BIND 9 Administrator Reference
Manual

=

Copyright (© 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014 Internet Systems
Consortium, Inc. (“ISC”)

Copyright (© 2000, 2001, 2002, 2003 Internet Software Consortium.

Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is
hereby granted, provided that the above copyright notice and this permission notice appear in all
copies.

THE SOFTWARE IS PROVIDED ”AS IS” AND ISC DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR

PERFORMANCE OF THIS SOFTWARE.

Internet System Consortium
950 Charter Street
Redwood City, California
USA
http:/ /www.isc.org/

Contents

1 Introduction 1
1.1 Scopeof Document 1
1.2 Organization of ThisDocument 1
1.3 Conventions Used in This Document 1
14 The Domain Name System (DNS) 2

141 DNSFundamentals. e 2
142 Domainsand Domain Names 2
143 Zones. e 2
1.4.4 Authoritative Name Servers 3
1441 ThePrimaryMaster 3
1442 Slave Servers i e e e e e e e 3
1.44.3 StealthServers e 3
145 CachingNameServers 4
1451 Forwarding 4
14.6 Name Serversin MultipleRoles 4

2 BIND Resource Requirements 5
2.1 Hardwarerequirements 5
22 CPURequirements 5
2.3 Memory Requirements 5
2.4 Name Server Intensive EnvironmentIssues 5
2.5 Supported Operating Systems L 6

3 Name Server Configuration 7
3.1 Sample Configurations 7

3.1.1 AcCaching-only NameServer 7

3.1.2 An Authoritative-only Name Server 7

32 LoadBalancing 8
3.3 NameServerOperations e 9
3.3.1 Tools for Use With the Name Server Daemon 9
3.3.11 DiagnosticTools 9

3.3.1.2 Administrative Tools 9

332 Signals e 11

4 Advanced DNS Features 13
41 Notify o 13
42 DynamicUpdate 13

421 Thejournalfile 14

4.3 Incremental Zone Transfers (IXFR) 14
44 SplitDNS. e 14
441 Examplesplit DNSsetup 15

45 TSIG . . 17
45.1 Generate Shared Keys for Each Pairof Hosts 18
4511 AutomaticGeneration. oo 18

4512 Manual Generation 18

452 Copying the Shared Secret to Both Machines 18
45.3 Informing the Servers of the Key’s Existence 18
454 Instructing the ServertoUsetheKey 19

455 TSIGKeyBased AccessControl. 19
456 Errors. e 19

4.6 TKEY . . . o 19
47 SIG0) . . o o 20
4.8 DNSSEC 20

CONTENTS

49

4.10

411

4.12

413

4.8.1
482
483

49.1
49.2
49.3
494
495
4.9.6
49.7
498
499
4.9.10
49.11
4.9.12
4.9.13

4.10.1
4.10.2

4111
4.11.2
4.11.3

4114
4.11.5
4.11.6
4.11.7

4121
4.12.2

4.13.1
4.13.2

GeneratingKeys
SigningtheZone
Configuring Servers
DNSSEC, Dynamic Zones, and Automatic Signing
Converting from insecure tosecure
Dynamic DNS update method
Fully automatic zone signing
Private-typerecords
DNSKEY rollovers
Dynamic DNS updatemethod
Automatickeyrollovers 0L
NSEC3PARAM rollovers via UPDATE
Converting from NSECtoNSEC3
Converting from NSEC3toNSEC
Converting from secure toinsecure
Periodicre-signing
NSEC3and OPTOUT
Dynamic Trust Anchor Management
Validating Resolver,
AuthoritativeServer L L L oL oL
PKCS#11 (Cryptoki) support
Prerequisites. o
Native PKCS#11 o o
OpenSSL-based PKCS#11
411.3.1 PatchingOpenSSL
4.11.3.2 Building OpenSSL for the AEP Keyper on Linux
4.11.3.3 Building OpenSSL for the SCA 6000 on Solaris
411.3.4 Building OpenSSL for SoftHSM

411.3.5 Configuring BIND 9 for Linux with the AEP Keyper

4.11.3.6 Configuring BIND 9 for Solaris with the SCA 6000
411.3.7 Configuring BIND 9 for SoftHSM
PKCS#11Tools
Usingthe HSM
Specifying the engine on the command line
Running named with automatic zone re-signing
DLZ (Dynamically Loadable Zones)
Configuring DLZ
Sample DLZDriver.
IPv6 Support in BIND 9
Address Lookups Using AAAARecords
Address to Name Lookups Using Nibble Format.

The BIND 9 Lightweight Resolver

51 The Lightweight Resolver Library
5.2 Running a Resolver Daemon

BIND 9 Configuration Reference

6.1 Configuration File Elements
Address Match Lists
6.1.1.1 Syntax o
6.1.12 Definitionand Usage
CommentSyntax
6121 Syntax
6.12.2 Definitionand Usage
Configuration File Grammar
acl Statement Grammar
acl Statement Definitionand Usage
controls Statement Grammar
controls Statement Definitionand Usage

6.2

6.1.1

6.1.2

6.2.1
6.2.2
6.2.3
6.2.4

ii

CONTENTS

6.3

6.2.5 include Statement Grammar L L o oo 47
6.2.6 include Statement Definitionand Usage 47
6.2.7 keyStatement Grammar L 47
6.2.8 key Statement Definitionand Usage 48
6.29 logging Statement Grammar L. 48
6.2.10 logging Statement Definitionand Usage 48
6.2.10.1 Thechannel Phrase 49
6.2.10.2 ThecategoryPhrase 51
6.2.10.3 The query-errors Category 53
6.2.11 lIwres Statement Grammar. 54
6.2.12 lwres Statement Definitionand Usage 54
6.2.13 masters Statement Grammar L L Lo oo 55
6.2.14 masters Statement Definitionand Usage 55
6.2.15 options Statement Grammar Lo Lo o 55
6.2.16 options Statement Definitionand Usage 59
6.216.1 BooleanOptions 64
6.2162 Forwarding 70
6.2.16.3 Dual-stackServers L oo 71
62164 AccessControl L L 71
6.2.16.5 Interfaces 73
6.216.6 Query Address 74
6.2.16.7 ZoneTransfers 75
6.216.8 UDPPortLists 77
6.2.16.9 Operating System Resource Limits 78
6.2.16.10 Server Resource Limits 78
6.2.16.11 Periodic Task Intervals 79
6.216.12 Topology e 80
6.2.16.13 The sortlist Statement 80
6.2.16.14 RRsetOrdering 81
621615 Tuning 82
6.2.16.16 Built-in server informationzones L. 85
6.2.16.17 Built-in Empty Zones L 86
6.2.16.18 Additional Section Caching 89
6.216.19 Content Filtering, 90
6.2.16.20 Response Policy Zone (RPZ) Rewriting 91
6.2.16.21 Response Rate Limiting 94
6.2.17 server Statement Grammar o 97
6.2.18 server Statement Definitionand Usage 97
6.2.19 statistics-channels Statement Grammar 98
6.2.20 statistics-channels Statement Definitionand Usage 99
6.2.21 trusted-keys Statement Grammar L. 99
6.2.22 trusted-keys Statement Definitionand Usage. 100
6.2.23 managed-keys Statement Grammar L oL 100
6.2.24 managed-keys Statement Definitionand Usage 100
6.2.25 view Statement Grammar L Lo Lo 101
6.2.26 view Statement Definitionand Usage 101
6.2.27 zone Statement Grammar 102
6.2.28 zone Statement Definitionand Usage 106
6.228.1 ZoneTypes 106
62282 Class. e 108
62283 ZoneOptions. e 108
6.2.28.4 Dynamic Update Policies 112
6.228.5 Multipleviews L L L 115
ZoneFile L 116
6.3.1 Types of Resource Records and WhentoUse Them 116
6.3.1.1 ResourceRecords 116
6.3.12 Textualexpressionof RRs. 118
6.3.2 Discussionof MXRecords 119
633 Setting TTLs e 120

iii

CONTENTS

634 Inverse MappinginIPv4. o 120

6.3.5 Other Zone File Directives 120
6351 The@ (at-sign) 120

6.3.5.2 The SORIGIN Directive 121

6.3.5.3 The $INCLUDE Directive 121

6.3.54 The$TTL Directive ittt 121

6.3.6 BIND Master File Extension: the $§GENERATE Directive 121

6.3.7 Additional File Formats 123

6.4 BINDO9 Statistics o vt e 123
6.4.0.1 TheStatisticsFile 124

6.4.1 StatisticsCounters L 124
6.4.1.1 Name Server StatisticsCounters 124

6.4.1.2 Zone Maintenance Statistics Counters 126

6.4.1.3 Resolver StatisticsCounters 126

6.4.1.4 SocketI/O StatisticsCounters v v v i 127

6.4.1.5 Compatibility with BIND 8 Counters 128

BIND 9 Security Considerations 129
7.1 AccessControl Lists. e 129
72 Chrootand Setuid 130
721 Thechroot Environment 130

722 Using thesetuid Function 130

7.3 Dynamic Update Security 130
Troubleshooting 133
8.1 Common Problems e e 133
8.1.1 It's not working; how can I figure out what's wrong? 133

8.2 Incrementing and Changing the Serial Number 133
83 WhereCanlIGetHelp? 133
Appendices 135
Al Acknowledgments 135
A.1.1 ABrief Historyof the DNSand BIND 135

A.2 General DNS Reference Information, 136
A21 IPv6addresses (AAAA) o i i e 136

A.3 Bibliography (and Suggested Reading) 136
A.3.1 Request for Comments (RFCs) 136
A32 InternetDrafts e 140
A.3.3 Other Documents About BIND 140

A4 BIND9DNS Library Support 140
A4l Prerequisite 141
A42 Compilation 141
A43 Installation. e 141
A4.4 Known Defects/Restrictions 141
A45 Thedns.confFile e 142
A46 Sample Applications 142
A.46.1 sample: asimple stub resolver utility 0 0L 142

A4.6.2 sample-async: a simple stub resolver, working asynchronously 143

A4.6.3 sample-request: a simple DNS transaction client 143

A.4.6.4 sample-gai: getaddrinfo() and getnameinfo() testcode 143

A4.65 sample-update: a simple dynamic update client program 144

A.4.6.6 nsprobe: domain/name server checker in terms of RFC 4074 145

A47 LibraryReferences 145
Manual pages 147
Bl dig 147
B.2 host 153
B3 delve e 155
B.4 dnssec-checkds 159

iv

CONTENTS

B.5 dnssec-coverage 160
B.6 dnssec-dsfromkey 161
B.7 dnssec-importkey 163
B.8 dnssec-keyfromlabel L 165
B.9 dnssec-keygen 168
B.10 dnssec-revoke e e e e 172
B.11 dnssec-settime e e e e e e 173
B.12 dnssec-sighzone 175
B.13 dnssec-verify 180
B.14 named-checkconf e 181
B.15 named-checkzone e e 183
B.16 named e e e e 185
B.17 named-journalprint L 189
B.18 named-rrchecker e e 189
B.19 nsupdate 190
B.20 rndc e e e 194
B.21 rndc.conf e e e 199
B.22 rndc-confgen 201
B.23 ddns-confgen 202
B24 arpaname. e 204
B.25 genrandom 204
B.26 isc-chmac-fixup 205
B.27 nsecBhash e e e e 206

Chapter 1

Introduction

The Internet Domain Name System (DNS) consists of the syntax to specify the names of entities in the
Internet in a hierarchical manner, the rules used for delegating authority over names, and the system
implementation that actually maps names to Internet addresses. DNS data is maintained in a group of
distributed hierarchical databases.

1.1 Scope of Document

The Berkeley Internet Name Domain (BIND) implements a domain name server for a number of oper-
ating systems. This document provides basic information about the installation and care of the Internet
Systems Consortium (ISC) BIND version 9 software package for system administrators.

This version of the manual corresponds to BIND version 9.10.

1.2 Organization of This Document

In this document, Chapter 1 introduces the basic DNS and BIND concepts. Chapter 2 describes resource
requirements for running BIND in various environments. Information in Chapter 3 is task-oriented in its
presentation and is organized functionally, to aid in the process of installing the BIND 9 software. The
task-oriented section is followed by Chapter 4, which contains more advanced concepts that the system
administrator may need for implementing certain options. Chapter 5 describes the BIND 9 lightweight
resolver. The contents of Chapter 6 are organized as in a reference manual to aid in the ongoing mainte-
nance of the software. Chapter 7 addresses security considerations, and Chapter § contains troubleshoot-
ing help. The main body of the document is followed by several appendices which contain useful refer-
ence information, such as a bibliography and historic information related to BIND and the Domain Name
System.

1.3 Conventions Used in This Document

In this document, we use the following general typographic conventions:

To describe: We use the style:
a pathname, filename, URL, hostname, mailing | Fixed width
list name, or new term or concept
literal user input Fixed Width Bold
program output Fixed Width

1.4. THE DOMAIN NAME SYSTEM (DNS) CHAPTER 1. INTRODUCTION

The following conventions are used in descriptions of the BIND configuration file:

To describe: We use the style:
keywords Fixed Width
variables Fixed Width
Optional input [Text is enclosed in square brackets]

1.4 The Domain Name System (DNS)

The purpose of this document is to explain the installation and upkeep of the BIND (Berkeley Internet
Name Domain) software package, and we begin by reviewing the fundamentals of the Domain Name
System (DNS) as they relate to BIND.

1.4.1 DNS Fundamentals

The Domain Name System (DNS) is a hierarchical, distributed database. It stores information for map-
ping Internet host names to IP addresses and vice versa, mail routing information, and other data used
by Internet applications.

Clients look up information in the DNS by calling a resolver library, which sends queries to one or more
name servers and interprets the responses. The BIND 9 software distribution contains a name server,
named, and a resolver library, liblwres. The older libbind resolver library is also available from ISC as
a separate download.

1.4.2 Domains and Domain Names

The data stored in the DNS is identified by domain names that are organized as a tree according to or-
ganizational or administrative boundaries. Each node of the tree, called a domain, is given a label. The
domain name of the node is the concatenation of all the labels on the path from the node to the oot node.
This is represented in written form as a string of labels listed from right to left and separated by dots. A
label need only be unique within its parent domain.

For example, a domain name for a host at the company Example, Inc. could be ourhost .example.com,
where com s the top level domain to which ourhost . example. combelongs, example is a subdomain
of com, and ourhost is the name of the host.

For administrative purposes, the name space is partitioned into areas called zones, each starting at a
node and extending down to the leaf nodes or to nodes where other zones start. The data for each zone
is stored in a name server, which answers queries about the zone using the DNS protocol.

The data associated with each domain name is stored in the form of resource records (RRs). Some of the
supported resource record types are described in Section 6.3.1.

For more detailed information about the design of the DNS and the DNS protocol, please refer to the
standards documents listed in Section A.3.1.

1.4.3 Zones

To properly operate a name server, it is important to understand the difference between a zone and a
domain.

As stated previously, a zone is a point of delegation in the DNS tree. A zone consists of those contigu-
ous parts of the domain tree for which a name server has complete information and over which it has
authority. It contains all domain names from a certain point downward in the domain tree except those

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

which are delegated to other zones. A delegation point is marked by one or more NS records in the
parent zone, which should be matched by equivalent NS records at the root of the delegated zone.

For instance, consider the example . com domain which includes names such as host .aaa.example.
comand host .bbb.example.comeven though the example.com zone includes only delegations for
the aaa.example.comand bbb.example.comzones. A zone can map exactly to a single domain, but
could also include only part of a domain, the rest of which could be delegated to other name servers.
Every name in the DNS tree is a domain, even if it is terminal, that is, has no subdomains. Every subdomain
is a domain and every domain except the root is also a subdomain. The terminology is not intuitive and
we suggest that you read RFCs 1033, 1034 and 1035 to gain a complete understanding of this difficult
and subtle topic.

Though BIND is called a “"domain name server”, it deals primarily in terms of zones. The master and
slave declarations in the named. conf file specify zones, not domains. When you ask some other site
if it is willing to be a slave server for your domain, you are actually asking for slave service for some
collection of zones.

1.4.4 Authoritative Name Servers

Each zone is served by at least one authoritative name server, which contains the complete data for the
zone. To make the DNS tolerant of server and network failures, most zones have two or more authori-
tative servers, on different networks.

Responses from authoritative servers have the “authoritative answer” (AA) bit set in the response pack-
ets. This makes them easy to identify when debugging DNS configurations using tools like dig (Sec-
tion 3.3.1.1).

1.4.4.1 The Primary Master

The authoritative server where the master copy of the zone data is maintained is called the primary
master server, or simply the primary. Typically it loads the zone contents from some local file edited by
humans or perhaps generated mechanically from some other local file which is edited by humans. This
file is called the zone file or master file.

In some cases, however, the master file may not be edited by humans at all, but may instead be the result
of dynamic update operations.

1.4.4.2 Slave Servers

The other authoritative servers, the slave servers (also known as secondary servers) load the zone con-
tents from another server using a replication process known as a zone transfer. Typically the data are
transferred directly from the primary master, but it is also possible to transfer it from another slave. In
other words, a slave server may itself act as a master to a subordinate slave server.

1.4.4.3 Stealth Servers

Usually all of the zone’s authoritative servers are listed in NS records in the parent zone. These NS
records constitute a delegation of the zone from the parent. The authoritative servers are also listed in the
zone file itself, at the fop level or apex of the zone. You can list servers in the zone’s top-level NS records
that are not in the parent’s NS delegation, but you cannot list servers in the parent’s delegation that are
not present at the zone’s top level.

A stealth server is a server that is authoritative for a zone but is not listed in that zone’s NS records.
Stealth servers can be used for keeping a local copy of a zone to speed up access to the zone’s records or
to make sure that the zone is available even if all the ”official” servers for the zone are inaccessible.

1.4. THE DOMAIN NAME SYSTEM (DNS) CHAPTER 1. INTRODUCTION

A configuration where the primary master server itself is a stealth server is often referred to as a "hidden
primary” configuration. One use for this configuration is when the primary master is behind a firewall
and therefore unable to communicate directly with the outside world.

1.4.5 Caching Name Servers

The resolver libraries provided by most operating systems are stub resolvers, meaning that they are not
capable of performing the full DNS resolution process by themselves by talking directly to the authori-
tative servers. Instead, they rely on a local name server to perform the resolution on their behalf. Such
a server is called a recursive name server; it performs recursive lookups for local clients.

To improve performance, recursive servers cache the results of the lookups they perform. Since the
processes of recursion and caching are intimately connected, the terms recursive server and caching server
are often used synonymously.

The length of time for which a record may be retained in the cache of a caching name server is controlled
by the Time To Live (TTL) field associated with each resource record.

1.4.5.1 Forwarding

Even a caching name server does not necessarily perform the complete recursive lookup itself. Instead,
it can forward some or all of the queries that it cannot satisfy from its cache to another caching name
server, commonly referred to as a forwarder.

There may be one or more forwarders, and they are queried in turn until the list is exhausted or an
answer is found. Forwarders are typically used when you do not wish all the servers at a given site
to interact directly with the rest of the Internet servers. A typical scenario would involve a number
of internal DNS servers and an Internet firewall. Servers unable to pass packets through the firewall
would forward to the server that can do it, and that server would query the Internet DNS servers on the
internal server’s behalf.

1.4.6 Name Servers in Multiple Roles

The BIND name server can simultaneously act as a master for some zones, a slave for other zones, and
as a caching (recursive) server for a set of local clients.

However, since the functions of authoritative name service and caching/recursive name service are
logically separate, it is often advantageous to run them on separate server machines. A server that
only provides authoritative name service (an authoritative-only server) can run with recursion disabled,
improving reliability and security. A server that is not authoritative for any zones and only provides
recursive service to local clients (a caching-only server) does not need to be reachable from the Internet
at large and can be placed inside a firewall.

Chapter 2

BIND Resource Requirements

2.1 Hardware requirements

DNS hardware requirements have traditionally been quite modest. For many installations, servers that
have been pensioned off from active duty have performed admirably as DNS servers.

The DNSSEC features of BIND 9 may prove to be quite CPU intensive however, so organizations that
make heavy use of these features may wish to consider larger systems for these applications. BIND 9 is
fully multithreaded, allowing full utilization of multiprocessor systems for installations that need it.

2.2 CPU Requirements

CPU requirements for BIND 9 range from i486-class machines for serving of static zones without caching,
to enterprise-class machines if you intend to process many dynamic updates and DNSSEC signed zones,
serving many thousands of queries per second.

2.3 Memory Requirements

The memory of the server has to be large enough to fit the cache and zones loaded off disk. The max-
cache-size option can be used to limit the amount of memory used by the cache, at the expense of
reducing cache hit rates and causing more DNS traffic. Additionally, if additional section caching (Sec-
tion 6.2.16.18) is enabled, the max-acache-size option can be used to limit the amount of memory used
by the mechanism. It is still good practice to have enough memory to load all zone and cache data into
memory — unfortunately, the best way to determine this for a given installation is to watch the name
server in operation. After a few weeks the server process should reach a relatively stable size where
entries are expiring from the cache as fast as they are being inserted.

2.4 Name Server Intensive Environment Issues

For name server intensive environments, there are two alternative configurations that may be used.
The first is where clients and any second-level internal name servers query a main name server, which
has enough memory to build a large cache. This approach minimizes the bandwidth used by external
name lookups. The second alternative is to set up second-level internal name servers to make queries
independently. In this configuration, none of the individual machines needs to have as much memory
or CPU power as in the first alternative, but this has the disadvantage of making many more external
queries, as none of the name servers share their cached data.

2.5. SUPPORTED OPERATING SYSTEMS CHAPTER 2. BIND RESOURCE REQUIREMENTS

2.5 Supported Operating Systems

ISC BIND 9 compiles and runs on a large number of Unix-like operating systems and on Microsoft
Windows Server 2003 and 2008, and Windows XP and Vista. For an up-to-date list of supported systems,
see the README file in the top level directory of the BIND 9 source distribution.

Chapter 3

Name Server Configuration

In this chapter we provide some suggested configurations along with guidelines for their use. We sug-
gest reasonable values for certain option settings.

3.1 Sample Configurations

3.1.1 A Caching-only Name Server

The following sample configuration is appropriate for a caching-only name server for use by clients
internal to a corporation. All queries from outside clients are refused using the allow-query option.
Alternatively, the same effect could be achieved using suitable firewall rules.

// Two corporate subnets we wish to allow queries from.
acl corpnets { 192.168.4.0/24; 192.168.7.0/24; };
options {

// Working directory

directory "/etc/namedb";

allow-query { corpnets; };
bi
// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type master;
file "localhost.rev";
notify noj;

3.1.2 An Authoritative-only Name Server

This sample configuration is for an authoritative-only server that is the master server for "example.
com” and a slave for the subdomain “eng.example.com”.

options {
// Working directory
directory "/etc/namedb";
// Do not allow access to cache
allow—query—-cache { none; };

3.2. LOAD BALANCING CHAPTER 3. NAME SERVER CONFIGURATION

// This is the default

allow—query { any; };

// Do not provide recursive service
recursion no;

}i

// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type master;
file "localhost.rev";
notify noj;
}i
// We are the master server for example.com
zone "example.com" {
type master;
file "example.com.db";
// IP addresses of slave servers allowed to
// transfer example.com
allow—-transfer {
192.168.4.14;
192.168.5.53;
}i
}i
// We are a slave server for eng.example.com
zone "eng.example.com" {
type slave;
file "eng.example.com.bk";
// IP address of eng.example.com master server
masters { 192.168.4.12; };
}i

3.2 Load Balancing

A primitive form of load balancing can be achieved in the DNS by using multiple records (such as
multiple A records) for one name.

For example, if you have three WWW servers with network addresses of 10.0.0.1, 10.0.0.2 and 10.0.0.3,
a set of records such as the following means that clients will connect to each machine one third of the
time:

Name TTL CLASS TYPE Resource Record (RR) Data
WWW 600 IN A 10.0.0.1

600 IN A 10.0.0.2

600 IN A 10.0.0.3

When a resolver queries for these records, BIND will rotate them and respond to the query with the
records in a different order. In the example above, clients will randomly receive records in the order 1,
2,3;2,3,1;and 3, 1, 2. Most clients will use the first record returned and discard the rest.

For more detail on ordering responses, check the rrset-order sub-statement in the options statement, see
RRset Ordering.

CHAPTER 3. NAME SERVER CONFIGURATION 3.3. NAME SERVER OPERATIONS

3.3 Name Server Operations

3.3.1 Tools for Use With the Name Server Daemon

This section describes several indispensable diagnostic, administrative and monitoring tools available
to the system administrator for controlling and debugging the name server daemon.

3.3.1.1 Diagnostic Tools

The dig, host, and nslookup programs are all command line tools for manually querying name servers.
They differ in style and output format.

dig The domain information groper (dig) is the most versatile and complete of these lookup tools. It has
two modes: simple interactive mode for a single query, and batch mode which executes a query
for each in a list of several query lines. All query options are accessible from the command line.

Usage
dig [@server] domain [query-typel [query-class] [+query-option]
[-dig-option] [%comment]

The usual simple use of dig will take the form
dig @server domain query-type query-class

For more information and a list of available commands and options, see the dig man page.

host The host utility emphasizes simplicity and ease of use. By default, it converts between host names
and Internet addresses, but its functionality can be extended with the use of options.

Usage
host [-aCdlnrsTwv] [-c class] [-N ndots] [-t type]l [-W timeout] [-R
retries] [-m flag] [-4] [-6] hostname [server]

For more information and a list of available commands and options, see the host man page.

nslookup nslookup has two modes: interactive and non-interactive. Interactive mode allows the user
to query name servers for information about various hosts and domains or to print a list of hosts
in a domain. Non-interactive mode is used to print just the name and requested information for a
host or domain.

Usage
nslookup [-option...] [host—-to—-find | — [server]]

Interactive mode is entered when no arguments are given (the default name server will be used)
or when the first argument is a hyphen (*-’) and the second argument is the host name or Internet
address of a name server.

Non-interactive mode is used when the name or Internet address of the host to be looked up is
given as the first argument. The optional second argument specifies the host name or address of a
name server.

Due to its arcane user interface and frequently inconsistent behavior, we do not recommend the
use of nslookup. Use dig instead.

3.3.1.2 Administrative Tools

Administrative tools play an integral part in the management of a server.

named-checkconf The named-checkconf program checks the syntax of a named. conf file.

3.3. NAME SERVER OPERATIONS CHAPTER 3. NAME SERVER CONFIGURATION

Usage

named-checkconf [-jvz] [-t directory] [filename]

named-checkzone The named-checkzone program checks a master file for syntax and consistency.

Usage
named-checkzone [-djgvD] [-c class] [-o output] [-t directory] [-w
directory] [-k (ignore|warn|fail)]l [-n (ignore|warn|fail)]l [-W

(ignore\warn)] zone [filename]

named-compilezone Similar to named-checkzone, but it always dumps the zone content to a specified
file (typically in a different format).

rndc The remote name daemon control (rndc) program allows the system administrator to control the
operation of a name server. Since BIND 9.2, rndc supports all the commands of the BIND 8 ndc
utility except ndc start and ndc restart, which were also not supported in ndc’s channel mode. If
you run rndc without any options it will display a usage message as follows:

Usage
rndc [-c config] [-s server] [-p port] [-y key] command [command...]

See rndc(8) for details of the available rndc commands.

rndc requires a configuration file, since all communication with the server is authenticated with
digital signatures that rely on a shared secret, and there is no way to provide that secret other than
with a configuration file. The default location for the rndc configuration file is /etc/rndc. conf,
but an alternate location can be specified with the —c option. If the configuration file is not found,
rndc will also look in /etc/rndc.key (or whatever sysconfdir was defined when the BIND
build was configured). The rndc.key file is generated by running rndc-confgen -a as described
in Section 6.2.4.

The format of the configuration file is similar to that of named.conf, but limited to only four
statements, the options, key, server and include statements. These statements are what associate
the secret keys to the servers with which they are meant to be shared. The order of statements is
not significant.

The options statement has three clauses: default-server, default-key, and default-port. default-
server takes a host name or address argument and represents the server that will be contacted if no
—s option is provided on the command line. default-key takes the name of a key as its argument,
as defined by a key statement. default-port specifies the port to which rndc should connect if no
port is given on the command line or in a server statement.

The key statement defines a key to be used by rndc when authenticating with named. Its syntax
is identical to the key statement in named. conf. The keyword key is followed by a key name,
which must be a valid domain name, though it need not actually be hierarchical; thus, a string like
“rndc_key” is a valid name. The key statement has two clauses: algorithm and secret. While the
configuration parser will accept any string as the argument to algorithm, currently only the strings
“hmac-md5”, "hmac—-shal”, "hmac—-sha224”, "hmac-sha256”, "hmac-sha384” and “hmac—
sha512” have any meaning. The secret is a base-64 encoded string as specified in RFC 3548.

The server statement associates a key defined using the key statement with a server. The keyword
server is followed by a host name or address. The server statement has two clauses: key and
port. The key clause specifies the name of the key to be used when communicating with this
server, and the port clause can be used to specify the port rndc should connect to on the server.

A sample minimal configuration file is as follows:

key rndc_key {
algorithm "hmac-sha256";
secret
"c3Ryb25nIGVUb3VnaCBmb3IgYSBtYW4gYnVOIG1hZGUgZm9yIGEgd2 9t YW4K" ;

10

CHAPTER 3. NAME SERVER CONFIGURATION 3.3. NAME SERVER OPERATIONS

}i

options {
default-server 127.0.0.1;
default-key rndc_key;

}i

This file, if installed as /etc/rndc.conf, would allow the command:

Srndec reload

to connect to 127.0.0.1 port 953 and cause the name server to reload, if a name server on the local
machine were running with following controls statements:

controls {
inet 127.0.0.1
allow { localhost; } keys { rndc_key; 1};

i

and it had an identical key statement for rndc_key.

Running the rndc-confgen program will conveniently create a rndc. conf file for you, and also
display the corresponding controls statement that you need to add to named. conf. Alternatively,
you can run rndc-confgen -a to set up a rndc. key file and not modify named. conf atall.

3.3.2 Signals

Certain UNIX signals cause the name server to take specific actions, as described in the following table.
These signals can be sent using the kill command.

SIGHUP Causes the server to read named. conf and reload the database.
SIGTERM Causes the server to clean up and exit.
SIGINT Causes the server to clean up and exit.

11

Chapter 4

Advanced DNS Features

4.1 Notify

DNS NOTIFY is a mechanism that allows master servers to notify their slave servers of changes to a
zone’s data. In response to a NOTIFY from a master server, the slave will check to see that its version of
the zone is the current version and, if not, initiate a zone transfer.

For more information about DNS NOTIFY, see the description of the notify option in Section 6.2.16.1
and the description of the zone option also-notify in Section 6.2.16.7. The NOTIFY protocol is specified
in RFC 1996.

NOTE

As a slave zone can also be a master to other slaves, named, by default, sends
% NOTIFY messages for every zone it loads. Specifying notify master-only; will
cause named to only send NOTIFY for master zones that it loads.

4.2 Dynamic Update

Dynamic Update is a method for adding, replacing or deleting records in a master server by sending it
a special form of DNS messages. The format and meaning of these messages is specified in RFC 2136.

Dynamic update is enabled by including an allow-update or an update-policy clause in the zone state-
ment.

If the zone’s update-policy is set to local, updates to the zone will be permitted for the key 1ocal-ddns,
which will be generated by named at startup. See Section 6.2.28.4 for more details.

Dynamic updates using Kerberos signed requests can be made using the TKEY/GSS protocol by set-
ting either the tkey-gssapi-keytab option, or alternatively by setting both the tkey-gssapi-credential
and tkey-domain options. Once enabled, Kerberos signed requests will be matched against the update
policies for the zone, using the Kerberos principal as the signer for the request.

Updating of secure zones (zones using DNSSEC) follows RFEC 3007: RRSIG, NSEC and NSEC3 records
affected by updates are automatically regenerated by the server using an online zone key. Update au-
thorization is based on transaction signatures and an explicit server policy.

13

4.3. INCREMENTAL ZONE TRANSFERS (IXFR) CHAPTER 4. ADVANCED DNS FEATURES

4.21 The journal file

All changes made to a zone using dynamic update are stored in the zone’s journal file. This file is auto-
matically created by the server when the first dynamic update takes place. The name of the journal file is
formed by appending the extension . jnl to the name of the corresponding zone file unless specifically
overridden. The journal file is in a binary format and should not be edited manually.

The server will also occasionally write (“dump”) the complete contents of the updated zone to its zone
file. This is not done immediately after each dynamic update, because that would be too slow when a
large zone is updated frequently. Instead, the dump is delayed by up to 15 minutes, allowing additional
updates to take place. During the dump process, transient files will be created with the extensions . jnw
and . jbk; under ordinary circumstances, these will be removed when the dump is complete, and can
be safely ignored.

When a server is restarted after a shutdown or crash, it will replay the journal file to incorporate into the
zone any updates that took place after the last zone dump.

Changes that result from incoming incremental zone transfers are also journalled in a similar way.

The zone files of dynamic zones cannot normally be edited by hand because they are not guaranteed to
contain the most recent dynamic changes — those are only in the journal file. The only way to ensure
that the zone file of a dynamic zone is up to date is to run rndc stop.

If you have to make changes to a dynamic zone manually, the following procedure will work: Disable
dynamic updates to the zone using rndc freeze zone. This will update the zone’s master file with the
changes stored in its . jn1 file. Edit the zone file. Run rndc thaw zone to reload the changed zone and
re-enable dynamic updates.

rndc sync zone will update the zone file with changes from the journal file without stopping dynamic
updates; this may be useful for viewing the current zone state. To remove the . jnl file after updating
the zone file, use rndc sync -clean.

4.3 Incremental Zone Transfers (IXFR)

The incremental zone transfer (IXFR) protocol is a way for slave servers to transfer only changed data,
instead of having to transfer the entire zone. The IXFR protocol is specified in RFC 1995. See [Proposed
Standards].

When acting as a master, BIND 9 supports IXFR for those zones where the necessary change history
information is available. These include master zones maintained by dynamic update and slave zones
whose data was obtained by IXFR. For manually maintained master zones, and for slave zones obtained
by performing a full zone transfer (AXFR), IXFR is supported only if the option ixfr-from-differences is
set to yes.

When acting as a slave, BIND 9 will attempt to use IXFR unless it is explicitly disabled. For more
information about disabling IXFR, see the description of the request-ixfr clause of the server statement.

4.4 Split DNS

Setting up different views, or visibility, of the DNS space to internal and external resolvers is usually
referred to as a Split DNS setup. There are several reasons an organization would want to set up its DNS
this way.

One common reason for setting up a DNS system this way is to hide “internal” DNS information from
“external” clients on the Internet. There is some debate as to whether or not this is actually useful.
Internal DNS information leaks out in many ways (via email headers, for example) and most savvy
"attackers” can find the information they need using other means. However, since listing addresses
of internal servers that external clients cannot possibly reach can result in connection delays and other
annoyances, an organization may choose to use a Split DNS to present a consistent view of itself to the
outside world.

14

CHAPTER 4. ADVANCED DNS FEATURES 4.4. SPLIT DNS

Another common reason for setting up a Split DNS system is to allow internal networks that are behind
filters or in RFC 1918 space (reserved IP space, as documented in RFC 1918) to resolve DNS on the
Internet. Split DNS can also be used to allow mail from outside back in to the internal network.

4.4.1 Example split DNS setup

Let’s say a company named Example, Inc. (example.com) has several corporate sites that have an
internal network with reserved Internet Protocol (IP) space and an external demilitarized zone (DMZ),
or “outside” section of a network, that is available to the public.

Example, Inc. wants its internal clients to be able to resolve external hostnames and to exchange mail
with people on the outside. The company also wants its internal resolvers to have access to certain
internal-only zones that are not available at all outside of the internal network.

In order to accomplish this, the company will set up two sets of name servers. One set will be on the
inside network (in the reserved IP space) and the other set will be on bastion hosts, which are “proxy”
hosts that can talk to both sides of its network, in the DMZ.

The internal servers will be configured to forward all queries, except queries for sitel.internal,
site2.internal, sitel.example.com, and site2.example.com, to the servers in the DMZ.
These internal servers will have complete sets of information for sitel.example.com, site2.example.
com, sitel.internal,and site2.internal.

To protect the sitel.internal and site2.internal domains, the internal name servers must be
configured to disallow all queries to these domains from any external hosts, including the bastion hosts.

The external servers, which are on the bastion hosts, will be configured to serve the "public” version
of the sitel and site2.example.com zones. This could include things such as the host records for
public servers (www.example.comand ftp.example.com), and mail exchange (MX) records (a.mx .
example.comand b.mx.example.com).

In addition, the public sitel and site2.example.com zones should have special MX records that
contain wildcard (**') records pointing to the bastion hosts. This is needed because external mail servers
do not have any other way of looking up how to deliver mail to those internal hosts. With the wildcard
records, the mail will be delivered to the bastion host, which can then forward it on to internal hosts.

Here’s an example of a wildcard MX record:
* IN MX 10 externall.example.com.

Now that they accept mail on behalf of anything in the internal network, the bastion hosts will need
to know how to deliver mail to internal hosts. In order for this to work properly, the resolvers on the
bastion hosts will need to be configured to point to the internal name servers for DNS resolution.

Queries for internal hostnames will be answered by the internal servers, and queries for external host-
names will be forwarded back out to the DNS servers on the bastion hosts.

In order for all this to work properly, internal clients will need to be configured to query only the internal
name servers for DNS queries. This could also be enforced via selective filtering on the network.

If everything has been set properly, Example, Inc.’s internal clients will now be able to:
o Look up any hostnames in the sitel and site2.example.com zones.
e Look up any hostnames in the sitel.internal and site2.internal domains.
e Look up any hostnames on the Internet.
e Exchange mail with both internal and external people.
Hosts on the Internet will be able to:
e Look up any hostnames in the sitel and site2.example.com zones.

e Exchange mail with anyone in the sitel and site2.example.com zones.

15

4.4. SPLIT DNS CHAPTER 4. ADVANCED DNS FEATURES

Here is an example configuration for the setup we just described above. Note that this is only configu-
ration information; for information on how to configure your zone files, see Section 3.1.

Internal DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips—-go-here; };

options {

forward only;
// forward to external servers
forwarders {

bastion-ips—-go-here;
bi
// sample allow-transfer (no one)
allow—-transfer { none; };
// restrict query access
allow—query { internals; externals; };
// restrict recursion
allow-recursion { internals; };

}i

// sample master zone

zone "sitel.example.com" ({
type master;
file "m/sitel.example.com";
// do normal iterative resolution (do not forward)
forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };

}i

// sample slave zone
zone "site2.example.com" {
type slave;
file "s/site2.example.com";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };

}i

zone "sitel.internal" {
type master;
file "m/sitel.internal";
forwarders { };
allow-query { internals; };
allow-transfer { internals; }

}i

zone "site2.internal" {
type slave;
file "s/site2.internal";

16

CHAPTER 4. ADVANCED DNS FEATURES 4.5. TSIG

masters { 172.16.72.3; };

forwarders { };

allow-query { internals };

allow-transfer { internals; }
bi

External (bastion host) DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips—-go-here; };

options {

// sample allow-transfer (no one)
allow-transfer { none; };

// default query access

allow—query { any; };

// restrict cache access

allow—query-cache { internals; externals; };
// restrict recursion

allow—-recursion { internals; externals; };

}i

// sample slave zone
zone "sitel.example.com" {
type master;
file "m/sitel.foo.com";
allow-transfer { internals; externals; };

}i

zone "site2.example.com" {
type slave;
file "s/site2.foo.com";
masters { another_bastion_host_maybe; };
allow—-transfer { internals; externals; }

}i
In the resolv.conf (or equivalent) on the bastion host(s):

search

nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4

4.5 TSIG

This is a short guide to setting up Transaction SIGnatures (TSIG) based transaction security in BIND. It
describes changes to the configuration file as well as what changes are required for different features,
including the process of creating transaction keys and using transaction signatures with BIND.

17

4.5. TSIG CHAPTER 4. ADVANCED DNS FEATURES

BIND primarily supports TSIG for server to server communication. This includes zone transfer, notify,
and recursive query messages. Resolvers based on newer versions of BIND 8 have limited support for
TSIG.

TSIG can also be useful for dynamic update. A primary server for a dynamic zone should control access
to the dynamic update service, but IP-based access control is insufficient. The cryptographic access
control provided by TSIG is far superior. The nsupdate program supports TSIG via the -k and -y
command line options or inline by use of the key.

4.5.1 Generate Shared Keys for Each Pair of Hosts

A shared secret is generated to be shared between hostl and host2. An arbitrary key name is chosen:
“host1-host2.”. The key name must be the same on both hosts.

4.5.1.1 Automatic Generation

The following command will generate a 128-bit (16 byte) HMAC-SHA256 key as described above.
Longer keys are better, but shorter keys are easier to read. Note that the maximum key length is the
digest length, here 256 bits.

dnssec-keygen —a hmac-sha256 -b 128 -n HOST hostl-host2.

The key is in the file Khost 1-host2.+163+00000.private. Nothing directly uses this file, but the
base-64 encoded string following “Key : ” can be extracted from the file and used as a shared secret:

Key: La/E5CJjG90+osljgla2jda==

The string “La/E5CjG90+0s1jg0a2 jdA=="can be used as the shared secret.

4.5.1.2 Manual Generation

The shared secret is simply a random sequence of bits, encoded in base-64. Most ASCII strings are valid
base-64 strings (assuming the length is a multiple of 4 and only valid characters are used), so the shared
secret can be manually generated.

Also, a known string can be run through mmencode or a similar program to generate base-64 encoded
data.

4.5.2 Copying the Shared Secret to Both Machines

This is beyond the scope of DNS. A secure transport mechanism should be used. This cou