Contents

1
The Impending
Demise of RSA?

2
Welcome to

CryptoBytes

5
Message Authentication
with MD5

9
The RC5
Encryption Algorithm

11

News and Information

12

Announcements

VOLUME 1,

NUMBER 1 — SPRING 1995

C RSA LABORATORIES'

ryptobytes

Tetedmd mendl o RSASoEnes

adan o RSADa Salyy, o

The Impending Demise of RSA?

Gilles Brassard
Département d’informatique et de R.O.
Université de Montréal
C.P. 6128, Succursale Centre-Ville
Montréal (Québec)

Canapa H3C 3J7

In August 1977, Rivest, Shamir and Adleman is-
sued a ciphertext challenge worth one hundred dol-
lars to Scientific American readers when Martin
Gardner described their revolutionary RSA cryp-
tographic system in his monthly “Mathematical
Games” column. This sounded very safe because it
was estimated at the time that the fastest existing
computer using the most efficient known algorithm
could not earn the award until it had run without
interruption for millions of times the age of the Uni-
verse. This particular challenge involved the fac-
torization of a 129-figure number 7; which appeared
to be so out-of-reach at the time that Martin
Gardner reported: “Rivest and his associates have
no proof that at some future time no one will dis-
cover a fast algorithm for factoring composites as
large as 7[...]. They consider [the] possibility ex-
tremely remote.” Nevertheless, the $100 reward was
cashed last year—and donated to the Free Software
Foundation—after a mere eight months of inten-
sive computation led by Derek Atkins and Arjen
Lenstra. What happened?

Professor Gilles Brassard, Université de Montréal, is interested
in all aspects of cryptology but perbaps bis best-known contribu-
tion is as a co-developer of Quantum Cryptography. He can be
contacted at brassard@iro.umontreal. CA. This essay was writ-
ten while the author was on sabbatical at the University of
Wollongong, Australia. Research supported inpart by Canada’s
Nstre and Québec’s FcAr.

The increase in raw computing power during those
years cannot be discounted, nor can the fact that
hundreds of workstations around the world spent
all their otherwise idle cycles on the task for the
better part of one year. Indeed, the several thou-
sand mps-years that were spent on the calculation
might not have been available to poor academics
back in 1977. But in the Preface of my new text-
book Fundamental of Algorithmics, soon to be released
by Prentice-Hall with Paul Bratley as coauthor; I
am quick to point out that far more significant was
the discovery of more sophisticated factorization
algorithms. When I put on my hat as teacher of
algorithmics, T like to use this example to illustrate
that more efficient algorithms can produce much
more dramatic results than better hardware. To
make life more interesting, however, I am wearing
quite a different hat as I write this essay!

Even though the “double large prime multiple poly-
nomial variation of the quadratic sieve” algorithm
was successful in factoring the 129-figure number
relevant to the RSA challenge, the age of the Uni-
verse would still not suffice to factor a 500-figure
number by this or any other known classical algo-
rithm (such as the number field sieve) even if all
the world’s computers were put to contribution.
Therefore, one should not infer from the fate of the
1977 challenge that RSA has been broken: the les-
son is that bigger numbers should be used and that
overconfident claims should be avoided. Clearly,
even more remarkable advances in algorithmics will
be required if RSA is to fail completely or even if it
is to fail on keys merely twice the size used in the
Scientific American challenge. Progress in hardware

(continued onpage3)

Welcome to CryptoBytes

Welcome to the first issue of CryptoBytes, the
technical newsletter on cryptography from RSA
Laboratories.

One of the nicest features of cryptographic research
is the speed with which developments occur. This is
a primary reason why so many

Prof. Ronald Rivest
is co-inventor of the
RSA public-key
cryptosystem, a
co-founder of RSA
Data Security Inc.

andadistinguished

associate of

RSA Laboratories.

=g

researchers find working in the field
so rewarding. More often than not,
however, new results or second-
hand accounts of someone’s valued
opinion circulate for months by
word of mouth or by E-mail before
appearing in journals or in con-
ference proceedings. In fact,
it might be convincingly argued
that a great deal of interesting
information is never actually
published, never cited, and never properly referred
to by other researchers.

A newsletter can alleviate this situation. The aim
would be to circulate interesting news as it happens,
thereby providing a reliable distribution method for
substantial ‘bites of crypto’. In addition, a newsletter
might provide a forum for results or opinions that,
while of great cryptographic interest, would not ap-
pear at any of the more classical outlets because of
their format.

Such a newsletter should be of interest to all those
involved in cryptography; from those implementing
cryptographic techniques and designing cryptographic
products to those in the academic development of
cryptographic knowledge. Often these groups are
viewed as being somewhat exclusive of each other;
instead we suggest that there is an important symbio-
sis. One goal of a newsletter on cryptography must be
the transfer of information across these artificial di-
vides. In this way researchers will hear about con-
tinuing efforts to implement the fruits of their research
efforts and implementers can keep track of the latest
cryptographic innovations.

With the first issue of CryptoBytes in your hands,
we are hoping to achieve some of these goals. We
are also hoping to provide a complement to current
newsletters such as IEEE’s Cipher, the TACR
newsletter and the TIS Data Security Letter, among
many others.

Much of the future success of CryptoByteswill depend
on input from outside of RSA Laboratories. Such
input might range from invited articles and research-
ers providing notification of recent results and
developments, through letters and opposite opinions
from readers. While RSA Laboratories will coordi-
nate CryptoBytes, the intention is for it to become
a useful resource for the whole cryptographic com-
munity. To help in this process, back issues of
CryptoBytes will be available free of charge via the
World-Wide Web.

We hope that you'll agree that this first issue of
CryptoBytes is a step towards our goals. We would
very much like to thank the writers who have
contributed to this first issue, and we welcome any
comments, suggestions or proposals for future issues.

— Ron Rivest =g

Editor’s note: Suggestions and contributions for future issues
of CryptoBytes can be sent to bytes-ed@rsa.com or to RSA
Laboratories by any of the methods given below.

Subscription Information

CryptoBytesis published four times annually;
printed copies are available for an annual
subscription fee of U.S. $90. To subscribe,
contact RSA Laboratories at:

RSA Laboratories

100 Marine Parkway, Suite 500
Redwood City, CA 94065
415/595-7703

415/595-4126 (fax)

rsa-labs@rsa.com

Back issues in electronic form are available
via the World-Wide Web at
http://www.rsa.com/rsalabs/cryptobytes/.

RSA Laboratories is the research division of RSA Data Security,
Inc., the company founded by the inventors of the RSA public-key
cryptosystem. RSA Laboratories reviews, designs and implements
secure and efficient cryptosystems of all kinds. Iis clients include
government agencies, telecommunications companies, compulter
manufacturers, software developers, cable TV broadcasters,
interactive video manufacturers, and satellite broadcast companies,
among others.

CRYPTOBYTESSPRING 1995 — THE TECHNICAL NEWSLETTER OF RSA LABORATORIES

The Impending Demise of RSA?
Coined fom pee 1

will at best be a minor factor in the eventual success
of future attacks against RSA. Right? Wrong!

Quantum computing, an emerging branch of computer
science, may well prove the above conventional wis-
dom false. For the first time, revolutionary new con-
cepts may hold the key to a computer that would go
exponentially faster than conventional computers, at
least for some computational tasks. This means that
the speed-up would be increasingly spectacular as the
size of the input gets larger, which is precisely the
type of claim that had been the prerogative of algo-
rithmic improvements until now. In particular, build-
ing on the work of David Deutsch and Richard Jozsa,
Ethan Bernstein and Umesh Vazirani, Daniel Simon,
and Don Coppersmith, Peter Shor has discovered that
quantum computers can factor an n-figure number
in a time asymptotically proportional to 7%*€ for arbi-
trarily small € This means that it would take about
the same time to crack an RSA key as to use it legiti-
mately! In other words, quantum computers spell
complete disaster on RSA. This has not (yet) forced
RSA Laboratories to file for Chapter 11 because there
are formidable technological difficulties before the
first quantum computer can be built, but the possi-
bility should not be underestimated.

What is a quantum computer? This theoretical
notion emerged from the work of Paul Benioff, Rich-
ard Feynman and David Deutsch in the first half of
the eighties. I cannot say much in this short essay
but I shall try to sketch the basic principles. For more
detail and references to the work mentioned here—
such as Peter Shor’s quantum factorization algo-
rithm—T invite you to read my forthcoming paper in
Current Trendls in Computer Science, Jan van Leeuwen
(Ed.), Lecture Notes in Computer Science, Volume
1000 (special anniversary volume), Springer-Verlag,
1995. Until this volume has appeared, you may wish
to read my earlier account in Sigact News, Volume
25, number 4, December 1994, pp. 15 — 21.

Let us begin with a quantum bit, or qubit (a word
coined by Benjamin Schumacher). In classical digi-
tal computing, a bit can take either value 0 or value
1. Nothing in between is allowed. In quantum com-
puting, a qubit can be in linear superposition of the
two classical states. If we denote the classical states
by (@0 and 10, then a qubit can be in state P =a
00 + B0 for arbitrary complex numbers o and 3

subject to (@F + ff = L The coefficients o and 3
are called the amplitudes of [P0 and 101, respectively.
A qubit is best visualized as a point on the surface of
a unit sphere whose North and South poles corre-
spond to the classical values. If state Y is observedin
the sense that the qubit is asked to assume a classical
value, it will collapseonto @0 with probability orf
and onto (10 with complementary probability [f3F.
So far, it looks as if we have but reinvented analogue
computation. Things become more interesting when
we consider quantum registers composed of 7 qubits.
Such registers can be set to an arbitrary quantum su-
perposition of states W= [0y a,x0 subject to
O, x @, 4= 1, where X denotes the set of all classi-
cal n-bit strings. If this register is asked to assume a
classical value, each x in X will be obtained with prob-
ability (@,[%, and the register will collapse onto the
observed value.

In principle, it is possible to compute on such regis-
ters. If a quantum computer is programmed to com-
pute some function f : X 0 Yand if it is started with
superposition W =0 , o, x0 in its input register,
then it will produce superposition W'=0, , o, [F(x)0
in its output register i the time needed to compute f on
a single input. In other words, this provides for expo-
nentially many computations to take place simulta-
neously in a single piece of hardware, a phenomenon
known as quantum parallelism. We are far from ana-
logue computing now. The good news is that we have
obtained exponentially many answers for the price
of one. The bad news is that Heisenberg’s uncertainty
principle forbids us from looking at the output regis-
ter for fear of spoiling it! More precisely, if we ask
the output register to assume a classical value, it will
collapse to the value of f(x) for anx randomly cho-
sen in X with probability [@,4, and the quantum
superposition W' will be destroyed by the measure-
ment. So far, it looks as if quantum computing is not
only impractical but useless as well.

What makes quantum computing interesting is the
notion of guantum interference, which is exactly the
principle behind Young’s celebrated double-slit ex-
periment. In a classical probabilistic calculation, it
is possible to program the computer to select one of
several possible computation paths according to the
laws of probability. In any specific instance of the
calculation, however, only one of the potential paths
is actually taken, and what-could-have-happened-

Pogess n
hardware will
atbest be a
minor factor

in the eventual
SES d

iLe ands
afd RA
Ror? Way

Revolutionary
new concepts
may hold the
key to a
computer that
would go
exponentially
faster than
conventional
computers.

=g
THE TECHNICAL NEWSLETTER OF RSA LABORATORIES — SPRING 1995 CRYPTOBYTES

Figure 2.
Arecommended
approach to
message authentica-
tion with MD5.
Here, the keys are
each 128 bits long.
They may be the
same, although
different keys are
preferable.

and include the padding required for the initial mes-
sage to reach a multiple of 512 bits. Applying this to
the prefix approach, it follows that from MD5 (& - m),
one can compute MD5 (k- m’) for any m’ that starts
withm - p, where pis the padding on & - m. In other
words, from the message authentication code of m,
one can forge the message authentication code of
m - p - x for any x, without even knowing the key &,
and without breaking MD5 in any sense. This is called
a “message extension” or “padding” attack [19,

Other hash functions with an iterative design, such
as NIST’s Secure Hash Algorithm (8 are also vulner-
able to the message extension attack, and similar at-
tacks can also be mounted on tree-structured designs.

(Note also that if only part of the hash were output,
say only 64 bits, this attack would not be possible;
however, this is not a completely satisfying solution

because of other con-

cerns raised below. In

Key 2

SNMP, the message ex-

Message tension attack is not a

sages are a fixed length.
Another way to avoid
the attack is to include
MD5 an explicit length field
at the beginning of the
message.)

1 problem because mes-

Key 1

Because of the message
extension attack on
the prefix approach,

Intermediate
Hash

the “suffix” approach,
MD5 (m - k), would
seem to be preferred.

MD5 But another problem

arises: the key may be
vulnerable to crypt-
analysis, depending on

the properties of the

MAC compression function.

This is because the

message authentica-

tion code is a function
of known values and the key, assuming the key is
passed entirely to the last iteration of the compres-
sion function. (The known values are the next-to-
last chaining value, which by assumption depends

only on the message; the last part of the message;
and the padding.)

An opponent who sees the message authentication
codes for many messages thus sees the result of
applying the compression function to many different
known values and the same key, which may reveal
information about the key. While our analysis
suggests MD5’s compression function is unlikely
to reveal information about the key, other hash
functions may not fare as well, and so we prefer a
more robust design.

The prefix approach is also affected by these issues,
but only when the message is very short and there is
only a single iteration of the compression function.

Recommendations

In joint work with Mihir Bellare and Hugo Krawczyk
of IBM, we have considered a number of approaches
to message authentication with MD5, settling on
three which we recommended to the Internet Proto-
col Security (IPSEC) working group:

1. MD5 (k, - MD5 (k, - m)), where k, and k, are in-
dependent 128-bit keys

2. MD5 (k- p- m - k), where kis a 128-bit key and
P is 384 bits of padding

3. MD5 (k - MD5 (k - m)), where k is a 128-bit key

The first and third approaches (see Figure 2) are
similar, and solve the message extension attack on
the prefix approach by the outer application of MDS5,
which conceals the chaining value which is needed
for the attack. The outer MD5 also solves the con-
cemns of cryptanalysis of the suffix approach, because
the message authentication code is a function of the
unknown secret key and other varying values, which
are unknown. These approaches also approximate
certain “provably secure” constructions developed by
Bellare, Ran Canetti and Krawczyk (4.

(As a disclaimer, we can imagine hash functions for
which this construction still doesn’t solve the
cryptanalytic problems because information from the
inner application leaks to the outer one, but this
seems more of a pathological case.)

The third approach may be more vulnerable to at-
tack than the first since there is only one key and so

CRYPTOBYTESESPRING 1995 — THE TECHNICAL NEWSLETTER OF RSA LABORATORIES

any information revealed from the outer application
of the hash function compromises security, but we
know of no such attack on MD5.

Although the third approach has a shorter key size
than the first, the first could also be implemented
with a 128-bit key, without

authentication code. We do not consider this an in-
trinsic problem with this option, since MD5 is de-
signed to resist collisions, at least to a certain level
of difficulty. Nevertheless, we have no objection if
the design of a message authentication code raises
that level even further.)

any apparent loss in security.

For instance, the keys &,
and k, could be derived

from a single 128-bit key
kas k,=MD5 (k- a) and
k, = MD5 (k-), where a
and B are distinct constants.

The second approach (see
Figure 3) is somewhat like
triple encryption, where the
first and third keys are the
same (the second key is the
message). The padding on

the key at the beginning en-
sures that overall, there are at least two iterations of
the compression function. Message extension in the
prefix approach is solved by the key at the end, and
the cryptanalysis of the suffix approach is solved by
the key at the beginning. (Without the padding, very
short messages might be vulnerable.)

It remains to be seen which, if any, of these three
approaches is adopted.

Interestingly, one of the approaches we had been pre-
viously promoting is not among the three we recom-
mended to the TPSEC working group, based on our
concerns about key exposure. That approach, MD5
(k - MD5(m)), had the advantages that the inner
MDS5 is applied to the message in the familiar way —
as a hash function — and the outer MD5 is applied
to a fixed-length value, thereby avoiding message
extension. However, since MD5 (m) is known, the
door is open for possible cryptanalysis of the outer
MDS5 to recover the key k. While we once again do
not have an attack that recovers the key, we felt as a
general design principle that the key should be bet-
ter concealed.

(Another concern with this approach, observed by
some, is that collisions in MD5 —two messages with
the same hash — result in collisions in the message

MD5(MD5 (k - m)), which again applies MD5 in a
familiar way. However, in terms of “provability”
under certain assumptions it is less attractive than
the three we recommended. (This does not mean
that the approach is insecure, simply that the
assumptions required for it to be secure are more
complicated.)

As the IBM team has pointed out to us, all of the
approaches are vulnerable to a chosen message at-
tack involving about 204 chosen messages. This gen-
eral attack exploits the iterative structure of the mes-
sage authentication code and applies to MACs based
on encryption functions as well. The basic idea is
that if two messages @, - band a; - b have the same
MAC, then it is possible that the “collision” occured
before b was processed, so that for any ¢, a; - ¢ and
a; - ¢ have the same MAC. Having found two mes-
sages d; - band a; - b with the same MAC, the oppo-
nent asks for the MAC of g, - ¢ for some c, thereby
obtaining (fraudulently) the MAC of ¢, - c.

As chosen message attacks go, 2% is quite a large
number, and we know of no general way to extend
the attack to known messages, except when the
known messages are all the same length and end with
the same suffix. Full details are given in[Y,

=g

Key Key Padding Message Key
MD5
MAC
Yet another approach that we considered was Figure 3.

Anotherrecom-
mendedapprocch
1o message
authentication
with MD5.

Here, the key is
128 bits long and
the key padding

is 384 bits long.

THE TECHNICAL NEWSLETTER OF RSA LABORATORIES — SPRING 199SCRYPTOBYTES

Starting over

So far, our research has focused on adapting an exist-
ing hash function to message authentication, which
is a practical solution, since MD5 is already trusted,
and software for MD5 is widely available. For the
long term, designing a message authentication code
from scratch is perhaps a better solution.

Mihir Bellare, Roch Guérin and Phillip Rogaway [4
describe techniques for such message authentication
that are “provably secure,” under certain assumptions
about the underlying functions. Their techniques are
also highly parallelizable, a feature that the iterative
approach lacks by definition.

Bellare et al’s techniques assume the existence of a
pseudorandom function, which takes two inputs, a
key and a message block, and produces one output.
By assumption, if the key input is fixed and un-
known, it is difficult to distinguish the pseudoran-
dom function on the message block from a truly
random one in any reasonable amount of time.
(This is similar to the idea that it is difficult to find
collisions for a hash function —although it is pos-
sible because they exist, the amount of time required
is large.)

The message authentication code is computed by
combining, perhaps by bit-wise exclusive-or, the out-
puts of the pseudorandom function applied to the
blocks of the message. To maintain the ordering of
the different blocks, each block is tagged with its
position in the message. A random block is also
included for technical reasons.

Bellare et al show that if an opponent can forge mes-
sage authentication codes, even with the opportu-
nity to request message authentication codes on
many different messages, then the opponent can also
distinguish the pseudorandom function from a truly
random one. Thus, under the assumption that it is
difficult to distinguish the pseudorandom function
from a truly random one, the message authentication
code is secure.

The independent processing of the message blocks
leads to the parallelizability of this approach.

It seems that many of the concerns about designing
a message authentication code from a hash function

are a consequence of the fact that the key is pro-
cessed only once, or maybe twice. As a result, the
key is isolated, and information about it can be
obtained, or other parts of the message can be ma-
nipulated independent of the key. By contrast, in
message authentication codes based on encryption
functions, such as DES-MAC, the key is processed
at every step. In Bellare et al’s techniques, the key is
processed at every step.

We expect that MD5’s compression function or a
variant of it may be a suitable pseudorandom func-
tion for Bellare et al’s techniques, something which
further research will determine.

References

[1] M. Bellare, R. Canetti and H. Krawczyk. Keying MD5—
Message authentication via iterated pseudorandomness.
In preparation.

[2] Mihir Bellare, Roch Guérin and Phillip Rogaway. XOR
MACs: New methods for message authentication using block
ciphers. Accepted to Crypto '95.

[3] Mihir Bellare, Joe Kilian and Phillip Rogaway. The
security of cipher block chaining. In Yvo G. Desmedt,
editor, Advances in Cryptology— Crypto 94, volume 839
of Lecture Notes in Computer Science, pages 341-358.
Springer-Verlag, New York, 1994.

[4] L.B. Damgard. A design principle for hash functions. In
G. Brassard, editor, Advances in Cryptology: Proceedings
of Crypto "89, volume 435 of Lecture Notes in Computer
Science, pages 416-427. Springer-Verlag, New York, 1990.

[5] J. Galvin and K. McCloghrie. RFC 1446: Security
Protocols for version 2 of the Simple Network Management
Protocol (SNMPv2). Trusted Information Systems and
Hughes LAN Systems, April 1993.

[6] R.Merkle. One way hash functions and DES. In G. Bras-
sard, editor, Advances in Cryptology: Proceedings of Crypto
‘89, volume 435 of Lecture Notes in Computer Science,
pages 428-446. Springer-Verlag, New York, 1990.

[7] National Institute of Standards and Technology (formerly
National Bureau of Standards). FIPS PUB 113: Computer
Data Authentication. May 30, 1985.

[8] National Institute of Standards and Technology. FIPS
PUB 180: Secure Hash Standard (SHS). May 11, 1993.

[9] R.Rivest. RFC 1321: The MD5 Message-Digest Algorithm.
RSA Data Security, Inc., April 1992.

[10] Gene Tsudik. Message authentication with one-way hash
functions. ACM Computer Communications Review,
22(5):29-38, 1992.

=g

CRYPTOBYTESESPRING 1995 — THE TECHNICAL NEWSLETTER OF RSA LABORATORIES

The RCS Encryption Algorithm®

Ronald L. Rivest
MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139 USA

Intfroduction

RC5 is a fast symmetric block cipher suitable for hard-
ware or software implementations. A novel feature
of RC5 is the heavy use of data-dependent rotations.
RC5 has a variable-length secret key, providing flex-
ibility in its security level.

RC5 is a parameterized algorithm, and a particular
RC5 algorithm is designated as RC5-w/r/b. We
summarize these parameters below:

w The word size, in bits. The standard value is 32
bits; allowable values are 16, 32, and 64. RC5
encrypts two-word blocks: plaintext and
ciphertext blocks are each 2w bits long.

r The number of rounds. Allowable values are
0,1, ..., 255.

b The number of bytes in the secret key K. Allow-
able values of bare 0, 1, ..., 255.

RC5 uses an “expanded key table” S, derived from the
user’s supplied secret key K. The sizet of table S depends
on the number 7 of rounds: § has ¢ = 2(#+1) words.

It is not intended that RC5 be secure for all possible
parameter values. On the other hand, choosing the
maximum parameter values would be overkill for most
applications.

We provide a variety of parameter settings so that
users may select an encryption algorithm whose
security and speed are optimized for their application,
while providing an evolutionary path for adjusting
their parameters as necessary in the future. As an
example, RC5-32/16/7 is an RC5 algorithm with the
number of rounds and the length of key equivalent to

Professor Ronald L. Rivest is associate director of MIT’s
Laboratory for Computer Science. He can be contacted at
rivest@theory.lcs.mit.edu.

A complete paper on RC5 was presented at the Leuwven Algorithms
Wortkshop in December 1994. An on-line version of the complete
paper can be oblained by fip orweb. FIP: under pub/rivest/rc5 on
theory.lcs.mit.edu; WEB: under btip.//theory.lcs.mit.edu/~rivest.
Parts of this article originally appeared in Dr. Dobb’s Journal,
Copyright © 1995 Miller Freeman Inc.

DES. Unlike unparameterized DES, however, an RC5
user can easily upgrade the above choice to an 80-bit
key by moving to RC5-32/16/10.

As technology improves, and as the true strength of
RCS5 algorithms becomes better understood through
analysis, the most appropriate parameters can be cho-
sen. We propose RC5-32/12/16 as providing a “nomi-
nal” choice of parameters. Further analysis is needed
to analyze the security of this choice.

Overview of the Algorithm

RC5 consists of three components: a key expansion
algorithm, an encryptionalgorithm, and a decryption
algorithm. These algorithms use the following three
primitive operations (and their inverses).

1. Two’s complement addition of words, denoted by
“+”. This is modulo-2% addition.

2. Bit-wise exclusive-OR of words, denoted by 2.

3. A left-rotation (or “left-spin”) of words: the
rotation of word x left by y bits is denoted x < y.
Only the lg(w) low-order bits of y are used to
determine the rotation amount, so that y is
interpreted modulo .

Encryption and Decryption

We assume that the input block is given in two w-bit
registers A and B. We also assume that key-expan-
sion has already been performed, so that the array
S[0...-1] has been computed. Below is the encryp-
tion algorithm in pseudo-code. The output is also
placed in registers A and B.

A=A+ 5[0

B=B+[1];

FOR i = 1 TO 7 DO
A= (4= B) <« B) + 2],
B=((BzA A + J2«+1];

We note the exceptional simplicity of this five-line
algorithm. We also note that each RC5 round up-
dates both registers A and B, whereas a “round” in
DES updates only half of its registers. An RC5 “half-
round” (one of the assignment statements updating
A or Bin the body of the loop above) is thus perhaps
more analogous to a DES round.

The decryption algorithm can be easily derived from
the encryption algorithm.

*RCS5 and
RSA-RCS5 are
registered
trademanrks of
RSA Data
Security, Inc.

Patent pending.

As technology
improves, and
as the true
strength of
RC5 algorithms
becomes better
understood
through analysis,
the most
appropriate
parameters
can be chosen.

THE TECHNICAL NEWSLETTER OF RSA LABORATORIES — SPRING 1995ECRYPTOBYTES

The encryption
algorithm is
very compact,
and can be
coded efficiently
in assembly
language

on most
processors.

A distinguishing
feature of RC5
is its heavy

use of data-
dependent
rotations

Key Expansion

The key-expansion routine expands the user’s secret
key K to fill the expanded key array S, so that S re-
sembles an array of # = 2(7+1) random binary words
determined by K. The key expansion algorithm uses
two “magic constants” and consists of three simple
algorithmic parts.

The key-expansion algorithm uses two word-size
binary constants P, and Q,,. They are defined for
arbitrary w as follows:

P, = Odd((e-2)2)
Q,, = Odd((p-1)2%)

where
e =2.718281828459... (base of natural logarithms)
@=1.618033988749... (golden ratio),

and where Odd(x) is the odd integer nearest to x
(rounded up if x is an even integer, although this won’t
happen here).

The first algorithmic step of key expansion is to copy
the secret key K[0...h-1] into an array Z[0...c-1] of
¢ = Ub/u+ words, where u=u/8 is the number of bytes/
word. This operation is done in a natural manner,
using # consecutive key bytes of K to fill up each suc-
cessive word in L, low-order byte to high-order byte.
Any unfilled byte positions of L are zeroed.

The second algorithmic step of key expansion is to
initialize array S'to a particular fixed (key-indepen-
dent) pseudo-random bit pattern, using an arithmetic
progression modulo 2¢ determined by the “magic con-
stants” P, and Q,. Since Q,, is odd, the arithmetic
progression has period 2%.

S[O] =P,

FOR i = 1TO #-1 DO

S[Z] =5{i—1] + Qus

The third algorithmic step of key expansion is to mix
in the user’s secret key in three passes over the arrays
S and L. More precisely, due to the potentially differ-
ent sizes of S and Z, the larger array will be processed
three times, and the other may be handled more times.

DO 3*max(f,c) TIMES:
A=5i= (i +A4+ B «< 3
B=I[j] =U[j]] +A4+ B <« (A+B);
i=(i+ 1) mod(®;
j=@G+ 1 mod(o),

The key-expansion function has a certain amount of
“one-wayness”: it is not so easy to determine K from S.

Speed

The encryption algorithm is very compact, and can
be coded efficiently in assembly language on most
processors. The table Sis accessed sequentially, mini-
mizing issues of cache size. The RC5 encryption
speeds obtainable are yet to be fully determined. For
RC5-32/12/16 on a 90MHz Pentium, a preliminary
C++ implementation compiled with the Borland
C++ compiler (in 16-bit mode) performs a key-setup
in 220 microseconds and performs an encryption in
22 microseconds (equivalent to 360,000 bytes/sec).
These timings can presumably be improved by more
than an order of magnitude using a 32-bit compiler
and/or assembly language—an assembly-language
routine for the ‘486 can perform each round in eight
instructions.

Security

A distinguishing feature of RC5 is its heavy use of data-
dependent rotations—the amount of rotation performed
is dependent on the input data, and is not predeter-
mined.

The encryption/decryption routines are very simple.
While other operations (such as substitution opera-
tions) could have been included in the basic round
operations, our objective is to focus on the data-de-
pendent rotations as a source of cryptographic strength.

Some of the expanded key table Sis initially added to
the plaintext, and each round ends by adding expanded
key from S to the intermediate values just computed.
This assures that each round acts in a potentially dif-
ferent manner, in terms of the rotation amounts used.
The xor operations back and forth between4 and B
provide some avalanche properties, causing a single-
bit change in an input block to cause multiple-bit
changes in following rounds.

The use of variable rotations helps defeat differential
cryptanalysis (Biham/Shamir 1) and linear crypt-

CRYPTOBYTESESPRING 1995 — THE TECHNICAL NEWSLETTER OF RSA LABORATORIES

analysis (Matsui [¥), since bits are rotated to “ran-
dom” positions in each round; Kaliski and Yin ana-
lyze the security of RC5 against both types of crypt-
analysis[4. For the standard word size w = 32, their
differential attack can be applied to RC5 with less
than 12 rounds and their linear attack can be applied
to RC5 with less than six rounds. An assessment of
the RC5 encryption algorithm will appear in the Sum-
mer issue of CryptoBytes; meanwhile, I invite the
reader to help determine the strength of RC5.

References

[1] E. Biham and A. Shamir. Differential Cryptanalysis of the Data
Encryption Standard. Springer-Verlag, New York, 1993.

[2] B. S. Kaliski Jr. and Y. L. Yin. On differential and linear
cryptanalysis of the RC5 encryption algorithm. Accepted to
Crypto '95.

[3] M. Matsui. The first experimental cryptanalysis of the Data
Encryption Standard. In Y. G. Desmedt, editor, Advances in
Cryptology— Crypto’94, volume 839 of Lecture Notes in Com-
puter Science, pages 1-11, Springer-Verlag, New York, 1994.

=g

N E W 3§ A N D

N F O R M A T 1 O N

X9F1 Considers Triple-DES Standard

The ANSI-accredited X9F1 working group has be-
gun work on a standard for bulk data encryption for
financial services based on so-called triple-DES, a
method of extending the security of the Data Encryp-
tion Standard by encrypting three times with DES.

While triple-DES has been a standard mechanism for
several years for encrypting keys as part of ANSI
X9.17, attention has turned recently to triple-DES
for bulk data encryption, in response to the decreas-
ing security of DES’s 56-bit key and the shortage of
trusted alternatives to DES.

The specifics of the standard are yet to be determined,
but two recommendations by cryptography experts
are likely to have strong influence: that the three en-
cryptions involve three different keys (X9.17 involves
only two, where the first and third encryption is with
the same key), and that modes of operation for bulk
data encryption, such as cipher block chaining, be
built around triple-DES as a primitive.

Modes involving single-DES instead of triple-DES as
a primitive, such as encrypting three times with single-
DES in cipher block chaining mode, have been shown
by Eli Biham in the past year to be potentially no
stronger than single-DES against certain attacks. En-
crypting with triple-DES in cipher block chaining
mode is not vulnerable to those attacks.

And while two-key triple-DES is significantly stron-
ger than single-DES, it has a certain “certificational
weakness” observed by Merkle and Hellman in 1980
which was revealed in 1990 as a known-plaintext at-

tack by Wiener and van Oorschot. No such attacks are
known for three-key triple-DES.

Balloting of the standard is expected in 1996.

RSA Laboratories Publishes PKCS #11
Culminating a year of development, RSA Laborato-
ries has published the latest in its series of Public-Key
Cryptography Standards, PKCS #11: Cryptographic
Token Interface Standard (Cryptoki).

PKCS #11 specifies an application programming in-
terface (APD called Cryptoki to devices which hold
cryptographic information and perform cryptographic
functions, such as ISO smart cards, PCMCIA cards,
and the SmartDisk. Cryptoki isolates applications from
the device technology, presenting a common, logical
view of the device called a “cryptographic token.”

The interface supports a wide range of cryptographic
mechanism