer];

querylog boolean;
random-device (quoted_string | none);
rate-limit {

all-per-second integer;
errors-per-second integer;
exempt-clients { address_match_element; ... };
ipv4-prefix-length integer;
ipv6-prefix-length integer;
log-only boolean;
max-table-size integer;
min-table-size integer;
nodata-per-second integer;
nxdomains-per-second integer;
qps-scale integer;
referrals-per-second integer;
responses-per-second integer;
slip integer;
window integer;

};
recursing-file quoted_string;
recursion boolean;
recursive-clients integer;
request-expire boolean;

BIND 9.12.1rc2 252

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

request-ixfr boolean;
request-nsid boolean;
require-server-cookie boolean;
reserved-sockets integer;
resolver-nonbackoff-tries integer;
resolver-query-timeout integer;
resolver-retry-interval integer;
response-padding { address_match_element; ... } block-size

integer;
response-policy { zone quoted_string [log boolean] [

max-policy-ttl integer] [min-update-interval integer] [
policy (cname | disabled | drop | given | no-op | nodata |
nxdomain | passthru | tcp-only quoted_string)] [
recursive-only boolean] [nsip-enable boolean] [
nsdname-enable boolean]; ... } [break-dnssec boolean] [
max-policy-ttl integer] [min-update-interval integer] [
min-ns-dots integer] [nsip-wait-recurse boolean] [
qname-wait-recurse boolean] [recursive-only boolean] [
nsip-enable boolean] [nsdname-enable boolean] [
dnsrps-enable boolean] [dnsrps-options { unspecified-text
}];

root-delegation-only [exclude { quoted_string; ... }];
rrset-order { [class string] [type string] [name

quoted_string] string string; ... };
secroots-file quoted_string;
send-cookie boolean;
serial-query-rate integer;
serial-update-method (date | increment | unixtime);
server-id (quoted_string | none | hostname);
servfail-ttl ttlval;
session-keyalg string;
session-keyfile (quoted_string | none);
session-keyname string;
sig-signing-nodes integer;
sig-signing-signatures integer;
sig-signing-type integer;
sig-validity-interval integer [integer];
sortlist { address_match_element; ... };
stacksize (default | unlimited | sizeval);
stale-answer-enable boolean;
stale-answer-ttl ttlval;
startup-notify-rate integer;
statistics-file quoted_string;
synth-from-dnssec boolean;
tcp-advertised-timeout integer;
tcp-clients integer;
tcp-idle-timeout integer;
tcp-initial-timeout integer;
tcp-keepalive-timeout integer;

253 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

tcp-listen-queue integer;
tkey-dhkey quoted_string integer;
tkey-domain quoted_string;
tkey-gssapi-credential quoted_string;
tkey-gssapi-keytab quoted_string;
transfer-format (many-answers | one-answer);
transfer-message-size integer;
transfer-source (ipv4_address | *) [port (integer | *)] [

dscp integer];
transfer-source-v6 (ipv6_address | *) [port (integer | *)

] [dscp integer];
transfers-in integer;
transfers-out integer;
transfers-per-ns integer;
trust-anchor-telemetry boolean; // experimental
try-tcp-refresh boolean;
update-check-ksk boolean;
use-alt-transfer-source boolean;
use-v4-udp-ports { portrange; ... };
use-v6-udp-ports { portrange; ... };
v6-bias integer;
version (quoted_string | none);
zero-no-soa-ttl boolean;
zero-no-soa-ttl-cache boolean;
zone-statistics (full | terse | none | boolean);

};

SERVER

server netprefix {
bogus boolean;
edns boolean;
edns-udp-size integer;
edns-version integer;
keys server_key;
max-udp-size integer;
notify-source (ipv4_address | *) [port (integer | *)] [

dscp integer];
notify-source-v6 (ipv6_address | *) [port (integer | *)]

[dscp integer];
padding integer;
provide-ixfr boolean;
query-source (([address] (ipv4_address | *) [port (

integer | *)]) | ([[address] (ipv4_address | *)]
port (integer | *))) [dscp integer];

query-source-v6 (([address] (ipv6_address | *) [port (
integer | *)]) | ([[address] (ipv6_address | *)]
port (integer | *))) [dscp integer];

BIND 9.12.1rc2 254

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

request-expire boolean;
request-ixfr boolean;
request-nsid boolean;
send-cookie boolean;
tcp-keepalive boolean;
tcp-only boolean;
transfer-format (many-answers | one-answer);
transfer-source (ipv4_address | *) [port (integer | *)] [

dscp integer];
transfer-source-v6 (ipv6_address | *) [port (integer | *)

] [dscp integer];
transfers integer;

};

STATISTICS-CHANNELS

statistics-channels {
inet (ipv4_address | ipv6_address |

*) [port (integer | *)] [
allow { address_match_element; ...
}];

};

TRUSTED-KEYS

trusted-keys { string integer integer
integer quoted_string; ... };

VIEW

view string [class] {
allow-new-zones boolean;
allow-notify { address_match_element; ... };
allow-query { address_match_element; ... };
allow-query-cache { address_match_element; ... };
allow-query-cache-on { address_match_element; ... };
allow-query-on { address_match_element; ... };
allow-recursion { address_match_element; ... };
allow-recursion-on { address_match_element; ... };
allow-transfer { address_match_element; ... };
allow-update { address_match_element; ... };
allow-update-forwarding { address_match_element; ... };
also-notify [port integer] [dscp integer] { (masters |

ipv4_address [port integer] | ipv6_address [port

255 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

integer]) [key string]; ... };
alt-transfer-source (ipv4_address | *) [port (integer | *)

] [dscp integer];
alt-transfer-source-v6 (ipv6_address | *) [port (integer |

*)] [dscp integer];
attach-cache string;
auth-nxdomain boolean; // default changed
auto-dnssec (allow | maintain | off);
cache-file quoted_string;
catalog-zones { zone quoted_string [default-masters [port

integer] [dscp integer] { (masters | ipv4_address [
port integer] | ipv6_address [port integer]) [key
string]; ... }] [zone-directory quoted_string] [
in-memory boolean] [min-update-interval integer]; ... };

check-dup-records (fail | warn | ignore);
check-integrity boolean;
check-mx (fail | warn | ignore);
check-mx-cname (fail | warn | ignore);
check-names (master | slave | response

) (fail | warn | ignore);
check-sibling boolean;
check-spf (warn | ignore);
check-srv-cname (fail | warn | ignore);
check-wildcard boolean;
cleaning-interval integer;
clients-per-query integer;
deny-answer-addresses { address_match_element; ... } [

except-from { quoted_string; ... }];
deny-answer-aliases { quoted_string; ... } [except-from {

quoted_string; ... }];
dialup (notify | notify-passive | passive | refresh | boolean) ←↩

;
disable-algorithms string { string;

... };
disable-ds-digests string { string;

... };
disable-empty-zone string;
dlz string {

database string;
search boolean;

};
dns64 netprefix {

break-dnssec boolean;
clients { address_match_element; ... };
exclude { address_match_element; ... };
mapped { address_match_element; ... };
recursive-only boolean;
suffix ipv6_address;

};

BIND 9.12.1rc2 256

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

dns64-contact string;
dns64-server string;
dnsrps-enable boolean;
dnsrps-options { unspecified-text };
dnssec-accept-expired boolean;
dnssec-dnskey-kskonly boolean;
dnssec-enable boolean;
dnssec-loadkeys-interval integer;
dnssec-lookaside (string trust-anchor

string | auto | no);
dnssec-must-be-secure string boolean;
dnssec-secure-to-insecure boolean;
dnssec-update-mode (maintain | no-resign);
dnssec-validation (yes | no | auto);
dnstap { (all | auth | client | forwarder |

resolver) [(query | response)]; ... };
dual-stack-servers [port integer] { (quoted_string [port

integer] [dscp integer] | ipv4_address [port
integer] [dscp integer] | ipv6_address [port
integer] [dscp integer]); ... };

dyndb string quoted_string {
unspecified-text };

edns-udp-size integer;
empty-contact string;
empty-server string;
empty-zones-enable boolean;
fetch-quota-params integer fixedpoint fixedpoint fixedpoint;
fetches-per-server integer [(drop | fail)];
fetches-per-zone integer [(drop | fail)];
filter-aaaa { address_match_element; ... };
filter-aaaa-on-v4 (break-dnssec | boolean);
filter-aaaa-on-v6 (break-dnssec | boolean);
forward (first | only);
forwarders [port integer] [dscp integer] { (ipv4_address

| ipv6_address) [port integer] [dscp integer]; ... };
glue-cache boolean;
inline-signing boolean;
ixfr-from-differences (master | slave | boolean);
key string {

algorithm string;
secret string;

};
key-directory quoted_string;
lame-ttl ttlval;
lmdb-mapsize sizeval;
managed-keys { string string

integer integer integer
quoted_string; ... };

masterfile-format (map | raw | text);

257 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

masterfile-style (full | relative);
match-clients { address_match_element; ... };
match-destinations { address_match_element; ... };
match-recursive-only boolean;
max-cache-size (default | unlimited | sizeval | percentage);
max-cache-ttl integer;
max-clients-per-query integer;
max-journal-size (default | unlimited | sizeval);
max-ncache-ttl integer;
max-records integer;
max-recursion-depth integer;
max-recursion-queries integer;
max-refresh-time integer;
max-retry-time integer;
max-stale-ttl ttlval;
max-transfer-idle-in integer;
max-transfer-idle-out integer;
max-transfer-time-in integer;
max-transfer-time-out integer;
max-udp-size integer;
max-zone-ttl (unlimited | ttlval);
message-compression boolean;
min-refresh-time integer;
min-retry-time integer;
minimal-any boolean;
minimal-responses (no-auth | no-auth-recursive | boolean);
multi-master boolean;
new-zones-directory quoted_string;
no-case-compress { address_match_element; ... };
nocookie-udp-size integer;
notify (explicit | master-only | boolean);
notify-delay integer;
notify-source (ipv4_address | *) [port (integer | *)] [

dscp integer];
notify-source-v6 (ipv6_address | *) [port (integer | *)]

[dscp integer];
notify-to-soa boolean;
nta-lifetime ttlval;
nta-recheck ttlval;
nxdomain-redirect string;
preferred-glue string;
prefetch integer [integer];
provide-ixfr boolean;
query-source (([address] (ipv4_address | *) [port (

integer | *)]) | ([[address] (ipv4_address | *)]
port (integer | *))) [dscp integer];

query-source-v6 (([address] (ipv6_address | *) [port (
integer | *)]) | ([[address] (ipv6_address | *)]
port (integer | *))) [dscp integer];

BIND 9.12.1rc2 258

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

rate-limit {
all-per-second integer;
errors-per-second integer;
exempt-clients { address_match_element; ... };
ipv4-prefix-length integer;
ipv6-prefix-length integer;
log-only boolean;
max-table-size integer;
min-table-size integer;
nodata-per-second integer;
nxdomains-per-second integer;
qps-scale integer;
referrals-per-second integer;
responses-per-second integer;
slip integer;
window integer;

};
recursion boolean;
request-expire boolean;
request-ixfr boolean;
request-nsid boolean;
require-server-cookie boolean;
resolver-nonbackoff-tries integer;
resolver-query-timeout integer;
resolver-retry-interval integer;
response-padding { address_match_element; ... } block-size

integer;
response-policy { zone quoted_string [log boolean] [

max-policy-ttl integer] [min-update-interval integer] [
policy (cname | disabled | drop | given | no-op | nodata |
nxdomain | passthru | tcp-only quoted_string)] [
recursive-only boolean] [nsip-enable boolean] [
nsdname-enable boolean]; ... } [break-dnssec boolean] [
max-policy-ttl integer] [min-update-interval integer] [
min-ns-dots integer] [nsip-wait-recurse boolean] [
qname-wait-recurse boolean] [recursive-only boolean] [
nsip-enable boolean] [nsdname-enable boolean] [
dnsrps-enable boolean] [dnsrps-options { unspecified-text
}];

root-delegation-only [exclude { quoted_string; ... }];
rrset-order { [class string] [type string] [name

quoted_string] string string; ... };
send-cookie boolean;
serial-update-method (date | increment | unixtime);
server netprefix {
bogus boolean;
edns boolean;
edns-udp-size integer;
edns-version integer;

259 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

keys server_key;
max-udp-size integer;
notify-source (ipv4_address | *) [port (integer | *

)] [dscp integer];
notify-source-v6 (ipv6_address | *) [port (integer

| *)] [dscp integer];
padding integer;
provide-ixfr boolean;
query-source (([address] (ipv4_address | *) [port

(integer | *)]) | ([[address] (
ipv4_address | *)] port (integer | *))) [
dscp integer];

query-source-v6 (([address] (ipv6_address | *) [
port (integer | *)]) | ([[address] (
ipv6_address | *)] port (integer | *))) [
dscp integer];

request-expire boolean;
request-ixfr boolean;
request-nsid boolean;
send-cookie boolean;
tcp-keepalive boolean;
tcp-only boolean;
transfer-format (many-answers | one-answer);
transfer-source (ipv4_address | *) [port (integer |

*)] [dscp integer];
transfer-source-v6 (ipv6_address | *) [port (

integer | *)] [dscp integer];
transfers integer;

};
servfail-ttl ttlval;
sig-signing-nodes integer;
sig-signing-signatures integer;
sig-signing-type integer;
sig-validity-interval integer [integer];
sortlist { address_match_element; ... };
stale-answer-enable boolean;
stale-answer-ttl ttlval;
synth-from-dnssec boolean;
transfer-format (many-answers | one-answer);
transfer-source (ipv4_address | *) [port (integer | *)] [

dscp integer];
transfer-source-v6 (ipv6_address | *) [port (integer | *)

] [dscp integer];
trust-anchor-telemetry boolean; // experimental
trusted-keys { string integer

integer integer quoted_string;
... };

try-tcp-refresh boolean;
update-check-ksk boolean;

BIND 9.12.1rc2 260

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

use-alt-transfer-source boolean;
v6-bias integer;
zero-no-soa-ttl boolean;
zero-no-soa-ttl-cache boolean;
zone string [class] {

allow-notify { address_match_element; ... };
allow-query { address_match_element; ... };
allow-query-on { address_match_element; ... };
allow-transfer { address_match_element; ... };
allow-update { address_match_element; ... };
allow-update-forwarding { address_match_element; ... };
also-notify [port integer] [dscp integer] { (

masters | ipv4_address [port integer] |
ipv6_address [port integer]) [key string];
... };

alt-transfer-source (ipv4_address | *) [port (
integer | *)] [dscp integer];

alt-transfer-source-v6 (ipv6_address | *) [port (
integer | *)] [dscp integer];

auto-dnssec (allow | maintain | off);
check-dup-records (fail | warn | ignore);
check-integrity boolean;
check-mx (fail | warn | ignore);
check-mx-cname (fail | warn | ignore);
check-names (fail | warn | ignore);
check-sibling boolean;
check-spf (warn | ignore);
check-srv-cname (fail | warn | ignore);
check-wildcard boolean;
database string;
delegation-only boolean;
dialup (notify | notify-passive | passive | refresh |

boolean);
dlz string;
dnssec-dnskey-kskonly boolean;
dnssec-loadkeys-interval integer;
dnssec-secure-to-insecure boolean;
dnssec-update-mode (maintain | no-resign);
file quoted_string;
forward (first | only);
forwarders [port integer] [dscp integer] { (

ipv4_address | ipv6_address) [port integer] [
dscp integer]; ... };

in-view string;
inline-signing boolean;
ixfr-from-differences boolean;
journal quoted_string;
key-directory quoted_string;
masterfile-format (map | raw | text);

261 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

masterfile-style (full | relative);
masters [port integer] [dscp integer] { (masters

| ipv4_address [port integer] | ipv6_address [
port integer]) [key string]; ... };

max-ixfr-log-size (default | unlimited |
max-journal-size (default | unlimited | sizeval);
max-records integer;
max-refresh-time integer;
max-retry-time integer;
max-transfer-idle-in integer;
max-transfer-idle-out integer;
max-transfer-time-in integer;
max-transfer-time-out integer;
max-zone-ttl (unlimited | ttlval);
min-refresh-time integer;
min-retry-time integer;
multi-master boolean;
notify (explicit | master-only | boolean);
notify-delay integer;
notify-source (ipv4_address | *) [port (integer | *

)] [dscp integer];
notify-source-v6 (ipv6_address | *) [port (integer

| *)] [dscp integer];
notify-to-soa boolean;
pubkey integer

integer
integer

request-expire boolean;
request-ixfr boolean;
serial-update-method (date | increment | unixtime);
server-addresses { (ipv4_address | ipv6_address) [

port integer]; ... };
server-names { quoted_string; ... };
sig-signing-nodes integer;
sig-signing-signatures integer;
sig-signing-type integer;
sig-validity-interval integer [integer];
transfer-source (ipv4_address | *) [port (integer |

*)] [dscp integer];
transfer-source-v6 (ipv6_address | *) [port (

integer | *)] [dscp integer];
try-tcp-refresh boolean;
type (delegation-only | forward | hint | master | redirect

| slave | static-stub | stub);
update-check-ksk boolean;
update-policy (local | { (deny | grant) string (

6to4-self | external | krb5-self | krb5-subdomain |
ms-self | ms-subdomain | name | self | selfsub |
selfwild | subdomain | tcp-self | wildcard | zonesub)

BIND 9.12.1rc2 262

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

[string] rrtypelist; ... };
use-alt-transfer-source boolean;
zero-no-soa-ttl boolean;
zone-statistics (full | terse | none | boolean);

};
zone-statistics (full | terse | none | boolean);

};

ZONE

zone string [class] {
allow-notify { address_match_element; ... };
allow-query { address_match_element; ... };
allow-query-on { address_match_element; ... };
allow-transfer { address_match_element; ... };
allow-update { address_match_element; ... };
allow-update-forwarding { address_match_element; ... };
also-notify [port integer] [dscp integer] { (masters |

ipv4_address [port integer] | ipv6_address [port
integer]) [key string]; ... };

alt-transfer-source (ipv4_address | *) [port (integer | *)
] [dscp integer];

alt-transfer-source-v6 (ipv6_address | *) [port (integer |

*)] [dscp integer];
auto-dnssec (allow | maintain | off);
check-dup-records (fail | warn | ignore);
check-integrity boolean;
check-mx (fail | warn | ignore);
check-mx-cname (fail | warn | ignore);
check-names (fail | warn | ignore);
check-sibling boolean;
check-spf (warn | ignore);
check-srv-cname (fail | warn | ignore);
check-wildcard boolean;
database string;
delegation-only boolean;
dialup (notify | notify-passive | passive | refresh | boolean) ←↩

;
dlz string;
dnssec-dnskey-kskonly boolean;
dnssec-loadkeys-interval integer;
dnssec-secure-to-insecure boolean;
dnssec-update-mode (maintain | no-resign);
file quoted_string;
forward (first | only);
forwarders [port integer] [dscp integer] { (ipv4_address

| ipv6_address) [port integer] [dscp integer]; ... };
in-view string;

263 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.26. NAMED.CONF

inline-signing boolean;
ixfr-from-differences boolean;
journal quoted_string;
key-directory quoted_string;
masterfile-format (map | raw | text);
masterfile-style (full | relative);
masters [port integer] [dscp integer] { (masters |

ipv4_address [port integer] | ipv6_address [port
integer]) [key string]; ... };

max-journal-size (default | unlimited | sizeval);
max-records integer;
max-refresh-time integer;
max-retry-time integer;
max-transfer-idle-in integer;
max-transfer-idle-out integer;
max-transfer-time-in integer;
max-transfer-time-out integer;
max-zone-ttl (unlimited | ttlval);
min-refresh-time integer;
min-retry-time integer;
multi-master boolean;
notify (explicit | master-only | boolean);
notify-delay integer;
notify-source (ipv4_address | *) [port (integer | *)] [

dscp integer];
notify-source-v6 (ipv6_address | *) [port (integer | *)]

[dscp integer];
notify-to-soa boolean;
pubkey integer integer
request-expire boolean;
request-ixfr boolean;
serial-update-method (date | increment | unixtime);
server-addresses { (ipv4_address | ipv6_address) [port

integer]; ... };
server-names { quoted_string; ... };
sig-signing-nodes integer;
sig-signing-signatures integer;
sig-signing-type integer;
sig-validity-interval integer [integer];
transfer-source (ipv4_address | *) [port (integer | *)] [

dscp integer];
transfer-source-v6 (ipv6_address | *) [port (integer | *)

] [dscp integer];
try-tcp-refresh boolean;
type (delegation-only | forward | hint | master | redirect | ←↩

slave
| static-stub | stub);

update-check-ksk boolean;
update-policy (local | { (deny | grant) string (6to4-self |

BIND 9.12.1rc2 264

CHAPTER 8. MANUAL PAGES 8.27. NAMED

external | krb5-self | krb5-subdomain | ms-self | ms- ←↩
subdomain

| name | self | selfsub | selfwild | subdomain | tcp-self |
wildcard | zonesub) [string] rrtypelist; ... };

use-alt-transfer-source boolean;
zero-no-soa-ttl boolean;
zone-statistics (full | terse | none | boolean);

};

FILES

/etc/named.conf

SEE ALSO

ddns-confgen(8), named(8), named-checkconf(8), rndc(8), rndc-confgen(8), BIND 9 Administra-
tor Reference Manual.

8.27 NAMED

named — Internet domain name server

Synopsis

named [-4 | -6] [-c config-file] [-d debug-level] [-D string] [-E engine-name] [-f]
[-g] [-L logfile] [-M option] [-m flag] [-n #cpus] [-p port] [-s] [-S #max-socks] [-t
directory] [-U #listeners] [-u user] [-v] [-V] [-X lock-file] [-x cache-file]

DESCRIPTION

named is a Domain Name System (DNS) server, part of the BIND 9 distribution from ISC. For
more information on the DNS, see RFCs 1033, 1034, and 1035.

When invoked without arguments, named will read the default configuration file /etc/named.
conf, read any initial data, and listen for queries.

OPTIONS

-4
Use IPv4 only even if the host machine is capable of IPv6. -4 and -6 are mutually exclu-
sive.

265 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.27. NAMED

-6
Use IPv6 only even if the host machine is capable of IPv4. -4 and -6 are mutually exclu-
sive.

-c config-file
Use config-file as the configuration file instead of the default, /etc/named.conf. To
ensure that reloading the configuration file continues to work after the server has changed
its working directory due to to a possible directory option in the configuration file,
config-file should be an absolute pathname.

-d debug-level
Set the daemon’s debug level to debug-level. Debugging traces from named become
more verbose as the debug level increases.

-D string
Specifies a string that is used to identify a instance of named in a process listing. The
contents of string are not examined.

-E engine-name
When applicable, specifies the hardware to use for cryptographic operations, such as a
secure key store used for signing.

When BIND is built with OpenSSL PKCS#11 support, this defaults to the string "pkcs11",
which identifies an OpenSSL engine that can drive a cryptographic accelerator or hard-
ware service module. When BIND is built with native PKCS#11 cryptography (--enable-
native-pkcs11), it defaults to the path of the PKCS#11 provider library specified via "--
with-pkcs11".

-f
Run the server in the foreground (i.e. do not daemonize).

-g
Run the server in the foreground and force all logging to stderr.

-L logfile
Log to the file logfile by default instead of the system log.

-M option
Sets the default memory context options. If set to external, this causes the internal mem-
ory manager to be bypassed in favor of system-provided memory allocation functions. If
set to fill, blocks of memory will be filled with tag values when allocated or freed, to
assist debugging of memory problems. (nofill disables this behavior, and is the default
unless named has been compiled with developer options.)

-m flag
Turn on memory usage debugging flags. Possible flags are usage, trace, record, size,
and mctx. These correspond to the ISC_MEM_DEBUGXXXX flags described in <isc/
mem.h>.

-n #cpus
Create #cpus worker threads to take advantage of multiple CPUs. If not specified, named
will try to determine the number of CPUs present and create one thread per CPU. If it is
unable to determine the number of CPUs, a single worker thread will be created.

BIND 9.12.1rc2 266

CHAPTER 8. MANUAL PAGES 8.27. NAMED

-p port
Listen for queries on port port. If not specified, the default is port 53.

-s
Write memory usage statistics to stdout on exit.

NOTE

This option is mainly of interest to BIND 9 developers and may be removed or changed
in a future release.

-S #max-socks
Allow named to use up to #max-socks sockets. The default value is 4096 on systems built
with default configuration options, and 21000 on systems built with "configure --with-
tuning=large".

WARNING

This option should be unnecessary for the vast majority of users. The use
of this option could even be harmful because the specified value may ex-
ceed the limitation of the underlying system API. It is therefore set only
when the default configuration causes exhaustion of file descriptors and
the operational environment is known to support the specified number of
sockets. Note also that the actual maximum number is normally a little
fewer than the specified value because named reserves some file de-
scriptors for its internal use.

-t directory
Chroot to directory after processing the command line arguments, but before reading
the configuration file.

WARNING

This option should be used in conjunction with the -u option, as chrooting
a process running as root doesn’t enhance security on most systems;
the way chroot(2) is defined allows a process with root privileges to
escape a chroot jail.

-U #listeners
Use #listeners worker threads to listen for incoming UDP packets on each address. If

267 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.27. NAMED

not specified, named will calculate a default value based on the number of detected CPUs:
1 for 1 CPU, and the number of detected CPUs minus one for machines with more than 1
CPU. This cannot be increased to a value higher than the number of CPUs. If -n has been
set to a higher value than the number of detected CPUs, then -U may be increased as high
as that value, but no higher. On Windows, the number of UDP listeners is hardwired to 1
and this option has no effect.

-u user
Setuid to user after completing privileged operations, such as creating sockets that listen
on privileged ports.

NOTE

On Linux, named uses the kernel’s capability mechanism to drop all root privileges
except the ability to bind(2) to a privileged port and set process resource limits.
Unfortunately, this means that the -u option only works when named is run on kernel
2.2.18 or later, or kernel 2.3.99-pre3 or later, since previous kernels did not allow
privileges to be retained after setuid(2).

-v
Report the version number and exit.

-V
Report the version number and build options, and exit.

-X lock-file
Acquire a lock on the specified file at runtime; this helps to prevent duplicate named
instances from running simultaneously. Use of this option overrides the lock-file option
in named.conf. If set to none, the lock file check is disabled.

-x cache-file
Load data from cache-file into the cache of the default view.

WARNING

This option must not be used. It is only of interest to BIND 9 developers
and may be removed or changed in a future release.

SIGNALS

In routine operation, signals should not be used to control the nameserver; rndc should be used
instead.

BIND 9.12.1rc2 268

CHAPTER 8. MANUAL PAGES 8.28. NSEC3HASH

SIGHUP
Force a reload of the server.

SIGINT, SIGTERM
Shut down the server.

The result of sending any other signals to the server is undefined.

CONFIGURATION

The named configuration file is too complex to describe in detail here. A complete description
is provided in the BIND 9 Administrator Reference Manual.

named inherits the umask (file creation mode mask) from the parent process. If files created
by named, such as journal files, need to have custom permissions, the umask should be set
explicitly in the script used to start the named process.

FILES

/etc/named.conf
The default configuration file.

/var/run/named/named.pid
The default process-id file.

SEE ALSO

RFC 1033, RFC 1034, RFC 1035, named-checkconf(8), named-checkzone(8), rndc(8), named.conf(5),
BIND 9 Administrator Reference Manual.

8.28 NSEC3HASH

nsec3hash — generate NSEC3 hash

Synopsis

nsec3hash salt algorithm iterations domain

nsec3hash -r algorithm flags iterations salt domain

269 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.29. NSLOOKUP

DESCRIPTION

nsec3hash generates an NSEC3 hash based on a set of NSEC3 parameters. This can be used to
check the validity of NSEC3 records in a signed zone.

If this command is invoked as nsec3hash -r, it takes arguments in an order matching the first
four fields of an NSEC3 record, followed by the domain name: algorithm, flags, iterations, salt,
domain. This makes it convenient to copy and paste a portion of an NSEC3 or NSEC3PARAM
record into a command line to confirm the correctness of an NSEC3 hash.

ARGUMENTS

salt
The salt provided to the hash algorithm.

algorithm
A number indicating the hash algorithm. Currently the only supported hash algorithm
for NSEC3 is SHA-1, which is indicated by the number 1; consequently "1" is the only
useful value for this argument.

flags
Provided for compatibility with NSEC3 record presentation format, but ignored since the
flags do not affect the hash.

iterations
The number of additional times the hash should be performed.

domain
The domain name to be hashed.

SEE ALSO

BIND 9 Administrator Reference Manual, RFC 5155.

8.29 NSLOOKUP

nslookup — query Internet name servers interactively

Synopsis

nslookup [-option] [name | -] [server]

DESCRIPTION

Nslookup is a program to query Internet domain name servers. Nslookup has two modes:
interactive and non-interactive. Interactive mode allows the user to query name servers for
information about various hosts and domains or to print a list of hosts in a domain. Non-
interactive mode is used to print just the name and requested information for a host or domain.

BIND 9.12.1rc2 270

CHAPTER 8. MANUAL PAGES 8.29. NSLOOKUP

ARGUMENTS

Interactive mode is entered in the following cases:

a. when no arguments are given (the default name server will be used)

b. when the first argument is a hyphen (-) and the second argument is the host name or
Internet address of a name server.

Non-interactive mode is used when the name or Internet address of the host to be looked up is
given as the first argument. The optional second argument specifies the host name or address
of a name server.

Options can also be specified on the command line if they precede the arguments and are pre-
fixed with a hyphen. For example, to change the default query type to host information, and
the initial timeout to 10 seconds, type:

nslookup -query=hinfo -timeout=10

The -version option causes nslookup to print the version number and immediately exits.

INTERACTIVE COMMANDS

host [server]
Look up information for host using the current default server or using server, if specified.
If host is an Internet address and the query type is A or PTR, the name of the host is
returned. If host is a name and does not have a trailing period, the search list is used to
qualify the name.

To look up a host not in the current domain, append a period to the name.

server domain

lserver domain
Change the default server to domain; lserver uses the initial server to look up infor-
mation about domain, while server uses the current default server. If an authoritative
answer can’t be found, the names of servers that might have the answer are returned.

root
not implemented

finger
not implemented

ls
not implemented

view
not implemented

271 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.29. NSLOOKUP

help
not implemented

?
not implemented

exit
Exits the program.

set keyword[=value]
This command is used to change state information that affects the lookups. Valid key-
words are:

all
Prints the current values of the frequently used options to set. Information about the
current default server and host is also printed.

class=value
Change the query class to one of:

IN
the Internet class

CH
the Chaos class

HS
the Hesiod class

ANY
wildcard

The class specifies the protocol group of the information.
(Default = IN; abbreviation = cl)

[no]debug
Turn on or off the display of the full response packet and any intermediate response
packets when searching.
(Default = nodebug; abbreviation = [no]deb)

[no]d2
Turn debugging mode on or off. This displays more about what nslookup is doing.
(Default = nod2)

domain=name
Sets the search list to name.

[no]search
If the lookup request contains at least one period but doesn’t end with a trailing
period, append the domain names in the domain search list to the request until an
answer is received.
(Default = search)

port=value
Change the default TCP/UDP name server port to value.
(Default = 53; abbreviation = po)

querytype=value

BIND 9.12.1rc2 272

CHAPTER 8. MANUAL PAGES 8.30. NSUPDATE

type=value
Change the type of the information query.
(Default = A; abbreviations = q, ty)

[no]recurse
Tell the name server to query other servers if it does not have the information.
(Default = recurse; abbreviation = [no]rec)

ndots=number
Set the number of dots (label separators) in a domain that will disable searching.
Absolute names always stop searching.

retry=number
Set the number of retries to number.

timeout=number
Change the initial timeout interval for waiting for a reply to number seconds.

[no]vc
Always use a virtual circuit when sending requests to the server.
(Default = novc)

[no]fail
Try the next nameserver if a nameserver responds with SERVFAIL or a referral (no-
fail) or terminate query (fail) on such a response.
(Default = nofail)

RETURN VALUES

nslookup returns with an exit status of 1 if any query failed, and 0 otherwise.

FILES

/etc/resolv.conf

SEE ALSO

dig(1), host(1), named(8).

8.30 NSUPDATE

nsupdate — Dynamic DNS update utility

Synopsis

nsupdate [-d] [-D] [-i] [-L level] [-g | -o | -l | -y [hmac:]keyname:secret | -k key

file] [-t timeout] [-u udptimeout] [-r udpretries] [-R randomdev] [-v] [-T] [-P] [-V]
[-4 | -6] [filename]

273 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.30. NSUPDATE

DESCRIPTION

nsupdate is used to submit Dynamic DNS Update requests as defined in RFC 2136 to a name
server. This allows resource records to be added or removed from a zone without manually
editing the zone file. A single update request can contain requests to add or remove more than
one resource record.

Zones that are under dynamic control via nsupdate or a DHCP server should not be edited by
hand. Manual edits could conflict with dynamic updates and cause data to be lost.

The resource records that are dynamically added or removed with nsupdate have to be in the
same zone. Requests are sent to the zone’s master server. This is identified by the MNAME
field of the zone’s SOA record.

Transaction signatures can be used to authenticate the Dynamic DNS updates. These use the
TSIG resource record type described in RFC 2845 or the SIG(0) record described in RFC 2535
and RFC 2931 or GSS-TSIG as described in RFC 3645.

TSIG relies on a shared secret that should only be known to nsupdate and the name server.
For instance, suitable key and server statements would be added to /etc/named.conf so that
the name server can associate the appropriate secret key and algorithm with the IP address
of the client application that will be using TSIG authentication. You can use ddns-confgen to
generate suitable configuration fragments. nsupdate uses the -y or -k options to provide the
TSIG shared secret. These options are mutually exclusive.

SIG(0) uses public key cryptography. To use a SIG(0) key, the public key must be stored in a
KEY record in a zone served by the name server.

GSS-TSIG uses Kerberos credentials. Standard GSS-TSIG mode is switched on with the -g flag.
A non-standards-compliant variant of GSS-TSIG used by Windows 2000 can be switched on
with the -o flag.

OPTIONS

-4
Use IPv4 only.

-6
Use IPv6 only.

-d
Debug mode. This provides tracing information about the update requests that are made
and the replies received from the name server.

-D
Extra debug mode.

-i
Force interactive mode, even when standard input is not a terminal.

-k keyfile
The file containing the TSIG authentication key. Keyfiles may be in two formats: a single

BIND 9.12.1rc2 274

CHAPTER 8. MANUAL PAGES 8.30. NSUPDATE

file containing a named.conf-format key statement, which may be generated automati-
cally by ddns-confgen, or a pair of files whose names are of the format K{name}.+157.
+{random}.key and K{name}.+157.+{random}.private, which can be generated
by dnssec-keygen. The -k may also be used to specify a SIG(0) key used to authenticate
Dynamic DNS update requests. In this case, the key specified is not an HMAC-MD5 key.

-l
Local-host only mode. This sets the server address to localhost (disabling the server so
that the server address cannot be overridden). Connections to the local server will use a
TSIG key found in /var/run/named/session.key, which is automatically generated
by named if any local master zone has set update-policy to local. The location of this key
file can be overridden with the -k option.

-L level
Set the logging debug level. If zero, logging is disabled.

-p port
Set the port to use for connections to a name server. The default is 53.

-P
Print the list of private BIND-specific resource record types whose format is understood
by nsupdate. See also the -T option.

-r udpretries
The number of UDP retries. The default is 3. If zero, only one update request will be
made.

-R randomdev
Where to obtain randomness. If the operating system does not provide a /dev/random
or equivalent device, the default source of randomness is keyboard input. randomdev
specifies the name of a character device or file containing random data to be used instead
of the default. The special value keyboard indicates that keyboard input should be used.
This option may be specified multiple times.

-t timeout
The maximum time an update request can take before it is aborted. The default is 300
seconds. Zero can be used to disable the timeout.

-T
Print the list of IANA standard resource record types whose format is understood by
nsupdate. nsupdate will exit after the lists are printed. The -T option can be combined
with the -P option.

Other types can be entered using "TYPEXXXXX" where "XXXXX" is the decimal value of
the type with no leading zeros. The rdata, if present, will be parsed using the UNKNOWN
rdata format, (<backslash> <hash> <space> <length> <space> <hexstring>).

-u udptimeout
The UDP retry interval. The default is 3 seconds. If zero, the interval will be computed
from the timeout interval and number of UDP retries.

-v
Use TCP even for small update requests. By default, nsupdate uses UDP to send update

275 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.30. NSUPDATE

requests to the name server unless they are too large to fit in a UDP request in which case
TCP will be used. TCP may be preferable when a batch of update requests is made.

-V
Print the version number and exit.

-y [hmac:]keyname:secret
Literal TSIG authentication key. keyname is the name of the key, and secret is the base64
encoded shared secret. hmac is the name of the key algorithm; valid choices are hmac-
md5, hmac-sha1, hmac-sha224, hmac-sha256, hmac-sha384, or hmac-sha512. If
hmac is not specified, the default is hmac-md5 or if MD5 was disabled hmac-sha256.

NOTE: Use of the -y option is discouraged because the shared secret is supplied as a
command line argument in clear text. This may be visible in the output from ps(1) or in a
history file maintained by the user’s shell.

INPUT FORMAT

nsupdate reads input from filename or standard input. Each command is supplied on exactly
one line of input. Some commands are for administrative purposes. The others are either update
instructions or prerequisite checks on the contents of the zone. These checks set conditions that
some name or set of resource records (RRset) either exists or is absent from the zone. These
conditions must be met if the entire update request is to succeed. Updates will be rejected if the
tests for the prerequisite conditions fail.

Every update request consists of zero or more prerequisites and zero or more updates. This
allows a suitably authenticated update request to proceed if some specified resource records
are present or missing from the zone. A blank input line (or the send command) causes the
accumulated commands to be sent as one Dynamic DNS update request to the name server.

The command formats and their meaning are as follows:

server servername [port]
Sends all dynamic update requests to the name server servername. When no server state-
ment is provided, nsupdate will send updates to the master server of the correct zone.
The MNAME field of that zone’s SOA record will identify the master server for that zone.
port is the port number on servername where the dynamic update requests get sent. If
no port number is specified, the default DNS port number of 53 is used.

local address [port]
Sends all dynamic update requests using the local address. When no local statement is
provided, nsupdate will send updates using an address and port chosen by the system.
port can additionally be used to make requests come from a specific port. If no port
number is specified, the system will assign one.

zone zonename
Specifies that all updates are to be made to the zone zonename. If no zone statement is
provided, nsupdate will attempt determine the correct zone to update based on the rest
of the input.

class classname
Specify the default class. If no class is specified, the default class is IN .

BIND 9.12.1rc2 276

CHAPTER 8. MANUAL PAGES 8.30. NSUPDATE

ttl seconds
Specify the default time to live for records to be added. The value none will clear the
default ttl.

key [hmac:] keyname secret
Specifies that all updates are to be TSIG-signed using the keyname secret pair. If hmac is
specified, then it sets the signing algorithm in use; the default is hmac-md5 or if MD5 was
disabled hmac-sha256. The key command overrides any key specified on the command
line via -y or -k.

gsstsig
Use GSS-TSIG to sign the updated. This is equivalent to specifying -g on the command
line.

oldgsstsig
Use the Windows 2000 version of GSS-TSIG to sign the updated. This is equivalent to
specifying -o on the command line.

realm [realm_name]
When using GSS-TSIG use realm_name rather than the default realm in krb5.conf. If
no realm is specified the saved realm is cleared.

check-names [yes_or_no]
Turn on or off check-names processing on records to be added. Check-names has no effect
on prerequisites or records to be deleted. By default check-names processing is on. If
check-names processing fails the record will not be added to the UPDATE message.

[prereq] nxdomain domain-name
Requires that no resource record of any type exists with name domain-name.

[prereq] yxdomain domain-name
Requires that domain-name exists (has as at least one resource record, of any type).

[prereq] nxrrset domain-name [class] type
Requires that no resource record exists of the specified type, class and domain-name. If
class is omitted, IN (internet) is assumed.

[prereq] yxrrset domain-name [class] type
This requires that a resource record of the specified type, class and domain-name must
exist. If class is omitted, IN (internet) is assumed.

[prereq] yxrrset domain-name [class] type data...
The data from each set of prerequisites of this form sharing a common type, class, and
domain-name are combined to form a set of RRs. This set of RRs must exactly match the
set of RRs existing in the zone at the given type, class, and domain-name. The data are
written in the standard text representation of the resource record’s RDATA.

[update] del[ete] domain-name [ttl] [class] [type [data...]]
Deletes any resource records named domain-name. If type and data is provided, only
matching resource records will be removed. The internet class is assumed if class is not
supplied. The ttl is ignored, and is only allowed for compatibility.

[update] add domain-name ttl [class] type data...
Adds a new resource record with the specified ttl, class and data.

277 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.30. NSUPDATE

show
Displays the current message, containing all of the prerequisites and updates specified
since the last send.

send
Sends the current message. This is equivalent to entering a blank line.

answer
Displays the answer.

debug
Turn on debugging.

version
Print version number.

help
Print a list of commands.

Lines beginning with a semicolon are comments and are ignored.

EXAMPLES

The examples below show how nsupdate could be used to insert and delete resource records
from the example.com zone. Notice that the input in each example contains a trailing blank line
so that a group of commands are sent as one dynamic update request to the master name server
for example.com.

nsupdate
> update delete oldhost.example.com A
> update add newhost.example.com 86400 A 172.16.1.1
> send

Any A records for oldhost.example.com are deleted. And an A record for newhost.example.com
with IP address 172.16.1.1 is added. The newly-added record has a 1 day TTL (86400 seconds).

nsupdate
> prereq nxdomain nickname.example.com
> update add nickname.example.com 86400 CNAME somehost.example.com
> send

The prerequisite condition gets the name server to check that there are no resource records of
any type for nickname.example.com. If there are, the update request fails. If this name does not
exist, a CNAME for it is added. This ensures that when the CNAME is added, it cannot conflict
with the long-standing rule in RFC 1034 that a name must not exist as any other record type if
it exists as a CNAME. (The rule has been updated for DNSSEC in RFC 2535 to allow CNAMEs
to have RRSIG, DNSKEY and NSEC records.)

BIND 9.12.1rc2 278

CHAPTER 8. MANUAL PAGES 8.31. PKCS11-DESTROY

FILES

/etc/resolv.conf
used to identify default name server

/var/run/named/session.key
sets the default TSIG key for use in local-only mode

K{name}.+157.+{random}.key
base-64 encoding of HMAC-MD5 key created by dnssec-keygen(8).

K{name}.+157.+{random}.private
base-64 encoding of HMAC-MD5 key created by dnssec-keygen(8).

SEE ALSO

RFC 2136, RFC 3007, RFC 2104, RFC 2845, RFC 1034, RFC 2535, RFC 2931, named(8), ddns-
confgen(8), dnssec-keygen(8).

BUGS

The TSIG key is redundantly stored in two separate files. This is a consequence of nsupdate
using the DST library for its cryptographic operations, and may change in future releases.

8.31 PKCS11-DESTROY

pkcs11-destroy — destroy PKCS#11 objects

Synopsis

pkcs11-destroy [-m module] [-s slot] -i ID | -l label [-p PIN] [-w seconds]

DESCRIPTION

pkcs11-destroy destroys keys stored in a PKCS#11 device, identified by their ID or label.

Matching keys are displayed before being destroyed. By default, there is a five second delay to
allow the user to interrupt the process before the destruction takes place.

279 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.32. PKCS11-KEYGEN

ARGUMENTS

-m module
Specify the PKCS#11 provider module. This must be the full path to a shared library object
implementing the PKCS#11 API for the device.

-s slot
Open the session with the given PKCS#11 slot. The default is slot 0.

-i ID
Destroy keys with the given object ID.

-l label
Destroy keys with the given label.

-p PIN
Specify the PIN for the device. If no PIN is provided on the command line, pkcs11-destroy
will prompt for it.

-w seconds
Specify how long to pause before carrying out key destruction. The default is five seconds.
If set to 0, destruction will be immediate.

SEE ALSO

pkcs11-keygen(8), pkcs11-list(8), pkcs11-tokens(8)

8.32 PKCS11-KEYGEN

pkcs11-keygen — generate keys on a PKCS#11 device

Synopsis

pkcs11-keygen -a algorithm [-b keysize] [-e] [-i id] [-m module] [-P] [-p PIN] [-q]
[-S] [-s slot] label

DESCRIPTION

pkcs11-keygen causes a PKCS#11 device to generate a new key pair with the given label
(which must be unique) and with keysize bits of prime.

BIND 9.12.1rc2 280

CHAPTER 8. MANUAL PAGES 8.33. PKCS11-LIST

ARGUMENTS

-a algorithm
Specify the key algorithm class: Supported classes are RSA, DSA, DH, ECC and ECX.
In addition to these strings, the algorithm can be specified as a DNSSEC signing al-
gorithm that will be used with this key; for example, NSEC3RSASHA1 maps to RSA,
ECDSAP256SHA256 maps to ECC, and ED25519 to ECX. The default class is "RSA".

-b keysize
Create the key pair with keysize bits of prime. For ECC keys, the only valid values are
256 and 384, and the default is 256. For ECX kyes, the only valid values are 256 and 456,
and the default is 256.

-e
For RSA keys only, use a large exponent.

-i id
Create key objects with id. The id is either an unsigned short 2 byte or an unsigned long 4
byte number.

-m module
Specify the PKCS#11 provider module. This must be the full path to a shared library object
implementing the PKCS#11 API for the device.

-P
Set the new private key to be non-sensitive and extractable. The allows the private key
data to be read from the PKCS#11 device. The default is for private keys to be sensitive
and non-extractable.

-p PIN
Specify the PIN for the device. If no PIN is provided on the command line, pkcs11-keygen
will prompt for it.

-q
Quiet mode: suppress unnecessary output.

-S
For Diffie-Hellman (DH) keys only, use a special prime of 768, 1024 or 1536 bit size and
base (aka generator) 2. If not specified, bit size will default to 1024.

-s slot
Open the session with the given PKCS#11 slot. The default is slot 0.

SEE ALSO

pkcs11-destroy(8), pkcs11-list(8), pkcs11-tokens(8), dnssec-keyfromlabel(8)

8.33 PKCS11-LIST

pkcs11-list — list PKCS#11 objects

281 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.34. PKCS11-TOKENS

Synopsis

pkcs11-list [-P] [-m module] [-s slot] [-i ID] [-l label] [-p PIN]

DESCRIPTION

pkcs11-list lists the PKCS#11 objects with ID or label or by default all objects. The object class,
label, and ID are displayed for all keys. For private or secret keys, the extractability attribute is
also displayed, as either true, false, or never.

ARGUMENTS

-P
List only the public objects. (Note that on some PKCS#11 devices, all objects are private.)

-m module
Specify the PKCS#11 provider module. This must be the full path to a shared library object
implementing the PKCS#11 API for the device.

-s slot
Open the session with the given PKCS#11 slot. The default is slot 0.

-i ID
List only key objects with the given object ID.

-l label
List only key objects with the given label.

-p PIN
Specify the PIN for the device. If no PIN is provided on the command line, pkcs11-list
will prompt for it.

SEE ALSO

pkcs11-destroy(8), pkcs11-keygen(8), pkcs11-tokens(8)

8.34 PKCS11-TOKENS

pkcs11-tokens — list PKCS#11 available tokens

Synopsis

pkcs11-tokens [-m module] [-v]

BIND 9.12.1rc2 282

CHAPTER 8. MANUAL PAGES 8.35. RNDC-CONFGEN

DESCRIPTION

pkcs11-tokens lists the PKCS#11 available tokens with defaults from the slot/token scan per-
formed at application initialization.

ARGUMENTS

-m module
Specify the PKCS#11 provider module. This must be the full path to a shared library object
implementing the PKCS#11 API for the device.

-v
Make the PKCS#11 libisc initialization verbose.

SEE ALSO

pkcs11-destroy(8), pkcs11-keygen(8), pkcs11-list(8)

8.35 RNDC-CONFGEN

rndc-confgen — rndc key generation tool

Synopsis

rndc-confgen [-a] [-A algorithm] [-b keysize] [-c keyfile] [-h] [-k keyname] [-p port]
[-r randomfile] [-s address] [-t chrootdir] [-u user]

DESCRIPTION

rndc-confgen generates configuration files for rndc. It can be used as a convenient alternative
to writing the rndc.conf file and the corresponding controls and key statements in named.
conf by hand. Alternatively, it can be run with the -a option to set up a rndc.key file and
avoid the need for a rndc.conf file and a controls statement altogether.

OPTIONS

-a
Do automatic rndc configuration. This creates a file rndc.key in /etc (or whatever
sysconfdirwas specified as when BIND was built) that is read by both rndc and named
on startup. The rndc.key file defines a default command channel and authentication key
allowing rndc to communicate with named on the local host with no further configura-
tion.

283 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.35. RNDC-CONFGEN

Running rndc-confgen -a allows BIND 9 and rndc to be used as drop-in replacements for
BIND 8 and ndc, with no changes to the existing BIND 8 named.conf file.

If a more elaborate configuration than that generated by rndc-confgen -a is required, for
example if rndc is to be used remotely, you should run rndc-confgen without the -a option
and set up a rndc.conf and named.conf as directed.

-A algorithm
Specifies the algorithm to use for the TSIG key. Available choices are: hmac-md5, hmac-
sha1, hmac-sha224, hmac-sha256, hmac-sha384 and hmac-sha512. The default is hmac-
sha256.

-b keysize
Specifies the size of the authentication key in bits. Must be between 1 and 512 bits; the
default is the hash size.

-c keyfile
Used with the -a option to specify an alternate location for rndc.key.

-h
Prints a short summary of the options and arguments to rndc-confgen.

-k keyname
Specifies the key name of the rndc authentication key. This must be a valid domain name.
The default is rndc-key.

-p port
Specifies the command channel port where named listens for connections from rndc. The
default is 953.

-r randomfile
Specifies a source of random data for generating the authorization. If the operating system
does not provide a /dev/random or equivalent device, the default source of randomness
is keyboard input. randomdev specifies the name of a character device or file containing
random data to be used instead of the default. The special value keyboard indicates that
keyboard input should be used.

-s address
Specifies the IP address where named listens for command channel connections from
rndc. The default is the loopback address 127.0.0.1.

-t chrootdir
Used with the -a option to specify a directory where named will run chrooted. An ad-
ditional copy of the rndc.key will be written relative to this directory so that it will be
found by the chrooted named.

-u user
Used with the -a option to set the owner of the rndc.key file generated. If -t is also
specified only the file in the chroot area has its owner changed.

BIND 9.12.1rc2 284

CHAPTER 8. MANUAL PAGES 8.36. RNDC.CONF

EXAMPLES

To allow rndc to be used with no manual configuration, run

rndc-confgen -a

To print a sample rndc.conf file and corresponding controls and key statements to be manu-
ally inserted into named.conf, run

rndc-confgen

SEE ALSO

rndc(8), rndc.conf(5), named(8), BIND 9 Administrator Reference Manual.

8.36 RNDC.CONF

rndc.conf — rndc configuration file

Synopsis

rndc.conf

DESCRIPTION

rndc.conf is the configuration file for rndc, the BIND 9 name server control utility. This
file has a similar structure and syntax to named.conf. Statements are enclosed in braces and
terminated with a semi-colon. Clauses in the statements are also semi-colon terminated. The
usual comment styles are supported:

C style: /* */

C++ style: // to end of line

Unix style: # to end of line

rndc.conf is much simpler than named.conf. The file uses three statements: an options
statement, a server statement and a key statement.

The options statement contains five clauses. The default-server clause is followed by
the name or address of a name server. This host will be used when no name server is given
as an argument to rndc. The default-key clause is followed by the name of a key which is
identified by a key statement. If no keyid is provided on the rndc command line, and no key
clause is found in a matching server statement, this default key will be used to authenticate
the server’s commands and responses. The default-port clause is followed by the port to
connect to on the remote name server. If no port option is provided on the rndc command line,
and no port clause is found in a matching server statement, this default port will be used
to connect. The default-source-address and default-source-address-v6 clauses
which can be used to set the IPv4 and IPv6 source addresses respectively.

285 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.36. RNDC.CONF

After the server keyword, the server statement includes a string which is the hostname or
address for a name server. The statement has three possible clauses: key, port and addr
esses. The key name must match the name of a key statement in the file. The port number
specifies the port to connect to. If an addresses clause is supplied these addresses will be used
instead of the server name. Each address can take an optional port. If an source-address or
source-address-v6 of supplied then these will be used to specify the IPv4 and IPv6 source
addresses respectively.

The key statement begins with an identifying string, the name of the key. The statement has
two clauses. algorithm identifies the authentication algorithm for rndc to use; currently only
HMAC-MD5 (for compatibility), HMAC-SHA1, HMAC-SHA224, HMAC-SHA256 (default),
HMAC-SHA384 and HMAC-SHA512 are supported. This is followed by a secret clause which
contains the base-64 encoding of the algorithm’s authentication key. The base-64 string is en-
closed in double quotes.

There are two common ways to generate the base-64 string for the secret. The BIND 9 program
rndc-confgen can be used to generate a random key, or the mmencode program, also known
as mimencode, can be used to generate a base-64 string from known input. mmencode does
not ship with BIND 9 but is available on many systems. See the EXAMPLE section for sample
command lines for each.

EXAMPLE

options {
default-server localhost;
default-key samplekey;

};

server localhost {
key samplekey;

};

server testserver {
key testkey;
addresses { localhost port 5353; };

};

key samplekey {
algorithm hmac-sha256;
secret "6FMfj43Osz4lyb24OIe2iGEz9lf1llJO+lz";

};

key testkey {
algorithm hmac-sha256;
secret "R3HI8P6BKw9ZwXwN3VZKuQ==";

};

In the above example, rndc will by default use the server at localhost (127.0.0.1) and the key
called samplekey. Commands to the localhost server will use the samplekey key, which must

BIND 9.12.1rc2 286

CHAPTER 8. MANUAL PAGES 8.37. RNDC

also be defined in the server’s configuration file with the same name and secret. The key state-
ment indicates that samplekey uses the HMAC-SHA256 algorithm and its secret clause contains
the base-64 encoding of the HMAC-SHA256 secret enclosed in double quotes.

If rndc -s testserver is used then rndc will connect to server on localhost port 5353 using the key
testkey.

To generate a random secret with rndc-confgen:

rndc-confgen

A complete rndc.conf file, including the randomly generated key, will be written to the stan-
dard output. Commented-out key and controls statements for named.conf are also printed.

To generate a base-64 secret with mmencode:

echo "known plaintext for a secret" | mmencode

NAME SERVER CONFIGURATION

The name server must be configured to accept rndc connections and to recognize the key spec-
ified in the rndc.conf file, using the controls statement in named.conf. See the sections on
the controls statement in the BIND 9 Administrator Reference Manual for details.

SEE ALSO

rndc(8), rndc-confgen(8), mmencode(1), BIND 9 Administrator Reference Manual.

8.37 RNDC

rndc — name server control utility

Synopsis

rndc [-b source-address] [-c config-file] [-k key-file] [-s server] [-p port] [-q]
[-r] [-V] [-y key_id] [-4 | -6] command

DESCRIPTION

rndc controls the operation of a name server. It supersedes the ndc utility that was provided in
old BIND releases. If rndc is invoked with no command line options or arguments, it prints a
short summary of the supported commands and the available options and their arguments.

rndc communicates with the name server over a TCP connection, sending commands authen-
ticated with digital signatures. In the current versions of rndc and named, the only supported
authentication algorithms are HMAC-MD5 (for compatibility), HMAC-SHA1, HMAC-SHA224,
HMAC-SHA256 (default), HMAC-SHA384 and HMAC-SHA512. They use a shared secret on
each end of the connection. This provides TSIG-style authentication for the command request

287 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.37. RNDC

and the name server’s response. All commands sent over the channel must be signed by a
key_id known to the server.

rndc reads a configuration file to determine how to contact the name server and decide what
algorithm and key it should use.

OPTIONS

-4
Use IPv4 only.

-6
Use IPv6 only.

-b source-address
Use source-address as the source address for the connection to the server. Multiple
instances are permitted to allow setting of both the IPv4 and IPv6 source addresses.

-c config-file
Use config-file as the configuration file instead of the default, /etc/rndc.conf.

-k key-file
Use key-file as the key file instead of the default, /etc/rndc.key. The key in /etc/
rndc.key will be used to authenticate commands sent to the server if the config-file

does not exist.

-s server
server is the name or address of the server which matches a server statement in the
configuration file for rndc. If no server is supplied on the command line, the host named
by the default-server clause in the options statement of the rndc configuration file will be
used.

-p port
Send commands to TCP port port instead of BIND 9’s default control channel port, 953.

-q
Quiet mode: Message text returned by the server will not be printed except when there is
an error.

-r
Instructs rndc to print the result code returned by named after executing the requested
command (e.g., ISC_R_SUCCESS, ISC_R_FAILURE, etc).

-V
Enable verbose logging.

-y key_id
Use the key key_id from the configuration file. key_id must be known by named with the
same algorithm and secret string in order for control message validation to succeed. If no
key_id is specified, rndc will first look for a key clause in the server statement of the server
being used, or if no server statement is present for that host, then the default-key clause
of the options statement. Note that the configuration file contains shared secrets which
are used to send authenticated control commands to name servers. It should therefore not
have general read or write access.

BIND 9.12.1rc2 288

CHAPTER 8. MANUAL PAGES 8.37. RNDC

COMMANDS

A list of commands supported by rndc can be seen by running rndc without arguments.

Currently supported commands are:

addzone zone [class [view]] configuration
Add a zone while the server is running. This command requires the allow-new-zones
option to be set to yes. The configuration string specified on the command line is the
zone configuration text that would ordinarily be placed in named.conf.

The configuration is saved in a file called viewname.nzf (or, if named is compiled with
liblmdb, an LMDB database file called viewname.nzd). viewname is the name of the view,
unless the view name contains characters that are incompatible with use as a file name,
in which case a cryptographic hash of the view name is used instead. When named is
restarted, the file will be loaded into the view configuration, so that zones that were added
can persist after a restart.

This sample addzone command would add the zone example.com to the default view:

$ rndc addzone example.com ’{ type master; file "example.com.db"; };’

(Note the brackets and semi-colon around the zone configuration text.)

See also rndc delzone and rndc modzone.

delzone [-clean] zone [class [view]]
Delete a zone while the server is running.

If the -clean argument is specified, the zone’s master file (and journal file, if any) will be
deleted along with the zone. Without the -clean option, zone files must be cleaned up
by hand. (If the zone is of type "slave" or "stub", the files needing to be cleaned up will be
reported in the output of the rndc delzone command.)

If the zone was originally added via rndc addzone, then it will be removed permanently.
However, if it was originally configured in named.conf, then that original configuration
is still in place; when the server is restarted or reconfigured, the zone will come back. To
remove it permanently, it must also be removed from named.conf

See also rndc addzone and rndc modzone.

dnstap (-reopen | -roll [number])
Close and re-open DNSTAP output files. rndc dnstap -reopen allows the output file to be
renamed externally, so that named can truncate and re-open it. rndc dnstap -roll causes
the output file to be rolled automatically, similar to log files; the most recent output file
has ".0" appended to its name; the previous most recent output file is moved to ".1", and
so on. If number is specified, then the number of backup log files is limited to that number.

dumpdb [-all|-cache|-zones|-adb|-bad|-fail] [view ...]
Dump the server’s caches (default) and/or zones to the dump file for the specified views.
If no view is specified, all views are dumped. (See the dump-file option in the BIND 9
Administrator Reference Manual.)

flush
Flushes the server’s cache.

289 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.37. RNDC

flushname name [view]
Flushes the given name from the view’s DNS cache and, if applicable, from the view’s
nameserver address database, bad server cache and SERVFAIL cache.

flushtree name [view]
Flushes the given name, and all of its subdomains, from the view’s DNS cache, address
database, bad server cache, and SERVFAIL cache.

freeze [zone [class [view]]]
Suspend updates to a dynamic zone. If no zone is specified, then all zones are suspended.
This allows manual edits to be made to a zone normally updated by dynamic update.
It also causes changes in the journal file to be synced into the master file. All dynamic
update attempts will be refused while the zone is frozen.

See also rndc thaw.

halt [-p]
Stop the server immediately. Recent changes made through dynamic update or IXFR
are not saved to the master files, but will be rolled forward from the journal files when
the server is restarted. If -p is specified named’s process id is returned. This allows an
external process to determine when named had completed halting.

See also rndc stop.

loadkeys zone [class [view]]
Fetch all DNSSEC keys for the given zone from the key directory. If they are within their
publication period, merge them into the zone’s DNSKEY RRset. Unlike rndc sign, how-
ever, the zone is not immediately re-signed by the new keys, but is allowed to incremen-
tally re-sign over time.

This command requires that the auto-dnssec zone option be set to maintain, and also
requires the zone to be configured to allow dynamic DNS. (See "Dynamic Update Policies"
in the Administrator Reference Manual for more details.)

managed-keys (status | refresh | sync | destroy) [class [view]]
Inspect and control the "managed-keys" database which handles RFC 5011 DNSSEC trust
anchor maintenance. If a view is specified, these commands are applied to that view;
otherwise they are applied to all views.

• When run with the status keyword, prints the current status of the managed-keys
database.

• When run with the refresh keyword, forces an immediate refresh query to be sent
for all the managed keys, updating the managed-keys database if any new keys are
found, without waiting the normal refresh interval.

• When run with the sync keyword, forces an immediate dump of the managed-keys
database to disk (in the file managed-keys.bind or (viewname.mkeys). This syn-
chronizes the database with its journal file, so that the database’s current contents
can be inspected visually.

• When run with the destroy keyword, the managed-keys database is shut down and
deleted, and all key maintenance is terminated. This command should be used only
with extreme caution.

BIND 9.12.1rc2 290

CHAPTER 8. MANUAL PAGES 8.37. RNDC

Existing keys that are already trusted are not deleted from memory; DNSSEC valida-
tion can continue after this command is used. However, key maintenance operations
will cease until named is restarted or reconfigured, and all existing key maintenance
state will be deleted.
Running rndc reconfig or restarting named immediately after this command will
cause key maintenance to be reinitialized from scratch, just as if the server were being
started for the first time. This is primarily intended for testing, but it may also be
used, for example, to jumpstart the acquisition of new keys in the event of a trust
anchor rollover, or as a brute-force repair for key maintenance problems.

modzone zone [class [view]] configuration
Modify the configuration of a zone while the server is running. This command requires
the allow-new-zones option to be set to yes. As with addzone, the configuration string
specified on the command line is the zone configuration text that would ordinarily be
placed in named.conf.

If the zone was originally added via rndc addzone, the configuration changes will be
recorded permanently and will still be in effect after the server is restarted or reconfig-
ured. However, if it was originally configured in named.conf, then that original config-
uration is still in place; when the server is restarted or reconfigured, the zone will revert
to its original configuration. To make the changes permanent, it must also be modified in
named.conf

See also rndc addzone and rndc delzone.

notify zone [class [view]]
Resend NOTIFY messages for the zone.

notrace
Sets the server’s debugging level to 0.

See also rndc trace.

nta [(-d | -f | -r | -l duration)] domain [view]
Sets a DNSSEC negative trust anchor (NTA) for domain, with a lifetime of duration.
The default lifetime is configured in named.conf via the nta-lifetime option, and
defaults to one hour. The lifetime cannot exceed one week.

A negative trust anchor selectively disables DNSSEC validation for zones that are known
to be failing because of misconfiguration rather than an attack. When data to be validated
is at or below an active NTA (and above any other configured trust anchors), named will
abort the DNSSEC validation process and treat the data as insecure rather than bogus.
This continues until the NTA’s lifetime is elapsed.

NTAs persist across restarts of the named server. The NTAs for a view are saved in a file
called name.nta, where name is the name of the view, or if it contains characters that are
incompatible with use as a file name, a cryptographic hash generated from the name of
the view.

An existing NTA can be removed by using the -remove option.

An NTA’s lifetime can be specified with the -lifetime option. TTL-style suffixes can be
used to specify the lifetime in seconds, minutes, or hours. If the specified NTA already ex-
ists, its lifetime will be updated to the new value. Setting lifetime to zero is equivalent
to -remove.

291 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.37. RNDC

If -dump is used, any other arguments are ignored, and a list of existing NTAs is printed
(note that this may include NTAs that are expired but have not yet been cleaned up).

Normally, named will periodically test to see whether data below an NTA can now be val-
idated (see the nta-recheck option in the Administrator Reference Manual for details).
If data can be validated, then the NTA is regarded as no longer necessary, and will be
allowed to expire early. The -force overrides this behavior and forces an NTA to persist
for its entire lifetime, regardless of whether data could be validated if the NTA were not
present.

All of these options can be shortened, i.e., to -l, -r, -d, and -f.

querylog [on | off]
Enable or disable query logging. (For backward compatibility, this command can also be
used without an argument to toggle query logging on and off.)

Query logging can also be enabled by explicitly directing the queries category to a chan-
nel in the logging section of named.conf or by specifying querylog yes; in the options
section of named.conf.

reconfig
Reload the configuration file and load new zones, but do not reload existing zone files
even if they have changed. This is faster than a full reload when there is a large number
of zones because it avoids the need to examine the modification times of the zones files.

recursing
Dump the list of queries named is currently recursing on, and the list of domains to which
iterative queries are currently being sent. (The second list includes the number of fetches
currently active for the given domain, and how many have been passed or dropped be-
cause of the fetches-per-zone option.)

refresh zone [class [view]]
Schedule zone maintenance for the given zone.

reload
Reload configuration file and zones.

reload zone [class [view]]
Reload the given zone.

retransfer zone [class [view]]
Retransfer the given slave zone from the master server.

If the zone is configured to use inline-signing, the signed version of the zone is discarded;
after the retransfer of the unsigned version is complete, the signed version will be regen-
erated with all new signatures.

scan
Scan the list of available network interfaces for changes, without performing a full recon-
fig or waiting for the interface-interval timer.

secroots [-] [view ...]
Dump the security roots (i.e., trust anchors configured via trusted-keys, managed-keys,
or dnssec-validation auto) and negative trust anchors for the specified views. If no view is
specified, all views are dumped. Security roots will indicate whether they are configured

BIND 9.12.1rc2 292

CHAPTER 8. MANUAL PAGES 8.37. RNDC

as trusted keys, managed keys, or initializing managed keys (managed keys that have not
yet been updated by a successful key refresh query).

If the first argument is "-", then the output is returned via the rndc response channel and
printed to the standard output. Otherwise, it is written to the secroots dump file, which
defaults to named.secroots, but can be overridden via the secroots-file option in
named.conf.

See also rndc managed-keys.

serve-stale (on | off | status | reset) [class [view]]
Enable, disable, or reset the serving of stale answers as configured in named.conf. Serving
of stale answers will remain disabled across named.conf reloads if disabled via rndc
until it is reset via rndc.

Status will report whether serving of stale answers is currently enabled, disabled or not
configured for a view. If serving of stale records is configured then the values of stale-
answer-ttl and max-stale-ttl are reported.

showzone zone [class [view]]
Print the configuration of a running zone.

See also rndc zonestatus.

sign zone [class [view]]
Fetch all DNSSEC keys for the given zone from the key directory (see the key-directory
option in the BIND 9 Administrator Reference Manual). If they are within their publica-
tion period, merge them into the zone’s DNSKEY RRset. If the DNSKEY RRset is changed,
then the zone is automatically re-signed with the new key set.

This command requires that the auto-dnssec zone option be set to allow or maintain,
and also requires the zone to be configured to allow dynamic DNS. (See "Dynamic Update
Policies" in the Administrator Reference Manual for more details.)

See also rndc loadkeys.

signing [(-list | -clear keyid/algorithm | -clear all | -nsec3param (parameters | none) | -serial value)] zone [class [view]]

List, edit, or remove the DNSSEC signing state records for the specified zone. The status
of ongoing DNSSEC operations (such as signing or generating NSEC3 chains) is stored in
the zone in the form of DNS resource records of type sig-signing-type. rndc signing -list
converts these records into a human-readable form, indicating which keys are currently
signing or have finished signing the zone, and which NSEC3 chains are being created or
removed.

rndc signing -clear can remove a single key (specified in the same format that rndc sign-
ing -list uses to display it), or all keys. In either case, only completed keys are removed;
any record indicating that a key has not yet finished signing the zone will be retained.

rndc signing -nsec3param sets the NSEC3 parameters for a zone. This is the only sup-
ported mechanism for using NSEC3 with inline-signing zones. Parameters are specified
in the same format as an NSEC3PARAM resource record: hash algorithm, flags, iterations,
and salt, in that order.

Currently, the only defined value for hash algorithm is 1, representing SHA-1. The flags
may be set to 0 or 1, depending on whether you wish to set the opt-out bit in the NSEC3
chain. iterations defines the number of additional times to apply the algorithm when

293 BIND 9.12.1rc2

CHAPTER 8. MANUAL PAGES 8.37. RNDC

generating an NSEC3 hash. The salt is a string of data expressed in hexadecimal, a
hyphen (`-’) if no salt is to be used, or the keyword auto, which causes named to generate
a random 64-bit salt.

So, for example, to create an NSEC3 chain using the SHA-1 hash algorithm, no opt-out
flag, 10 iterations, and a salt value of "FFFF", use: rndc signing -nsec3param 1 0 10 FFFF
zone. To set the opt-out flag, 15 iterations, and no salt, use: rndc signing -nsec3param 1 1
15 - zone.

rndc signing -nsec3param none removes an existing NSEC3 chain and replaces it with
NSEC.

rndc signing -serial value sets the serial number of the zone to value. If the value would
cause the serial number to go backwards it will be rejected. The primary use is to set the
serial on inline signed zones.

stats
Write server statistics to the statistics file. (See the statistics-file option in the BIND 9
Administrator Reference Manual.)

status
Display status of the server. Note that the number of zones includes the internal bind/CH
zone and the default ./IN hint zone if there is not an explicit root zone configured.

stop [-p]
Stop the server, making sure any recent changes made through dynamic update or IXFR
are first saved to the master files of the updated zones. If -p is specified named’s process
id is returned. This allows an external process to determine when named had completed
stopping.

See also rndc halt.

sync [-clean] [zone [class [view]]]
Sync changes in the journal file for a dynamic zone to the master file. If the "-clean" option
is specified, the journal file is also removed. If no zone is specified, then all zones are
synced.

tcp-timeouts [initial idle keepalive advertised]
When called without arguments, display the current values of the tcp-initial-timeout, tcp-
idle-timeout, tcp-keepalive-timeout and tcp-advertised-timeout options. When called
with arguments, update these values. This allows an administrator to make rapid adjust-
ments when under a denial of service attack. See the descriptions of these options in the
BIND 9 Administrator Reference Manual for details of their use.

thaw [zone [class [view]]]
Enable updates to a frozen dynamic zone. If no zone is specified, then all frozen zones
are enabled. This causes the server to reload the zone from disk, and re-enables dynamic
updates after the load has completed. After a zone is thawed, dynamic updates will no
longer be refused. If the zone has changed and the ixfr-from-differences option is in use,
then the journal file will be updated to reflect changes in the zone. Otherwise, if the zone
has changed, any existing journal file will be removed.

See also rndc freeze.

trace
Increment the servers debugging level by one.

BIND 9.12.1rc2 294

CHAPTER 8. MANUAL PAGES 8.37. RNDC

trace level
Sets the server’s debugging level to an explicit value.

See also rndc notrace.

tsig-delete keyname [view]
Delete a given TKEY-negotiated key from the server. (This does not apply to statically
configured TSIG keys.)

tsig-list
List the names of all TSIG keys currently configured for use by named in each view. The
list both statically configured keys and dynamic TKEY-negotiated keys.

validation (on | off | status) [view ...]
Enable, disable, or check the current status of DNSSEC validation. Note dnssec-enable
also needs to be set to yes or auto to be effective. It defaults to enabled.

zonestatus zone [class [view]]
Displays the current status of the given zone, including the master file name and any in-
clude files from which it was loaded, when it was most recently loaded, the current serial
number, the number of nodes, whether the zone supports dynamic updates, whether the
zone is DNSSEC signed, whether it uses automatic DNSSEC key management or inline
signing, and the scheduled refresh or expiry times for the zone.

See also rndc showzone.

rndc commands that specify zone names, such as reload, retransfer or zonestatus, can be am-
biguous when applied to zones of type redirect. Redirect zones are always called ".", and
can be confused with zones of type hint or with slaved copies of the root zone. To specify a
redirect zone, use the special zone name -redirect, without a trailing period. (With a trailing
period, this would specify a zone called "-redirect".)

LIMITATIONS

There is currently no way to provide the shared secret for a key_id without using the configu-
ration file.

Several error messages could be clearer.

SEE ALSO

rndc.conf(5), rndc-confgen(8), named(8), named.conf(5), ndc(8), BIND 9 Administrator Reference
Manual.

295 BIND 9.12.1rc2

A Release Notes

A.1 RELEASE NOTES FOR BIND VERSION 9.12.1RC2

Introduction

This document summarizes changes since the last production release on the BIND 9.12 branch.
Please see the CHANGES for a further list of bug fixes and other changes.

Download

The latest versions of BIND 9 software can always be found at http://www.isc.org/downloads/.
There you will find additional information about each release, source code, and pre-compiled
versions for Microsoft Windows operating systems.

Security Fixes

• update-policy rules that otherwise ignore the name field now require that it be set to "." to
ensure that any type list present is properly interpreted. Previously, if the name field was
omitted from the rule declaration but a type list was present, it wouldn’t be interpreted as
expected.

Feature Changes

• named will now log a warning if the old root DNSSEC key is explicitly configured and
has not been updated. [RT #43670]

Bug Fixes

• When answering authoritative queries, named does not return the target of a cross-zone
CNAME between two locally served zones; this prevents accidental cache poisoning. This
same restriction was incorrectly applied to recursive queries as well; this has been fixed.
[RT #47078]

297 BIND 9.12.1rc2

APPENDIX A. RELEASE NOTES A.1. RELEASE NOTES FOR BIND . . .

• named could crash when acting as a slave for a catalog zone if zone contained a master
definition without an IP address. [RT #45999]

• named could crash due to a race condition when rolling dnstap log files. [RT #46942]

• rndc reload could cause named to leak memory if it was invoked before the zone loading
actions from a previous rndc reload command were completed. [RT #47076]

License

BIND is open source software licenced under the terms of the Mozilla Public License, version
2.0 (see the LICENSE file for the full text).

The license requires that if you make changes to BIND and distribute them outside your or-
ganization, those changes must be published under the same license. It does not require that
you publish or disclose anything other than the changes you have made to our software. This
requirement does not affect anyone who is using BIND, with or without modifications, without
redistributing it, nor anyone redistributing BIND without changes.

Those wishing to discuss license compliance may contact ISC at https://www.isc.org/mission/contact/.

End of Life

The end-of-life date for BIND 9.12 has not yet been determined. However, it is not intended to
be an Extended Support Version (ESV) branch; accordingly, support will end after the next sta-
ble branch (9.14) becomes available. Those needing a longer-lived branch are encouraged to use
the current ESV, BIND 9.11, which will be supported until December 2021. See https://www.isc.org/downloads/software-
support-policy/ for details of ISC’s software support policy.

Thank You

Thank you to everyone who assisted us in making this release possible. If you would like to
contribute to ISC to assist us in continuing to make quality open source software, please visit
our donations page at http://www.isc.org/donate/.

BIND 9.12.1rc2 298

B A Brief History of the DNS and BIND

Although the "official" beginning of the Domain Name System occurred in 1984 with the publi-
cation of RFC 920, the core of the new system was described in 1983 in RFCs 882 and 883. From
1984 to 1987, the ARPAnet (the precursor to today’s Internet) became a testbed of experimen-
tation for developing the new naming/addressing scheme in a rapidly expanding, operational
network environment. New RFCs were written and published in 1987 that modified the origi-
nal documents to incorporate improvements based on the working model. RFC 1034, "Domain
Names-Concepts and Facilities", and RFC 1035, "Domain Names-Implementation and Specifi-
cation" were published and became the standards upon which all DNS implementations are
built.

The first working domain name server, called "Jeeves", was written in 1983-84 by Paul Mock-
apetris for operation on DEC Tops-20 machines located at the University of Southern Cal-
ifornia’s Information Sciences Institute (USC-ISI) and SRI International’s Network Informa-
tion Center (SRI-NIC). A DNS server for Unix machines, the Berkeley Internet Name Domain
(BIND) package, was written soon after by a group of graduate students at the University of
California at Berkeley under a grant from the US Defense Advanced Research Projects Admin-
istration (DARPA).

Versions of BIND through 4.8.3 were maintained by the Computer Systems Research Group
(CSRG) at UC Berkeley. Douglas Terry, Mark Painter, David Riggle and Songnian Zhou made
up the initial BIND project team. After that, additional work on the software package was done
by Ralph Campbell. Kevin Dunlap, a Digital Equipment Corporation employee on loan to the
CSRG, worked on BIND for 2 years, from 1985 to 1987. Many other people also contributed
to BIND development during that time: Doug Kingston, Craig Partridge, Smoot Carl-Mitchell,
Mike Muuss, Jim Bloom and Mike Schwartz. BIND maintenance was subsequently handled by
Mike Karels and Øivind Kure.

BIND versions 4.9 and 4.9.1 were released by Digital Equipment Corporation (now Compaq
Computer Corporation). Paul Vixie, then a DEC employee, became BIND’s primary caretaker.
He was assisted by Phil Almquist, Robert Elz, Alan Barrett, Paul Albitz, Bryan Beecher, Andrew
Partan, Andy Cherenson, Tom Limoncelli, Berthold Paffrath, Fuat Baran, Anant Kumar, Art
Harkin, Win Treese, Don Lewis, Christophe Wolfhugel, and others.

In 1994, BIND version 4.9.2 was sponsored by Vixie Enterprises. Paul Vixie became BIND’s
principal architect/programmer.

BIND versions from 4.9.3 onward have been developed and maintained by the Internet Sys-
tems Consortium and its predecessor, the Internet Software Consortium, with support being
provided by ISC’s sponsors.

299 BIND 9.12.1rc2

APPENDIX B. A BRIEF HISTORY OF THE . . .

As co-architects/programmers, Bob Halley and Paul Vixie released the first production-ready
version of BIND version 8 in May 1997.

BIND version 9 was released in September 2000 and is a major rewrite of nearly all aspects of
the underlying BIND architecture.

BIND versions 4 and 8 are officially deprecated. No additional development is done on BIND
version 4 or BIND version 8.

BIND development work is made possible today by the sponsorship of several corporations,
and by the tireless work efforts of numerous individuals.

BIND 9.12.1rc2 300

C General DNS Reference Information

C.1 IPV6 ADDRESSES (AAAA)

IPv6 addresses are 128-bit identifiers for interfaces and sets of interfaces which were introduced
in the DNS to facilitate scalable Internet routing. There are three types of addresses: Unicast,
an identifier for a single interface; Anycast, an identifier for a set of interfaces; and Multicast, an
identifier for a set of interfaces. Here we describe the global Unicast address scheme. For more
information, see RFC 3587, "Global Unicast Address Format."

IPv6 unicast addresses consist of a global routing prefix, a subnet identifier, and an interface identi-
fier.

The global routing prefix is provided by the upstream provider or ISP, and (roughly) corre-
sponds to the IPv4 network section of the address range. The subnet identifier is for local sub-
netting, much the same as subnetting an IPv4 /16 network into /24 subnets. The interface iden-
tifier is the address of an individual interface on a given network; in IPv6, addresses belong to
interfaces rather than to machines.

The subnetting capability of IPv6 is much more flexible than that of IPv4: subnetting can be
carried out on bit boundaries, in much the same way as Classless InterDomain Routing (CIDR),
and the DNS PTR representation ("nibble" format) makes setting up reverse zones easier.

The Interface Identifier must be unique on the local link, and is usually generated automatically
by the IPv6 implementation, although it is usually possible to override the default setting if
necessary. A typical IPv6 address might look like: 2001:db8:201:9:a00:20ff:fe81:2b32

IPv6 address specifications often contain long strings of zeros, so the architects have included
a shorthand for specifying them. The double colon (`::’) indicates the longest possible string of
zeros that can fit, and can be used only once in an address.

C.2 BIBLIOGRAPHY (AND SUGGESTED READING)

Request for Comments (RFCs)

Specification documents for the Internet protocol suite, including the DNS, are published as
part of the Request for Comments (RFCs) series of technical notes. The standards themselves
are defined by the Internet Engineering Task Force (IETF) and the Internet Engineering Steering
Group (IESG). RFCs can be obtained online via FTP at:

301 BIND 9.12.1rc2

BIBLIOGRAPHY BIBLIOGRAPHY

ftp://www.isi.edu/in-notes/RFCxxxx.txt

(where xxxx is the number of the RFC). RFCs are also available via the Web at:

http://www.ietf.org/rfc/.

Bibliography

Bibliography

[RFC1034] P.V. Mockapetris, November 1987.

[RFC1035] P. V. Mockapetris, November 1987.

[RFC974] C. Partridge, January 1986.

Bibliography

[RFC1995] M. Ohta, August 1996.

[RFC1996] P. Vixie, August 1996.

[RFC2136] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound, April 1997.

[RFC2181] R., R. Bush Elz, July 1997.

[RFC2308] M. Andrews, March 1998.

[RFC2671] P. Vixie, August 1997.

[RFC2672] M. Crawford, August 1999.

[RFC2845] P. Vixie, O. Gudmundsson, D. Eastlake, 3rd, and B. Wellington, May 2000.

[RFC2930] D. Eastlake, 3rd, September 2000.

[RFC2931] D. Eastlake, 3rd, September 2000.

[RFC3007] B. Wellington, November 2000.

[RFC3645] S. Kwan, P. Garg, J. Gilroy, L. Esibov, J. Westhead, and R. Hall, October 2003.

Bibliography

[RFC3225] D. Conrad, December 2001.

[RFC3833] D. Atkins and R. Austein, August 2004.

[RFC4033] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, March 2005.

[RFC4034] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, March 2005.

[RFC4035] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, March 2005.

BIND 9.12.1rc2 302

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[RFC1535] E. Gavron, October 1993.

[RFC1536] A. Kumar, J. Postel, C. Neuman, P. Danzig, and S. Miller, October 1993.

[RFC1982] R. Elz and R. Bush, August 1996.

[RFC4074] Y. Morishita and T. Jinmei, May 2005.

Bibliography

[RFC1183] C.F. Everhart, L. A. Mamakos, R. Ullmann, and P. Mockapetris, October 1990.

[RFC1706] B. Manning and R. Colella, October 1994.

[RFC1876] C. Davis, P. Vixie, T., and I. Dickinson, January 1996.

[RFC2052] A. Gulbrandsen and P. Vixie, October 1996.

[RFC2163] A. Allocchio, January 1998.

[RFC2168] R. Daniel and M. Mealling, June 1997.

[RFC2230] R. Atkinson, October 1997.

[RFC2536] D. Eastlake, 3rd, March 1999.

[RFC2537] D. Eastlake, 3rd, March 1999.

[RFC2538] D. Eastlake, 3rd and O. Gudmundsson, March 1999.

[RFC2539] D. Eastlake, 3rd, March 1999.

[RFC2540] D. Eastlake, 3rd, March 1999.

[RFC2782] A. GulbrandsenP. VixieL. Esibov, February 2000.

[RFC2915] M. MeallingR. Daniel, September 2000.

[RFC3110] D. Eastlake, 3rd, May 2001.

[RFC3123] P. Koch, June 2001.

[RFC3596] S. Thomson, C. Huitema, V. Ksinant, and M. Souissi, October 2003.

[RFC3597] A. Gustafsson, September 2003.

Bibliography

[RFC1101] P. V. Mockapetris, April 1989.

[RFC1123] Braden, October 1989.

[RFC1591] J. Postel, March 1994.

[RFC2317] H. Eidnes, G. de Groot, and P. Vixie, March 1998.

[RFC2826] Internet Architecture Board, May 2000.

[RFC2929] D. Eastlake, 3rd, E. Brunner-Williams, and B. Manning, September 2000.

303 BIND 9.12.1rc2

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[RFC1033] M. Lottor, November 1987.

[RFC1537] P. Beertema, October 1993.

[RFC1912] D. Barr, February 1996.

[RFC2010] B. Manning and P. Vixie, October 1996.

[RFC2219] M. Hamilton and R. Wright, October 1997.

Bibliography

[RFC2825] IAB and R. Daigle, May 2000.

[RFC3490] P. Faltstrom, P. Hoffman, and A. Costello, March 2003.

[RFC3491] P. Hoffman and M. Blanchet, March 2003.

[RFC3492] A. Costello, March 2003.

Bibliography

[RFC1464] R. Rosenbaum, May 1993.

[RFC1713] A. Romao, November 1994.

[RFC1794] T. Brisco, April 1995.

[RFC2240] O. Vaughan, November 1997.

[RFC2345] J. Klensin, T. Wolf, and G. Oglesby, May 1998.

[RFC2352] O. Vaughan, May 1998.

[RFC3071] J. Klensin, February 2001.

[RFC3258] T. Hardie, April 2002.

[RFC3901] A. Durand and J. Ihren, September 2004.

Bibliography

[RFC1712] C. Farrell, M. Schulze, S. Pleitner, and D. Baldoni, November 1994.

[RFC2673] M. Crawford, August 1999.

[RFC2874] M. Crawford and C. Huitema, July 2000.

BIND 9.12.1rc2 304

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[RFC2065] D. Eastlake, 3rd and C. Kaufman, January 1997.

[RFC2137] D. Eastlake, 3rd, April 1997.

[RFC2535] D. Eastlake, 3rd, March 1999.

[RFC3008] B. Wellington, November 2000.

[RFC3090] E. Lewis, March 2001.

[RFC3445] D. Massey and S. Rose, December 2002.

[RFC3655] B. Wellington and O. Gudmundsson, November 2003.

[RFC3658] O. Gudmundsson, December 2003.

[RFC3755] S. Weiler, May 2004.

[RFC3757] O. Kolkman, J. Schlyter, and E. Lewis, April 2004.

[RFC3845] J. Schlyter, August 2004.

Internet Drafts

Internet Drafts (IDs) are rough-draft working documents of the Internet Engineering Task Force.
They are, in essence, RFCs in the preliminary stages of development. Implementors are cau-
tioned not to regard IDs as archival, and they should not be quoted or cited in any formal
documents unless accompanied by the disclaimer that they are "works in progress." IDs have a
lifespan of six months after which they are deleted unless updated by their authors.

Other Documents About BIND

Bibliography

[1] Paul Albitz and Cricket Liu, Copyright © 1998 Sebastopol, CA: O’Reilly and
Associates.

305 BIND 9.12.1rc2

D BIND 9 DNS Library Support

D.1 BIND 9 DNS LIBRARY SUPPORT

This version of BIND 9 "exports" its internal libraries so that they can be used by third-party
applications more easily (we call them "export" libraries in this document). Certain library
functions are altered from specific BIND-only behavior to more generic behavior when used by
other applications; to enable this generic behavior, the calling program initializes the libraries
by calling isc_lib_register().

In addition to DNS-related APIs that are used within BIND 9, the libraries provide the following
features:

• The "DNS client" module. This is a higher level API that provides an interface to name res-
olution, single DNS transaction with a particular server, and dynamic update. Regarding
name resolution, it supports advanced features such as DNSSEC validation and caching.
This module supports both synchronous and asynchronous mode.

• The "IRS" (Information Retrieval System) library. It provides an interface to parse the
traditional resolv.conf file and more advanced, DNS-specific configuration file for the
rest of this package (see the description for the dns.conf file below).

• As part of the IRS library, the standard address-name mapping functions, getaddrinfo()
and getnameinfo(), are provided. They use the DNSSEC-aware validating resolver back-
end, and could use other advanced features of the BIND 9 libraries such as caching. The
getaddrinfo() function resolves both A and AAAA RRs concurrently when the address
family is unspecified.

• An experimental framework to support other event libraries than BIND 9’s internal event
task system.

Installation

$ make install

Normal installation of BIND will also install library object and header files. Root privilege is
normally required.

To see how to build your own application after the installation, see lib/samples/Makefile-postinstall.
in.

307 BIND 9.12.1rc2

APPENDIX D. BIND 9 DNS LIBRARY . . . D.1. BIND 9 DNS LIBRARY SUPPORT

Known Defects/Restrictions

• The "fixed" RRset order is not (currently) supported in the export library. If you want to
use "fixed" RRset order for, e.g. named while still building the export library even without
the fixed order support, build them separately:

$./configure --enable-fixed-rrset [other flags, but not --enable- ←↩
exportlib]

$ make
$./configure --enable-exportlib [other flags, but not --enable-fixed ←↩

-rrset]
$ cd lib/export
$ make

• RFC 5011 is not supported in the validating stub resolver of the export library. In fact, it
is not clear whether it should: trust anchors would be a system-wide configuration which
would be managed by an administrator, while the stub resolver will be used by ordinary
applications run by a normal user.

• Not all common /etc/resolv.conf options are supported in the IRS library. The only
available options in this version are debug and ndots.

The dns.conf File

The IRS library supports an "advanced" configuration file related to the DNS library for config-
uration parameters that would be beyond the capability of the resolv.conf file. Specifically,
it is intended to provide DNSSEC related configuration parameters. By default the path to this
configuration file is /etc/dns.conf. This module is very experimental and the configuration
syntax or library interfaces may change in future versions. Currently, only the trusted-keys
statement is supported, whose syntax is the same as the same statement in named.conf. (See
Section 5.2 for details.)

Sample Applications

Some sample application programs using this API are provided for reference. The following is
a brief description of these applications.

sample: a simple stub resolver utility

Sends a query of a given name (of a given optional RR type) to a specified recursive server and
prints the result as a list of RRs. It can also act as a validating stub resolver if a trust anchor is
given via a set of command line options.

Usage: sample [options] server_address hostname

Options and Arguments:

-t RRtype
specify the RR type of the query. The default is the A RR.

BIND 9.12.1rc2 308

APPENDIX D. BIND 9 DNS LIBRARY . . . D.1. BIND 9 DNS LIBRARY SUPPORT

[-a algorithm] [-e] -k keyname -K keystring
specify a command-line DNS key to validate the answer. For example, to specify the
following DNSKEY of example.com:

example.com. 3600 IN DNSKEY 257 3 5 xxx

specify the options as follows:

-e -k example.com -K "xxx"

-e means that this key is a zone’s "key signing key" (also known as "secure entry point").
When -a is omitted rsasha1 will be used by default.

-s domain:alt_server_address
specify a separate recursive server address for the specific "domain". Example: -s exam-
ple.com:2001:db8::1234

server_address
an IP(v4/v6) address of the recursive server to which queries are sent.

hostname
the domain name for the query

sample-async: a simple stub resolver, working asynchronously

Similar to "sample", but accepts a list of (query) domain names as a separate file and resolves
the names asynchronously.

Usage: sample-async [-s server_address] [-t RR_type] input_file

Options and Arguments:

-s server_address
an IPv4 address of the recursive server to which queries are sent. (IPv6 addresses are not
supported in this implementation)

-t RR_type
specify the RR type of the queries. The default is the A RR.

input_file
a list of domain names to be resolved. each line consists of a single domain name. Exam-
ple:

www.example.com
mx.example.net
ns.xxx.example

309 BIND 9.12.1rc2

APPENDIX D. BIND 9 DNS LIBRARY . . . D.1. BIND 9 DNS LIBRARY SUPPORT

sample-request: a simple DNS transaction client

Sends a query to a specified server, and prints the response with minimal processing. It doesn’t
act as a "stub resolver": it stops the processing once it gets any response from the server, whether
it’s a referral or an alias (CNAME or DNAME) that would require further queries to get the
ultimate answer. In other words, this utility acts as a very simplified dig.

Usage: sample-request [-t RRtype] server_address hostname

Options and Arguments:

-t RRtype
specify the RR type of the queries. The default is the A RR.

server_address
an IP(v4/v6) address of the recursive server to which the query is sent.

hostname
the domain name for the query

sample-gai: getaddrinfo() and getnameinfo() test code

This is a test program to check getaddrinfo() and getnameinfo() behavior. It takes a host name
as an argument, calls getaddrinfo() with the given host name, and calls getnameinfo() with the
resulting IP addresses returned by getaddrinfo(). If the dns.conf file exists and defines a trust
anchor, the underlying resolver will act as a validating resolver, and getaddrinfo()/getnameinfo()
will fail with an EAI_INSECUREDATA error when DNSSEC validation fails.

Usage: sample-gai hostname

sample-update: a simple dynamic update client program

Accepts a single update command as a command-line argument, sends an update request mes-
sage to the authoritative server, and shows the response from the server. In other words, this is
a simplified nsupdate.

Usage: sample-update [options] (add|delete) "update data"

Options and Arguments:

-a auth_server
An IP address of the authoritative server that has authority for the zone containing the
update name. This should normally be the primary authoritative server that accepts dy-
namic updates. It can also be a secondary server that is configured to forward update
requests to the primary server.

-k keyfile
A TSIG key file to secure the update transaction. The keyfile format is the same as that for
the nsupdate utility.

-p prerequisite
A prerequisite for the update (only one prerequisite can be specified). The prerequisite
format is the same as that is accepted by the nsupdate utility.

BIND 9.12.1rc2 310

APPENDIX D. BIND 9 DNS LIBRARY . . . D.1. BIND 9 DNS LIBRARY SUPPORT

-r recursive_server
An IP address of a recursive server that this utility will use. A recursive server may be
necessary to identify the authoritative server address to which the update request is sent.

-z zonename
The domain name of the zone that contains

(add|delete)
Specify the type of update operation. Either "add" or "delete" must be specified.

"update data"
Specify the data to be updated. A typical example of the data would look like "name TTL
RRtype RDATA".

NOTE

In practice, either -a or -r must be specified. Others can be optional; the underlying library
routine tries to identify the appropriate server and the zone name for the update.

Examples: assuming the primary authoritative server of the dynamic.example.com zone has an
IPv6 address 2001:db8::1234,

$ sample-update -a sample-update -k Kxxx.+nnn+mmmm.key add "foo.dynamic. ←↩
example.com 30 IN A 192.168.2.1"

adds an A RR for foo.dynamic.example.com using the given key.

$ sample-update -a sample-update -k Kxxx.+nnn+mmmm.key delete "foo.dynamic ←↩
.example.com 30 IN A"

removes all A RRs for foo.dynamic.example.com using the given key.

$ sample-update -a sample-update -k Kxxx.+nnn+mmmm.key delete "foo.dynamic ←↩
.example.com"

removes all RRs for foo.dynamic.example.com using the given key.

nsprobe: domain/name server checker in terms of RFC 4074

Checks a set of domains to see the name servers of the domains behave correctly in terms of
RFC 4074. This is included in the set of sample programs to show how the export library can be
used in a DNS-related application.

Usage: nsprobe [-d] [-v [-v...]] [-c cache_address] [input_file]

Options

311 BIND 9.12.1rc2

APPENDIX D. BIND 9 DNS LIBRARY . . . D.1. BIND 9 DNS LIBRARY SUPPORT

-d
Run in "debug" mode. With this option nsprobe will dump every RRs it receives.

-v
Increase verbosity of other normal log messages. This can be specified multiple times.

-c cache_address
Specify an IP address of a recursive (caching) name server. nsprobe uses this server to get
the NS RRset of each domain and the A and/or AAAA RRsets for the name servers. The
default value is 127.0.0.1.

input_file
A file name containing a list of domain (zone) names to be probed. when omitted the
standard input will be used. Each line of the input file specifies a single domain name such
as "example.com". In general this domain name must be the apex name of some DNS zone
(unlike normal "host names" such as "www.example.com"). nsprobe first identifies the NS
RRsets for the given domain name, and sends A and AAAA queries to these servers for
some "widely used" names under the zone; specifically, adding "www" and "ftp" to the
zone name.

Library References

As of this writing, there is no formal "manual" for the libraries, except this document, header
files (some of which provide pretty detailed explanations), and sample application programs.

BIND 9.12.1rc2 312

	Introduction
	BIND Resource Requirements
	Name Server Configuration
	Advanced DNS Features
	BIND 9 Configuration Reference
	BIND 9 Security Considerations
	Troubleshooting
	Manual pages
	Release Notes
	A Brief History of the DNS and BIND
	General DNS Reference Information
	BIND 9 DNS Library Support

