
WARNING!

This draft document is the property of the Internet Software

Consortium (ISC) and contains ISC proprietary information.

It is being distributed for review purposes ONLY. The

information in this document is subject to change.

DO NOT REDISTRIBUTE

BINDv9 Administrator Reference Manual
�
�
�
��

Section 1: Introduction 1
Scope of Document .1
Organization of This Document .1
Conventions Used in This Document .1
Discussion of Domain Name System (DNS) Basics and BIND .2
Nameservers .2
Types of Zones .3
Servers .4
Master Server .4
Slave Server .4
Caching Only Server .4
Forwarding Server .4
Stealth Server .5

Section 2: BIND Resource Requirements 7
Hardware requirements .7
CPU Requirements .7
Memory Requirements .7
Nameserver Intensive Environment Issues .7
Operating Systems Supported by the Internet Software Consortium .7

Section 3: Nameserver Configuration 9
Sample Configuration and Logging .9
Load Balancing and Round Robin .10
Notify .10
Nameserver Operations .11
Tools for Use With the Nameserver Daemon .11
Diagnostic Tools .11
Administrative Tools .12
Monitoring Tools .12

Section 4: Advanced Concepts 13
Dynamic Update .13
Incremental Transfer (IXFR) .13
Split DNS .13
TSIG .16
Generate Shared Keys for Each Pair of Hosts .17
Automatic Generation .17
Manual Generation .17
Copying the Shared Secret to Both Machines .17
Informing the Servers of the Key's Existence .17
Instructing the Server to Use the Key .18
TSIG Key Based Access Control .18
Errors .18
DNSSEC .19
IPv6 .21
DRAFT February 1, 2000 i

BINDv9 Administrator Reference Manual
�
�
�
��

IPv6 addresses (A6) .21
Name to Address Lookup .23
Address to Name Lookup .23
Using DNAME for Delegation of IPv6 Reverse Addresses .24

Section 5: BINDv9 Configuration Reference 25
Configuration file elements .25
Address Match Lists .26
Syntax .26
Definition and Usage .26
Comment Syntax .27
Syntax .27
Definition and Usage .27
Configuration File Grammar .28
acl Statement Grammar .29
acl Statement Definition and Usage .29
control Statement Grammar .30
controls Statement Definition and Usage .30
include Statement Grammar .30
include Statement Definition and Usage .30
key Statement Grammar .30
key Statement Definition and Usage .31
logging statement grammar .31
logging statement definition and usage .31
options Statement Grammar .32
options Statement Definition and Usage .33
Boolean Options .34
Forwarding .37
Name Checking .37
Access Control .38
Interfaces .39
Query Address .39
Zone Transfers .39
Resource Limits .42
Periodic Task Intervals .43
Topology .43
The sortlist Statement .44
RRset Ordering .45
Tuning .46
Deprecated Features .47
server Statement Grammar .47
server Statement Definition and Usage .47
trusted-keys Statement Grammar .48
trusted-keys Statement Definition and Usage .48
The channel Phrase .48
The category Phrase .51
ii February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

view Statement Grammar .52
view Statement Definition and Usage .52
zone Statement Grammar .52
zone Statement Definition and Usage .54
Zone Types .54
Class .54
Zone Options .56
The Zone File .57
Types of Resource Records and When to Use Them .57
Resource Records .57
Textual expression of RRs .59
Discussion of MX Records .60
Setting TTLs .61
Inverse Mapping in IPv4 .62
Other Zone File Directives .62
The $ORIGIN Directive .62
The $INCLUDE Directive .62
The $TTL Directive .63
BIND Master File Extension: the $generate Directive .63
Discussion of Nameserver Signals .63

Section 6: Security Considerations 65
Access Control Lists .65
chroot and set_uid (for UNIX servers) .65
The chroot environment .66
Using set_uid/set_gid . 66
Dynamic updates .66

Section 7: Troubleshooting 67
Common Log Messages and What They Mean .67
Common Problems .68
It's not working; how can I figure out what’s wrong? .68
Incrementing and Changing the Serial Number .68
Where Can I Get Help? .69

Appendix A: Acknowledgements 73
A Brief History of the DNS and BIND .73

Appendix B: Historical DNS Information 75
Classes of resource records .75

Appendix C: Bibliography (and Suggested Reading) 77
Request for Comments (RFCs) .77
Internet Drafts .79
Electronic Mail Communication .79
Other BIND Documents .80
DRAFT February 1, 2000 iii

BINDv9 Administrator Reference Manual
�
�
�
��
iv February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

Section 1. Introduction

The Internet Domain Name System (DNS) consists of the syntax to specify the names of entities in
the Internet in a hierarchical manner, the rules used for delegating authority over names, and the
system implementation that actually maps names to Internet addresses. DNS data is maintained in
a group of distributed hierarchical databases.

1.1 Scope of Document

The Berkeley Internet Name Domain (BIND) implements an Internet nameserver for a
number of operating systems. This document provides basic information about the
installation and care of the Internet Software Consortium (ISC) BIND version 9 software
package for system administrators.

1.2 Organization of This Document

In this document, Section 1 introduces the basic DNS and BIND concepts. Section 2
describes resource requirements for running BIND in various environments. Information in
Section 3 is task-oriented in its presentation and is organized functionally, to aid in the
process of installing the BINDv9 software. The task-oriented section is followed by Section
4, which contains more advanced concepts that the system administrator may need for
implementing certain options. The contents of Section 5 are organized as in a reference
manual to aid in the ongoing maintenance of the software. Section 6 addresses security
considerations, and Section 7 contains troubleshooting help. The main body of the document
is followed by several Appendices which contain useful reference information, such as a
Glossary and a Bibliography, as well as historic information related to BIND and the
Domain Name System.

1.3 Conventions Used in This Document

In this document, the following general typographic conventions are used:

The following conventions are used in descriptions of the BIND configuration file:

When describing: Style Used:

A pathname, filename, URL, hostname, or
mailing list name

Times Italic

A new term or concept Times Italic

Literal user input Courier Bold

Variable user input Courier Italic

Program output Courier Plain

When describing: Style Used:

keywords Arial Bold

variables Arial Italic
DRAFT February 1, 2000 1

BINDv9 Administrator Reference Manual
�
�
�
��

1.4 Discussion of Domain Name System (DNS) Basics and BIND

The purpose of this document is to explain the installation and basic upkeep of the BIND
software package, and we begin by reviewing the fundamentals of the domain naming
system as they relate to BIND. BIND consists of a nameserver (or “daemon”) called named
and a resolver library. The BIND server runs in the background, servicing queries on a
well known network port. The standard port for UDP and TCP, usually port 53, is specified
in /etc/services. The resolver is a set of routines residing in a system library that
provides the interface that programs can use to access the domain name services.

1.4.1 Nameservers

A nameserver (NS) is a program that stores information about named resources and
responds to queries from programs called resolvers which act as client processes.
The basic function of an NS is to provide information about network objects by
answering queries.

With the nameserver, the network can be broken into a hierarchy of domains. The
name space is organized as a tree according to organizational or administrative
boundaries. Each node of the tree, called a domain, is given a label. The name of the
domain is the concatenation of all the labels of the domains from the root to the
current domain. This is represented in written form as a string of labels listed from
right to left and separated by dots. A label need only be unique within its domain.
The whole name space is partitioned into areas called zones, each starting at a
domain and extending down to the leaf domains or to domains where other zones
start. Zones usually represent administrative boundaries. For example, a domain
name for a host at the company Example, Inc. would be:

ourhost.example.com

The top level domain for corporate organizations is com; example is a subdomain of
.com; and ourhost is the name of the host.

The specifications for the domain nameserver are defined in RFC1034, RFC1035
and RFC974. These documents can be found in
/usr/src/etc/named/doc in 4.4BSD or are available via FTP from
ftp://www.isi.edu/in-notes/ or via the Web at http://www.ietf.org/rfc/. (See Appendix
C for complete information on finding and retrieving RFCs.) It is also recommended
that you read the related man pages: named and resolver.

“meta-syntactic” information (within brackets
when optional)

Courier Italic

Command line input Courier Bold

Program output Courier Plain

Optional input Text is enclosed in
square brackets
2 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

1.4.2 Types of Zones

As we stated previously, a zone is a point of delegation in the DNS tree. A zone
consists of those contiguous parts of the domain tree for which a domain server has
complete information and over which it has authority. It contains all domain names
from a certain point downward in the domain tree except those which are delegated
to other zones. A delegation point has one or more NS records in the parent zone,
which should be matched by equivalent NS records at the root of the delegated zone
(i.e., the “@” name in the zone file).

To properly operate a nameserver, it is important to understand the difference
between a zone and a domain.

As an example, consider the example.com domain, which includes names such as
host.aaa.example.com and host.bbb.example.com even though the example.com
zone includes only delegations for the aaa.example.com and bbb.example.com
zones. A zone can map exactly to a single domain, but could also include only part
of a domain, the rest of which could be delegated to other nameservers. Every name
in the DNS tree is a domain, even if it is terminal, that is, has no subdomains. Every
subdomain is a domain and every domain except the root is also a subdomain. The
terminology is not intuitive and it is suggested that you read RFCs 1033, 1034, and
1035 to gain a complete understanding of this difficult and subtle topic.

Though BIND is a Domain Nameserver, it deals primarily in terms of zones. The
primary and secondary declarations in the named.conf file specify zones, not
domains. When you ask some other site if it is willing to be a secondary server for
your domain, you are actually asking for secondary service for some collection of
zones.

Each zone will have one primary master (also called primary) server which loads
the zone contents from some local file edited by humans or perhaps generated
mechanically from some other local file which is edited by humans. There there will
be some number of secondary master servers, which load the zone contents using
the DNS protocol (that is, the secondary servers will contact the primary and fetch
the zone data using TCP). This set of servers—the primary and all of its
secondaries—should be listed in the NS records in the parent zone and will
constitute a delegation. This set of servers must also be listed in the zone file itself,
usually under the @ name which indicates the top level or root of the current zone.
You can list servers in the zone’s top-level @ NS records that are not in the parent’s
NS delegation, but you cannot list servers in the parent’s delegation that are not
present in the zone’s @.

Any servers listed in the NS records must be configured as authoritative for the
zone. A server is authoritative for a zone when it has been configured to answer
questions for that zone with authority, which it does by setting the “authoritative
answer” (AA) bit in reply brackets. A server may be authoritative for more than one
zone. The authoritative data for a zone is composed of all of the Resource Records
(RRs)—the data associated with names in a tree-structured name space—attached to
DRAFT February 1, 2000 3

BINDv9 Administrator Reference Manual
�
�
�
��

all of the nodes from the top node of the zone down to leaf nodes or nodes above
cuts around the bottom edge of the zone.

Adding a zone as a type primary or type slave will tell the server to answer
questions for the zone authoritatively. If the server is able to load the zone into
memory without any errors it will set the AA bit when it replies to queries for the
zone. See RFCs 1034 and 1035 for more information about the AA bit.

1.4.3 Servers

A DNS server can be primary for some zones and secondary for others or can be
only a primary, or only a secondary, or can serve no zones and just answer queries
via its cache. Primary servers are often also called masters and secondary servers
are often also called slaves. Both primary/master and secondary/slave servers are
authoritative for a zone.

All servers keep data in their cache until the data expires, based on a TTL (Time To
Live) field which is maintained for all resource records.

1.4.3.1 Master Server

The primary master server is the ultimate source of information about a
domain. The primary master is an authoritative server configured to be
the source of zone transfer for one or more secondary servers. The
primary master server obtains data for the zone from a file on disk.

1.4.3.2 Slave Server

A slave server, also called a secondary server, is an authoritative server
that uses zone transfers from the primary master server to retrieve the
zone data. Optionally, the slave server obtains zone data from a cache on
disk. Slave servers provide necessary redundancy. All secondary/slave
servers are named in the NS resource records (RRs) for the zone.

1.4.3.3 Caching Only Server

Some servers are caching only servers. This means that the server caches
the information that it receives and uses it until the data expires. A
caching only server is a server that is not authoritative for any zone. This
server services queries and asks other servers, who have the authority, for
the information it needs.

1.4.3.4 Forwarding Server

Instead of interacting with the nameservers for the root and other
domains, a forwarding server always forwards queries it cannot satisfy
from its authoritative data or cache to a fixed list of other servers. The
forwarded queries are also known as recursive queries, the same type as a
client would send to a server. There may be one or more servers
forwarded to for a given zone and they are queried in turn until the list is
4 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

exhausted. A forwarding server is typically used when you do not wish
all the servers at a given site to interact with the rest of the Internet
servers. A typical scenario would involve a number of internal DNS
servers, and an internet firewall. The servers which cannot pass packets
through the firewall would forward to the server which can, which would
ask the internet DNS servers on the internal server’s behalf. An added
benefit of using the forwarding feature is that the central machine
develops a much more complete cache of information that all the
workstations can take advantage of.

There is no prohibition against declaring a server to be a forwarder even
though it has primary and/or secondary zones as well; the effect will still
be that anything in the local server’s cache or zones will be answered, and
anything else will be forwarded using the forwarders list.

1.4.3.5 Stealth Server

A stealth server is a primary master server that is neither listed in any root
zone files nor advertised as being a server. It is set up to hide the true
master server for a zone in order to provide some measure of security, or
protect the zone from Denial of Service (DoS) attacks, or reduce the load
on the main server, or any number of other reasons. It is also used to
provide some measure of network redundancy. Slave servers load zone
data from it.
DRAFT February 1, 2000 5

BINDv9 Administrator Reference Manual
�
�
�
��
6 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

Section 2. BIND Resource Requirements

2.1 Hardware requirements

DNS hardware requirements have traditionally been quite modest. For many installations,
servers that have been pensioned off from active duty have performed admirably as DNS
servers.

The DNSSEC and IPv6 features of BINDv9 may prove to be quite CPU intensive however,
so organizations that make heavy use of these features may wish to consider larger systems
for these applications. BINDv9 is now fully multithreaded, allowing full utilization of
multiprocessor systems, for installations that need it.

2.2 CPU Requirements

CPU requrements for BINDv9 start at i486 for serving of static zones without caching, to
enterprise-class machines if you intend to process many dynamic updates and DNSSEC
signed zones, serving many thousands of queries per second.

2.3 Memory Requirements

For BIND 8.x and older versions, the memory of the server had to be large enough to fit the
cache and zones loaded off disk. BINDv9 will provide methods to set resource limits, at the
expense of limiting the cache and causing more DNS traffic. It is still good practice to have
enough memory to load all zone and cache data into memory—unfortunately, the best way
to determine this for a given installation is to watch the nameserver in operation. After a few
weeks, the server process should reach a relatively stable size where entries are expiring
from the cache as fast as they are being inserted. Ideally, the resource limits for BINDv9
should be set higher than this stable size.

2.4 Nameserver Intensive Environment Issues

For nameserver intensive environments, there are two alternative configurations that may be
used. The first is where clients and any second-level internal nameservers query a main
nameserver, which has enough memory to build a large cache. This approach minimizes the
bandwidth used by external name lookups. The second alternative is to set up second-level
internal nameservers to make queries independently. In this configuration, none of the
individual machines needs to have as much memory or CPU power as in the first alternative,
but this has the disadvantage of making many more external queries, as none of the
nameservers share their cached data.

2.5 Operating Systems Supported by the Internet Software Consortium

ISC BINDv9 compiles and runs on the following operating systems:

IBM AIX 4.3

Compaq Digital/Tru64 UNIX 4.0, 5.0

HP HP-UX 11.0
DRAFT February 1, 2000 7

BINDv9 Administrator Reference Manual
�
�
�
��

SGI IRIX 6.4

Red Hat Linux 6.0, 6.1

Sun Solaris 2.6, 7

FreeBSD 3.3

NetBSD 1.4.1 or 1.4.2, with MIT pthreads
8 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

Section 3. Nameserver Configuration

In this section we provide some suggested configurations along with guidelines for their use. We
also address the topic of reasonable option setting.

3.1 Sample Configuration and Logging

logging {
 channel named_log {
 file “logs/named.log”;
 print-time yes;
 print-category yes;
 print-severity yes;
 severity info;
};
 channel security_log {
 file “logs/security.log” versions 7 ;
 print-time yes;
};
 category default { named_log; default_debug; };
 category security { security_log };
};
// The two corporate subnets. Use real IP numbers here in the real world.
acl corpnet { 192.168.4.0/24; 192.168.7.0/24; };
// The options statement.
options {
 directory “/etc/namedb”; // Directory
 pid-file “named.pid”; // Put .pid file in named directory.
 named-xfer “/path/to/named-xfer”; // Where is our named-xfer ?
 check-names master fail; // Fail on db errors in master zones.
 check-names slave warn; // Warn about db errors
 // in slave zones.
 check-names response warn; // Warn about invalid responses
 use-id-pool yes; // Help prevent spoofing
 host-statistics yes; // Keep track of hosts/servers
 // we’ve talked to.
 listen-on { 192.168.7.20; }; // Listen on this address.
 query-source address 192.168.7.20 port 53 ;
 // Source queries from port 53
 // to get past firewall.
 allow-transfer { none; }; // Don’t allow anyone to
 // transfer zones.
 allow-query { corpnet; }; // Allow only corpnets to query server.
 // Helps prevent DoS, spoofing.
 allow-recursion { corpnet; }; // Same, except this is for recursion.
};

include “keys.conf”; // Include a keys.conf with
 // TSIG/DNSSEC keys.
 // Shouldn’t be readable to anyone
 // except BIND user.
zone “.”{ type hint; file “local/named.root”; };
 // root hints

zone “0.0.127.IN-ADDR.ARPA” {
DRAFT February 1, 2000 9

BINDv9 Administrator Reference Manual
�
�
�
��

 type master; file “local/localhost.db”; notify no;
 // localhost
};

zone “example.com” { // Example zone for “example.com”.
type master; // It’s a master zone.
file “m/example.com.db”; // The file is here.
allow-query { any; }; // Allow anyone to query.
allow-transfer { corpnet; }; // Only allow corp nets to transfer zone.
};

zone “offsite.example.com” { // Example zone for an off-site corp zone.
type slave; // It’s a slave zone.
masters { 192.168.4.12; }; // The master is at this address.
file “s/offsite.example.com.db”; // The file is here.
notify no; // Don’t worry about NOTIFYing.
allow-query { any; }; // Allow anyone to query.
;

3.2 Load Balancing and Round Robin

Primitive load balancing can be achieved in DNS using multiple A records for one name.

For example, if you have three WWW servers with network addresses of 10.0.0.1, 10.0.0.2
and 10.0.0.3, a record like the following means that clients will connect to each machine one
third of the time:

When a resolver queries for these records, BIND will rotate them and respond to the query
with the records in a different order. This is known as cyclic or round-robin ordering.In the
example above, the first client will receive the records in the order 1,2,3; the second client
will receive them in the order 2,3,1; and the third 3,1,2. Most clients will use the first record
returned, and discard the rest.

For more detail on ordering responses, check the rrset-order substatement in the options
statement in “RRset Ordering” on page 45.

3.3 Notify

DNS Notify is a mechanism that allows master nameservers to notify their slave servers of
changes to a zone’s data and that a query should be initiated to discover the new data. DNS
Notify is turned on by default.

DNS Notify is fully documented in RFC 1996. See also the description of the zone option
also-notify in section 3.1.3.7, “Zone transfers.”

Name TTL CLASS TYPE Resource Record (RR) Data

www 10m IN A 10.0.0.1

10m IN A 10.0.0.2

10m IN A 10.0.0.3
10 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

3.4 Nameserver Operations

3.4.1 Tools for Use With the Nameserver Daemon

There are several indispensable diagnostic, administrative and monotoring tools
available to the system administrator for controlling and debugging the nameserver
daemon. We describe several in this section

3.4.1.1 Diagnostic Tools

dig

The domain information groper (dig) is a command line tool that can be
used to gather information from the Domain Name System servers. Dig
has two modes: simple interactive mode for a single query, and batch
mode which executes a query for each in a list of several query lines. All
query options are accessible from the command line.

Usage

dig [@server] domain [<query-type>] [<query-class>]
[+<query-option>] [-<dig-option>] [%comment]

The usual simple use of dig will take the form
dig @server domain query-type query-class

For more information and a list of available commands and options, see
the dig man page.

host

The host utility provides a simple DNS lookup using a command-line
interface for looking up Internet hostnames. Bu default, the utility
interprets between host names and Internet addresses, but its functionality
can be extended with the use of options.

Usage
host [-l] [-v] [-w] [-r] [-d] [-t querytype] [-a] host [server]

nslookup

nslookup is a program used to query Internet domain nameservers.
nslookup has two modes: interactive and non-interactive. Interactive
mode allows the user to query nameservers for information about various
hosts and domains or to print a list of hosts in a domain. Non-interactive
mode is used to print just the name and requested information for a host or
domain.

Usage
nslookup [-option ...] [host-to-find | -[server]]
DRAFT February 1, 2000 11

BINDv9 Administrator Reference Manual
�
�
�
��

Interactive mode is entered when no arguments are given (the default
nameserver will be used) or when the first argument is a hyphen (-) and
the second argument is the host name or Internet address of a nameserver.

Non-interactive mode is used when the name or Internet address of the
host to be looked up is given as the first argument. The optional second
argument specifies the host name or address of a nameserver.

The options listed under the “set” command (see the nslookup man page
for details) can be specified in the .nslookuprc file in the user’s home
directory if they are listed one per line. Options can also be specified on
the command line if they precede the arguments and are prefixed with a
hyphen. For example, to change the default query type to host
information, and the initial time-out to 10 seconds, type:
nslookup -query=hinfo -timeout=10

For more information and a list of available commands and options, see
the nslookup man page.

3.4.1.2 Administrative Tools

Administrative tools play an integral part in the management of a server.

ndc

The name daemon control (ndc) program is a shell script utility that
allows the system administrator to control the operation of a nameserver.
If you run ndc without any options it will display a usage message and
prompt for commands until it reads EOF. Several commands are built into
ndc, but the full set of commands supported by the nameserver is dynamic
and should be discovered using the “help” command. Read the man page
for ndc for details on its command syntax.

Usage:

ndc [-c channel] [-l localsock] [-p pidfile] [-d] [-q] [-s] [-t]
[command]

For more information and a list of available commands and options, see
the ndc man page.

3.4.1.3 Monitoring Tools

MRTG

MRTG is primarily a router traffic grapher, but can be used to monitor
BIND DNS servers, as well. The ‘stat’ script, supplied with MRTG in the
MRTG ‘contrib/stat’ directory, can be used to monitor numbers of
queries, and counts of various sorts of responses.
12 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

Section 4. Advanced Concepts

4.1 Dynamic Update

Dynamic update is the term used for the ability under certain specified conditions to add,
modify or delete records or RRsets in the master zone files. Dynamic update is fully
described in RFC 2136.

Dynamic update is enabled by including an allow-update{} clause in the zone declaration.
You should allow as few hosts as possible to update your DNS because there is no per-RR
security. If a client is authorized to update your DNS, it can do anything with the zone file,
including deleting most of the contents or replacing records with different ones. For this
reason, many sites delegate a zone which can be dynamically updated, rather than allowing
their uppermost domain to be dynamic.

Once a zone has been made dynamic, changes can no longer be made by hand without
stopping BIND, editing the zone and then restarting BIND. This is to prevent an update
being lost, either by the zone file being changed by hand and overwritten immediately by a
dynamic update without being reread, or having a handwritten zone file overwrite a dynamic
update that has occurred while the zone file was being hand-edited.

4.1.1 Incremental Transfer (IXFR)

If dynamic update is enabled, and incremental transfer (IXFR) is also enabled, BIND will
maintain a list of changes for secondary servers to transfer, instead of having to transfer the
entire zone file.

IXFR is enabled globally by giving a filename for ixfr-base and ixfr-tmp-file, and
maintain-ixfr-base true. A server statement with the use-ixfr option set to true will
then enable incremental transfers to that server.

IXFR can only track changes made to the zone with dynamic update - no changes can be
made by editing the zone file, even with the stop-start procedure above.

4.2 Split DNS

Setting up different views, or visibility, of DNS space to internal , as opposed to external,
resolvers is usually referred to as a “Split DNS” or “Split Brain DNS” setup. There are
several reasons an organization would want to set its DNS up this way.

One common reason for setting up a DNS system this way is to hide “internal” DNS
information from “external” clients on the Internet. There is some debate as to whether or
not this is actually useful. Internal DNS information leaks out in many ways (via e-mail
headers, for example) and most savvy “attackers” can find the information they need using
other means.

Another common reason for setting up a Split DNS system is to allow internal networks that
are behind filters or RFC1918 space (reserved IP space, as documented in RFC 1918) to
DRAFT February 1, 2000 13

BINDv9 Administrator Reference Manual
�
�
�
��

resolve DNS on the Internet. Split DNS can also be used to allow mail from outside back in
to the internal network.

Here is an example of a split DNS setup:

Let’s say a company named Example, Inc. (example.com) has several corporate sites that
have an internal network with reserved IP space and an external DMZ (the demilitarized
zone, or “outside” section of a network) that is available to the public.

Example, Inc. wants its internal clients to be able to resolve external hostnames and to
exchange mail with people on the outside. The company also wants its internal resolvers to
have access to certain internal-only zones that are not available at all outside of the internal
network.

In order to accomplish this, the company will set up two sets of nameservers. One set will be
on the inside network (in the reserved IP space) and the other set will be on bastion hosts,
which are “proxy” hosts that can talk to both sides of its network, in the DMZ.

The internal servers will be configured to forward all queries, except queries for
site1.example, site2.example, site1.example.com, and site2.example.com, to the servers in
the DMZ. These internal servers will have complete sets of information for
site1.example.com, site2.example.com, site1.internal, and site2.internal.

To protect the site1.internal and site2.internal domains, the internal nameservers must be
configured to disallow all queries to these domains from any external hosts, including the
bastion hosts.

The external servers, which are on the bastion hosts, will be configured to serve the “public”
version of the site1 and site2.example.com zones. This could include things such as the host
records for public servers (www.example.com, ftp.example.com), and mail exchanger
records (a.mx.example.com and b.mx.example.com).

In addition, the public site1 and site2 .example.com zones should have special MX records
that contain wildcard (*) records pointing to the bastion hosts. This is needed because
external mail servers do not have any other way of looking up how to deliver mail to those
internal hosts. With the wildcard records, the mail will be delivered to the bastion host,
which can then forward it on to internal hosts.

Here’s an example of a wildcard MX record:
* IN MX 10 external1.example.com.

Now that they accept mail on behalf of anything in the internal network, the bastion hosts
will need to know how to deliver mail to internal hosts. In order for this to work properly,
the resolvers on the bastion hosts will need to be configured to point to the internal
nameservers for DNS resolution.

Queries for internal hostnames will be answered by the internal servers, and queries for
external hostnames will be forwarded back out to the DNS servers on the bastion hosts.
14 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

In order for all this to work properly, internal clients will need to be configured to query only
the internal nameservers for DNS queries. This could also be enforced via selective filtering
on the network.

If everything has been set properly, Example, Inc.’s internal clients will now be able to:

• Look up any hostnames in the site1 and site2 .example.com zones.

• Look up any hostnames in the site1.internal and site2.internal domains.

• Look up any hostnames on the Internet.

• Exchange mail with internal AND external people.

Hosts on the Internet will be able to:

• Look up any hostnames in the site1 and site2 .example.com zones.

• Exchange mail with anyone in the site1 and site2 .example.com zones.

Here is an example configuration for the setup we just described above. Note that this is only
configuration information; see “Sample Configuration and Logging” on page 8 for
information on how to configure your zone files.

Internal DNS server config:
acl internals { 172.16.72.0/24; 192.168.1.0/24; }; acl externals { bastion-ips-
go-here; };
options {
 ...
 ...
 forward only;
 forwarders { externals; };// forward to external servers
 allow-transfer { none; };// sample allow-transfer (no one)
 allow-query { internals; externals; };// restrict query access
 allow-recursion { internals; };// restrict recursion
 ...
 ...
};

zone “site1.example.com” { // sample slave zone
 type master;
 file “m/site1.example.com”;
 forwarders { }; // do normal iterative resolution (do not forward)
 allow-query { internals; externals; };
 allow-transfer { internals; };
};

zone “site2.example.com” {
 type slave;
 file “s/site2.example.com”;
 masters { 172.16.72.3; };
 forwarders { };
 allow-query { internals; externals; };
 allow-transfer { internals; };
};

zone “site1.internal” {
 type master;
 file “m/site1.internal”;
DRAFT February 1, 2000 15

BINDv9 Administrator Reference Manual
�
�
�
��

 forwarders { };
 allow-query { internals; };
 allow-transfer { internals; }
};

zone “site2.internal” { type slave;
 file “s/site2.internal”;
 masters { 172.16.72.3; };
 forwarders { };
 allow-query { internals };
 allow-transfer { internals; }
};

External (bastion host) DNS server config:
acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips-go-here; };
options {
 ...
 ...
 allow-transfer { none; }; // sample allow-transfer (no one)
 allow-query { internals; externals; }; // restrict query access
 allow-recursion { internals; externals; }; // restrict recursion
 ...
 ...
};

zone “site1.example.com” { // sample slave zone
 type master;
 file “m/site1.foo.com”;
 allow-query { any; };
 allow-transfer { internals; externals; };
};

zone “site2.example.com” {
 type slave;
 file “s/site2.foo.com”;
 masters { another_bastion_host_maybe; };
 allow-query { any; };
 allow-transfer { internals; externals; }
};

In the resolv.conf (or equivalent) on the bastion host(s):
search ...
nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4

4.3 TSIG

Information about TSIG in this section was provided by Brian Wellington of TISLabs. This
is a short guide to setting up TSIG based transaction security in BIND. It describes changes
to the configuration file as well as what changes are required for different features, including
the process of creating transaction keys and using transaction signatures with BIND.

BIND primarily supports TSIG for server-server communication. This includes zone
transfer, notify, and recursive query messages. The resolver bundled with BIND 8.2 has
limited support for TSIG, but it is doubtful that support will be integrated into any client
16 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

applications. There cannot be support for TSIG in stub resolvers, since storing secret keys in
/etc/resolv.conf is highly insecure.

TSIG might be most useful for dynamic update. A primary server for a dynamic zone should
use access control to control updates, but IP-based access control is insufficient. Key-based
access control is far superior (see draft-ietf-dnsind-simple-secure-update-02.txt). The nsupdate
program that is shipped with BIND supports TSIG via the “-k” command line option.

4.3.1 Generate Shared Keys for Each Pair of Hosts

A shared secret is generated to be shared between host1 and host2. The key name is
chosen to be “host1-host2.”, which is arbitrary. The key name be the same on both
hosts.

4.3.1.1 Automatic Generation

The following command will generate a 128 bit (16 byte) HMAC-MD5
key as described above. Longer keys are better, but shorter keys are easier
to read. Note that the maximum key length is 512 bits; keys longer than
that will be digested with MD5 to produce a 128 bit key.
src/bin/dnskeygen/dnskeygen -H 128 -h -n host1-host2.

The key is in the file “Khost1-host2.+157+00000.private”. Nothing
actually uses this file, but the base64 encoded string following “Key:” can
be extracted:
 La/E5CjG9O+os1jq0a2jdA==

This string represents a shared secret.

4.3.1.2 Manual Generation

The shared secret is simply a random sequence of bits, encoded in base64.
Most ASCII strings are valid base64 strings (assuming the length is a
multiple of 4 and only valid characters are used), so the shared secret can
be manually generated.

Also, a known string can be run through mmencode or a similar program
to generate base64 encoded data.

4.3.2 Copying the Shared Secret to Both Machines

This is beyond the scope of DNS. A secure transport mechanism should be used.
This could be secure FTP, ssh, telephone, etc.

4.3.3 Informing the Servers of the Key's Existence

Imagine host1 and host 2 are both servers. The following is added to each server’s
named.conf file:
DRAFT February 1, 2000 17

BINDv9 Administrator Reference Manual
�
�
�
��

key host1-host2. {
algorithm hmac-md5;
secret “La/E5CjG9O+os1jq0a2jdA==”;
};

The algorithm, hmac-md5, is the only one supported by BIND. The secret is the one
generated above. Since this is a secret, it is recommended that either named.conf be
non-world readable, or the key directive be added to a non-world readable file that’s
included by named.conf.

At this point, the key is recognized. This means that if the server receives a message
signed by this key, it can verify the signature. If the signature succeeds, the response
is signed by the same key.

4.3.4 Instructing the Server to Use the Key

Since keys are shared between two hosts only, the server must be told when keys are
to be used. The following is added to host1’s named.conf file, if host2's IP address is
10.1.2.3:
server 10.1.2.3 {
keys {host1-host2.;};
};

Multiple keys may be present, but only the first is used. This directive does not
contain any secrets, so it may be in a world-readable file.

If host1 sends a message that is a response to that address, the message will be
signed with the specified key. host1 will expect any responses to signed messages to
be signed with the same key.

A similar statement must be present in host2’s configuration file (with host1’s
address) for host2 to sign non-response messages to host1.

4.3.5 TSIG Key Based Access Control

BIND allows IP addresses and ranges to be specified in ACL definitions and allow-
{query|transfer|update} directives. This has been extended to allow TSIG keys
also. The above key would be denoted key host1-host2.

An example of an allow-update directive would be:
allow-update {key host1-host2.;};

This allows dynamic updates to succeed only if the request was signed by a key
named “host1-host2.”

4.3.6 Errors

The processing of TSIG signed messages can result in several errors. If a signed
message is sent to a non-TSIG aware server, a FORMERR will be returned, since
the server will not understand the record. This is a result of misconfiguration, since
18 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

the server must be explicitly configured to send a TSIG signed message to a specific
server.

If a TSIG aware server receives a message signed by an unknown key, the response
will be unsigned with the TSIG extended error code set to BADKEY. If a TSIG
aware server receives a message with a signature that does not validate, the response
will be unsigned with the TSIG extended error code set to BADSIG. If a TSIG
aware server receives a message with a time outside of the allowed range, the
response will be signed with the TSIG extended error code set to BADTIME, and
the time values will be adjusted so that the response can be successfully verified. In
any of these cases, the message’s rcode is set to NOTAUTH.

TSIG verification errors are logged by the server as
“ns_req: TSIG verify failed - (reason)”

which is printed at debug level 1.

4.4 DNSSEC

Cryptographc authentication of DNS information is made possible through the DNS
Security (DNSSEC) extension to the domain system. This describes the processing of
creating and using DNSSEC signed zones. The zones used in this exercise will be
“dnssec.example” and “sub.dnssec.example.”

Step 1: Generate zone keys.

The following commands generate 640 bit DSA keys to be used as zone keys for the
zones:
src/bin/dnskeygen/dnskeygen -D 640 -z -n dnssec.example.
src/bin/dnskeygen/dnskeygen -D 640 -z -n sub.dnssec.example.

In our example, keys with id 64555 and 39020 were generated.

Four files were created on disk:

Kdnssec.example.+003+64555.key (public key)

Kdnssec.example.+003+64555.private (private key)

Ksub.dnssec.example.+003+39020.key (public key)

Ksub.dnssec.example.+003+39020.private (private key)

The .key files contain public keys in DNS RR format, which is base 64. The
.private files contain private keys, with each field encoded in base 64.

Step 2: Enter the keys into the zones.

The parent zone needs its own key and the child key (as glue). The child zone needs
its own key.
DRAFT February 1, 2000 19

BINDv9 Administrator Reference Manual
�
�
�
��

cat Kdnssec.example.+003+64555.key >> zone.dnssec.example
cat Ksub.dnssec.example.+003+39020.key >> zone.dnssec.example
cat Ksub.dnssec.example.+003+39020.key >> zone.sub.dnssec.example

Edit the zone files if desired (to move and/or format KEY records, etc.). This is also
a good time to add $ORIGIN directives to the zone files if they aren’t present.

Step 3: Sign the parent zone.

The following command uses the zone.dnssec.example as input and creates the
zone.dnssec.example.signed file. The key used is the dsa key for dnssec.example
with id 64555 (-ki), and statistics are printed (-st). Parent files are generated for each
child zone (-ps), and no global parent file is produced (-no-p1).
contrib/dns_signer/signer/dnssigner -zi zone.dnssec.example \
-zo zone.dnssec.example.signed -st -k1 dnssec.example dsa 64555 -ps
-no-p1

The following files are created:

zone.dnssec.example.signed (signed zone)

sub.dnssec.example..PARENT (parent file for sub.dnssec.example)

Step 4: Sign the child zone.

The following command is similar to the previous one. The main difference is that
the input parent file sub.dnssec.example..PARENT is specified (-pi) in addition to
the input zone file; this file was generated by the previous call to the signer. Also,
the -ps and -no-p1 options are omitted since there are no child zones of this zone. If
this zone had child zones, these options should be present.
contrib/dns_signer/signer/dnssigner -zi zone.sub.dnssec.example \
-pi sub.dnssec.example..PARENT -zo zone.sub.dnssec.example.signed \
-st -k1 sub.dnssec.example dsa 39020

The following file is created:

zone.sub.dnssec.example.signed (signed zone)

Step 5: Enter the top-level zone key in the named.conf file for the master server.

The public key for the top-level signed zone must be present in named.conf, so that
the server can verify the data on load (it must be able to traverse a keychain and end
at a trusted key). This key is added in a zone pubkey directive (which has a format
similar to a KEY record, but not identical). Note that this is not needed for the
subzone, as its key is signed by the trusted key in the parent zone.

This uses the key from Kdnssec.example.+003+64555.key
zone “dnssec.example” {
type master;
file “zone.dnssec.example.signed”;
pubkey 16641 3 3 “AuNiWOmzSHwrzLMWv1C1gbKQBNAHwMeX+C0owQkfmdxjoTJvnmbN
20 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

 CdbGM/fnejQhEXsRT5l3NLy0H4UCX3ElGJT49n3nFb2jPuDYbkPh
 VV4sLfLJzQs/RWeQmQnNFF2HNmwksWlPvUT66k4mqJDtIk60Dio6
 1PML5sVDMQns7Zukq4aSn4jzRGkbDGhB9S3yzXVMVjYDwlM9frW9
 Ayt0vqDa0zG+V52YiCSOdFGWJ0bSFa8sTwcp4BEVUt/Kg2Zo4VAy
 +AeYLcQLb6vDZUX8x/BPByKKptfXirhNPv43xE6vT4xCxYPhvyDk
 Y7Qlf4W+/sSNNKE7P/JAKmQxxXAVPoXtBpa6”;
};

Step 6: Enter the top-level zone key in the named.conf file for any other servers that will
trust the key.

This uses the same key as above.
trusted-keys {
dnssec.example 16641 3 3
 “AuNiWOmzSHwrzLMWv1C1gbKQBNAHwMeX+C0owQkfmdxjoTJvnmbN
 CdbGM/fnejQhEXsRT5l3NLy0H4UCX3ElGJT49n3nFb2jPuDYbkPh
 VV4sLfLJzQs/RWeQmQnNFF2HNmwksWlPvUT66k4mqJDtIk60Dio6
 1PML5sVDMQns7Zukq4aSn4jzRGkbDGhB9S3yzXVMVjYDwlM9frW9
 Ayt0vqDa0zG+V52YiCSOdFGWJ0bSFa8sTwcp4BEVUt/Kg2Zo4VAy
 +AeYLcQLb6vDZUX8x/BPByKKptfXirhNPv43xE6vT4xCxYPhvyDk
 Y7Qlf4W+/sSNNKE7P/JAKmQxxXAVPoXtBpa6”;
}

Start named.

4.5 IPv6

4.5.1 IPv6 addresses (A6)

IPv6 addresses are 128-bit identifiers for interfaces and sets of interfaces which
were introduced in the DNS to facilitate scalable Internet routing. There are three
types of addresses: Unicast, an identifier for a single interface; Anycast, an identifier
for a set of interfaces; and Multicast, an identifier for a set of interfaces. Here we
describe the global Unicast address scheme. For more information, see RFC 2374.

The aggregatable global Unicast address format is as follows:

Where

3 13 8 24 16 64 bits

FP TLA

ID

RES NLA ID SLA ID Interface ID

<------- Public Topology ------->

<--Site Topology-->

<------ Interface Identifier ------>

FP = Format Prefix (001)

TLA ID = Top-Level Aggregation Identifier

RES = Reserved for future use

NLA ID = Next-Level Aggregation Identifier
DRAFT February 1, 2000 21

BINDv9 Administrator Reference Manual
�
�
�
��

The ‘Public Topology’ is provided by the upstream provider or ISP, and (roughly)
corresponds to the IPv4 ‘network’ section of the address range. The ‘Site Topology’
is where you can subnet this space, much like subnetting an IPv4 class A or B
network into class Cs. The ‘Interface Identifier’ is the address of an individual
interface on a given network. (With IPv6, addresses belong to interfaces rather than
machines.)

The subnetting capability of IPv6 is much more flexible than that of IPv4:
subnetting can now be carried out on bit boundaries, in much the same way as
Classless InterDomain Routing (CIDR).

The internal structure of the ‘Public Topology’ for an A6 global unicast address
consists of:

A 3 bit FP (Format Prefix) of 001 indicates this is a global unicast address. FP
lengths for other types of addresses may vary.

13 TLA (Top Level Aggregator) bits give the prefix of your top-level IP backbone
carrier.

8 Reserved bits

24 bits for Next Level Aggregators. This allows organizations with a TLA to hand
out portions of their IP space to client organizations, so that the client can then split
up the network further by filling in more NLA bits, and hand out IPv6 prefixes to
their clients, and so forth.

There is no particular structure for the ‘Site topology’ section. Organizations can
allocate these bits in any way they desire, in the same way as they would subnet an
IPv4 class A (8 bit prefix) network.

The Interface identifier must be unique on that network. On ethernet networks, one
way to ensure this is to set the address to the first three bytes of the hardware
address, ‘FFFE’, then the last three bytes of the hardware address. The lowest
significant bit of the first byte should then be complemented. Addresses are written
as 32-bit blocks separated with a colon, and leading zeros of a block may be
omitted, for example:
3ffe:8050:201:9:a00:20ff:fe81:2b32

SLA ID = Site-Level Aggregation Identifier

INTERFACE ID = Interface Identifier

3 13 8 24

FP TLA ID RES NLA ID
22 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

IPv6 address specifications are likely to contain long strings of zeros, so the
architects have included a shorthand for specifying them. The double colon ‘::’
indicates the longest possible string of zeros that can fit, and can be used only once
in an address.

4.5.2 Name to Address Lookup

Forward name lookups (host name to IP address) under IPv6 do not necessarily
return the complete IPv6 address of the host. Because the provider-assigned prefix
may change, the A6 record can simply specify the locally assigned portion of the
name, and refer to the provider for the remainder.

A complete IPv6 A6 record that provides the full 128 bit address looks like:

Note that the number preceding the address is the number of bits to be provided via
the referral. This is probably the easiest way to roll out an IPv6 installation, though
you may wish to provide a reference to your provider assigned prefix:

Then, in example2.com’s zone:

The referral where there are no more bits is to ‘.’, the root zone. Be warned that
excessive use of this chaining can lead to extremely poor name resolution for people
trying to access your hosts.

4.5.3 Address to Name Lookup

Reverse IPv6 addresses may appear as one or more hex strings, known as “bitstring
labels,” each followed by a number of valid bits. A full 128 bits may be specified at
the ip6.int top level, or more likely, the provider will delegate you a smaller chunk
of addresses for which you will need to supply reverse DNS.

The address can be split up along arbitrary boundaries, and is written with hex
numbers in forward order, rather than in reverse order as IPv4 PTR records are

$ORIGIN example.com.

; NAME TTL TYPE BITS IN REFERRAL ADDRESS REFERRAL

host.example.com. 1h IN A6 0 3ffe:8050:201:9:a00:20ff:fe81:2b32 .

$ORIGIN example.com.

; NAME TTL TYPE BITS IN REFERRAL ADDRESS REFERRAL

host.example.com. 1h IN A6 48 ::9:a00:20ff:fe81:2b32 prefix.example2.com.

$ORIGIN example.com.

; NAME TTL TYPE BITS IN REFERRAL ADDRESS REFERRAL

prefix.example2.com. 1h IN A6 0 3ffe:8050:201:: .
DRAFT February 1, 2000 23

BINDv9 Administrator Reference Manual
�
�
�
��

written. The sections between dot separators are reversed as usual. If the number of
valid bits in the hex string is less than the string specifies, it is the first N bits that are
counted. Thus, \[x2/3] gives a bit pattern of 0010, the first three bits of which, 001,
are valid.

The address above, then, is:

\[x3FFE8050020100090A0020FFFE812B32/128].ip6.int. (not divided)

\[x00090A0020FFFE812B32/80].\[xFFF402801008/45].\[x2/3].ip6.int.
(divided into FP, TLA/RES/NLA, and local)

\[x00090A0020FFFE812B32/80].\[x80500201/32].\[xFFF0/13].\[x2/

3].ip6.int. (divided into FP, TLA, RES/NLA, and local)

These strings are all equivalent. The combined TLA/RES/NLA in the second
example bears no resemblance to any string in the address because it is offset by
three bits.

4.5.4 Using DNAME for Delegation of IPv6 Reverse Addresses

Delegation of reverse addresses is done through the new DNAME RR. In the
example above, where \[x2/3].ip6.int. needs to delegate \[xFFF0] to an
organization (example2.com), the domain administrator would insert a line similar
to the following in the \[x2/3].ip6.int. zone:
$ORIGIN \[x2/3].ip6.int.
\[xFFF0/13] 1h IN DNAME ip6.example2.com.

example2.com would then place into the ip6 zone:
$ORIGIN ip6.example.com.
\[x80500201/32] 1h IN DNAME ip6.example.com.

Finally, example.com needs to include in the ip6.example.com zone:
$ORIGIN ip6.example.com.
\[x00090A0020FFFE812B32/80] 1h IN PTR host.example.com.

We suggest that the top of your administrative control (example.com, in this case)
provide all the bits required for reverse and forward resolution to allow name
resolution even if the network is disconnected from the Internet. This will also allow
operation with DNSSEC if you set up a false trusted server for “.” containing only
delegations for your forward and reverse zones directly to the top of your
administrative control. This should be signed with a key trusted by all of your
clients, equivalent to the real key for “.”.
24 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

Section 5. BINDv9 Configuration Reference

BINDv9 configuration is broadly similar to BIND 8.x; however, there are a few new areas of
configuration, such as views. BIND 8.x configuration files should work with few alterations
in BINDv9, although more complex configurations should be reviewed to check if they can
be more efficiently implemented using the new features found in BINDv9.

BIND 4.9.x configuration files can be converted to the new format by using
src/bin/named/named-bootconf.pl, a shell script that is part of the BIND release kit.

5.1 Configuration file elements

Following is a list of elements used throughout the BIND configuration file documentation:

acl_name The name of an address_match_list as defined by the
acl statement.

address_match_list A list of one or more ip_addr, ip_prefix, key_id, or
acl_name elements, as described in “Address Match Lists”
on page 26.

domain_name A quoted string which will be used as a DNS name, for
example “my.test.domain”.

dotted-decimal One or more integers valued 0 through 255 separated only
by dots (“.”), such as 123, 45.67 or 89.123.45.67.

ip_addr An IP address with exactly four elements in dotted-
decimal notation.

ip_port An IP port number. number is limited to 0 through 65535,
with values below 1024 typically restricted to root-owned
processes. In some cases an asterisk (*) character can be
used as a placeholder to select a random high-numbered
port.

ip_prefix An IP network specified in dotted-decimal form,
followed by “/’’ and then the number of bits in the netmask.
E.g. 127/8 is the network 127.0.0.0 with netmask
255.0.0.0 and 1.2.3.0/28 is network 1.2.3.0 with
netmask 255.255.255.240.

key_name A string representing the name of a shared key, to be used
for transaction security.

number A non-negative integer with an entire range limited by the
range of a C language signed integer (2,147,483,647 on a
machine with 32 bit integers). Its acceptable value might
further be limited by the context in which it is used.

path_name A quoted string which will be used as a pathname, such as
“zones/master/my.test.domain”.
DRAFT February 1, 2000 25

BINDv9 Administrator Reference Manual
�
�
�
��

5.1.1 Address Match Lists

5.1.1.1 Syntax

[!] (address_match_list | ip_address [/number] | acl_name) |
key key_id ; [[!] (address_match_list | ip_address | ip_prefix |
acl_name) | key key_id ; [...]]

5.1.1.2 Definition and Usage

Address match lists are primarily used to determine access control for
various server operations. They are also used to define priorities for
querying other nameservers and to set the addresses on which named will
listen for queries. The elements which constitute an address match list can
be any of the following:

• an IP address (in dotted-decimal notation)

• an IP prefix (in the '/'-notation)

• a key ID, as defined by the key statement

• the name of an address match list previously defined with the acl stat-
ment

• another address_match_list

Elements can be negated with a leading exclamation mark (“!”), and the
match list names “any”, “none”, “localhost” and “localnets” are
predefined. More information on those names can be found in the
description of the acl statement.

The addition of the key clause made the name of this syntactic element
something of a misnomer, since security keys can be used to validate

size_spec A number, the word unlimited, or the word default.
The maximum value of size_spec is that of unsigned long
integers on the machine. unlimited requests unlimited
use, or the maximum available amount. default uses the
limit that was in force when the server was started.
A number can optionally be followed by a scaling factor: K
or k for kilobytes, M or m for megabytes, and G or g for
gigabytes, which scale by 1024, 1024*1024, and
1024*1024*1024 respectively.
Integer storage overflow is currently silently ignored
during conversion of scaled values, resulting in values less
than intended, possibly even negative. Using unlimited is
the best way to safely set a really large number.

yes_or_no Either yes or no. The words true and false are also
accepted, as are the numbers 1 and 0.
26 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

access without regard to a host or network address. Nonetheless, the term
“address match list” is still used throughout the documentation.

When a given IP address or prefix is compared to an address match list,
the list is traversed in order until an element matches. The interpretation
of a match depends on whether the list is being used for access control,
defining listen-on ports, or as a topology, and whether the element was
negated.

When used as an access control list, a non-negated match allows access
and a negated match denies access. If there is no match, access is denied.
The clauses allow-query, allow-transfer, allow-update and blackhole all
use address match lists like this. Similarly, the listen-on option will cause
the server to not accept queries on any of the machine's addresses which
do not match the list.

When used with the topology clause, a non-negated match returns a
distance based on its position on the list (the closer the match is to the
start of the list, the shorter the distance is between it and the server). A
negated match will be assigned the maximum distance from the server. If
there is no match, the address will get a distance which is further than any
non-negated list element, and closer than any negated element.

Because of the first-match aspect of the algorithm, an element that defines
a subset of another element in the list should come before the broader
element, regardless of whether either is negated. For example, in
1.2.3/24; ! 1.2.3.13; the 1.2.3.13 element is completely useless
because the algorithm will match any lookup for 1.2.3.13 to the 1.2.3/24
element. Using ! 1.2.3.13; 1.2.3/24 fixes that problem by having
1.2.3.13 blocked by the negation but all other 1.2.3.* hosts fall through.

5.1.2 Comment Syntax

The BINDv9 comment syntax allows for comments to appear anywhere that white space
may appear in a BIND configuration file. To appeal to programmers of all kinds, they can be
written in C, C++, or shell/perl constructs.

5.1.2.1 Syntax

/* This is a BIND comment as in C */
// This is a BIND comment as in C++
This is a BIND comment as in common UNIX shells and perl

5.1.2.2 Definition and Usage

Comments may appear anywhere that whitespace may appear in a BIND
configuration file.
DRAFT February 1, 2000 27

BINDv9 Administrator Reference Manual
�
�
�
��

C-style comments start with the two characters /* (slash, star) and end with */ (star,
slash). Because they are completely delimited with these characters, they can be
used to comment only a portion of a line or to span multiple lines.

C-style comments cannot be nested. For example, the following is not valid because
the entire comment ends with the first */:

/* This is the start of a comment.
 This is still part of the comment.
/* This is an incorrect attempt at nesting a comment. */
 This is no longer in any comment. */

C++-style comments start with the two characters // (slash, slash) and continue to
the end of the physical line. They cannot be continued across multiple physical
lines; to have one logical comment span multiple lines, each line must use the // pair.

For example:

// This is the start of a comment. The next line
// is a new comment, even though it is logically
// part of the previous comment.

Shell-style (or perl-style, if you prefer) comments start with the character # (number
sign) and continue to the end of the physical line, like C++ comments.

For example:

This is the start of a comment. The next line
is a new comment, even though it is logically
part of the previous comment.

WARNING: you cannot use the ; (semicolon) character to start a comment such as
you would in a zone file. The semicolon indicates the end of a configuration
statement, so whatever follows it will be interpreted as the start of the next
statement.

5.2 Configuration File Grammar

A BINDv9 configuration consists of statements and comments. Statements end with a
semicolon. Statements and comments are the only elements that can appear without
enclosing braces. Many statements contain a block of substatements, which are also
terminated with a semicolon.

The following statements are supported:

acl defines a named IP address matching list, for access control
and other uses
28 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

The logging and options statements may only occur once per configuration. logging
statements are read in first, options second. Also, although the options statement can
appear anywhere in a configuration file, it is suggested that it appear at the beginning, since
things like the default directory are not defined until it after it has been read.

5.2.1 acl Statement Grammar

acl acl-name {
 address_match_list
};

5.2.2 acl Statement Definition and Usage

The acl statement creates a named address match list. It gets its name from a
primary use of address match lists: Access Control Lists (ACLs).

Note that an address match list’s name must be defined with acl before it can be
used elsewhere; no forward references are allowed.

The following ACLs are built-in:

controls declares control channels to be used by the ndc utility

include includes a file

key specifies key information for use in authentication and
authorization using TSIG. See draft-ietf-dnsind-tsig-13.txt for
more information.

logging specifies what the server logs, and where the log messages
are sent

options controls global server configuration options and sets
defaults for other statements

server sets certain configuration options on a per-server basis

trusted-keys defines keys that are preconfigured into the server and
implicitly trusted. See RFC 2535 for more information.

view defines a view

zone defines a zone

any Allows all hosts.

none Denies all hosts.

localhost Allows the IP addresses of all interfaces on the system.

localnets Allows any host on a network for which the system has an
interface.
DRAFT February 1, 2000 29

BINDv9 Administrator Reference Manual
�
�
�
��

5.2.3 control Statement Grammar

controls {

 [inet (ip_addr|*) port ip_port allow { address_match_list } ;
[inet...;[...]]]
 [unix string permission number owner number group number ;
[unix...;[..]]]
};

5.2.4 controls Statement Definition and Usage

The controls statement declares control channels to be used by system
administrators to affect the operation of the local nameserver. These control
channels are used by the ndc utility to send commands to and retrieve non-DNS
results from a nameserver.

A UNIX control channel is a “first in first out” (FIFO) named pipe in the file
system, and access to it is controlled by normal file system permissions. It is created
by named with the specified file mode bits (see the chmod(1) manual page), user and
group owner. Note that, unlike chmod, the mode bits specified for permission will
normally have a leading 0 so the number is interpreted as octal. Also note that the
user and group ownership specified as owner and group must be given as numbers,
not names. It is recommended that the permissions be restricted to administrative
personnel only to prevent random users on the system from having the ability to
manage the local nameserver.

An inet control channel is a TCP/IP socket accessible to the Internet, created at the
specified ip_port on the specified ip_addr. Modern telnet clients are capable of
speaking directly to these sockets, and the control protocol is ARPAnet-style text. It
is recommended that 127.0.0.1 be the only ip_addr used, and this only if you trust
all non-privileged users on the local host to manage your nameserver.

5.2.5 include Statement Grammar

include “filename”;

5.2.6 include Statement Definition and Usage

The include statement inserts the specified file at the point that the include
statement is encountered. The include statement facilitates the administration of
configuration files by permitting the writing of some things but not others. For
example, the statement could include private keys that are readable only by a
nameserver.

5.2.7 key Statement Grammar

key key_id {
 algorithm string;
 secret string;
};
30 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

5.2.8 key Statement Definition and Usage

The key statement defines a key ID which can be used in a server statement to
associate an authentication method with a particular nameserver.

A key ID must be created with the key statement before it can be used in a server
definition or an address match list.

The algorithm_id is a string that specifies a security/authentication algorithm. The
only algorithm currently supported with tsig authentication is hmac-md5. The
secret_string is the secret to be used by the algorithm, and is treated as a base-64
encoded string.

The key statement is intended for use in transaction security. Unless included in a
server statement, it is not used to sign any requests. It is used to verify requests
matching the key_id and algorithm_id, and sign replies to those requests.

5.2.9 logging statement grammar

logging {

 [category (name|default|notify) { (name|null) ;[(name|null)
;[...]]};
 [category (name|default|notify){ (name|null) ;[(name|null)
;[...]]};
 [...]] ;]
 [channel (name|null) { (file string [(versions (number|unlimited)]
[size (string|number|default|unlimited)]) ;} ;]
 [channel (name|null) { syslog [(string|syslog)] ;} ;]
 [channel (name|null) { null ;} ;]
 [channel (name|null) { severity (string|debug[number]|dynamic) ;}
;]
 [channel (name|null) { print-time true_or_false ;} ;]
 [channel (name|null) { print-category true_or_false ;} ;]
 [channel (name|null) { print-severity true_or_false ;} ;]
};

5.2.10 logging statement definition and usage

The logging statement configures a wide variety of logging options for the
nameserver. Its channel phrase associates output methods, format options and
severity levels with a name that can then be used with the category phrase to select
how various classes of messages are logged.

Only one logging statement is used to define as many channels and categories as
are wanted. If there are multiple logging statements in a configuration, the first
defined determines the logging, and warnings are issued for the others via the
default syslog. If there is no logging statement, the logging configuration will be:
DRAFT February 1, 2000 31

BINDv9 Administrator Reference Manual
�
�
�
��

Note: these categories may change! Also, additional syntax in BINDv9 may make it
possible to limit logging to particular modules.

logging {
 category default { default_syslog; default_debug; };
 category panic { default_syslog; default_stderr; };
 category packet { default_debug; };
 category eventlib { default_debug; };
};

The logging configuration is established as soon as the logging statement is parsed.
If you want to redirect messages about processing of the entire configuration file,
the logging statement must appear first. Even if you do not redirect configuration
file parsing messages, we recommend always putting the logging statement first so
that this rule need not be consciously recalled if you ever do need or want the
parser’s messages relocated.

5.2.11 options Statement Grammar

This is the grammar of option statement format in the named.conf file:
Syntax
options {

 [version version_string;]
 [directory path_name;]
 [named-xfer path_name;]
 [tkey-domain string;]
 [tkey-dhkey string number;]
 [dump-file path_name;]
 [memstatistics-file path_name;]
 [pid-file path_name;]
 [statistics-file path_name;]
 [auth-nxdomain yes_or_no;]
 [deallocate-on-exit yes_or_no;]
 [dialup yes_or_no;]
 [fake-iquery yes_or_no;]
 [fetch-glue yes_or_no;]
 [has-old-clients yes_or_no;]
 [host-statistics yes_or_no;]
 [multiple-cnames yes_or_no;]
 [notify yes_or_no;]
 [recursion yes_or_no;]
 [rfc2308-type1 yes_or_no;]
 [use-id-pool yes_or_no;]
 [maintain-ixfr-base yes_or_no;]
 [forward (only | first);]
 [forwarders { [in_addr ; [in_addr ; ...]] };]
 [check-names (master | slave | response) (warn | fail | ignore);
]
 [allow-query { address_match_list };]
 [allow-transfer { address_match_list };]
32 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

 [allow-recursion { address_match_list };]
 [blackhole { address_match_list };]
 [listen-on [port ip_port] { address_match_list };]
 [query-source [address (ip_addr | *)] [port (ip_port | *)]
;]
 [max-transfer-time-in number;]
 [max-transfer-time-out number;]
 [max-transfer-idle-in number;]
 [max-transfer-idle-out number;]
 [tcp-clients number;]
 [recursive-clients number;]
 [serial-queries number;]
 [transfer-format (one-answer | many-answers);]
 [transfers-in number;]
 [transfers-out number;]
 [transfers-per-ns number;]
 [transfer-source ip_addr;]
 [also-notify { ip_addr; [ip_addr; ...] };
 [max-ixfr-log-size number;]
 [coresize size_spec ;]
 [datasize size_spec ;]
 [files size_spec ;]
 [stacksize size_spec ;]
 [cleaning-interval number;]
 [heartbeat-interval number;]
 [interface-interval number;]
 [statistics-interval number;]
 [topology { address_match_list };]
 [sortlist { address_match_list };]
 [rrset-order { order_spec ; [order_spec ; ...]] };
 [lame-ttl number;]
 [max-ncache-ttl number;]
 [min-roots number;]
 [use-ixfr yes_or_no ;]
 [expert_mode yes_or_no ;]
};

5.2.12 options Statement Definition and Usage

The options statement sets up global options to be used by BIND. This statement
may appear only once in a configuration file. If more than one occurrence is found,
the first occurrence determines the actual options used, and a warning will be
generated. If there is no options statement, an options block with each option set to
its default will be used.

version The version the server should report via the ndc
command or via a query of name version.bind
in class chaos. The default is the real version
number of this server.
DRAFT February 1, 2000 33

BINDv9 Administrator Reference Manual
�
�
�
��

5.2.12.1 Boolean Options

directory The working directory of the server. Any non-
absolute pathnames in the configuration file will
be taken as relative to this directory. The default
location for most server output files (e.g.
“named.run”) is this directory. If a directory is
not specified, the working directory defaults to
“.”, the directory from which the server was
started. The directory specified should be an
absolute path.

named-xfer The pathname to the named-xfer program that
the server uses for inbound zone transfers. If not
specified, the default is system dependent
(e.g. “/usr/sbin/named-xfer”).

dump-file The pathname of the file the server dumps the
database to when it receives SIGINT signal (ndc
dumpdb). If not specified, the default is
“named_dump.db”.

memstatistics-file The pathname of the file the server writes
memory usage statistics to on exit, if
deallocate-on-exit is yes. If not specified, the
default is “named.memstats”.

pid-file The pathname of the file the server writes its
process ID in. If not specified, the default is
operating system dependent, but is usually “/var/
run/named.pid” or
“/etc/named.pid”. The pid-file is used by
programs like ndc that want to send signals to the
running nameserver.

statistics-file The pathname of the file the server appends
statistics to when it receives SIGKILL signal (ndc
stats). If not specified, the default is
“named.stats”.

auth-nxdomain If yes, then the AA bit is always set on
NXDOMAIN responses, even if the server is
not actually authoritative. The default is yes.
Do not turn off auth-nxdomain unless you are
sure you know what you are doing, as some
older software won't like it.
34 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

deallocate-on-exit If yes, then when the server exits it will
painstakingly deallocate every object it
allocated, and then write a memory usage
report to the memstatistics-file. The
default is no, because it is faster to let the
operating system clean up. deallocate-on-
exit is handy for detecting memory leaks.

dialup If yes, then the server treats all zones as if they
are doing zone transfers across a dial on
demand dialup link, which can be brought up
by traffic originating from this server. This has
different effects according to zone type and
concentrates the zone maintenance so that it all
happens in a short interval, once every
heartbeat-interval and hopefully during
the one call. It also suppresses some of the
normal zone maintenance traffic. The default
is no.
The dialup option may also be specified in
the zone statement, in which case it overrides
the options dialup statement.
If the zone is a master then the server will
send out a NOTIFY request to all the slaves.
This will trigger the zone serial number check
in the slave (providing it supports NOTIFY)
allowing the slave to verify the zone while the
connection is active.
If the zone is a slave or stub then the server
will suppress the regular “zone up to date”
queries and only perform them when the
heartbeat-interval expires.

fake-iquery If yes, the server will simulate the obsolete
DNS query type IQUERY. The default is no.

fetch-glue If yes (the default), the server will fetch “glue”
resource records it doesn't have when
constructing the additional data section of a
response. (Information present outside of the
authoritative nodes in the zone is called “glue”
information). fetch-glue no can be used in
conjunction with recursion no to prevent the
server’s cache from growing or becoming
corrupted (at the cost of requiring more work
from the client).
DRAFT February 1, 2000 35

BINDv9 Administrator Reference Manual
�
�
�
��

has-old-clients Setting the option to yes is equivalent to
setting the following three options: auth-
nxdomain yes;, maintain-ixfr-base yes;
and rfc2308-type1 no;. The use of has-
old-clients with auth-nxdomain,
maintain-ixfr-base and rfc2308-type1 is
order dependent. The default is no.
(Note that this is a broken implementation iin
BIND version 8. It should not be necessary in
any but the oldest of BIND installations.)

host-statistics If yes, then statistics are kept for every host
that the nameserver interacts with. The default
is no. Note: turning on host-statistics can
consume huge amounts of memory.

maintain-ixfr-base If yes, then a transaction log is kept for
Incremental Zone Transfer. The default is no.

multiple-cnames If yes, then multiple CNAME resource
records will be allowed for a domain name.
The default is no. Allowing multiple CNAME
records is against standards and is not
recommended. Multiple CNAME support is
available because previous versions of BIND
allowed multiple CNAME records, and these
records have been used for load balancing by a
number of sites.

notify If yes (the default), DNS NOTIFY messages
are sent when a zone the server is authoritative
for changes. The use of NOTIFY speeds
synchronization between the master and its
slaves. Slave servers that receive a NOTIFY
message and understand it will contact the
master server for the zone and see if they need
to do a zone transfer, and if they do, they will
initiate it immediately. The notify option may
also be specified in the zone statement, in
which case it overrides the options notify
statement. It would only be necessary to turn
off this option if it caused slaves to crash.

recursion If yes, and a DNS query requests recursion,
then the server will attempt to do all the work
required to answer the query. If recursion is
not on, the server will return a referral to the
client if it doesn’t know the answer. The
default is yes. See also fetch-glue above.
36 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

5.2.12.2 Forwarding

The forwarding facility can be used to create a large site-wide cache on a
few servers, reducing traffic over links to external nameservers. It can
also be used to allow queries by servers that do not have direct access to
the Internet, but wish to look up exterior names anyway. Forwarding
occurs only on those queries for which the server is not authoritative and
does not have the answer in its cache.

Forwarding can also be configured on a per-zone basis, allowing for the
global forwarding options to be overridden in a variety of ways. You can
set particular zones to use different forwarders, or have different forward
only/first behavior, or not forward at all. See “zone Statement
Grammar” on page 52 for more information.

Future versions of BIND will continue to support the forward and
forwarders options syntax.

5.2.12.3 Name Checking

The server can check domain names based upon their expected client
contexts. For example, a domain name used as a hostname can be checked
for compliance with the RFCs defining valid hostnames.

rfc2308-type1 If yes, the server will send NS records along
with the SOA record for negative answers.
You need to set this to no if you have an old
BIND server using you as a forwarder that
does not understand negative answers which
contain both SOA and NS records or you have
an old version of sendmail. The correct fix is
to upgrade the broken server or sendmail. The
default is no.

treat-cr-as-space If yes, the server will treat ‘\r’ characters the
same way it treats a <space> “ ” or ‘\t’. This
may be necessary when loading zone files on a
UNIX system that were generated on an NT or
DOS machine. The default is no.

forward This option is only meaningful if the forwarders list is
not empty. A value of first, the default, causes the
server to query the forwarders first, and if that doesn't
answer the question the server will then look for the
answer itself. If only is specified, the server will only
query the forwarders.

forwarders Specifies the IP addresses to be used for forwarding. The
default is the empty list (no forwarding).
DRAFT February 1, 2000 37

BINDv9 Administrator Reference Manual
�
�
�
��

Three checking methods are available:

The server can check names in three areas: master zone files, slave zone
files, and in responses to queries the server has initiated. If check-names
response fail has been specified, and answering the client’s question
would require sending an invalid name to the client, the server will send a
REFUSED response code to the client.

The defaults are:
 check-names master fail;
 check-names slave warn;
 check-names response ignore;

check-names may also be specified in the zone statement, in which case
it overrides the options check-names statement. When used in a zone
statement, the area is not specified (because it can be deduced from the
zone type).

5.2.12.4 Access Control

Access to the server can be restricted based on the IP address of the
requesting system. See “Address Match Lists” on page 26 for details on
how to specify IP address lists.

ignore No checking is done.

warn Names are checked against their expected client contexts.
Invalid names are logged, but processing continues
normally.

fail Names are checked against their expected client contexts.
Invalid names are logged, and the offending data is
rejected.

allow-query Specifies which hosts are allowed to ask
ordinary questions. allow-query may also be
specified in the zone statement, in which case it
overrides the options allow-query statement.
If not specified, the default is to allow queries
from all hosts.

allow-recursion Specifies which hosts are allowed to make
recursive queries through this server. If not
specified, the default is to allow recursive
queries from all hosts.
38 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

5.2.12.5 Interfaces

The interfaces and ports that the server will answer queries from may be
specified using the listen-on option. listen-on takes an optional port,
and an address_match_list. The server will listen on all interfaces
allowed by the address match list. If a port is not specified, port 53 will be
used.

Multiple listen-on statements are allowed. For example,
listen-on { 5.6.7.8; };
listen-on port 1234 { !1.2.3.4; 1.2/16; };

will enable the nameserver on port 53 for the IP address 5.6.7.8, and on
port 1234 of an address on the machine in net 1.2 that is not 1.2.3.4.

If no listen-on is specified, the server will listen on port 53 on all
interfaces.

5.2.12.6 Query Address

If the server doesn't know the answer to a question, it will query other
nameservers. query-source specifies the address and port used for such
queries. If address is * or is omitted, a wildcard IP address (INADDR_ANY)
will be used. If port is * or is omitted, a random unprivileged port will be
used. The default is
query-source address * port *;

Note: query-source currently applies only to UDP queries; TCP queries
always use a wildcard IP address and a random unprivileged port.

5.2.12.7 Zone Transfers

BIND has mechanisms in place to facilitate zone transfers and set limits
on the amount of load that transfers place on the system. The following
options apply to zone transfers.

allow-transfer Specifies which hosts are allowed to receive
zone transfers from the server. allow-transfer
may also be specified in the zone statement, in
which case it overrides the options allow-
transfer statement. If not specified, the default
is to allow transfers from all hosts.

blackhole Specifies a list of addresses that the server will
not accept queries from or use to resolve a query.
Queries from these addresses will not be
responded to. The default is none.
DRAFT February 1, 2000 39

BINDv9 Administrator Reference Manual
�
�
�
��

max-transfer-time-in Inbound zone transfers (named-xfer
processes) running longer than this many
minutes will be terminated. The default is
120 minutes (2 hours).

transfer-format The server supports two zone transfer
methods. one-answer uses one DNS
message per resource record transferred.
many-answers packs as many resource
records as possible into a message. many-
answers is more efficient, but is only
known to be understood by BIND 8.x and
patched versions of BIND 4.9.5. The
default is one-answer. transfer-format
may be overridden on a per-server basis by
using the server statement.

transfers-in The maximum number of inbound zone
transfers that can be running concurrently.
The default value is 10. Increasing
transfers-in may speed up the
convergence of slave zones, but it also
may increase the load on the local system.

transfers-out This option will be used in the future to
limit the number of concurrent outbound
zone transfers. It is checked for syntax, but
is otherwise ignored.

transfers-per-ns The maximum number of inbound zone
transfers (named-xfer processes) that can
be concurrently transferring from a given
remote nameserver. The default value is 2.
Increasing transfers-per-ns may speed
up the convergence of slave zones, but it
also may increase the load on the remote
nameserver. transfers-per-ns may be
overridden on a per-server basis by using
the transfers phrase of the server
statement.
40 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

transfer-source transfer-source determines which local
address will be bound to the TCP
connection used to fetch all zones
transferred inbound by the server. If not
set, it defaults to a system controlled value
which will usually be the address of the
interface “closest to” the remote end. This
address must appear in the remote end’s
allow-transfer option for the zone being
transferred, if one is specified. This
statement sets the transfer-source for
all zones, but can be overridden on a per-
zone basis by including a
transfer-source statement within the
zone block in the configuration file.

serial-queries Slave servers will periodically query
master servers to find out if zone serial
numbers have changed. Each such query
uses a minute amount of the slave server’s
network bandwidth, but more importantly
each query uses a small amount of
memory in the slave server while waiting
for the master server to respond. The
serial-queries option sets the
maximum number of concurrent serial-
number queries allowed to be outstanding
at any given time. The default is 4. Note: If
a server loads a large (tens or hundreds of
thousands) number of slave zones, then
this limit should be raised to the high
hundreds or low thousands -- otherwise
the slave server may never actually
become aware of zone changes in the
master servers. Beware, though, that
setting this limit arbitrarily high can spend
a considerable amount of your slave
server’s network, CPU, and memory
resources. As with all tunable limits, this
one should be changed gently and
monitored for its effects.
DRAFT February 1, 2000 41

BINDv9 Administrator Reference Manual
�
�
�
��

5.2.12.8 Resource Limits

The server’s usage of many system resources can be limited. Some
operating systems don’t support some of the limits. On such systems, a
warning will be issued if the unsupported limit is used. Some operating
systems don’t support limiting resources, and on these systems a cannot
set resource limits on this system message will be logged.

Scaled values are allowed when specifying resource limits. For example,
1G can be used instead of 1073741824 to specify a limit of one gigabyte.
unlimited requests unlimited use, or the maximum available amount.
default uses the limit that was in force when the server was started. See
the description of size_spec in “Configuration File Grammar” on
page 28 for more details.

also-notify Defines a global list of IP addresses that
are also sent NOTIFY messages whenever
a fresh copy of the zone is loaded. This
helps to ensure that copies of the zones
will quickly converge on “stealth” servers.
If an also-notify list is given in a zone
statement, it will override the options
also-notify statement. When a zone
notify statement is set to no, the IP
addresses in the global also-notify list
will not be sent NOTIFY messages for that
zone. The default is the empty list (no
global notification list).

coresize The maximum size of a core dump. The
default is default.

datasize The maximum amount of data memory the
server may use. The default is default.

files The maximum number of files the server may
have open concurrently. The default is
unlimited. Note: on some operating systems
the server cannot set an unlimited value and
cannot determine the maximum number of
open files the kernel can support. On such
systems, choosing unlimited will cause the
server to use the larger of the rlim_max for
RLIMIT_NOFILE and the value returned by
sysconf(_SC_OPEN_MAX). If the actual kernel
limit is larger than this value, use limit files
to specify the limit explicitly.
42 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

5.2.12.9 Periodic Task Intervals

5.2.12.10 Topology

All other things being equal, when the server chooses a nameserver to
query from a list of nameservers, it prefers the one that is topologically
closest to itself. The topology statement takes an address_match_list
and interprets it in a special way. Each top-level list element is assigned a
distance. Non-negated elements get a distance based on their position in
the list, where the closer the match is to the start of the list, the shorter the
distance is between it and the server. A negated match will be assigned
the maximum distance from the server. If there is no match, the address
will get a distance which is further than any non-negated list element, and
closer than any negated element. For example,

max-ixfr-log-size The max-ixfr-log-size will be used in a
future release of the server to limit the size of
the transaction log kept for Incremental Zone
Transfer.

stacksize The maximum amount of stack memory the
server may use. The default is default.

cleaning-interval The server will remove expired resource
records from the cache every cleaning-
interval minutes. The default is 60
minutes. If set to 0, no periodic cleaning
will occur.

heartbeat-interval The server will perform zone maintenance
tasks for all zones marked dialup yes
whenever this interval expires. The default is
60 minutes. Reasonable values are up to 1
day (1440 minutes). If set to 0, no zone
maintenance for these zones will occur.

interface-interval The server will scan the network interface
list every interface-interval minutes.
The default is 60 minutes. If set to 0,
interface scanning will only occur when the
configuration file is loaded. After the scan,
listeners will be started on any new
interfaces (provided they are allowed by the
listen-on configuration). Listeners on
interfaces that have gone away will be
cleaned up.

statistics-interval Nameserver statistics will be logged every
statistics-interval minutes. The default
is 60. If set to 0, no statistics will be logged.
DRAFT February 1, 2000 43

BINDv9 Administrator Reference Manual
�
�
�
��

 topology {
 10/8;
 !1.2.3/24;
 { 1.2/16; 3/8; };
 };

will prefer servers on network 10 the most, followed by hosts on network
1.2.0.0 (netmask 255.255.0.0) and network 3, with the exception of hosts
on network 1.2.3 (netmask 255.255.255.0), which is preferred least of all.

The default topology is
 topology { localhost; localnets; };

5.2.12.11 The sortlist Statement

Resource Records (RRs) are the data associated with the names in a
domain name space. The data is maintained in the form of sets of RRs.
The order of RRs in a set is, by default, not significant. Therefore, to
control the sorting of records in a set resource records, or RRset, you must
use the sortlist statement.

RRs are explained more fully in See “Types of Resource Records and
When to Use Them” on page 57.. Specifications for RRs are documented
in RFC 1035.

When returning multiple RRs, the nameserver will normally return them
in Round Robin order, i.e. after each request, the first RR is put at the end
of the list. The client resolver code should rearrange the RRs as
appropriate, i.e. using any addresses on the local net in preference to other
addresses. However, not all resolvers can do this or are correctly
configured. When a client is using a local server the sorting can be
performed in the server, based on the client’s address. This only requires
configuring the nameservers, not all the clients.

The sortlist statement (see below) takes an address_match_list and
interprets it even more specifically than the topology statement does (see
“Topology” on page 43). Each top level statement in the sortlist must
itself be an explicit address_match_list with one or two elements. The
first element (which may be an IP address, an IP prefix, an ACL name or
a nested address_match_list) of each top level list is checked against
the source address of the query until a match is found.

Once the source address of the query has been matched, if the top level
statement contains only one element, the actual primitive element that
matched the source address is used to select the address in the response to
move to the beginning of the response. If the statement is a list of two
elements, then the second element is treated like the
address_match_list in a topology statement. Each top level element is
assigned a distance and the address in the response with the minimum
distance is moved to the beginning of the response.
44 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

In the following example, any queries received from any of the addresses
of the host itself will get responses preferring addresses on any of the
locally connected networks. Next most preferred are addresses on the
192.168.1/24 network, and after that either the 192.168.2/24 or
192.168.3/24 network with no preference shown between these two
networks. Queries received from a host on the 192.168.1/24 network will
prefer other addresses on that network to the 192.168.2/24 and
192.168.3/24 networks. Queries received from a host on the 192.168.4/24
or the 192.168.5/24 network will only prefer other addresses on their
directly connected networks.
sortlist {
 { localhost; // IF the local host
 { localnets; // THEN first fit on the
 192.168.1/24; // following nets
 { 192,168.2/24; 192.168.3/24; }; }; };
 { 192.168.1/24; // IF on class C 192.168.1
 { 192.168.1/24; // THEN use .1, or .2 or .3
 { 192.168.2/24; 192.168.3/24; }; }; };
 { 192.168.2/24; // IF on class C 192.168.2
 { 192.168.2/24; // THEN use .2, or .1 or .3
 { 192.168.1/24; 192.168.3/24; }; }; };
 { 192.168.3/24; // IF on class C 192.168.3
 { 192.168.3/24; // THEN use .3, or .1 or .2
 { 192.168.1/24; 192.168.2/24; }; }; };
 { { 192.168.4/24; 192.168.5/24; };
 // if .4 or .5, prefer that net
 };
};

The following example will give reasonable behavior for the local host
and hosts on directly connected networks. It is similar to the behavior of
the address sort in BIND 8.x. Responses sent to queries from the local
host will favor any of the directly connected networks. Responses sent to
queries from any other hosts on a directly connected network will prefer
addresses on that same network. Responses to other queries will not be
sorted.
sortlist {
 { localhost; localnets; };
 { localnets; };
};

5.2.12.12 RRset Ordering

When multiple records are returned in an answer it may be useful to
configure the order of the records placed into the response. For example,
the records for a zone might be configured always to be returned in the
order they are defined in the zone file. Or perhaps a random shuffle of the
records as they are returned is wanted. The rrset-order statement
permits configuration of the ordering made of the records in a multiple
record response. The default, if no ordering is defined, is a cyclic ordering
(round robin).

An order_spec is defined as follows:
DRAFT February 1, 2000 45

BINDv9 Administrator Reference Manual
�
�
�
��

[class class_name][type type_name][name “domain_name”] order
ordering

If no class is specified, the default is ANY. If no type is specified, the
default is ANY. If no name is specified, the default is “*”.

The legal values for ordering are:

For example:
 rrset-order {
 class IN type A name “host.example.com” order random;
 order cyclic;
 };

will cause any responses for type A records in class IN that have
“host.example.com” as a suffix, to always be returned in random order.
All other records are returned in cyclic order.

If multiple rrset-order statements appear, they are not combined—the
last one applies.

If no rrset-order statement is specified, then a default one of:
 rrset-order { class ANY type ANY name “*”; order cyclic ; };

is used.

5.2.12.13 Tuning

fixed Records are returned in the order they are defined in the
zone file.

random Records are returned in some random order.

cyclic Records are returned in a round-robin order.

lame-ttl Sets the number of seconds to cache a lame server
indication. 0 disables caching. (This is NOT
recommended.) Default is 600 (10 minutes).
Maximum value is 1800 (30 minutes).
46 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

5.2.12.14 Deprecated Features

use-ixfr is deprecated in BINDv9. If you need to disable IXFR to a
particular server or servers see information on the support-ixfr option
in the Server Statement description (“server Statement Grammar” on
page 47 , below) and in the description of Incremental Transfer (IXFR)
(“Incremental Transfer (IXFR)” on page 13).

5.2.13 server Statement Grammar

server ip_addr {
 [bogus yes_or_no ;]
 [support-ixfr yes_or_no ;]
 [transfers number ;]
 [transfer-format (one-answer | many-answers) ;]
 [keys { string ; [string ; [...]] } ;]
};

5.2.14 server Statement Definition and Usage

The server statement defines the characteristics to be associated with a remote
nameserver.

If you discover that a remote server is giving out bad data, marking it as bogus will
prevent further queries to it. The default value of bogus is no.

The server supports two zone transfer methods. The first, one-answer, uses one
DNS message per resource record transferred. many-answers packs as many
resource records as possible into a message. many-answers is more efficient, but is
only known to be understood by BIND 8.2 and patched versions of BIND 4.9.5. You
can specify which method to use for a server with the transfer-format option. If
transfer-format is not specified, the transfer-format specified by the options
statement will be used.

max-ncache-ttl To reduce network traffic and increase
performance the server stores negative answers.
max-ncache-ttl is used to set a maximum
retention time for these answers in the server in
seconds. The default
max-ncache-ttl is 10800 seconds (3 hours).
max-ncache-ttl cannot exceed the maximum
retention time for ordinary (positive) answers (7
days) and will be silently truncated to 7 days if set
to a value which is greater that 7 days.

min-roots The minimum number of root servers that is
required for a request for the root servers to be
accepted. Default is 2.
DRAFT February 1, 2000 47

BINDv9 Administrator Reference Manual
�
�
�
��

transfers is used to limit the number of concurrent in-bound zone transfers from
the specified server.

The keys clause is used to identify a key_id defined by the key statement, to be
used for transaction security when talking to the remote server. The key statement
must come before the server statement that references it. When a request is sent to
the remote server, a request signature will be generated using the key specified here
and appended to the message. A request originating from the remote server is not
required to be signed by this key.

5.2.15 trusted-keys Statement Grammar

trusted-keys {
 string number number number string ;
 [string number number number string ; [...]]
};

5.2.16 trusted-keys Statement Definition and Usage

The trusted-keys statement is for use with DNSSEC-style security, originally
specified in RFC 2065. DNSSEC is meant to provide three distinct services: key
distribution, data origin authentication, and transaction and request authentication.
A complete description of DNSSEC and its use is beyond the scope of this
document, and readers interested in more information should start with RFC 2065
and then continue with the relevant Internet Drafts (IDs) documents. A list of the
Internet Drafts pertaining to DNSSEC can be found in “Internet Drafts” on page 82
in Appendix C of this document. (Their filenames begin with “draft-ietf-dnssec.”).
IDs are RFCs in their preliminary stages of development—they are the working
drafts of IETF working groups—and can be obtained via anonymous FTP from
ftp://www.isi.edu/internet-drafts/ or ftp://www.ietf.org/rfcs/.

Each trusted key is associated with a domain name. Its attributes are the non-
negative integral flags, protocol, and algorithm, as well as a base-64 encoded string
representing the key.

A trusted key is added when a public key for a non-authoritative zone is known, but
cannot be securely obtained through DNS. This occurs when a signed zone is a child
of an unsigned zone. Adding the trusted key here allows data signed by that zone to
be considered secure.

5.2.16.1 The channel Phrase

All log output goes to one or more “channels”; you can make as many of them as
you want.

Every channel definition must include a clause that says whether messages selected
for the channel go to a file, to a particular syslog facility, or are discarded. It can
optionally also limit the message severity level that will be accepted by the channel
(default is info), and whether to include a named-generated time stamp, the
category name and/or severity level (default is not to include any).
48 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

The word null as the destination option for the channel will cause all messages sent
to it to be discarded; in that case, other options for the channel are meaningless.

The file clause can include limitations both on how large the file is allowed to
become, and how many versions of the file will be saved each time the file is
opened.

The size option for files is simply a hard ceiling on log growth. If the file ever
exceeds the size, then named will not write anything more to it until the file is
reopened; exceeding the size does not automatically trigger a reopen. The default
behavior is not to limit the size of the file.

If you use the version log file option, then named will retain that many backup
versions of the file by renaming them when opening. For example, if you choose to
keep 3 old versions of the file lamers.log then just before it is opened lamers.log.1 is
renamed to lames.log.2, lamers.log.0 is renamed to lamers.log.1, and lamers.log is
renamed to lamers.log.0. No rolled versions are kept by default; any existing log file
is simply appended. The unlimited keyword is synonymous with 99 in current
BIND releases.

Example usage of the size and versions options:
 channel an_example_level {
 file “lamers.log” versions 3 size 20m;
 print-time yes;
 print-category yes;
 };

The argument for the syslog clause is a syslog facility as described in the syslog
manual page. How syslog will handle messages sent to this facility is described in
the syslog.conf manual page. If you have a system which uses a very old version
of syslog that only uses two arguments to the openlog() function, then this clause
is silently ignored.

The severity clause works like syslog’s “priorities,” except that they can also be
used if you are writing straight to a file rather than using syslog. Messages which
are not at least of the severity level given will not be selected for the channel;
messages of higher severity levels will be accepted.

If you are using syslog, then the syslog.conf priorities will also determine what
eventually passes through. For example, defining a channel facility and severity as
daemon and debug but only logging daemon.warning via syslog.conf will cause
messages of severity info and notice to be dropped. If the situation were reversed,
with named writing messages of only warning or higher, then syslogd would print
all messages it received from the channel.

The server can supply extensive debugging information when it is in debugging
mode. If the server’s global debug level is greater than zero, then debugging mode
will be active. The global debug level is set either by starting the named server with
the “-d” flag followed by a positive integer, or by running “ndc trace”. The global
debug level can be set to zero, and debugging mode turned off, by running “ndc
DRAFT February 1, 2000 49

BINDv9 Administrator Reference Manual
�
�
�
��

notrace”. All debugging messages in the server have a debug level, and higher
debug levels give more detailed output. Channels that specify a specific debug
severity, e.g.
 channel specific_debug_level {
 file “foo”;
 severity debug 3;
 };

will get debugging output of level 3 or less any time the server is in debugging
mode, regardless of the global debugging level. Channels with dynamic severity use
the server's global level to determine what messages to print.

If print-time has been turned on, then the date and time will be logged. print-
time may be specified for a syslog channel, but is usually pointless since syslog
also prints the date and time. If print-category is requested, then the category of
the message will be logged as well. Finally, if print-severity is on, then the
severity level of the message will be logged. The print- options may be used in any
combination, and will always be printed in the following order: time, category,
severity. Here is an example where all three print- options are on:

28-Apr-1997 15:05:32.863 default: notice: Ready to answer queries.

There are four predefined channels that are used for named’s default logging as
follows. How they are used is described in the section “The category Phrase” on
page 51.
 channel default_syslog {
 syslog daemon; # send to syslog's daemon facility
 severity info; # only send priority info and higher
 };
 channel default_debug {
 file “named.run”; # write to named.run in the working directory
 # Note: stderr is used instead of “named.run”
 # if the server is started with the “-f”
 # option.
 severity dynamic # log at the server's current debug level
 };
 channel default_stderr { # writes to stderr
 file “<stderr>”; # this is illustrative only;
 # there's currently no way of
 # specifying an internal file
 # descriptor in the configuration
 # language.
 severity info; # only send priority info and higher
 };
 channel null {
 null; # toss anything sent to this channel
 };

Once a channel is defined, it cannot be redefined. Thus you cannot alter the built-in
channels directly, but you can modify the default logging by pointing categories at
channels you have defined.
50 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

5.2.16.2 The category Phrase

There are many categories, so you can send the logs you want to see
wherever you want, without seeing logs you don’t want. If you don't
specify a list of channels for a category, then log messages in that
category will be sent to the default category instead. If you don’t specify
a default category, the following “default default” is used:
 category default { default_syslog; default_debug; };

As an example, let’s say you want to log security events to a file, but you
also want keep the default logging behavior. You'd specify the following:
channel my_security_channel {
 file “my_security_file”;
 severity info;
};
category security { my_security_channel; default_syslog;
default_debug; };

To discard all messages in a category, specify the null channel:
 category lame-servers { null; };
 category cname { null; };

Following are the available categories and brief descriptions of the types
of log information they contain.

default The catch-all. Many things still aren’t classified into
categories, and they all end up here. Also, if you
don't specify any channels for a category, the default
category is used instead. If you do not define the
default category, the following definition is used:
category default { default_syslog; default_debug; };

config High-level configuration file processing.

parser Low-level configuration file processing.

queries A short log message is generated for every query the
server receives.

lame-servers Messages like “Lame server on...”

statistics Statistics.

panic If the server has to shut itself down due to an internal
problem, it will log the problem in this category as
well as in the problem's native category. If you do
not define the panic category, the following
definition is used:
category panic { default_syslog; default_stderr; };

update Dynamic updates.

ncache Negative caching.

xfer-in Zone transfers the server is receiving.
DRAFT February 1, 2000 51

BINDv9 Administrator Reference Manual
�
�
�
��

5.2.17 view Statement Grammar

view “name” {

 [allow-query address_match_list; [allow-query address_match_list;
[...]]] [zone_statement; [zone_statement; [....]]
};

5.2.18 view Statement Definition and Usage

view statements are used to provide a different view of the same namespace to
different clients, depending upon which allow-query statement they match. A view
statement with no allow-query statement is the default view, for any client that
does not match a specific view. The view statement should contain a list of zone
definitions for each zone that needs differing answers. Zones that are specified
outside the view statement are common to all views.

5.2.19 zone Statement Grammar

zone string [class] [{
 type (master|slave|hint|stub|forward) ;
 [allow-query { address_match_list } ;]

xfer-out Zone transfers the server is sending.

db All database operations.

eventlib Debugging info from the event system. Only one
channel may be specified for this category, and it
must be a file channel. If you do not define the
eventlib category, the following definition is used:
category eventlib{ default_debug; };

packet Dumps of packets received and sent. Only one
channel may be specified for this category, and it
must be a file channel. If you do not define the
packet category, the following definition is used:
category packet { default_debug; };

notify The NOTIFY protocol.

cname Messages like “... points to a CNAME”.

security Approved/unapproved requests.

os Operating system problems.

insist Internal consistency check failures.

maintenance Periodic maintenance events.

load Zone loading messages.

response-
checks

Messages arising from response checking, such as
“Malformed response...”, “wrong ans. name...”,
“unrelated additional info...”, “invalid RR type...”,
and “bad referral...”.
52 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

 [allow-transfer { address_match_list } ;]
 [allow-update { address_match_list } ;]
 [also-notify { [ip_addr ; [ip_addr ; [...]]] } ;]
 [check-names (warn|fail|ignore) ;]
 [dialup true_or_false ;]
 [file string ;]
 [forward (only|first) ;]
 [forwarders { [ip_addr ; [ip_addr ; [...]]] } ;]
 [ixfr-base string ;]
 [ixfr-tmp-file string ;]
 [maintain-ixfr-base true_or_false ;]
 [masters [port number] { ip_addr ; [ip_addr ; [...]] } ;]
 [max-ixfr-log-size number ;]
 [max-transfer-idle-in number;]
 [max-transfer-idle-out number;]
 [max-transfer-time-in number ;]
 [max-transfer-time-out number;]
 [notify true_or_false ;]
 [pubkey number number number string ;]
 [recursive-clients number;]
 [tcp-clients number;]
 [transfer-source (ip_addr | *) ;]
}];
DRAFT February 1, 2000 53

BINDv9 Administrator Reference Manual
�
�
�
��

5.2.20 zone Statement Definition and Usage

5.2.20.1 Zone Types

5.2.20.2 Class

The zone’s name may optionally be followed by a class. If a class is not specified,
class in (for internet), is assumed. This is correct for the vast majority of cases.

The hesiod class is for an information service from MIT’s Project Athena. It is used
to share information about various systems databases, such as users, groups, printers
and so on. The keyword hs is a synonym for hesiod.

master The server has a master copy of the data for the zone and will be
able to provide authoritative answers for it.

slave A slave zone is a replica of a master zone. The masters list
specifies one or more IP addresses that the slave contacts to update
its copy of the zone. If a port is specified, the slave then checks to
see if the zone is current and zone transfers will be done to the port
given. If a file is specified, then the replica will be written to this
file whenever the zone is changed, and reloaded from this file on a
server restart. Use of a file is recommended, since it often speeds
server start-up and eliminates a needless waste of bandwidth. Note
that for large numbers (in the tens or hundreds of thousands) of
zones per server, it is best to use a two level naming scheme for
zone file names. For example, a slave server for the zone
example.com might place the zone contents into a file called
ex/example.com where ex/ is just the first two letters of the zone
name. (Most operating systems behave very slowly if you put
100K files into a single directory.)

stub A stub zone is like a slave zone, except that it replicates only the
NS records of a master zone instead of the entire zone.

forward A forward zone is used to direct all queries in it to other servers.
The specification of options in such a zone will override any global
options declared in the options statement.
If no forwarders statement is present in the zone or an empty list
for forwarders is given, then no forwarding will be done for the
zone, cancelling the effects of any forwarders in the options
statement. Thus if you want to use this type of zone to change the
behavior of the global forward option (i.e., “forward first to, “
then “forward only,” or vice versa, but want to use the same
servers as set globally) you need to respecify the global
forwarders.

hint The initial set of root nameservers is specified using a hint zone.
When the server starts up, it uses the root hints to find a root
nameserver and get the most recent list of root nameservers.
54 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

Another MIT development was CHAOSnet, a LAN protocol created in the mid-
1970s. Zone data for it can be specified with the chaos class.
DRAFT February 1, 2000 55

BINDv9 Administrator Reference Manual

t

�
�
�
��

5.2.20.3 Zone Options

allow-query See the description of allow-query under
“Access Control” on page 38.

allow-transfer See the description of allow-transfer under
“Access Control” on page 38.

allow-update Specifies which hosts are allowed to submit
Dynamic DNS updates to the server. The defaul
is to deny updates from all hosts.

also-notify Only meaningful if notify is active for this
zone. The set of machines that will receive a
DNS NOTIFY message for this zone is made up
of all the listed nameservers for the zone (other
than the primary master) plus any IP addresses
specified with also-notify.
also-notify is not meaningful for stub zones.
The default is the empty list.

check-names See “Name Checking” on page 37.

dialup See the description of dialup under “Boolean
Options” on page 34.

forward Only meaningful if the zone has a forwarders
list. The only value causes the lookup to fail
after trying the forwarders and getting no
answer, while first would allow a normal
lookup to be tried.

forwarders Used to override the list of global forwarders. If
it is not specified in a zone of type forward, no
forwarding is done for the zone; the global
options are not used.

ixfr_base Specifies the file name used for IXFR
transaction log file.

max-transfer-time-in See the description of max-transfer-time-in
under “Zone Transfers” on page 39.

notify See the description of notify under “Boolean
Options” on page 34.

pubkey Represents a public key for this zone. It is
needed when this is the top level authoritative
zone served by this server and there is no chain
of trust to a trusted key. It is considered secure,
so that data that it signs will be considered
secure. The DNSSEC flags, protocol, and
algorithm are specified, as well as a base-64
encoded string representing the key.
56 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual

�
�
�
��

5.3 The Zone File

5.3.1 Types of Resource Records and When to Use Them

This section, largely borrowed from RFC 1034, describes the concept of a Resource
Record (RR) and explains when each is used. Since the publication of RFC 1034,
several new RRs have been identified and implemented in the DNS. These are also
included.

5.3.1.1 Resource Records

A domain name identifies a node. Each node has a set of resource
information, which may be empty. The set of resource information
associated with a particular name is composed of separate RRs. The
order of RRs in a set is not significant and need not be preserved by
nameservers, resolvers, or other parts of the DNS. However, sorting of
multiple RRs is permitted for optimization purposes, for example, to
specify that a particular nearby server be tried first. See “The sortlist
Statement” on page 44 and “RRset Ordering” on page 45 for details.

The components of a RR are

The following are types of valid RRs (some of these listed, although not
obsolete, are experimental (x) or historical (h) and no longer in general
use):

transfer-source Determines which local address will be bound to
the TCP connection used to fetch this zone. If
not set, it defaults to a system controlled value
which will usually be the address of the interface
closest to the remote end. This address must
appear in the remote end’s allow-transfer
option for this zone if one is specified.

owner name the domain name where the RR is found.

type an encoded 16 bit value that specifies the type of the
resource in this resource record. Types refer to abstract
resources.

TTL the time to live of the RR. This field is a 32 bit integer
in units of seconds, and is primarily used by resolvers
when they cache RRs. The TTL describes how long a
RR can be cached before it should be discarded.

class an encoded 16 bit value that identifies a protocol
family or instance of a protocol.

RDATA the type and sometimes class-dependent data that
describes the resource.

A a host address.
DRAFT February 1, 2000 57

BINDv9 Administrator Reference Manual
�
�
�
��

The following classes of resource records are currently valid in the DNS:

A6 an IPv6 address.

AAAA Obsolete format of IPv6 address

AFSDB (x) location of AFS database servers. Experimental.

CNAME identifies the canonical name of an alias.

DNAME for delegation of reverse addresses. Replaces the domain
name specified with another name to be looked up.
Described in RFC 2672.

HINFO identifies the CPU and OS used by a host.

ISDN (x) representation of ISDN addresses. Experimental.

KEY stores a public key associated with a DNS name.

LOC (x) for storing GPS info. See RFC 1876. Experimental.

MX identifies a mail exchange for the domain. See RFC 974
for details.

NS the authoritative nameserver for the domain.

NXT used in DNSSEC to securely indicate that RRs with an
owner name in a certain name interval do not exist in a
zone and indicate what RR types are present for an
existing name. See RFC 2535 for details.

PTR a pointer to another part of the domain name space.

RP (x) information on persons responsible for the domain.
Experimental.

RT (x) route-through binding for hosts that do not have their
own direct wide area network addresses. Experimental.

SIG (“signature”) contains data authenticated in the secure
DNS. See RFC 2535 for details.

SOA identifies the start of a zone of authority.

SRV information about well known network services
(replaces WKS).

WKS (h) information about which well known network
services, such as SMTP, that a domain supports.
Historical, replaced by newer RR SRV.

X25 (x) representation of X.25 network addresses.
Experimental.

IN the Internet system.

For information about other, older classes of RRs, See Appendix B,
“Historical DNS Information,” on page 78.
58 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

RDATA is the type-dependent or class-dependent data that describes the
resource:

The owner name is often implicit, rather than forming an integral part of
the RR. For example, many nameservers internally form tree or hash
structures for the name space, and chain RRs off nodes. The remaining
RR parts are the fixed header (type, class, TTL) which is consistent for all
RRs, and a variable part (RDATA) that fits the needs of the resource being
described.

The meaning of the TTL field is a time limit on how long an RR can be
kept in a cache. This limit does not apply to authoritative data in zones; it
is also timed out, but by the refreshing policies for the zone. The TTL is
assigned by the administrator for the zone where the data originates.
While short TTLs can be used to minimize caching, and a zero TTL
prohibits caching, the realities of Internet performance suggest that these
times should be on the order of days for the typical host. If a change can
be anticipated, the TTL can be reduced prior to the change to minimize
inconsistency during the change, and then increased back to its former
value following the change.

The data in the RDATA section of RRs is carried as a combination of
binary strings and domain names. The domain names are frequently used
as “pointers” to other data in the DNS.

5.3.1.2 Textual expression of RRs

RRs are represented in binary form in the packets of the DNS protocol,
and are usually represented in highly encoded form when stored in a
nameserver or resolver. In the examples provided in RFC 1034, a style
similar to that used in master files was employed in order to show the

A for the IN class, a 32 bit IP address

A6 maps a domain name to an IPv6 address, with a provision
for indirection for leading “prefix” bits.

CNAME a domain name

DNAME provides alternate naming to an entire subtree of the
domain name space, rather than to a single node. It
causes some suffix of a queried name to be substituted
with a name from the DNAME record’s RDATA.

MX a 16 bit preference value (lower is better) followed by a
host name willing to act as a mail exchange for the owner
domain.

NS a fully qualified domain name.

PTR a fully qualified doman name.

SOA several fields.
DRAFT February 1, 2000 59

BINDv9 Administrator Reference Manual
�
�
�
��

contents of RRs. In this format, most RRs are shown on a single line,
although continuation lines are possible using parentheses.

The start of the line gives the owner of the RR. If a line begins with a
blank, then the owner is assumed to be the same as that of the previous
RR. Blank lines are often included for readability.

Following the owner, we list the TTL, type, and class of the RR. Class
and type use the mnemonics defined above, and TTL is an integer before
the type field. In order to avoid ambiguity in parsing, type and class
mnemonics are disjoint, TTLs are integers, and the type mnemonic is
always last. The IN class and TTL values are often omitted from
examples in the interests of clarity.

The resource data or RDATA section of the RR are given using
knowledge of the typical representation for the data.

For example, we might show the RRs carried in a message as:

The MX RRs have an RDATA section which consists of a 16 bit number
followed by a domain name. The address RRs use a standard IP address
format to contain a 32 bit internet address.

This example shows six RRs, with two RRs at each of three domain
names.

Similarly we might see:

This example shows two addresses for XX.LCS.MIT.EDU, each of a
different class.

5.3.2 Discussion of MX Records

As described above, domain servers store information as a series of resource
records, each of which contains a particular piece of information about a given
domain name (which is usually, but not always, a host). The simplest way to think of
a RR is as a typed pair of datum, a domain name matched with relevant data, and
stored with some additional type information to help systems determine when the
RR is relevant.

ISI.EDU. MX 10 VENERA.ISI.EDU.

MX 10 VAXA.ISI.EDU

VENERA.ISI.EDU A 128.9.0.32

A 10.1.0.52

VAXA.ISI.EDU A 10.2.0.27

A 128.9.0.33

XX.LCS.MIT.EDU. IN A 10.0.0.44

CH A MIT.EDU. 2420
60 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

MX records are used to control delivery of email. The data specified in the record is
a priority and a domain name. The priority controls the order in which email
delivery is attempted, with the lowest number first. If two priorities are the same, a
server is chosen randomly. If no servers at a given priority are responding, the mail
transport agent will fall back to the next largest priority. Priority numbers do not
have any absolute meaning - they are relevant only respective to other MX records
for that domain name. The domain name given is the machine to which the mail will
be delivered. It must have an associated A record—a CNAME is not sufficient.

For a given domain, if there is both a CNAME record and an MX record, the MX
record is in error, and will be ignored. Instead, the mail will be delivered to the
server specified in the MX record pointed to by the CNAME.

For example:

Mail delivery will be attempted to mail.foo.com and mail2.foo.com (in any order),
and if neither of those succeed, delivery to mail.backup.org will be attempted.

5.3.3 Setting TTLs

The time to live of the RR field is a 32 bit integer represented in units of seconds,
and is primarily used by resolvers when they cache RRs. The TTL describes how
long a RR can be cached before it should be discarded. The following three types of
TTL are currently used in a zone file.

All of these TTLs default to units of seconds, though units can be explicitly
specified, e.g. 1h30m.

example.com. IN MX 10 mail.foo.com.

IN MX 10 mail2.foo.com.

IN MX 20 mail.backup.org.

mail.example.com. IN A 10.0.0.1

mail2.example.com. IN A 10.0.0.2

SOA The last field in the SOA is the negative caching TTL. This controls
how long other servers will cache no-such-domain (NXDOMAIN)
responses from you.
The maximum time for negative caching is 3 hours (3h).

$TTL The $TTL directive at the top of the zone file (before the SOA) gives
a default TTL for every RR without a specific TTL set.

RR TTLs Each RR can have a TTL as the second field in the RR, which will
control how long other servers can cache the it.
DRAFT February 1, 2000 61

BINDv9 Administrator Reference Manual
�
�
�
��

5.3.4 Inverse Mapping in IPv4

Reverse name resolution (i.e., translation from IP address to name) is achieved by
means of the in-addr.arpa domain and PTR records. Entries in the in-addr.arpa
domain are made in least-to-most significant order, read left to right. This is the
opposite order to the way IP addresses are usually written. Thus, a machine with an
IP address of 10.1.2.3 would have a corresponding in-addr.arpa name of
3.2.1.10.in-addr.arpa. This name should have a PTR resource record whose data
field is the name of the machine or, optionally, multiple PTR records if the machine
has more than one name. For example, in the example.com domain:
$ORIGIN 2.1.10.in-addr.arpa
3 IN PTR foo.example.com.

(Note: The $ORIGIN lines in the examples are for providing context to the
examples only—they do not necessarily appear in the actual usage. They are only
used here to indicate that the example is relative to the listed $ORIGIN.)

5.3.5 Other Zone File Directives

The Master File Format was initially defined in RFC 1035 and has subsequently
been extended. While the Master File Format itself is class independent all records
in a Master File must be of the same class.

Master File Directives include $ORIGIN, $INCLUDE, and $TTL.

5.3.5.1 The $ORIGIN Directive

Syntax: $ORIGIN <domain-name> [<comment>]

$ORIGIN sets the domain name that will be appended to any unqualified records.
When a zone is first read in there is an implicit $ORIGIN <zone-name>. The current
$ORIGIN is appended to the domain specified in the $ORIGIN argument if it is not
absolute.
$ORIGIN EXAMPLE.COM
WWW CNAME MAIN-SERVER

is equivalent to
WWW.EXAMPLE.COM CNAME MAIN-SERVER.EXAMPLE.COM.

5.3.5.2 The $INCLUDE Directive

Syntax: $INCLUDE <filename> [<origin>] [<comment>]

Read and process the file filename as if it were included into the file at this point.
If origin is specified the file is processed with $ORIGIN set to that value, otherwise
the current $ORIGIN is used.

NOTE: The behavior when origin is specified differs from that described in RFC
1035. The origin and current domain revert to the values they were prior to the
$INCLUDE once the file has been read.
62 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

5.3.5.3 The $TTL Directive

Syntax: $TTL <default-ttl> [<comment>]

Set the default Time To Live (TTL) for subsequent records with undefined TTLs.
Valid TTLs are of the range 0-2147483647 seconds.

$TTL is defined in RFC 2308.

5.3.6 BIND Master File Extension: the $generate Directive

$GENERATE

Syntax: $GENERATE <range> <lhs> <type> <rhs> [<comment>]

$GENERATE is used to create a series of resource records that only differ from each
other by an iterator. $GENERATE can be used to easily generate the sets of records
required to support sub /24 reverse delegations described in RFC 2317: Classless
IN-ADDR.ARPA delegation.
$ORIGIN 0.0.192.IN-ADDR.ARPA.
$GENERATE 1-2 0 NS SERVER$.EXAMPLE.
$GENERATE 1-127 $ CNAME $.0

is equivalent to
0.0.0.192.IN-ADDR.ARPA NS SERVER1.EXAMPLE.
0.0.0.192.IN-ADDR.ARPA NS SERVER2.EXAMPLE.
1.0.0.192.IN-ADDR.ARPA CNAME 1.0.0.0.192.IN-ADDR.ARPA
2.0.0.192.IN-ADDR.ARPA CNAME 2.0.0.0.192.IN-ADDR.ARPA
...
127.0.0.192.IN-ADDR.ARPA CNAME 127.0.0.0.192.IN-ADDR.ARPA
.

5.3.7 Discussion of Nameserver Signals

The BIND nameserver, named, is controlled by means of signals. The following
table describes signals that BIND sends and their effects when sent to the server
process using the kill command.

range This can be one of two forms: start-stop or start-stop/step. If the
first form is used then step is set to 1. All of start, stop and step
must be positive.

lhs lhs describes the owner name of the resource records to be created.
Any single $ symbols within the lhs side are replaced by the
iterator value. To get a $ in the output use a double $, e.g. $$. If the
lhs is not absolute, the current $ORIGIN is appended to the name.

type At present the only supported types are PTR, CNAME and NS.

rhs rhs is a domain name. It is processed similarly to lhs.
DRAFT February 1, 2000 63

BINDv9 Administrator Reference Manual
�
�
�
��

SIGHUP Causes the server to read named.conf and reload the database.
If the server is built with the FORCED_RELOAD compile-time
option, then SIGHUP will also cause the server to check the
serial number on all secondary zones. Normally the serial
numbers are only checked at the SOA-specified intervals.

SIGTERM Dumps the primary and secondary database files. Used to save
modified data on shutdown if the server is compiled with
dynamic updating enabled.
64 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

Section 6. Security Considerations

6.1 Access Control Lists

Access Control Lists (ACLs), are address match lists that you can set up and nickname for
future use in allow-query, allow-recursion, blackhole allow-transfer, etc.

Using ACLs allows you to have finer control over who can access your nameserver, without
cluttering up your config files with huge lists of IP addresses.

It is a good idea to use ACLs, and to control access to your server. Limiting access to your
server by outside parties can help prevent spoofing and DoS attacks against your server.

Here is an example of how to properly apply ACLs:

// Set up an ACL named “bogusnets” that will block RFC1918 space,
// which is commonly used in spoofing attacks.
acl bogusnets { 0.0.0.0/8; 1.0.0.0/8; 2.0.0.0/8; 192.0.2.0/24; 224.0.0.0/3;
10.0.0.0/8; 172.16.0.0/12; 192.168.0.0/16; };

// Set up an ACL called our-nets. Replace this with the real IP numbers.
acl our-nets { x.x.x.x/24; x.x.x.x/21; };

options {
 ...
 ...
 allow-query { our-nets; };
 allow-recursion { our-nets; };
 ...
 blackhole { bogusnets; };
 ...
};

zone “example.com” {
 type master;
 file “m/example.com”;
 allow-query { any; };
};

This allows recursive queries of the server from the outside unless recursion has been
previously disabled.

For more information on how to use ACLs to protect your server, see the AUSCERT
advisory at
ftp://ftp.auscert.org.au/pub/auscert/advisory/AL-1999.004.dns_dos

6.2 chroot and set_uid (for UNIX servers)

On UNIX servers, it is possible to run BIND in a chrooted environment (chroot()) by
specifying the “-t” option. This can help improve system security by placing BIND in a
“sandbox,” which will limit the damage done if a server is compromised.
DRAFT February 1, 2000 65

BINDv9 Administrator Reference Manual
�
�
�
��

Another useful feature in the UNIX version of BIND is the ability to run the daemon as a
nonprivileged user (-u <user>) and in a nonprivileged group (-g <group>). We suggest
running as a nonpriveleged user when using the chroot feature.

Here is an example command line to load BIND in a chroot() sandbox,
/var/named, and to run named set_uid and set_gid it to user 202 and group 202:
/usr/local/bin/named -u 202 -g 202 -t /var/named

6.2.1 The chroot environment

In order for a chroot() environment to work properly in a particular directory (e.g.
var/named), you will need to set up an environment that includes everything BIND
needs to run. From BIND’s point of view, /var/named is the root of the filesystem.
You will need /dev/null, and any library directories and files that BIND needs to
run on your system. Please consult your operating system’s instructions if you need
help figuring out which library files you need to copy over to the chroot()
sandbox.

If you are running an operating system that supports static binaries, you can also
compile BIND staticly and avoid the need to copy system libraries over to your
chroot() sandbox.

6.2.2 Using set_uid/set_gid

Prior to running the named daemon, use the touch utility (to change file access and
modification times) or the chown utility (to set the user id and/or group id) on files to
which you want BIND to write.

6.3 Dynamic updates

Since dynamic updates do not have per-RR security, access to the dynamic update facility
should be strictly limited. The traditional way to do this has been host-based, but BINDv9
allows tranaction signature (TSIG) signed updates to cryptographically verify the updates.

 (Note: The syntax for this not finalized.)

See also “Incremental Transfer (IXFR)” on page 13.
66 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

Section 7. Troubleshooting

7.1 Common Log Messages and What They Mean

• lame server
ns named[111]: Lame server on ’www.foo.com’ (in ’foo.com’?): [192.168.0.2].53
’ns2.foo.com’

This is a harmless error message. It means that the server at 192.168.0.2 (ns2.foo.com) is
listed as a nameserver for “foo.com”, but it doesn’t really know anything about foo.com.

If this is a zone under your control, check each of the nameservers to ensure that they are
configured to answer questions properly.

If it’s a zone out on the Internet, it would be nice to notify the owners of the domain in
question so that they can take a look at it. In practice, though, not many people have time to
do this.

• bad referral
ns named[111]: bad referral (other.com !< subdomain.other.com)

This indicates that your nameserver (ns.foo.com) queried the nameserver for foo2.com to
find out how to get to subdomain.foo2.com. foo2.com told your nameserver that
subdomain.foo2.com was delegated to some other.foo2.com, so your nameserver queried
that.

someother.foo2.com didn’t think that subdomain.foo2.com had been delegated to it, so it
referred your server (ns.foo.com) back to the foo2.com nameserver.

• not authoritative for
ns named-xfer[111]: [192.168.0.1] not authoritative for foo.com, SOA query got
rcode 0, aa 0, ancount 1, aucount 0

This error usually shows up on a slave server. It indicates that the master server is not
answering authoritatively for the zone. This usually happens when the zone is rejected
(while named is loading) on the master server. Check the logs on the master server. If
ancount -- 0, you may be pointing at the wrong master server for the zone.

• rejected zone
ns named[111]: master zone “foo.com” (IN) rejected due to errors (serial111)

This indicates that the foo.com zone was rejected because of an error in the zone file. Check
the lines above this error -- named will usually tell you what it didn’t like and where to find
it in the zone file.

• no NS RRs found
ns named[111]: Zone “foo.com” (file foo.com.db): no NS RRs found at zonetop
DRAFT February 1, 2000 67

BINDv9 Administrator Reference Manual
�
�
�
��

The foo.com.db file is missing NS records at the top of the zone (in the SOA section). Check
to make sure they exist and that there is white space (spaces or tabs) in front of them. White
spaces matter here.

• no default TTL set
ns named[111]: Zone “foo.com” (file foo.com.db): No default TTL set using SOA
minimum instead

You need to add a $TTL to the top of the foo.com.db zone file. See RFC2308, or section
3.2.3, “Setting TTLs” in this document, for information on how to use $TTL.

• no root nameserver for class
findns: No root nameservers for class IN?

Your nameserver is having problems finding the root nameservers. Check your root hints file
to make sure it is not corrupted. Also, make sure that your nameserver can reach the Internet.

If you are running an internal root nameserver, make sure it’s configured properly and is
answering queries.

• address already in use
ctl_server: bind: Address already in use

This usually indicates that another copy of BIND is already running. Verify that you have
killed old copies of the daemon.

This can also pop up if you originally ran named as “root” and now run it as a regular user.
named may have left behind an ndc control socket that is owned by root if it crashed, or was
not killed gracefully.

This means that the regular user wouldn’t be able to delete it, so it would think named is still
running. The solution is to remove any ndc sockets in /usr/local/etc, or /var/run, etc.

7.2 Common Problems

7.2.1 It's not working; how can I figure out what’s wrong?

The best solution to solving installation and configuration issues is to take
preventative measures by setting up logging files beforehand (see the sample
configurations in “Sample Configuration and Logging” on page 8). The log files
provide a source of hints and information that can be used to figure out what went
wrong and how to fix the problem.

7.3 Incrementing and Changing the Serial Number

Zone serial numbers are just numbers—they aren’t date related. A lot of people set them to a
number that represents a date, usually of the form YYYYMMDDRR. A number of people
have been testing these numbers for Y2K compliance and have set the number to the year
2000 to see if it will work. They then try to restore the old serial number. This will cause
68 February 1, 2000 DRAFT

BINDv9 Administrator Reference Manual
�
�
�
��

problems with BIND, because serial numbers are used to indicate that a zone has been
updated. If the serial number on the secondary server is lower than the serial number on the
primary, the secondary server will attempt to update its copy of the zone.

Setting the serial number to a lower number on the primary server than the secondary server
means that the secondary will not perform updates to its copy of the zone.

The solution to this is to add 2147483647 (2^31-1) to the number, reload the zone and make
sure all secondaries have updated to the new zone serial number, then reset the number to
what you want it to be, and reload the zone again.

7.4 Where Can I Get Help?

The Internet Software Consortium (ISC) offers a wide range of support and service
agreements for BIND, DHCP and INN servers. Four levels of premium support are available
and each level includes support for all ISC programs, significant discounts on products and
training, and a recognized priority on bug fixes and non-funded feature requests. In addition,
ISC offers a standard support agreement package which includes services ranging from bug
fix announcements to remote support. It also includes training in BIND, DHCP or INN.

To discuss arrangements for support, contact clientservices@isc.org or visit the ISC
web page at
http://www.isc.org/services/support/ to read more.
DRAFT February 1, 2000 69

BINDv9 Administrator Reference Manual
�
�
�
��
70 February 1, 2000 DRAFT

Appendices
�
�
�
��

Appendices
DRAFT February 1, 2000 71

Appendices
�
�
�
��
72 February 1, 2000 DRAFT

Appendices
�
�
�
��

Appendix A. Acknowledgements

A.1 A Brief History of the DNS and BIND

Although the “official” beginning of the Domain Name System occurred in 1984 with the
publication of RFC 920, the core of the new system was described in 1983 in RFCs 882 and
883. From 1984 to 1987, the ARPAnet (the precursor to today’s Internet) became a testbed
of experimentation for developing the new naming/addressing scheme in an rapidly
expanding, operational network environment. New RFCs were written and published in
1987 that modified the original documents to incorporate improvements based on the
working model. RFC 1034, “Domain Names–Concepts and Facilities,” and RFC 1035,
“Domain Names–Implementation and Specification” were published and became the
standards upon which all DNS implementations are built.

The first working domain name server, called “Jeeves,” was written in 1983-84 by Paul
Mockapetris for operation on DEC Tops-20 machines located at the University of Southern
California’s Information Sciences Institute (USC-ISI) and SRI International’s Network
Information Center (SRI-NIC). A DNS server for Unix machines, the Berkeley Internet
Name Domain (BIND) package, was written soon after by a group of graduate students at
the University of California at Berkeley under a grant from the US Defense Advanced
Research Projects Administration (DARPA). Versions of BIND through 4.8.3 were
maintained by the Computer Systems Research Group (CSRG) at UC Berkeley. Douglas
Terry, Mark Painter, David Riggle and Songnian Zhou made up the initial BIND project
team. After that, additional work on the software package was done by Ralph Campbell.
Kevin Dunlap, a Digital Equipment Corporation employee on loan to the CSRG, worked on
BIND for 2 years, from 1985 to 1987. Many other people also contributed to BIND
development during that time: Doug Kingston, Craig Partridge, Smoot Carl-Mitchell, Mike
Muuss, Jim Bloom and Mike Schwartz. BIND maintenance was subsequently handled by
Mike Karels and O. Kure.

BIND versions 4.9 and 4.9.1 were released by Digital Equipment Corporation (now Compaq
Computer Corporation). Paul Vixie, then a DEC employee, became BIND’s primary
caretaker. Paul was assisted by Phil Almquist, Robert Elz, Alan Barrett, Paul Albitz, Bryan
Beecher, Andrew Partan, Andy Cherenson, Tom Limoncelli, Berthold Paffrath, Fuat Baran,
Anant Kumar, Art Harkin, Win Treese, Don Lewis, Christophe Wolfhugel, and others.

BIND Version 4.9.2 was sponsored by Vixie Enterprises. Paul Vixie became BIND’s
principal architect/programmer.

BIND versions from 4.9.3 onward have been developed and maintained by the Internet
Software Consortium with support being provided by ISC’s sponsors. As co-architects/
programmers, Bob Halley and Paul Vixie released the first production-ready version of
BIND version 8 in May 1997.

BIND development work is made possible today by the sponsorship of several corporations,
and by the tireless work efforts of numerous individuals.
DRAFT February 1, 2000 73

Appendices
�
�
�
��
74 February 1, 2000 DRAFT

Appendices
�
�
�
��

Appendix B. Historical DNS Information

B.1 Classes of resource records

B.1.1 HS = hesiod

B.1.2 CH = chaos
DRAFT February 1, 2000 75

Appendices
�
�
�
��
76 February 1, 2000 DRAFT

Appendices
�
�
�
��

Appendix C. Bibliography (and Suggested Reading)

C.1 Request for Comments (RFCs)

Specification documents for the Internet protocol suite, including the DNS, are published as
part of the Request for Comments (RFCs) series of technical notes. The standards
themselvers are defined by the Internet Engineering Task Force (IETF) and the Internet
Engineering Steering Group (IESG). RFCs can be obtained online via FTP at
ftp://www.isi.edu/in-notes/RFCxxx.txt (where xxx is the number of the RFC). RFCs are also
available via the Web at http://www.ietf.org/rfc/.

C.1.1 Standards
RFC974. Partridge, C. Mail Routing and the Domain System. January 1986. (Standard

RFC1034. Mockapetris, P.V. Domain Names - Concepts and Facilities. P.V. November
1987.

RFC1035. Mockapetris, P. V. Domain Names - Implementation and Specification.
November 1987.

C.1.2 Proposed Standards
RFC2181. Elz, R., R. Bush. Clarifications to the DNS Specification. July 1997.

RFC2308. Andrews, M. Negative Caching of DNS Queries. March 1998.

RFC1995. Ohta, M. Incremental Zone Transfer in DNS. August 1996.

RFC1996. Vixie, P. A Mechanism for Prompt Notification of Zone Changes. August 1996.

RFC2136. Vixie, P., S. Thomson, Y. Rekhter, J. Bound. Dynamic Updates in the Domain
Name System. April 1997.

C.1.3 Proposed Standards Still Under Development

Note: the following list of RFCs are undergoing major revision by the IETF. (See
below, Internet Drafts, for current versions).

RFC1886. Thomson, S., C. Huitema. DNS Extensions to support IP version 6. S. December
1995.

RFC2065. Eastlake, 3rd, D., C. Kaufman. Domain Name System Security Extensions.
January 1997.

RFC2137. Eastlake, 3rd, D. Secure Domain Name System Dynamic Update. April 1997.

C.1.4 Other Important RFCs About DNS Implementation
RFC1535. Gavron, E. A Security Problem and Proposed Correction With Widely Deployed

DNS Software. October 1993.

RFC1536. Kumar, A., J. Postel, C. Neuman, P. Danzig, S. Miller. Common DNS
Implementation Errors and Suggested Fixes. October 1993.

RFC1982. Elz, R., R. Bush. Serial Number Arithmetic. August 1996.

C.1.5 Resource Record Types
RFC1183. Everhart, C.F., L. A. Mamakos, R. Ullmann, P. Mockapetris. New DNS RR

Definitions. October 1990.
DRAFT February 1, 2000 77

Appendices
�
�
�
��

RFC1706. Manning, B., R. Colella. DNS NSAP Resource Records. October 1994.

RFC2168. Danie1,R., M. Mealling. Resolution of Uniform Resource Identifiers using the
Domain Name System. June 1997.

RFC1876. Davis, C., P. Vixie, T. Goodwin, I. Dickinson. A Means for Expressing Location
Information in the Domain Name System. January 1996.

RFC2052. Gulbrandsen,A., P. Vixie. A DNS RR for Specifying the Location of Services.
October 1996.

RFC2163. Allocchio, A. Using the Internet DNS to Distribute MIXER Conformant Global
Address Mapping.January 1998.

RFC2230. Atkinson, R. Key Exchange Delegation Record for the DNS. October 1997.

C.1.6 DNS and the Internet

RFC1101. Mockapetris, P. V. Dns Encoding of Network Names and Other Types. April 1989.

RFC1123. Braden, R. Requirements for Internet Hosts - Application and Support. October
1989.

RFC1591. Postel, J. Domain Name System Structure and Delegation. March 1994.

RFC2317. Eidnes, H., G. de Groot, P. Vixie. Classless IN-ADDR.ARPA Delegation. March
1998.

C.1.7 DNS Operations

RFC1537. Beertema, P. Common DNS Data File Configuration Errors. October 1993.

RFC1912. Barr, D. Common DNS Operational and Configuration Errors. February 1996.

RFC2182. Elz, R. R. Bush, S. Bradner, M. Patton. Selection and Operation of Secondary
DNS Servers. July 1997.

RFC2219. Hamilton, M., R. Wright. Use of DNS Aliases for Network Services. October
1997.

C.1.8 Other DNS-related RFCs

Note: the following list of RFCs, although DNS-related, are not concerned with
implementing software.

RFC1464. Rosenbaum, R. Using the Domain Name System To Store Arbitrary String
Attributes. May 1993.

RFC1713. Romao, A. Tools for DNS Debugging. November 1994.

RFC1794. Brisco, T. DNS Support for Load Balancing. April 1995.

RFC2240. Vaughan, O. A Legal Basis for Domain Name Allocation. November1997.

RFC2345. Klensin, J., T. Wolf, G. Oglesby. Domain Names and Company Name Retrieval.
May 1998.

RFC2352. Vaughan, O. A Convention For Using Legal Names as Domain Names. May
1998.

C.1.9 Obsolete and Unimplemented Experimental RRs

RFC1712. Farrell, C., M. Schulze, S. Pleitner, D. Baldoni. DNS Encoding of Geographical
Location. November 1994.
78 February 1, 2000 DRAFT

Appendices
�
�
�
��

C.2 Internet Drafts

Internet Drafts (IDs) are rough-draft working documents of the Internet Engineering Task
Force. They are, in essence, RFCs in the preliminary stages of development. Implementors
are cautioned not to regard IDs as archival, and they should not be quoted or cited in any
formal documents unless accompanied by the disclaimer that they are “works in progress.”
IDs have a lifespan of six months after which they are deleted unless updated by their
authors.

IDs can be obtained via FTP from
ftp://www.isi.edu/internet-drafts/ or from http://www.ietf.org/1id-abstracts.html.

draft-duerst-dns-i18n-01.txt
draft-ietf-dhc-dhcp-dns-10.txt
draft-ietf-dnsind-apl-rr-03.txt
draft-ietf-dnsind-dddd-01.txt
draft-ietf-dnsind-dhcp-rr-00.txt
draft-ietf-dnsind-edns1-03.txt
draft-ietf-dnsind-iana-dns-04.txt
draft-ietf-dnsind-indirect-key-00.txt
draft-ietf-dnsind-keyreferral-00.txt
draft-ietf-dnsind-kitchen-sink-02.txt
draft-ietf-dnsind-local-compression-05.txt
draft-ietf-dnsind-local-names-07.txt
draft-ietf-dnsind-rfc2052bis-05.txt
draft-ietf-dnsind-rollover-00.txt
draft-ietf-dnsind-sec-rr-00.txt
draft-ietf-dnsind-sigalgopt-00.txt
draft-ietf-dnsind-simple-secure-update-02.txt
draft-ietf-dnsind-test-tlds-13.txt
draft-ietf-dnsind-tkey-01.txt
draft-ietf-dnsind-tsig-13.txt
draft-ietf-dnsind-verify-00.txt
draft-ietf-dnssec-ar-00.txt
draft-ietf-dnssec-as-map-05.txt
draft-ietf-dnssec-key-handling-00.txt
draft-ietf-dnssec-secfail-00.txt
draft-ietf-dnssec-update2-00.txt
draft-ietf-ipngwg-2292bis-00.txt
draft-ietf-ipngwg-dns-lookups-05.txt
draft-dunlap-dns-duxfr-00.txt
draft-schroeppel-dnsind-ecc-00.txt
draft-skwan-gss-tsig-04.txt
draft-skwan-utf8-dns-02.txt

C.3 Electronic Mail Communication

Wellington, Brian (bwellington@tislabs.com). DNSSEC usage document. E-mail to David
Conrad (David_Conrad@isc.org). 15 March 1999.
DRAFT February 1, 2000 79

Appendices
�
�
�
��

Wellington, Brian (bwellington@tislabs.com). TSIG guide for BIND 8.2+. E-mail to private
mailing list (private communication). 22 April 1999.

C.4 Other BIND Documents

Albitz, Paul and Cricket Liu. 1998. DNS and BIND. Sebastopol, CA: O’Reilly and
Associates.
80 February 1, 2000 DRAFT

	BINDv9 Administrator Reference Manual
	Table of Contents
	Section 1. Introduction
	1.1 Scope of Document
	1.2 Organization of This Document
	1.3 Conventions Used in This Document
	1.4 Discussion of Domain Name System (DNS) Basics and BIND
	1.4.1 Nameservers
	1.4.2 Types of Zones
	1.4.3 Servers
	1.4.3.1 Master Server
	1.4.3.2 Slave Server
	1.4.3.3 Caching Only Server
	1.4.3.4 Forwarding Server
	1.4.3.5 Stealth Server

	Section 2. BIND Resource Requirements
	2.1 Hardware requirements
	2.2 CPU Requirements
	2.3 Memory Requirements
	2.4 Nameserver Intensive Environment Issues
	2.5 Operating Systems Supported by the Internet Software Consortium

	Section 3. Nameserver Configuration
	3.1 Sample Configuration and Logging
	3.2 Load Balancing and Round Robin
	3.3 Notify
	3.4 Nameserver Operations
	3.4.1 Tools for Use With the Nameserver Daemon
	3.4.1.1 Diagnostic Tools
	3.4.1.2 Administrative Tools
	3.4.1.3 Monitoring Tools

	Section 4. Advanced Concepts
	4.1 Dynamic Update
	4.1.1 Incremental Transfer (IXFR)

	4.2 Split DNS
	4.3 TSIG
	4.3.1 Generate Shared Keys for Each Pair of Hosts
	4.3.1.1 Automatic Generation
	4.3.1.2 Manual Generation

	4.3.2 Copying the Shared Secret to Both Machines
	4.3.3 Informing the Servers of the Key's Existence
	4.3.4 Instructing the Server to Use the Key
	4.3.5 TSIG Key Based Access Control
	4.3.6 Errors

	4.4 DNSSEC
	4.5 IPv6
	4.5.1 IPv6 addresses (A6)
	4.5.2 Name to Address Lookup
	4.5.3 Address to Name Lookup
	4.5.4 Using DNAME for Delegation of IPv6 Reverse Addresses

	Section 5. BINDv9 Configuration Reference
	5.1 Configuration file elements
	5.1.1 Address Match Lists
	5.1.1.1 Syntax
	5.1.1.2 Definition and Usage

	5.1.2 Comment Syntax
	5.1.2.1 Syntax
	5.1.2.2 Definition and Usage

	5.2 Configuration File Grammar
	5.2.1 acl Statement Grammar
	5.2.2 acl Statement Definition and Usage
	5.2.3 control Statement Grammar
	5.2.4 controls Statement Definition and Usage
	5.2.5 include Statement Grammar
	5.2.6 include Statement Definition and Usage
	5.2.7 key Statement Grammar
	5.2.8 key Statement Definition and Usage
	5.2.9 logging statement grammar
	5.2.10 logging statement definition and usage
	5.2.11 options Statement Grammar
	5.2.12 options Statement Definition and Usage
	5.2.12.1 Boolean Options
	5.2.12.2 Forwarding
	5.2.12.3 Name Checking
	5.2.12.4 Access Control
	5.2.12.5 Interfaces
	5.2.12.6 Query Address
	5.2.12.7 Zone Transfers
	5.2.12.8 Resource Limits
	5.2.12.9 Periodic Task Intervals
	5.2.12.10 Topology
	5.2.12.11 The sortlist Statement
	5.2.12.12 RRset Ordering
	5.2.12.13 Tuning
	5.2.12.14 Deprecated Features

	5.2.13 server Statement Grammar
	5.2.14 server Statement Definition and Usage
	5.2.15 trusted-keys Statement Grammar
	5.2.16 trusted-keys Statement Definition and Usage
	5.2.16.1 The channel Phrase
	5.2.16.2 The category Phrase

	5.2.17 view Statement Grammar
	5.2.18 view Statement Definition and Usage
	5.2.19 zone Statement Grammar
	5.2.20 zone Statement Definition and Usage
	5.2.20.1 Zone Types
	5.2.20.2 Class
	5.2.20.3 Zone Options

	5.3 The Zone File
	5.3.1 Types of Resource Records and When to Use Them
	5.3.1.1 Resource Records
	5.3.1.2 Textual expression of RRs

	5.3.2 Discussion of MX Records
	5.3.3 Setting TTLs
	5.3.4 Inverse Mapping in IPv4
	5.3.5 Other Zone File Directives
	5.3.5.1 The $ORIGIN Directive
	5.3.5.2 The $INCLUDE Directive
	5.3.5.3 The $TTL Directive

	5.3.6 BIND Master File Extension: the $generate Directive
	5.3.7 Discussion of Nameserver Signals

	Section 6. Security Considerations
	6.1 Access Control Lists
	6.2 chroot and set_uid (for UNIX servers)
	6.2.1 The chroot environment
	6.2.2 Using set_uid/set_gid

	6.3 Dynamic updates

	Section 7. Troubleshooting
	7.1 Common Log Messages and What They Mean
	7.2 Common Problems
	7.2.1 It's not working; how can I figure out what’s wrong?

	7.3 Incrementing and Changing the Serial Number
	7.4 Where Can I Get Help?
	Appendices

	Appendix A. Acknowledgements
	A.1 A Brief History of the DNS and BIND

	Appendix B. Historical DNS Information
	B.1 Classes of resource records
	B.1.1 HS = hesiod
	B.1.2 CH = chaos

	Appendix C. Bibliography (and Suggested Reading)
	C.1 Request for Comments (RFCs)
	C.1.1 Standards
	C.1.2 Proposed Standards
	C.1.3 Proposed Standards Still Under Development
	C.1.4 Other Important RFCs About DNS Implementation
	C.1.5 Resource Record Types
	C.1.6 DNS and the Internet
	C.1.7 DNS Operations
	C.1.8 Other DNS-related RFCs
	C.1.9 Obsolete and Unimplemented Experimental RRs

	C.2 Internet Drafts
	C.3 Electronic Mail Communication
	C.4 Other BIND Documents

