This is the Fourteenth edition of the `GNU Emacs Manual', updated for Emacs version 21.2. START-INFO-DIR-ENTRY * Emacs: (emacs). The extensible self-documenting text editor. END-INFO-DIR-ENTRY Published by the Free Software Foundation 59 Temple Place, Suite 330 Boston, MA 02111-1307 USA Copyright (C) 1985,1986,1987,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being "The GNU Manifesto", "Distribution" and "GNU GENERAL PUBLIC LICENSE", with the Front-Cover texts being "A GNU Manual," and with the Back-Cover Texts as in (a) below. A copy of the license is included in the section entitled "GNU Free Documentation License." (a) The FSF's Back-Cover Text is: "You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development." The Emacs Editor **************** Emacs is the extensible, customizable, self-documenting real-time display editor. This Info file describes how to edit with Emacs and some of how to customize it; it corresponds to GNU Emacs version 21.2. For information on extending Emacs, see *Note Emacs Lisp: (elisp)Top. Distribution ************ GNU Emacs is "free software"; this means that everyone is free to use it and free to redistribute it on certain conditions. GNU Emacs is not in the public domain; it is copyrighted and there are restrictions on its distribution, but these restrictions are designed to permit everything that a good cooperating citizen would want to do. What is not allowed is to try to prevent others from further sharing any version of GNU Emacs that they might get from you. The precise conditions are found in the GNU General Public License that comes with Emacs and also appears following this section. One way to get a copy of GNU Emacs is from someone else who has it. You need not ask for our permission to do so, or tell any one else; just copy it. If you have access to the Internet, you can get the latest distribution version of GNU Emacs by anonymous FTP; see the file `etc/FTP' in the Emacs distribution for more information. You may also receive GNU Emacs when you buy a computer. Computer manufacturers are free to distribute copies on the same terms that apply to everyone else. These terms require them to give you the full sources, including whatever changes they may have made, and to permit you to redistribute the GNU Emacs received from them under the usual terms of the General Public License. In other words, the program must be free for you when you get it, not just free for the manufacturer. You can also order copies of GNU Emacs from the Free Software Foundation on CD-ROM. This is a convenient and reliable way to get a copy; it is also a good way to help fund our work. (The Foundation has always received most of its funds in this way.) An order form is included in the file `etc/ORDERS' in the Emacs distribution, and on our web site in . For further information, write to Free Software Foundation 59 Temple Place, Suite 330 Boston, MA 02111-1307 USA USA The income from distribution fees goes to support the foundation's purpose: the development of new free software, and improvements to our existing programs including GNU Emacs. If you find GNU Emacs useful, please *send a donation* to the Free Software Foundation to support our work. Donations to the Free Software Foundation are tax deductible in the US. If you use GNU Emacs at your workplace, please suggest that the company make a donation. If company policy is unsympathetic to the idea of donating to charity, you might instead suggest ordering a CD-ROM from the Foundation occasionally, or subscribing to periodic updates. GNU GENERAL PUBLIC LICENSE ************************** Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble ======== The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program," below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification.") Each licensee is addressed as "you." Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a. You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b. You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c. If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a. Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c. Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version," you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs ============================================= If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. ONE LINE TO GIVE THE PROGRAM'S NAME AND AN IDEA OF WHAT IT DOES. Copyright (C) 19YY NAME OF AUTHOR This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) 20YY NAME OF AUTHOR Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. SIGNATURE OF TY COON, 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. GNU Free Documentation License ****************************** Version 1.1, March 2000 Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. 0. PREAMBLE The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others. This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software. We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you." A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them. The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent modification by readers is not Transparent. A copy that is not "Transparent" is called "Opaque." Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text. 2. VERBATIM COPYING You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. 3. COPYING IN QUANTITY If you publish printed copies of the Document numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy of the Document, free of added material, which the general network-using public has access to download anonymously at no charge using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has less than five). C. State on the Title page the name of the publisher of the Modified Version, as the publisher. D. Preserve all the copyright notices of the Document. E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice. H. Include an unaltered copy of this License. I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. K. In any section entitled "Acknowledgements" or "Dedications", preserve the section's title, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. M. Delete any section entitled "Endorsements." Such a section may not be included in the Modified Version. N. Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section. If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles. You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard. You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version. 5. COMBINING DOCUMENTS You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice. The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. In the combination, you must combine any sections entitled "History" in the various original documents, forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any sections entitled "Dedications." You must delete all sections entitled "Endorsements." 6. COLLECTIONS OF DOCUMENTS You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an "aggregate", and this License does not apply to the other self-contained works thus compiled with the Document, on account of their being thus compiled, if they are not themselves derivative works of the Document. If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on covers that surround only the Document within the aggregate. Otherwise they must appear on covers around the whole aggregate. 8. TRANSLATION Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License provided that you also include the original English version of this License. In case of a disagreement between the translation and the original English version of this License, the original English version will prevail. 9. TERMINATION You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. ADDENDUM: How to use this License for your documents ==================================================== To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: Copyright (C) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in the section entitled "GNU Free Documentation License." If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being LIST"; likewise for Back-Cover Texts. If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software. Introduction ************ You are reading about GNU Emacs, the GNU incarnation of the advanced, self-documenting, customizable, extensible real-time display editor Emacs. (The `G' in `GNU' is not silent.) We say that Emacs is a "display" editor because normally the text being edited is visible on the screen and is updated automatically as you type your commands. *Note Display: Screen. We call it a "real-time" editor because the display is updated very frequently, usually after each character or pair of characters you type. This minimizes the amount of information you must keep in your head as you edit. *Note Real-time: Basic. We call Emacs advanced because it provides facilities that go beyond simple insertion and deletion: controlling subprocesses; automatic indentation of programs; viewing two or more files at once; editing formatted text; and dealing in terms of characters, words, lines, sentences, paragraphs, and pages, as well as expressions and comments in several different programming languages. "Self-documenting" means that at any time you can type a special character, `Control-h', to find out what your options are. You can also use it to find out what any command does, or to find all the commands that pertain to a topic. *Note Help::. "Customizable" means that you can change the definitions of Emacs commands in little ways. For example, if you use a programming language in which comments start with `<**' and end with `**>', you can tell the Emacs comment manipulation commands to use those strings (*note Comments::). Another sort of customization is rearrangement of the command set. For example, if you prefer the four basic cursor motion commands (up, down, left and right) on keys in a diamond pattern on the keyboard, you can rebind the keys that way. *Note Customization::. "Extensible" means that you can go beyond simple customization and write entirely new commands, programs in the Lisp language to be run by Emacs's own Lisp interpreter. Emacs is an "on-line extensible" system, which means that it is divided into many functions that call each other, any of which can be redefined in the middle of an editing session. Almost any part of Emacs can be replaced without making a separate copy of all of Emacs. Most of the editing commands of Emacs are written in Lisp; the few exceptions could have been written in Lisp but are written in C for efficiency. Although only a programmer can write an extension, anybody can use it afterward. If you want to learn Emacs Lisp programming, we recommend the `Introduction to Emacs Lisp' by Robert J. Chassell, also published by the Free Software Foundation. When run under the X Window System, Emacs provides its own menus and convenient bindings to mouse buttons. But Emacs can provide many of the benefits of a window system on a text-only terminal. For instance, you can look at or edit several files at once, move text between files, and edit files while running shell commands. The Organization of the Screen ****************************** On a text-only terminal, the Emacs display occupies the whole screen. On the X Window System, Emacs creates its own X windows to use. We use the term "frame" to mean an entire text-only screen or an entire X window used by Emacs. Emacs uses both kinds of frames in the same way to display your editing. Emacs normally starts out with just one frame, but you can create additional frames if you wish. *Note Frames::. When you start Emacs, the entire frame except for the top and bottom is devoted to the text you are editing. This area is called the "window". At the top there is normally a "menu bar" where you can access a series of menus; then there may be a "tool bar", a row of icons that perform editing commands if you click on them. Below this, the window begins. The last line is a special "echo area" or "minibuffer window", where prompts appear and where you can enter information when Emacs asks for it. See below for more information about these special lines. You can subdivide the large text window horizontally or vertically into multiple text windows, each of which can be used for a different file (*note Windows::). In this manual, the word "window" always refers to the subdivisions of a frame within Emacs. The window that the cursor is in is the "selected window", in which editing takes place. Most Emacs commands implicitly apply to the text in the selected window (though mouse commands generally operate on whatever window you click them in, whether selected or not). The other windows display text for reference only, unless/until you select them. If you use multiple frames under the X Window System, then giving the input focus to a particular frame selects a window in that frame. Each window's last line is a "mode line", which describes what is going on in that window. It appears in inverse video, if the terminal supports that; its contents normally begin with `--:-- *scratch*' when Emacs starts. The mode line displays status information such as what buffer is being displayed above it in the window, what major and minor modes are in use, and whether the buffer contains unsaved changes. Point ===== Within Emacs, the terminal's cursor shows the location at which editing commands will take effect. This location is called "point". Many Emacs commands move point through the text, so that you can edit at different places in it. You can also place point by clicking mouse button 1. While the cursor appears to point _at_ a character, you should think of point as _between_ two characters; it points _before_ the character that appears under the cursor. For example, if your text looks like `frob' with the cursor over the `b', then point is between the `o' and the `b'. If you insert the character `!' at that position, the result is `fro!b', with point between the `!' and the `b'. Thus, the cursor remains over the `b', as before. Sometimes people speak of "the cursor" when they mean "point," or speak of commands that move point as "cursor motion" commands. Text-only terminals have only one cursor, and when output is in progress it must appear where the output is being displayed. This does not mean that point is moving. It is only that Emacs has no way to show you the location of point except when the terminal is idle. If you are editing several files in Emacs, each in its own buffer, each buffer has its own point location. A buffer that is not currently displayed remembers where point is in case you display it again later. When Emacs displays multiple windows, each window has its own point location. On text-only terminals, the cursor shows the location of point in the selected window. On graphical terminals, Emacs shows a cursor in each window; the selected window's cursor is solid, and the other cursors are hollow. Either way, the cursor or cursors tell you which window is selected. If the same buffer appears in more than one window, each window has its own position for point in that buffer, and (when possible) its own cursor. *Note Cursor Display::, for customization options that control display of the cursor or cursors. The term "point" comes from the character `.', which was the command in TECO (the language in which the original Emacs was written) for accessing the value now called "point." The Echo Area ============= The line at the bottom of the frame (below the mode line) is the "echo area". It is used to display small amounts of text for several purposes. "Echoing" means displaying the characters that you type. Outside Emacs, the operating system normally echoes all your input. Emacs handles echoing differently. Single-character commands do not echo in Emacs, and multi-character commands echo only if you pause while typing them. As soon as you pause for more than a second in the middle of a command, Emacs echoes all the characters of the command so far. This is to "prompt" you for the rest of the command. Once echoing has started, the rest of the command echoes immediately as you type it. This behavior is designed to give confident users fast response, while giving hesitant users maximum feedback. You can change this behavior by setting a variable (*note Display Custom::). If a command cannot be executed, it may display an "error message" in the echo area. Error messages are accompanied by beeping or by flashing the screen. The error also discards any input you have typed ahead. Some commands display informative messages in the echo area. These messages look much like error messages, but they are not announced with a beep and do not throw away input. Sometimes the message tells you what the command has done, when this is not obvious from looking at the text being edited. Sometimes the sole purpose of a command is to show you a message giving you specific information--for example, `C-x =' displays a message describing the character position of point in the text and its current column in the window. Commands that take a long time often display messages ending in `...' while they are working, and add `done' at the end when they are finished. Echo-area informative messages are saved in an editor buffer named `*Messages*'. (We have not explained buffers yet; see *Note Buffers::, for more information about them.) If you miss a message that appears briefly on the screen, you can switch to the `*Messages*' buffer to see it again. (Successive progress messages are often collapsed into one in that buffer.) The size of `*Messages*' is limited to a certain number of lines. The variable `message-log-max' specifies how many lines. Once the buffer has that many lines, each line added at the end deletes one line from the beginning. *Note Variables::, for how to set variables such as `message-log-max'. The echo area is also used to display the "minibuffer", a window that is used for reading arguments to commands, such as the name of a file to be edited. When the minibuffer is in use, the echo area begins with a prompt string that usually ends with a colon; also, the cursor appears in that line because it is the selected window. You can always get out of the minibuffer by typing `C-g'. *Note Minibuffer::. The Mode Line ============= Each text window's last line is a "mode line", which describes what is going on in that window. When there is only one text window, the mode line appears right above the echo area; it is the next-to-last line in the frame. The mode line starts and ends with dashes. On a text-mode display, the mode line is in inverse video if the terminal supports that; on a graphics display, the mode line has a 3D box appearance to help it stand out. Normally, the mode line looks like this: -CS:CH BUF (MAJOR MINOR)--LINE--POS------ This gives information about the buffer being displayed in the window: the buffer's name, what major and minor modes are in use, whether the buffer's text has been changed, and how far down the buffer you are currently looking. CH contains two stars `**' if the text in the buffer has been edited (the buffer is "modified"), or `--' if the buffer has not been edited. For a read-only buffer, it is `%*' if the buffer is modified, and `%%' otherwise. BUF is the name of the window's "buffer". In most cases this is the same as the name of a file you are editing. *Note Buffers::. The buffer displayed in the selected window (the window that the cursor is in) is also Emacs's current buffer, the one that editing takes place in. When we speak of what some command does to "the buffer," we are talking about the current buffer. LINE is `L' followed by the current line number of point. This is present when Line Number mode is enabled (which it normally is). You can optionally display the current column number too, by turning on Column Number mode (which is not enabled by default because it is somewhat slower). *Note Optional Mode Line::. POS tells you whether there is additional text above the top of the window, or below the bottom. If your buffer is small and it is all visible in the window, POS is `All'. Otherwise, it is `Top' if you are looking at the beginning of the buffer, `Bot' if you are looking at the end of the buffer, or `NN%', where NN is the percentage of the buffer above the top of the window. MAJOR is the name of the "major mode" in effect in the buffer. At any time, each buffer is in one and only one of the possible major modes. The major modes available include Fundamental mode (the least specialized), Text mode, Lisp mode, C mode, Texinfo mode, and many others. *Note Major Modes::, for details of how the modes differ and how to select one. Some major modes display additional information after the major mode name. For example, Rmail buffers display the current message number and the total number of messages. Compilation buffers and Shell buffers display the status of the subprocess. MINOR is a list of some of the "minor modes" that are turned on at the moment in the window's chosen buffer. For example, `Fill' means that Auto Fill mode is on. `Abbrev' means that Word Abbrev mode is on. `Ovwrt' means that Overwrite mode is on. *Note Minor Modes::, for more information. `Narrow' means that the buffer being displayed has editing restricted to only a portion of its text. This is not really a minor mode, but is like one. *Note Narrowing::. `Def' means that a keyboard macro is being defined. *Note Keyboard Macros::. In addition, if Emacs is currently inside a recursive editing level, square brackets (`[...]') appear around the parentheses that surround the modes. If Emacs is in one recursive editing level within another, double square brackets appear, and so on. Since recursive editing levels affect Emacs globally, not just one buffer, the square brackets appear in every window's mode line or not in any of them. *Note Recursive Edit::. Non-windowing terminals can only show a single Emacs frame at a time (*note Frames::). On such terminals, the mode line displays the name of the selected frame, after CH. The initial frame's name is `F1'. CS states the coding system used for the file you are editing. A dash indicates the default state of affairs: no code conversion, except for end-of-line translation if the file contents call for that. `=' means no conversion whatsoever. Nontrivial code conversions are represented by various letters--for example, `1' refers to ISO Latin-1. *Note Coding Systems::, for more information. If you are using an input method, a string of the form `I>' is added to the beginning of CS; I identifies the input method. (Some input methods show `+' or `@' instead of `>'.) *Note Input Methods::. When you are using a character-only terminal (not a window system), CS uses three characters to describe, respectively, the coding system for keyboard input, the coding system for terminal output, and the coding system used for the file you are editing. When multibyte characters are not enabled, CS does not appear at all. *Note Enabling Multibyte::. The colon after CS can change to another string in certain circumstances. Emacs uses newline characters to separate lines in the buffer. Some files use different conventions for separating lines: either carriage-return linefeed (the MS-DOS convention) or just carriage-return (the Macintosh convention). If the buffer's file uses carriage-return linefeed, the colon changes to either a backslash (`\') or `(DOS)', depending on the operating system. If the file uses just carriage-return, the colon indicator changes to either a forward slash (`/') or `(Mac)'. On some systems, Emacs displays `(Unix)' instead of the colon even for files that use newline to separate lines. You can customize the mode line display for each of the end-of-line formats by setting each of the variables `eol-mnemonic-unix', `eol-mnemonic-dos', `eol-mnemonic-mac', and `eol-mnemonic-undecided' to any string you find appropriate. *Note Variables::, for an explanation of how to set variables. *Note Optional Mode Line::, for features that add other handy information to the mode line, such as the current column number of point, the current time, and whether new mail for you has arrived. The mode line is mouse-sensitive; when you move the mouse across various parts of it, Emacs displays help text to say what a click in that place will do. *Note Mode Line Mouse::. The Menu Bar ============ Each Emacs frame normally has a "menu bar" at the top which you can use to perform certain common operations. There's no need to list them here, as you can more easily see for yourself. When you are using a window system, you can use the mouse to choose a command from the menu bar. An arrow pointing right, after the menu item, indicates that the item leads to a subsidiary menu; `...' at the end means that the command will read arguments from the keyboard before it actually does anything. To view the full command name and documentation for a menu item, type `C-h k', and then select the menu bar with the mouse in the usual way (*note Key Help::). On text-only terminals with no mouse, you can use the menu bar by typing `M-`' or (these run the command `tmm-menubar'). This command enters a mode in which you can select a menu item from the keyboard. A provisional choice appears in the echo area. You can use the left and right arrow keys to move through the menu to different choices. When you have found the choice you want, type to select it. Each menu item also has an assigned letter or digit which designates that item; it is usually the initial of some word in the item's name. This letter or digit is separated from the item name by `=>'. You can type the item's letter or digit to select the item. Some of the commands in the menu bar have ordinary key bindings as well; if so, the menu lists one equivalent key binding in parentheses after the item itself. Kinds of User Input =================== GNU Emacs uses an extension of the ASCII character set for keyboard input; it also accepts non-character input events including function keys and mouse button actions. ASCII consists of 128 character codes. Some of these codes are assigned graphic symbols such as `a' and `='; the rest are control characters, such as `Control-a' (usually written `C-a' for short). `C-a' gets its name from the fact that you type it by holding down the key while pressing `a'. Some ASCII control characters have special names, and most terminals have special keys you can type them with: for example, , , and . The space character is usually referred to below as , even though strictly speaking it is a graphic character whose graphic happens to be blank. Some keyboards have a key labeled "linefeed" which is an alias for `C-j'. Emacs extends the ASCII character set with thousands more printing characters (*note International::), additional control characters, and a few more modifiers that can be combined with any character. On ASCII terminals, there are only 32 possible control characters. These are the control variants of letters and `@[]\^_'. In addition, the shift key is meaningless with control characters: `C-a' and `C-A' are the same character, and Emacs cannot distinguish them. But the Emacs character set has room for control variants of all printing characters, and for distinguishing between `C-a' and `C-A'. The X Window System makes it possible to enter all these characters. For example, `C--' (that's Control-Minus) and `C-5' are meaningful Emacs commands under X. Another Emacs character-set extension is additional modifier bits. Only one modifier bit is commonly used; it is called Meta. Every character has a Meta variant; examples include `Meta-a' (normally written `M-a', for short), `M-A' (not the same character as `M-a', but those two characters normally have the same meaning in Emacs), `M-', and `M-C-a'. For reasons of tradition, we usually write `C-M-a' rather than `M-C-a'; logically speaking, the order in which the modifier keys and are mentioned does not matter. Some terminals have a key, and allow you to type Meta characters by holding this key down. Thus, `Meta-a' is typed by holding down and pressing `a'. The key works much like the key. Such a key is not always labeled , however, as this function is often a special option for a key with some other primary purpose. Sometimes it is labeled or ; on a Sun keyboard, it may have a diamond on it. If there is no key, you can still type Meta characters using two-character sequences starting with . Thus, you can enter `M-a' by typing ` a'. You can enter `C-M-a' by typing ` C-a'. is allowed on terminals with keys, too, in case you have formed a habit of using it. The X Window System provides several other modifier keys that can be applied to any input character. These are called , and . We write `s-', `H-' and `A-' to say that a character uses these modifiers. Thus, `s-H-C-x' is short for `Super-Hyper-Control-x'. Not all X terminals actually provide keys for these modifier flags--in fact, many terminals have a key labeled which is really a key. The standard key bindings of Emacs do not include any characters with these modifiers. But you can assign them meanings of your own by customizing Emacs. Keyboard input includes keyboard keys that are not characters at all: for example function keys and arrow keys. Mouse buttons are also outside the gamut of characters. You can modify these events with the modifier keys , , , and , just like keyboard characters. Input characters and non-character inputs are collectively called "input events". *Note Input Events: (elisp)Input Events, for more information. If you are not doing Lisp programming, but simply want to redefine the meaning of some characters or non-character events, see *Note Customization::. ASCII terminals cannot really send anything to the computer except ASCII characters. These terminals use a sequence of characters to represent each function key. But that is invisible to the Emacs user, because the keyboard input routines recognize these special sequences and convert them to function key events before any other part of Emacs gets to see them. Keys ==== A "key sequence" ("key", for short) is a sequence of input events that are meaningful as a unit--as "a single command." Some Emacs command sequences are just one character or one event; for example, just `C-f' is enough to move forward one character in the buffer. But Emacs also has commands that take two or more events to invoke. If a sequence of events is enough to invoke a command, it is a "complete key". Examples of complete keys include `C-a', `X', , (a function key), (an arrow key), `C-x C-f', and `C-x 4 C-f'. If it isn't long enough to be complete, we call it a "prefix key". The above examples show that `C-x' and `C-x 4' are prefix keys. Every key sequence is either a complete key or a prefix key. Most single characters constitute complete keys in the standard Emacs command bindings. A few of them are prefix keys. A prefix key combines with the following input event to make a longer key sequence, which may itself be complete or a prefix. For example, `C-x' is a prefix key, so `C-x' and the next input event combine to make a two-event key sequence. Most of these key sequences are complete keys, including `C-x C-f' and `C-x b'. A few, such as `C-x 4' and `C-x r', are themselves prefix keys that lead to three-event key sequences. There's no limit to the length of a key sequence, but in practice people rarely use sequences longer than four events. By contrast, you can't add more events onto a complete key. For example, the two-event sequence `C-f C-k' is not a key, because the `C-f' is a complete key in itself. It's impossible to give `C-f C-k' an independent meaning as a command. `C-f C-k' is two key sequences, not one. All told, the prefix keys in Emacs are `C-c', `C-h', `C-x', `C-x ', `C-x @', `C-x a', `C-x n', `C-x r', `C-x v', `C-x 4', `C-x 5', `C-x 6', , and `M-g'. But this list is not cast in concrete; it is just a matter of Emacs's standard key bindings. If you customize Emacs, you can make new prefix keys, or eliminate these. *Note Key Bindings::. If you do make or eliminate prefix keys, that changes the set of possible key sequences. For example, if you redefine `C-f' as a prefix, `C-f C-k' automatically becomes a key (complete, unless you define that too as a prefix). Conversely, if you remove the prefix definition of `C-x 4', then `C-x 4 f' (or `C-x 4 ANYTHING') is no longer a key. Typing the help character (`C-h' or ) after a prefix key displays a list of the commands starting with that prefix. There are a few prefix keys for which `C-h' does not work--for historical reasons, they have other meanings for `C-h' which are not easy to change. But should work for all prefix keys. Keys and Commands ================= This manual is full of passages that tell you what particular keys do. But Emacs does not assign meanings to keys directly. Instead, Emacs assigns meanings to named "commands", and then gives keys their meanings by "binding" them to commands. Every command has a name chosen by a programmer. The name is usually made of a few English words separated by dashes; for example, `next-line' or `forward-word'. A command also has a "function definition" which is a Lisp program; this is what makes the command do what it does. In Emacs Lisp, a command is actually a special kind of Lisp function; one which specifies how to read arguments for it and call it interactively. For more information on commands and functions, see *Note What Is a Function: (elisp)What Is a Function. (The definition we use in this manual is simplified slightly.) The bindings between keys and commands are recorded in various tables called "keymaps". *Note Keymaps::. When we say that "`C-n' moves down vertically one line" we are glossing over a distinction that is irrelevant in ordinary use but is vital in understanding how to customize Emacs. It is the command `next-line' that is programmed to move down vertically. `C-n' has this effect _because_ it is bound to that command. If you rebind `C-n' to the command `forward-word' then `C-n' will move forward by words instead. Rebinding keys is a common method of customization. In the rest of this manual, we usually ignore this subtlety to keep things simple. To give the information needed for customization, we state the name of the command which really does the work in parentheses after mentioning the key that runs it. For example, we will say that "The command `C-n' (`next-line') moves point vertically down," meaning that `next-line' is a command that moves vertically down, and `C-n' is a key that is normally bound to it. While we are on the subject of information for customization only, it's a good time to tell you about "variables". Often the description of a command will say, "To change this, set the variable `mumble-foo'." A variable is a name used to remember a value. Most of the variables documented in this manual exist just to facilitate customization: some command or other part of Emacs examines the variable and behaves differently according to the value that you set. Until you are interested in customizing, you can ignore the information about variables. When you are ready to be interested, read the basic information on variables, and then the information on individual variables will make sense. *Note Variables::. Character Set for Text ====================== Text in Emacs buffers is a sequence of 8-bit bytes. Each byte can hold a single ASCII character. Both ASCII control characters (octal codes 000 through 037, and 0177) and ASCII printing characters (codes 040 through 0176) are allowed; however, non-ASCII control characters cannot appear in a buffer. The other modifier flags used in keyboard input, such as Meta, are not allowed in buffers either. Some ASCII control characters serve special purposes in text, and have special names. For example, the newline character (octal code 012) is used in the buffer to end a line, and the tab character (octal code 011) is used for indenting to the next tab stop column (normally every 8 columns). *Note Text Display::. Non-ASCII printing characters can also appear in buffers. When multibyte characters are enabled, you can use any of the non-ASCII printing characters that Emacs supports. They have character codes starting at 256, octal 0400, and each one is represented as a sequence of two or more bytes. *Note International::. Single-byte characters with codes 128 through 255 can also appear in multibyte buffers. If you disable multibyte characters, then you can use only one alphabet of non-ASCII characters, but they all fit in one byte. They use codes 0200 through 0377. *Note Single-Byte Character Support::. Entering and Exiting Emacs ************************** The usual way to invoke Emacs is with the shell command `emacs'. Emacs clears the screen and then displays an initial help message and copyright notice. Some operating systems discard all type-ahead when Emacs starts up; they give Emacs no way to prevent this. Therefore, it is advisable to wait until Emacs clears the screen before typing your first editing command. If you run Emacs from a shell window under the X Window System, run it in the background with `emacs&'. This way, Emacs does not tie up the shell window, so you can use that to run other shell commands while Emacs operates its own X windows. You can begin typing Emacs commands as soon as you direct your keyboard input to the Emacs frame. When Emacs starts up, it creates a buffer named `*scratch*'. That's the buffer you start out in. The `*scratch*' buffer uses Lisp Interaction mode; you can use it to type Lisp expressions and evaluate them, or you can ignore that capability and simply doodle. (You can specify a different major mode for this buffer by setting the variable `initial-major-mode' in your init file. *Note Init File::.) It is possible to specify files to be visited, Lisp files to be loaded, and functions to be called, by giving Emacs arguments in the shell command line. *Note Command Arguments::. But we don't recommend doing this. The feature exists mainly for compatibility with other editors. Many other editors are designed to be started afresh each time you want to edit. You edit one file and then exit the editor. The next time you want to edit either another file or the same one, you must run the editor again. With these editors, it makes sense to use a command-line argument to say which file to edit. But starting a new Emacs each time you want to edit a different file does not make sense. For one thing, this would be annoyingly slow. For another, this would fail to take advantage of Emacs's ability to visit more than one file in a single editing session. And it would lose the other accumulated context, such as the kill ring, registers, undo history, and mark ring. The recommended way to use GNU Emacs is to start it only once, just after you log in, and do all your editing in the same Emacs session. Each time you want to edit a different file, you visit it with the existing Emacs, which eventually comes to have many files in it ready for editing. Usually you do not kill the Emacs until you are about to log out. *Note Files::, for more information on visiting more than one file. Exiting Emacs ============= There are two commands for exiting Emacs because there are two kinds of exiting: "suspending" Emacs and "killing" Emacs. "Suspending" means stopping Emacs temporarily and returning control to its parent process (usually a shell), allowing you to resume editing later in the same Emacs job, with the same buffers, same kill ring, same undo history, and so on. This is the usual way to exit. "Killing" Emacs means destroying the Emacs job. You can run Emacs again later, but you will get a fresh Emacs; there is no way to resume the same editing session after it has been killed. `C-z' Suspend Emacs (`suspend-emacs') or iconify a frame (`iconify-or-deiconify-frame'). `C-x C-c' Kill Emacs (`save-buffers-kill-emacs'). To suspend Emacs, type `C-z' (`suspend-emacs'). This takes you back to the shell from which you invoked Emacs. You can resume Emacs with the shell command `%emacs' in most common shells. On systems that do not support suspending programs, `C-z' starts an inferior shell that communicates directly with the terminal. Emacs waits until you exit the subshell. (The way to do that is probably with `C-d' or `exit', but it depends on which shell you use.) The only way on these systems to get back to the shell from which Emacs was run (to log out, for example) is to kill Emacs. Suspending also fails if you run Emacs under a shell that doesn't support suspending programs, even if the system itself does support it. In such a case, you can set the variable `cannot-suspend' to a non-`nil' value to force `C-z' to start an inferior shell. (One might also describe Emacs's parent shell as "inferior" for failing to support job control properly, but that is a matter of taste.) When Emacs communicates directly with an X server and creates its own dedicated X windows, `C-z' has a different meaning. Suspending an application that uses its own X windows is not meaningful or useful. Instead, `C-z' runs the command `iconify-or-deiconify-frame', which temporarily iconifies (or "minimizes") the selected Emacs frame (*note Frames::). Then you can use the window manager to get back to a shell window. To exit and kill Emacs, type `C-x C-c' (`save-buffers-kill-emacs'). A two-character key is used for this to make it harder to type by accident. This command first offers to save any modified file-visiting buffers. If you do not save them all, it asks for reconfirmation with `yes' before killing Emacs, since any changes not saved will be lost forever. Also, if any subprocesses are still running, `C-x C-c' asks for confirmation about them, since killing Emacs will also kill the subprocesses. If the value of the variable `confirm-kill-emacs' is non-`nil', `C-x C-c' assumes that its value is a predicate function, and calls that function. If the result is non-`nil', the session is killed, otherwise Emacs continues to run. One convenient function to use as the value of `confirm-kill-emacs' is the function `yes-or-no-p'. The default value of `confirm-kill-emacs' is `nil'. There is no way to resume an Emacs session once you have killed it. You can, however, arrange for Emacs to record certain session information when you kill it, such as which files are visited, so that the next time you start Emacs it will try to visit the same files and so on. *Note Saving Emacs Sessions::. The operating system usually listens for certain special characters whose meaning is to kill or suspend the program you are running. This operating system feature is turned off while you are in Emacs. The meanings of `C-z' and `C-x C-c' as keys in Emacs were inspired by the use of `C-z' and `C-c' on several operating systems as the characters for stopping or killing a program, but that is their only relationship with the operating system. You can customize these keys to run any commands of your choice (*note Keymaps::). Basic Editing Commands ********************** We now give the basics of how to enter text, make corrections, and save the text in a file. If this material is new to you, you might learn it more easily by running the Emacs learn-by-doing tutorial. To use the tutorial, run Emacs and type `Control-h t' (`help-with-tutorial'). To clear the screen and redisplay, type `C-l' (`recenter'). Inserting Text ============== To insert printing characters into the text you are editing, just type them. This inserts the characters you type into the buffer at the cursor (that is, at "point"; *note Point::). The cursor moves forward, and any text after the cursor moves forward too. If the text in the buffer is `FOOBAR', with the cursor before the `B', then if you type `XX', you get `FOOXXBAR', with the cursor still before the `B'. To "delete" text you have just inserted, use the large key labeled , or which is a short distance above the or key. This is the key you normally use, outside Emacs, for erasing the last character that you typed. Regardless of the label on that key, Emacs thinks of it as , and that's what we call it in this manual. The key deletes the character _before_ the cursor. As a consequence, the cursor and all the characters after it move backwards. If you type a printing character and then type , they cancel out. On most computers, Emacs recognizes automatically which key ought to be , and sets it up that way. But in some cases, especially with text-only terminals, you will need to tell Emacs which key to use for that purpose. If the large key not far above the or key doesn't delete backwards, you need to do this. *Note DEL Does Not Delete::, for an explanation of how. Most PC keyboards have both a key a short ways above or , and a key elsewhere. On these keyboards, Emacs supports when possible the usual convention that the key deletes backwards (it is ), while the key deletes "forwards," deleting the character after point, the one underneath the cursor, like `C-d' (see below). To end a line and start typing a new one, type . This inserts a newline character in the buffer. If point is in the middle of a line, splits the line. Typing when the cursor is at the beginning of a line deletes the preceding newline, thus joining the line with the preceding line. Emacs can split lines automatically when they become too long, if you turn on a special minor mode called "Auto Fill" mode. *Note Filling::, for how to use Auto Fill mode. If you prefer to have text characters replace (overwrite) existing text rather than shove it to the right, you can enable Overwrite mode, a minor mode. *Note Minor Modes::. Direct insertion works for printing characters and , but other characters act as editing commands and do not insert themselves. If you need to insert a control character or a character whose code is above 200 octal, you must "quote" it by typing the character `Control-q' (`quoted-insert') first. (This character's name is normally written `C-q' for short.) There are two ways to use `C-q': * `C-q' followed by any non-graphic character (even `C-g') inserts that character. * `C-q' followed by a sequence of octal digits inserts the character with the specified octal character code. You can use any number of octal digits; any non-digit terminates the sequence. If the terminating character is , it serves only to terminate the sequence. Any other non-digit terminates the sequence and then acts as normal input--thus, `C-q 1 0 1 B' inserts `AB'. The use of octal sequences is disabled in ordinary non-binary Overwrite mode, to give you a convenient way to insert a digit instead of overwriting with it. When multibyte characters are enabled, if you specify a code in the range 0200 through 0377 octal, `C-q' assumes that you intend to use some ISO 8859-N character set, and converts the specified code to the corresponding Emacs character code. *Note Enabling Multibyte::. You select _which_ of the ISO 8859 character sets to use through your choice of language environment (*note Language Environments::). To use decimal or hexadecimal instead of octal, set the variable `read-quoted-char-radix' to 10 or 16. If the radix is greater than 10, some letters starting with `a' serve as part of a character code, just like digits. A numeric argument to `C-q' specifies how many copies of the quoted character should be inserted (*note Arguments::). Customization information: in most modes runs the command `delete-backward-char'; runs the command `newline', and self-inserting printing characters run the command `self-insert', which inserts whatever character was typed to invoke it. Some major modes rebind to other commands. Changing the Location of Point ============================== To do more than insert characters, you have to know how to move point (*note Point::). The simplest way to do this is with arrow keys, or by clicking the left mouse button where you want to move to. There are also control and meta characters for cursor motion. Some are equivalent to the arrow keys (these date back to the days before terminals had arrow keys, and are usable on terminals which don't have them). Others do more sophisticated things. `C-a' Move to the beginning of the line (`beginning-of-line'). `C-e' Move to the end of the line (`end-of-line'). `C-f' Move forward one character (`forward-char'). The right-arrow key does the same thing. `C-b' Move backward one character (`backward-char'). The left-arrow key has the same effect. `M-f' Move forward one word (`forward-word'). `M-b' Move backward one word (`backward-word'). `C-n' Move down one line, vertically (`next-line'). This command attempts to keep the horizontal position unchanged, so if you start in the middle of one line, you end in the middle of the next. The down-arrow key does the same thing. `C-p' Move up one line, vertically (`previous-line'). The up-arrow key has the same effect. `M-r' Move point to left margin, vertically centered in the window (`move-to-window-line'). Text does not move on the screen. A numeric argument says which screen line to place point on. It counts screen lines down from the top of the window (zero for the top line). A negative argument counts lines from the bottom (-1 for the bottom line). `M-<' Move to the top of the buffer (`beginning-of-buffer'). With numeric argument N, move to N/10 of the way from the top. *Note Arguments::, for more information on numeric arguments. `M->' Move to the end of the buffer (`end-of-buffer'). `C-v' Scroll the display one screen forward, and move point if necessary to put it on the screen (`scroll-up'). This doesn't always move point, but it is commonly used to do so. If your keyboard has a key, it does the same thing. Scrolling commands are further described in *Note Scrolling::. `M-v' Scroll one screen backward, and move point if necessary to put it on the screen (`scroll-down'). This doesn't always move point, but it is commonly used to do so. The key has the same effect. `M-x goto-char' Read a number N and move point to buffer position N. Position 1 is the beginning of the buffer. `M-x goto-line' Read a number N and move point to line number N. Line 1 is the beginning of the buffer. `C-x C-n' Use the current column of point as the "semipermanent goal column" for `C-n' and `C-p' (`set-goal-column'). Henceforth, those commands always move to this column in each line moved into, or as close as possible given the contents of the line. This goal column remains in effect until canceled. `C-u C-x C-n' Cancel the goal column. Henceforth, `C-n' and `C-p' once again try to stick to a fixed horizontal position, as usual. If you set the variable `track-eol' to a non-`nil' value, then `C-n' and `C-p', when starting at the end of the line, move to the end of another line. Normally, `track-eol' is `nil'. *Note Variables::, for how to set variables such as `track-eol'. `C-n' normally gets an error when you use it on the last line of the buffer (just as `C-p' gets an error on the first line). But if you set the variable `next-line-add-newlines' to a non-`nil' value, `C-n' on the last line of a buffer creates an additional line at the end and moves down onto it. Erasing Text ============ `' Delete the character before point (`delete-backward-char'). `C-d' Delete the character after point (`delete-char'). `' `' One of these keys, whichever is the large key above the or key, deletes the character before point, like . If that is , and your keyboard also has , then deletes forwards, like `C-d'. `C-k' Kill to the end of the line (`kill-line'). `M-d' Kill forward to the end of the next word (`kill-word'). `M-' Kill back to the beginning of the previous word (`backward-kill-word'). You already know about the key which deletes the character before point (that is, before the cursor). Another key, `Control-d' (`C-d' for short), deletes the character after point (that is, the character that the cursor is on). This shifts the rest of the text on the line to the left. If you type `C-d' at the end of a line, it joins together that line and the next line. To erase a larger amount of text, use the `C-k' key, which kills a line at a time. If you type `C-k' at the beginning or middle of a line, it kills all the text up to the end of the line. If you type `C-k' at the end of a line, it joins that line and the next line. *Note Killing::, for more flexible ways of killing text. Undoing Changes =============== You can undo all the recent changes in the buffer text, up to a certain point. Each buffer records changes individually, and the undo command always applies to the current buffer. Usually each editing command makes a separate entry in the undo records, but some commands such as `query-replace' make many entries, and very simple commands such as self-inserting characters are often grouped to make undoing less tedious. `C-x u' Undo one batch of changes--usually, one command worth (`undo'). `C-_' The same. `C-u C-x u' Undo one batch of changes in the region. The command `C-x u' or `C-_' is how you undo. The first time you give this command, it undoes the last change. Point moves back to where it was before the command that made the change. Consecutive repetitions of `C-_' or `C-x u' undo earlier and earlier changes, back to the limit of the undo information available. If all recorded changes have already been undone, the undo command displays an error message and does nothing. Any command other than an undo command breaks the sequence of undo commands. Starting from that moment, the previous undo commands become ordinary changes that you can undo. Thus, to redo changes you have undone, type `C-f' or any other command that will harmlessly break the sequence of undoing, then type more undo commands. Ordinary undo applies to all changes made in the current buffer. You can also perform "selective undo", limited to the current region. To do this, specify the region you want, then run the `undo' command with a prefix argument (the value does not matter): `C-u C-x u' or `C-u C-_'. This undoes the most recent change in the region. To undo further changes in the same region, repeat the `undo' command (no prefix argument is needed). In Transient Mark mode, any use of `undo' when there is an active region performs selective undo; you do not need a prefix argument. If you notice that a buffer has been modified accidentally, the easiest way to recover is to type `C-_' repeatedly until the stars disappear from the front of the mode line. At this time, all the modifications you made have been canceled. Whenever an undo command makes the stars disappear from the mode line, it means that the buffer contents are the same as they were when the file was last read in or saved. If you do not remember whether you changed the buffer deliberately, type `C-_' once. When you see the last change you made undone, you will see whether it was an intentional change. If it was an accident, leave it undone. If it was deliberate, redo the change as described above. Not all buffers record undo information. Buffers whose names start with spaces don't; these buffers are used internally by Emacs and its extensions to hold text that users don't normally look at or edit. You cannot undo mere cursor motion; only changes in the buffer contents save undo information. However, some cursor motion commands set the mark, so if you use these commands from time to time, you can move back to the neighborhoods you have moved through by popping the mark ring (*note Mark Ring::). When the undo information for a buffer becomes too large, Emacs discards the oldest undo information from time to time (during garbage collection). You can specify how much undo information to keep by setting two variables: `undo-limit' and `undo-strong-limit'. Their values are expressed in units of bytes of space. The variable `undo-limit' sets a soft limit: Emacs keeps undo data for enough commands to reach this size, and perhaps exceed it, but does not keep data for any earlier commands beyond that. Its default value is 20000. The variable `undo-strong-limit' sets a stricter limit: the command which pushes the size past this amount is itself forgotten. Its default value is 30000. Regardless of the values of those variables, the most recent change is never discarded, so there is no danger that garbage collection occurring right after an unintentional large change might prevent you from undoing it. The reason the `undo' command has two keys, `C-x u' and `C-_', set up to run it is that it is worthy of a single-character key, but on some keyboards it is not obvious how to type `C-_'. `C-x u' is an alternative you can type straightforwardly on any terminal. Files ===== The commands described above are sufficient for creating and altering text in an Emacs buffer; the more advanced Emacs commands just make things easier. But to keep any text permanently you must put it in a "file". Files are named units of text which are stored by the operating system for you to retrieve later by name. To look at or use the contents of a file in any way, including editing the file with Emacs, you must specify the file name. Consider a file named `/usr/rms/foo.c'. In Emacs, to begin editing this file, type C-x C-f /usr/rms/foo.c Here the file name is given as an "argument" to the command `C-x C-f' (`find-file'). That command uses the "minibuffer" to read the argument, and you type to terminate the argument (*note Minibuffer::). Emacs obeys the command by "visiting" the file: creating a buffer, copying the contents of the file into the buffer, and then displaying the buffer for you to edit. If you alter the text, you can "save" the new text in the file by typing `C-x C-s' (`save-buffer'). This makes the changes permanent by copying the altered buffer contents back into the file `/usr/rms/foo.c'. Until you save, the changes exist only inside Emacs, and the file `foo.c' is unaltered. To create a file, just visit the file with `C-x C-f' as if it already existed. This creates an empty buffer in which you can insert the text you want to put in the file. The file is actually created when you save this buffer with `C-x C-s'. Of course, there is a lot more to learn about using files. *Note Files::. Help ==== If you forget what a key does, you can find out with the Help character, which is `C-h' (or , which is an alias for `C-h'). Type `C-h k' followed by the key you want to know about; for example, `C-h k C-n' tells you all about what `C-n' does. `C-h' is a prefix key; `C-h k' is just one of its subcommands (the command `describe-key'). The other subcommands of `C-h' provide different kinds of help. Type `C-h' twice to get a description of all the help facilities. *Note Help::. Blank Lines =========== Here are special commands and techniques for putting in and taking out blank lines. `C-o' Insert one or more blank lines after the cursor (`open-line'). `C-x C-o' Delete all but one of many consecutive blank lines (`delete-blank-lines'). When you want to insert a new line of text before an existing line, you can do it by typing the new line of text, followed by . However, it may be easier to see what you are doing if you first make a blank line and then insert the desired text into it. This is easy to do using the key `C-o' (`open-line'), which inserts a newline after point but leaves point in front of the newline. After `C-o', type the text for the new line. `C-o F O O' has the same effect as `F O O ', except for the final location of point. You can make several blank lines by typing `C-o' several times, or by giving it a numeric argument to tell it how many blank lines to make. *Note Arguments::, for how. If you have a fill prefix, then `C-o' command inserts the fill prefix on the new line, when you use it at the beginning of a line. *Note Fill Prefix::. The easy way to get rid of extra blank lines is with the command `C-x C-o' (`delete-blank-lines'). `C-x C-o' in a run of several blank lines deletes all but one of them. `C-x C-o' on a solitary blank line deletes that blank line. When point is on a nonblank line, `C-x C-o' deletes any blank lines following that nonblank line. Continuation Lines ================== If you add too many characters to one line without breaking it with , the line grows to occupy two (or more) lines on the screen. On graphical displays, Emacs indicates line wrapping with small bent arrows in the fringes to the left and right of the window. On text-only terminals, Emacs displays a `\' character at the right margin of a screen line if it is not the last in its text line. This `\' character says that the following screen line is not really a distinct line in the text, just a "continuation" of a line too long to fit the screen. Continuation is also called "line wrapping". When line wrapping occurs before a character that is wider than one column, some columns at the end of the previous screen line may be "empty." In this case, Emacs displays additional `\' characters in the "empty" columns, just before the `\' character that indicates continuation. Sometimes it is nice to have Emacs insert newlines automatically when a line gets too long. Continuation on the screen does not do that. Use Auto Fill mode (*note Filling::) if that's what you want. As an alternative to continuation, Emacs can display long lines by "truncation". This means that all the characters that do not fit in the width of the screen or window do not appear at all. They remain in the buffer, temporarily invisible. On terminals, `$' in the last column informs you that the line has been truncated on the display. On window systems, a small straight arrow in the fringe to the right of the window indicates a truncated line. Truncation instead of continuation happens whenever horizontal scrolling is in use, and optionally in all side-by-side windows (*note Windows::). You can enable or disable truncation for a particular buffer with the command `M-x toggle-truncate-lines'. *Note Display Custom::, for additional variables that affect how text is displayed. Cursor Position Information =========================== Here are commands to get information about the size and position of parts of the buffer, and to count lines. `M-x what-page' Display the page number of point, and the line number within the page. `M-x what-line' Display the line number of point in the buffer. `M-x line-number-mode' `M-x column-number-mode' Toggle automatic display of current line number or column number. *Note Optional Mode Line::. `M-=' Display the number of lines in the current region (`count-lines-region'). *Note Mark::, for information about the region. `C-x =' Display the character code of character after point, character position of point, and column of point (`what-cursor-position'). `M-x hl-line-mode' Enable or disable highlighting of the current line. *Note Cursor Display::. There are two commands for working with line numbers. `M-x what-line' computes the current line number and displays it in the echo area. To go to a given line by number, use `M-x goto-line'; it prompts you for the number. These line numbers count from one at the beginning of the buffer. You can also see the current line number in the mode line; see *Note Mode Line::. If you narrow the buffer, then the line number in the mode line is relative to the accessible portion (*note Narrowing::). By contrast, `what-line' shows both the line number relative to the narrowed region and the line number relative to the whole buffer. `M-x what-page' counts pages from the beginning of the file, and counts lines within the page, showing both numbers in the echo area. *Note Pages::. While on this subject, we might as well mention `M-=' (`count-lines-region'), which displays the number of lines in the region (*note Mark::). *Note Pages::, for the command `C-x l' which counts the lines in the current page. The command `C-x =' (`what-cursor-position') can be used to find out the column that the cursor is in, and other miscellaneous information about point. It displays a line in the echo area that looks like this: Char: c (0143, 99, 0x63) point=21044 of 26883(78%) column 53 (In fact, this is the output produced when point is before the `column' in the example.) The four values after `Char:' describe the character that follows point, first by showing it and then by giving its character code in octal, decimal and hex. For a non-ASCII multibyte character, these are followed by `ext' and the character's representation, in hex, in the buffer's coding system, if that coding system encodes the character safely and with a single byte (*note Coding Systems::). If the character's encoding is longer than one byte, Emacs shows `ext ...'. `point=' is followed by the position of point expressed as a character count. The front of the buffer counts as position 1, one character later as 2, and so on. The next, larger, number is the total number of characters in the buffer. Afterward in parentheses comes the position expressed as a percentage of the total size. `column' is followed by the horizontal position of point, in columns from the left edge of the window. If the buffer has been narrowed, making some of the text at the beginning and the end temporarily inaccessible, `C-x =' displays additional text describing the currently accessible range. For example, it might display this: Char: C (0103, 67, 0x43) point=252 of 889(28%) <231 - 599> column 0 where the two extra numbers give the smallest and largest character position that point is allowed to assume. The characters between those two positions are the accessible ones. *Note Narrowing::. If point is at the end of the buffer (or the end of the accessible part), the `C-x =' output does not describe a character after point. The output might look like this: point=26957 of 26956(100%) column 0 `C-u C-x =' displays additional information about a character, in place of the buffer coordinates and column: the character set name and the codes that identify the character within that character set; ASCII characters are identified as belonging to the `ASCII' character set. In addition, the full character encoding, even if it takes more than a single byte, is shown after `ext'. Here's an example for a Latin-1 character A with a grave accent in a buffer whose coding system is iso-2022-7bit(1): Char: A` (04300, 2240, 0x8c0, ext ESC , A @) (latin-iso8859-1 64) ---------- Footnotes ---------- (1) On terminals that support Latin-1 characters, the character shown after `Char:' is displayed as the actual glyph of A with grave accent. Numeric Arguments ================= In mathematics and computer usage, the word "argument" means "data provided to a function or operation." You can give any Emacs command a "numeric argument" (also called a "prefix argument"). Some commands interpret the argument as a repetition count. For example, `C-f' with an argument of ten moves forward ten characters instead of one. With these commands, no argument is equivalent to an argument of one. Negative arguments tell most such commands to move or act in the opposite direction. If your terminal keyboard has a key, the easiest way to specify a numeric argument is to type digits and/or a minus sign while holding down the key. For example, M-5 C-n would move down five lines. The characters `Meta-1', `Meta-2', and so on, as well as `Meta--', do this because they are keys bound to commands (`digit-argument' and `negative-argument') that are defined to contribute to an argument for the next command. `Meta--' without digits normally means -1. Digits and `-' modified with Control, or Control and Meta, also specify numeric arguments. Another way of specifying an argument is to use the `C-u' (`universal-argument') command followed by the digits of the argument. With `C-u', you can type the argument digits without holding down modifier keys; `C-u' works on all terminals. To type a negative argument, type a minus sign after `C-u'. Just a minus sign without digits normally means -1. `C-u' followed by a character which is neither a digit nor a minus sign has the special meaning of "multiply by four." It multiplies the argument for the next command by four. `C-u' twice multiplies it by sixteen. Thus, `C-u C-u C-f' moves forward sixteen characters. This is a good way to move forward "fast," since it moves about 1/5 of a line in the usual size screen. Other useful combinations are `C-u C-n', `C-u C-u C-n' (move down a good fraction of a screen), `C-u C-u C-o' (make "a lot" of blank lines), and `C-u C-k' (kill four lines). Some commands care only about whether there is an argument, and not about its value. For example, the command `M-q' (`fill-paragraph') with no argument fills text; with an argument, it justifies the text as well. (*Note Filling::, for more information on `M-q'.) Plain `C-u' is a handy way of providing an argument for such commands. Some commands use the value of the argument as a repeat count, but do something peculiar when there is no argument. For example, the command `C-k' (`kill-line') with argument N kills N lines, including their terminating newlines. But `C-k' with no argument is special: it kills the text up to the next newline, or, if point is right at the end of the line, it kills the newline itself. Thus, two `C-k' commands with no arguments can kill a nonblank line, just like `C-k' with an argument of one. (*Note Killing::, for more information on `C-k'.) A few commands treat a plain `C-u' differently from an ordinary argument. A few others may treat an argument of just a minus sign differently from an argument of -1. These unusual cases are described when they come up; they are always for reasons of convenience of use of the individual command. You can use a numeric argument to insert multiple copies of a character. This is straightforward unless the character is a digit; for example, `C-u 6 4 a' inserts 64 copies of the character `a'. But this does not work for inserting digits; `C-u 6 4 1' specifies an argument of 641, rather than inserting anything. To separate the digit to insert from the argument, type another `C-u'; for example, `C-u 6 4 C-u 1' does insert 64 copies of the character `1'. We use the term "prefix argument" as well as "numeric argument" to emphasize that you type the argument before the command, and to distinguish these arguments from minibuffer arguments that come after the command. Repeating a Command =================== Many simple commands, such as those invoked with a single key or with `M-x COMMAND-NAME ', can be repeated by invoking them with a numeric argument that serves as a repeat count (*note Arguments::). However, if the command you want to repeat prompts for some input, or uses a numeric argument in another way, repetition using a numeric argument might be problematical. The command `C-x z' (`repeat') provides another way to repeat an Emacs command many times. This command repeats the previous Emacs command, whatever that was. Repeating a command uses the same arguments that were used before; it does not read new arguments each time. To repeat the command more than once, type additional `z''s: each `z' repeats the command one more time. Repetition ends when you type a character other than `z', or press a mouse button. For example, suppose you type `C-u 2 0 C-d' to delete 20 characters. You can repeat that command (including its argument) three additional times, to delete a total of 80 characters, by typing `C-x z z z'. The first `C-x z' repeats the command once, and each subsequent `z' repeats it once again. The Minibuffer ************** The "minibuffer" is the facility used by Emacs commands to read arguments more complicated than a single number. Minibuffer arguments can be file names, buffer names, Lisp function names, Emacs command names, Lisp expressions, and many other things, depending on the command reading the argument. You can use the usual Emacs editing commands in the minibuffer to edit the argument text. When the minibuffer is in use, it appears in the echo area, and the terminal's cursor moves there. The beginning of the minibuffer line displays a "prompt" which says what kind of input you should supply and how it will be used. Often this prompt is derived from the name of the command that the argument is for. The prompt normally ends with a colon. Sometimes a "default argument" appears in parentheses after the colon; it too is part of the prompt. The default will be used as the argument value if you enter an empty argument (that is, just type ). For example, commands that read buffer names always show a default, which is the name of the buffer that will be used if you type just . The simplest way to enter a minibuffer argument is to type the text you want, terminated by which exits the minibuffer. You can cancel the command that wants the argument, and get out of the minibuffer, by typing `C-g'. Since the minibuffer uses the screen space of the echo area, it can conflict with other ways Emacs customarily uses the echo area. Here is how Emacs handles such conflicts: * If a command gets an error while you are in the minibuffer, this does not cancel the minibuffer. However, the echo area is needed for the error message and therefore the minibuffer itself is hidden for a while. It comes back after a few seconds, or as soon as you type anything. * If in the minibuffer you use a command whose purpose is to display a message in the echo area, such as `C-x =', the message hides the minibuffer for a while. The minibuffer contents come back after a few seconds, or as soon as you type anything. * Echoing of keystrokes does not take place while the minibuffer is in use. Minibuffers for File Names ========================== Sometimes the minibuffer starts out with text in it. For example, when you are supposed to give a file name, the minibuffer starts out containing the "default directory", which ends with a slash. This is to inform you which directory the file will be found in if you do not specify a directory. For example, the minibuffer might start out with these contents: Find File: /u2/emacs/src/ where `Find File: ' is the prompt. Typing `buffer.c' specifies the file `/u2/emacs/src/buffer.c'. To find files in nearby directories, use `..'; thus, if you type `../lisp/simple.el', you will get the file named `/u2/emacs/lisp/simple.el'. Alternatively, you can kill with `M-' the directory names you don't want (*note Words::). If you don't want any of the default, you can kill it with `C-a C-k'. But you don't need to kill the default; you can simply ignore it. Insert an absolute file name, one starting with a slash or a tilde, after the default directory. For example, to specify the file `/etc/termcap', just insert that name, giving these minibuffer contents: Find File: /u2/emacs/src//etc/termcap GNU Emacs gives a special meaning to a double slash (which is not normally a useful thing to write): it means, "ignore everything before the second slash in the pair." Thus, `/u2/emacs/src/' is ignored in the example above, and you get the file `/etc/termcap'. If you set `insert-default-directory' to `nil', the default directory is not inserted in the minibuffer. This way, the minibuffer starts out empty. But the name you type, if relative, is still interpreted with respect to the same default directory. Editing in the Minibuffer ========================= The minibuffer is an Emacs buffer (albeit a peculiar one), and the usual Emacs commands are available for editing the text of an argument you are entering. Since in the minibuffer is defined to exit the minibuffer, you can't use it to insert a newline in the minibuffer. To do that, type `C-o' or `C-q C-j'. (Recall that a newline is really the character control-J.) The minibuffer has its own window which always has space on the screen but acts as if it were not there when the minibuffer is not in use. When the minibuffer is in use, its window is just like the others; you can switch to another window with `C-x o', edit text in other windows and perhaps even visit more files, before returning to the minibuffer to submit the argument. You can kill text in another window, return to the minibuffer window, and then yank the text to use it in the argument. *Note Windows::. There are some restrictions on the use of the minibuffer window, however. You cannot switch buffers in it--the minibuffer and its window are permanently attached. Also, you cannot split or kill the minibuffer window. But you can make it taller in the normal fashion with `C-x ^'. The minibuffer window expands vertically as necessary to hold the text that you put in the minibuffer, if `resize-mini-windows' is non-`nil'. If `resize-mini-windows' is `t', the window is always resized to fit the size of the text it displays. If `resize-mini-windows' is the symbol `grow-only', the window grows when the size of displayed text increases, but shrinks (back to the normal size) only when the minibuffer becomes inactive. The variable `max-mini-window-height' controls the maximum height for resizing the minibuffer window: a floating-point number specifies a fraction of the frame's height; an integer specifies the maximum number of lines; `nil' means do not resize the minibuffer window automatically. The default value is 0.25. If while in the minibuffer you issue a command that displays help text of any sort in another window, you can use the `C-M-v' command while in the minibuffer to scroll the help text. This lasts until you exit the minibuffer. This feature is especially useful when you display a buffer listing possible completions. *Note Other Window::. Emacs normally disallows most commands that use the minibuffer while the minibuffer is active. This rule is to prevent recursive minibuffers from confusing novice users. If you want to be able to use such commands in the minibuffer, set the variable `enable-recursive-minibuffers' to a non-`nil' value. Completion ========== For certain kinds of arguments, you can use "completion" to enter the argument value. Completion means that you type part of the argument, then Emacs visibly fills in the rest, or as much as can be determined from the part you have typed. When completion is available, certain keys--, , and --are rebound to complete the text present in the minibuffer into a longer string that it stands for, by matching it against a set of "completion alternatives" provided by the command reading the argument. `?' is defined to display a list of possible completions of what you have inserted. For example, when `M-x' uses the minibuffer to read the name of a command, it provides a list of all available Emacs command names to complete against. The completion keys match the text in the minibuffer against all the command names, find any additional name characters implied by the ones already present in the minibuffer, and add those characters to the ones you have given. This is what makes it possible to type `M-x ins b ' instead of `M-x insert-buffer ' (for example). Case is normally significant in completion, because it is significant in most of the names that you can complete (buffer names, file names and command names). Thus, `fo' does not complete to `Foo'. Completion does ignore case distinctions for certain arguments in which case does not matter. Completion Example ------------------ A concrete example may help here. If you type `M-x au ', the looks for alternatives (in this case, command names) that start with `au'. There are several, including `auto-fill-mode' and `auto-save-mode'--but they are all the same as far as `auto-', so the `au' in the minibuffer changes to `auto-'. If you type again immediately, there are multiple possibilities for the very next character--it could be any of `cfilrs'--so no more characters are added; instead, displays a list of all possible completions in another window. If you go on to type `f ', this sees `auto-f'. The only command name starting this way is `auto-fill-mode', so completion fills in the rest of that. You now have `auto-fill-mode' in the minibuffer after typing just `au f '. Note that has this effect because in the minibuffer it is bound to the command `minibuffer-complete' when completion is available. Completion Commands ------------------- Here is a list of the completion commands defined in the minibuffer when completion is available. `' Complete the text in the minibuffer as much as possible (`minibuffer-complete'). `' Complete the minibuffer text, but don't go beyond one word (`minibuffer-complete-word'). `' Submit the text in the minibuffer as the argument, possibly completing first as described below (`minibuffer-complete-and-exit'). `?' Display a list of all possible completions of the text in the minibuffer (`minibuffer-list-completions'). completes much like , but never goes beyond the next hyphen or space. If you have `auto-f' in the minibuffer and type , it finds that the completion is `auto-fill-mode', but it stops completing after `fill-'. This gives `auto-fill-'. Another at this point completes all the way to `auto-fill-mode'. The command that implements this behavior is called `minibuffer-complete-word'. Here are some commands you can use to choose a completion from a window that displays a list of completions: `Mouse-2' Clicking mouse button 2 on a completion in the list of possible completions chooses that completion (`mouse-choose-completion'). You normally use this command while point is in the minibuffer, but you must click in the list of completions, not in the minibuffer itself. `' `M-v' Typing or , or `M-v', while in the minibuffer, selects the window showing the completion list buffer (`switch-to-completions'). This paves the way for using the commands below. (Selecting that window in the usual ways has the same effect, but this way is more convenient.) `' Typing _in the completion list buffer_ chooses the completion that point is in or next to (`choose-completion'). To use this command, you must first switch windows to the window that shows the list of completions. `' Typing the right-arrow key _in the completion list buffer_ moves point to the following completion (`next-completion'). `' Typing the left-arrow key _in the completion list buffer_ moves point toward the beginning of the buffer, to the previous completion (`previous-completion'). Strict Completion ----------------- There are three different ways that can work in completing minibuffers, depending on how the argument will be used. * "Strict" completion is used when it is meaningless to give any argument except one of the known alternatives. For example, when `C-x k' reads the name of a buffer to kill, it is meaningless to give anything but the name of an existing buffer. In strict completion, refuses to exit if the text in the minibuffer does not complete to an exact match. * "Cautious" completion is similar to strict completion, except that exits only if the text was an exact match already, not needing completion. If the text is not an exact match, does not exit, but it does complete the text. If it completes to an exact match, a second will exit. Cautious completion is used for reading file names for files that must already exist. * "Permissive" completion is used when any string whatever is meaningful, and the list of completion alternatives is just a guide. For example, when `C-x C-f' reads the name of a file to visit, any file name is allowed, in case you want to create a file. In permissive completion, takes the text in the minibuffer exactly as given, without completing it. The completion commands display a list of all possible completions in a window whenever there is more than one possibility for the very next character. Also, typing `?' explicitly requests such a list. If the list of completions is long, you can scroll it with `C-M-v' (*note Other Window::). Completion Options ------------------ When completion is done on file names, certain file names are usually ignored. The variable `completion-ignored-extensions' contains a list of strings; a file whose name ends in any of those strings is ignored as a possible completion. The standard value of this variable has several elements including `".o"', `".elc"', `".dvi"' and `"~"'. The effect is that, for example, `foo' can complete to `foo.c' even though `foo.o' exists as well. However, if _all_ the possible completions end in "ignored" strings, then they are not ignored. Ignored extensions do not apply to lists of completions--those always mention all possible completions. Normally, a completion command that cannot determine even one additional character automatically displays a list of all possible completions. If the variable `completion-auto-help' is set to `nil', this automatic display is disabled, so you must type `?' to display the list of completions. Partial Completion mode implements a more powerful kind of completion that can complete multiple words in parallel. For example, it can complete the command name abbreviation `p-b' into `print-buffer', because no other command starts with two words whose initials are `p' and `b'. Partial completion of directories in file names uses `*' to indicate the places for completion; thus, `/u*/b*/f*' might complete to `/usr/bin/foo'. To enable this mode, use the command `M-x partial-completion-mode', or customize the option `partial-completion-mode'. This binds the partial completion commands to , , , and `?'. The usual completion commands are available on `M-', `M-', `M-' and `M-?'. Another feature of Partial Completion mode is to extend `find-file' so that the `' stands for the file named INCLUDE in some directory in the path `PC-include-file-path'. If you set `PC-disable-includes' to non-`nil', this feature is disabled. Icomplete mode presents a constantly-updated display that tells you what completions are available for the text you've entered so far. The command to enable or disable this minor mode is `M-x icomplete-mode'. Minibuffer History ================== Every argument that you enter with the minibuffer is saved on a "minibuffer history list" so that you can use it again later in another argument. Special commands load the text of an earlier argument in the minibuffer. They discard the old minibuffer contents, so you can think of them as moving through the history of previous arguments. `' `M-p' Move to the next earlier argument string saved in the minibuffer history (`previous-history-element'). `' `M-n' Move to the next later argument string saved in the minibuffer history (`next-history-element'). `M-r REGEXP ' Move to an earlier saved argument in the minibuffer history that has a match for REGEXP (`previous-matching-history-element'). `M-s REGEXP ' Move to a later saved argument in the minibuffer history that has a match for REGEXP (`next-matching-history-element'). The simplest way to reuse the saved arguments in the history list is to move through the history list one element at a time. While in the minibuffer, use `M-p' or up-arrow (`previous-history-element') to "move to" the next earlier minibuffer input, and use `M-n' or down-arrow (`next-history-element') to "move to" the next later input. The previous input that you fetch from the history entirely replaces the contents of the minibuffer. To use it as the argument, exit the minibuffer as usual with . You can also edit the text before you reuse it; this does not change the history element that you "moved" to, but your new argument does go at the end of the history list in its own right. For many minibuffer arguments there is a "default" value. In some cases, the minibuffer history commands know the default value. Then you can insert the default value into the minibuffer as text by using `M-n' to move "into the future" in the history. Eventually we hope to make this feature available whenever the minibuffer has a default value. There are also commands to search forward or backward through the history; they search for history elements that match a regular expression that you specify with the minibuffer. `M-r' (`previous-matching-history-element') searches older elements in the history, while `M-s' (`next-matching-history-element') searches newer elements. By special dispensation, these commands can use the minibuffer to read their arguments even though you are already in the minibuffer when you issue them. As with incremental searching, an upper-case letter in the regular expression makes the search case-sensitive (*note Search Case::). All uses of the minibuffer record your input on a history list, but there are separate history lists for different kinds of arguments. For example, there is a list for file names, used by all the commands that read file names. (As a special feature, this history list records the absolute file name, no more and no less, even if that is not how you entered the file name.) There are several other very specific history lists, including one for command names read by `M-x', one for buffer names, one for arguments of commands like `query-replace', and one for compilation commands read by `compile'. Finally, there is one "miscellaneous" history list that most minibuffer arguments use. The variable `history-length' specifies the maximum length of a minibuffer history list; once a list gets that long, the oldest element is deleted each time an element is added. If the value of `history-length' is `t', though, there is no maximum length and elements are never deleted. Repeating Minibuffer Commands ============================= Every command that uses the minibuffer at least once is recorded on a special history list, together with the values of its arguments, so that you can repeat the entire command. In particular, every use of `M-x' is recorded there, since `M-x' uses the minibuffer to read the command name. `C-x ' Re-execute a recent minibuffer command (`repeat-complex-command'). `M-x list-command-history' Display the entire command history, showing all the commands `C-x ' can repeat, most recent first. `C-x ' is used to re-execute a recent minibuffer-using command. With no argument, it repeats the last such command. A numeric argument specifies which command to repeat; one means the last one, and larger numbers specify earlier ones. `C-x ' works by turning the previous command into a Lisp expression and then entering a minibuffer initialized with the text for that expression. If you type just , the command is repeated as before. You can also change the command by editing the Lisp expression. Whatever expression you finally submit is what will be executed. The repeated command is added to the front of the command history unless it is identical to the most recently executed command already there. Even if you don't understand Lisp syntax, it will probably be obvious which command is displayed for repetition. If you do not change the text, it will repeat exactly as before. Once inside the minibuffer for `C-x ', you can use the minibuffer history commands (`M-p', `M-n', `M-r', `M-s'; *note Minibuffer History::) to move through the history list of saved entire commands. After finding the desired previous command, you can edit its expression as usual and then resubmit it by typing as usual. The list of previous minibuffer-using commands is stored as a Lisp list in the variable `command-history'. Each element is a Lisp expression which describes one command and its arguments. Lisp programs can re-execute a command by calling `eval' with the `command-history' element. Running Commands by Name ************************ Every Emacs command has a name that you can use to run it. Commands that are used often, or that must be quick to type, are also bound to keys--short sequences of characters--for convenient use. You can run them by name if you don't remember the keys. Other Emacs commands that do not need to be quick are not bound to keys; the only way to run them is by name. *Note Key Bindings::, for the description of how to bind commands to keys. By convention, a command name consists of one or more words, separated by hyphens; for example, `auto-fill-mode' or `manual-entry'. The use of English words makes the command name easier to remember than a key made up of obscure characters, even though it is more characters to type. The way to run a command by name is to start with `M-x', type the command name, and finish it with . `M-x' uses the minibuffer to read the command name. exits the minibuffer and runs the command. The string `M-x' appears at the beginning of the minibuffer as a "prompt" to remind you to enter the name of a command to be run. *Note Minibuffer::, for full information on the features of the minibuffer. You can use completion to enter the command name. For example, you can invoke the command `forward-char' by name by typing either M-x forward-char or M-x forw c Note that `forward-char' is the same command that you invoke with the key `C-f'. You can run any Emacs command by name using `M-x', whether or not any keys are bound to it. If you type `C-g' while the command name is being read, you cancel the `M-x' command and get out of the minibuffer, ending up at top level. To pass a numeric argument to the command you are invoking with `M-x', specify the numeric argument before the `M-x'. `M-x' passes the argument along to the command it runs. The argument value appears in the prompt while the command name is being read. If the command you type has a key binding of its own, Emacs mentions this in the echo area, two seconds after the command finishes (if you don't type anything else first). For example, if you type `M-x forward-word', the message says that you can run the same command more easily by typing `M-f'. You can turn off these messages by setting `suggest-key-bindings' to `nil'. Normally, when describing in this manual a command that is run by name, we omit the that is needed to terminate the name. Thus we might speak of `M-x auto-fill-mode' rather than `M-x auto-fill-mode '. We mention the only when there is a need to emphasize its presence, such as when we show the command together with following arguments. `M-x' works by running the command `execute-extended-command', which is responsible for reading the name of another command and invoking it. Help **** Emacs provides extensive help features accessible through a single character, `C-h'. `C-h' is a prefix key that is used for commands that display documentation. The characters that you can type after `C-h' are called "help options". One help option is `C-h'; that is how you ask for help about using `C-h'. To cancel, type `C-g'. The function key is equivalent to `C-h'. `C-h C-h' (`help-for-help') displays a list of the possible help options, each with a brief description. Before you type a help option, you can use or to scroll through the list. `C-h' or means "help" in various other contexts as well. For example, in the middle of `query-replace', it describes the options available for how to operate on the current match. After a prefix key, it displays a list of the alternatives that can follow the prefix key. (A few prefix keys don't support `C-h', because they define other meanings for it, but they all support .) Most help buffers use a special major mode, Help mode, which lets you scroll conveniently with and . It also offers hyperlinks to further help regarding cross-referenced names, Info nodes, customization buffers and the like. *Note Help Mode::. If you are looking for a certain feature, but don't know where exactly it is documented, and aren't sure of the name of a related command or option, we recommend trying these methods. Usually it is best to start with an apropos command, then try searching the manual index, then finally look in the FAQ and the package keywords. `C-h a TOPIC ' This searches for commands whose names match TOPIC, which should be a regular expression (*note Regexps::). Browse the buffer that this command displays to find what you are looking for. *Note Apropos::. `M-x apropos TOPIC ' This works like `C-h a', but it also searches for user options and other variables, in case the feature you are looking for is controlled by an option, not a command. *Note Apropos::. `M-x apropos-documentation TOPIC ' This searches the _documentation strings_ (the built-in short descriptions) of all variables and functions (not their names) for a match for TOPIC, a regular expression. *Note Apropos::. `C-h i d m emacs i TOPIC ' This looks up TOPIC in the indices of the Emacs on-line manual. If there are several matches, Emacs displays the first one. You can then press <,> to move to other matches, until you find what you are looking for. `C-h i d m emacs s TOPIC ' Similar, but searches for TOPIC (which can be a regular expression) in the _text_ of the manual rather than in its indices. `C-h F' This brings up the Emacs FAQ, where you can use the usual search commands (*note Search::) to find the information. `C-h p' Finally, you can try looking up a suitable package using keywords pertinent to the feature you need. *Note Library Keywords::. To find the documentation of a key sequence or a menu item, type `C-h C-k' and then type that key sequence or select the menu item. This looks up the description of the command invoked by the key or the menu in the appropriate manual (not necessarily the Emacs manual). Likewise, use `C-h C-f' for reading documentation of a command. Help Summary ============ Here is a summary of the defined help commands. `C-h a REGEXP ' Display a list of commands whose names match REGEXP (`apropos-command'). `C-h b' Display a table of all key bindings in effect now, in this order: minor mode bindings, major mode bindings, and global bindings (`describe-bindings'). `C-h c KEY' Show the name of the command that KEY runs (`describe-key-briefly'). Here `c' stands for "character." For more extensive information on KEY, use `C-h k'. `C-h f FUNCTION ' Display documentation on the Lisp function named FUNCTION (`describe-function'). Since commands are Lisp functions, a command name may be used. `C-h h' Display the `HELLO' file, which shows examples of various character sets. `C-h i' Run Info, the program for browsing documentation files (`info'). The complete Emacs manual is available on-line in Info. `C-h k KEY' Display the name and documentation of the command that KEY runs (`describe-key'). `C-h l' Display a description of the last 100 characters you typed (`view-lossage'). `C-h m' Display documentation of the current major mode (`describe-mode'). `C-h n' Display documentation of Emacs changes, most recent first (`view-emacs-news'). `C-h P' Display info on known problems with Emacs and possible workarounds (`view-emacs-problems'). `C-h p' Find packages by topic keyword (`finder-by-keyword'). `C-h s' Display the current contents of the syntax table, plus an explanation of what they mean (`describe-syntax'). *Note Syntax::. `C-h t' Enter the Emacs interactive tutorial (`help-with-tutorial'). `C-h v VAR ' Display the documentation of the Lisp variable VAR (`describe-variable'). `C-h w COMMAND ' Show which keys run the command named COMMAND (`where-is'). `C-h C CODING ' Describe coding system CODING (`describe-coding-system'). `C-h C ' Describe the coding systems currently in use. `C-h I METHOD ' Describe an input method (`describe-input-method'). `C-h L LANGUAGE-ENV ' Display information on the character sets, coding systems, and input methods used for language environment LANGUAGE-ENV (`describe-language-environment'). `C-h C-c' Display the copying conditions for GNU Emacs. `C-h C-d' Display information about getting new versions of GNU Emacs. `C-h C-f FUNCTION ' Enter Info and go to the node documenting the Emacs function FUNCTION (`Info-goto-emacs-command-node'). `C-h C-k KEY' Enter Info and go to the node where the key sequence KEY is documented (`Info-goto-emacs-key-command-node'). `C-h C-p' Display information about the GNU Project. `C-h SYMBOL ' Display the Info documentation on symbol SYMBOL according to the programming language you are editing (`info-lookup-symbol'). Documentation for a Key ======================= The most basic `C-h' options are `C-h c' (`describe-key-briefly') and `C-h k' (`describe-key'). `C-h c KEY' displays in the echo area the name of the command that KEY is bound to. For example, `C-h c C-f' displays `forward-char'. Since command names are chosen to describe what the commands do, this is a good way to get a very brief description of what KEY does. `C-h k KEY' is similar but gives more information: it displays the documentation string of the command as well as its name. This is too big for the echo area, so a window is used for the display. `C-h c' and `C-h k' work for any sort of key sequences, including function keys and mouse events. Help by Command or Variable Name ================================ `C-h f' (`describe-function') reads the name of a Lisp function using the minibuffer, then displays that function's documentation string in a window. Since commands are Lisp functions, you can use this to get the documentation of a command that you know by name. For example, C-h f auto-fill-mode displays the documentation of `auto-fill-mode'. This is the only way to get the documentation of a command that is not bound to any key (one which you would normally run using `M-x'). `C-h f' is also useful for Lisp functions that you are planning to use in a Lisp program. For example, if you have just written the expression `(make-vector len)' and want to check that you are using `make-vector' properly, type `C-h f make-vector '. Because `C-h f' allows all function names, not just command names, you may find that some of your favorite abbreviations that work in `M-x' don't work in `C-h f'. An abbreviation may be unique among command names yet fail to be unique when other function names are allowed. The default function name for `C-h f' to describe, if you type just , is the name of the function called by the innermost Lisp expression in the buffer around point, _provided_ that is a valid, defined Lisp function name. For example, if point is located following the text `(make-vector (car x)', the innermost list containing point is the one that starts with `(make-vector', so the default is to describe the function `make-vector'. `C-h f' is often useful just to verify that you have the right spelling for the function name. If `C-h f' mentions a name from the buffer as the default, that name must be defined as a Lisp function. If that is all you want to know, just type `C-g' to cancel the `C-h f' command, then go on editing. `C-h w COMMAND ' tells you what keys are bound to COMMAND. It displays a list of the keys in the echo area. If it says the command is not on any key, you must use `M-x' to run it. `C-h w' runs the command `where-is'. `C-h v' (`describe-variable') is like `C-h f' but describes Lisp variables instead of Lisp functions. Its default is the Lisp symbol around or before point, but only if that is the name of a known Lisp variable. *Note Variables::. Help buffers describing variables or functions defined in Lisp normally have hyperlinks to the Lisp definition, if you have the Lisp source files installed. If you know Lisp, this provides the ultimate documentation. If you don't know Lisp, you should learn it. If you are treating Emacs as an object file, then you are just _using_ Emacs. For real intimacy with Emacs, you must read the source code. Apropos ======= A more sophisticated sort of question to ask is, "What are the commands for working with files?" To ask this question, type `C-h a file ', which displays a list of all command names that contain `file', including `copy-file', `find-file', and so on. With each command name appears a brief description of how to use the command, and what keys you can currently invoke it with. For example, it would say that you can invoke `find-file' by typing `C-x C-f'. The `a' in `C-h a' stands for "Apropos"; `C-h a' runs the command `apropos-command'. This command normally checks only commands (interactive functions); if you specify a prefix argument, it checks noninteractive functions as well. Because `C-h a' looks only for functions whose names contain the string you specify, you must use ingenuity in choosing the string. If you are looking for commands for killing backwards and `C-h a kill-backwards ' doesn't reveal any, don't give up. Try just `kill', or just `backwards', or just `back'. Be persistent. Also note that you can use a regular expression as the argument, for more flexibility (*note Regexps::). Here is a set of arguments to give to `C-h a' that covers many classes of Emacs commands, since there are strong conventions for naming the standard Emacs commands. By giving you a feel for the naming conventions, this set should also serve to aid you in developing a technique for picking `apropos' strings. char, line, word, sentence, paragraph, region, page, sexp, list, defun, rect, buffer, frame, window, face, file, dir, register, mode, beginning, end, forward, backward, next, previous, up, down, search, goto, kill, delete, mark, insert, yank, fill, indent, case, change, set, what, list, find, view, describe, default. To list all user variables that match a regexp, use the command `M-x apropos-variable'. This command shows only user variables and customization options by default; if you specify a prefix argument, it checks all variables. To list all Lisp symbols that contain a match for a regexp, not just the ones that are defined as commands, use the command `M-x apropos' instead of `C-h a'. This command does not check key bindings by default; specify a numeric argument if you want it to check them. The `apropos-documentation' command is like `apropos' except that it searches documentation strings as well as symbol names for matches for the specified regular expression. The `apropos-value' command is like `apropos' except that it searches symbols' values for matches for the specified regular expression. This command does not check function definitions or property lists by default; specify a numeric argument if you want it to check them. If the variable `apropos-do-all' is non-`nil', the commands above all behave as if they had been given a prefix argument. If you want more information about a function definition, variable or symbol property listed in the Apropos buffer, you can click on it with `Mouse-2' or move there and type . Keyword Search for Lisp Libraries ================================= The `C-h p' command lets you search the standard Emacs Lisp libraries by topic keywords. Here is a partial list of keywords you can use: abbrev --- abbreviation handling, typing shortcuts, macros. bib --- support for the bibliography processor `bib'. c --- C and C++ language support. calendar --- calendar and time management support. comm --- communications, networking, remote access to files. data --- support for editing files of data. docs --- support for Emacs documentation. emulations --- emulations of other editors. extensions --- Emacs Lisp language extensions. faces --- support for using faces (fonts and colors; *note Faces::). frames --- support for Emacs frames and window systems. games --- games, jokes and amusements. hardware --- support for interfacing with exotic hardware. help --- support for on-line help systems. hypermedia --- support for links within text, or other media types. i18n --- internationalization and alternate character-set support. internal --- code for Emacs internals, build process, defaults. languages --- specialized modes for editing programming languages. lisp --- support for using Lisp (including Emacs Lisp). local --- libraries local to your site. maint --- maintenance aids for the Emacs development group. mail --- modes for electronic-mail handling. matching --- searching and matching. news --- support for netnews reading and posting. non-text --- support for editing files that are not ordinary text. oop --- support for object-oriented programming. outlines --- hierarchical outlining. processes --- process, subshell, compilation, and job control support. terminals --- support for terminal types. tex --- support for the TeX formatter. tools --- programming tools. unix --- front-ends/assistants for, or emulators of, system features. vms --- support code for VMS. wp --- word processing. Help for International Language Support ======================================= You can use the command `C-h L' (`describe-language-environment') to find out information about the support for a specific language environment. *Note Language Environments::. This tells you which languages this language environment is useful for, and lists the character sets, coding systems, and input methods that go with it. It also shows some sample text to illustrate scripts. The command `C-h h' (`view-hello-file') displays the file `etc/HELLO', which shows how to say "hello" in many languages. The command `C-h I' (`describe-input-method') describes information about input methods--either a specified input method, or by default the input method in use. *Note Input Methods::. The command `C-h C' (`describe-coding-system') describes information about coding systems--either a specified coding system, or the ones currently in use. *Note Coding Systems::. Help Mode Commands ================== Help buffers provide the same commands as View mode (*note Misc File Ops::), plus a few special commands of their own. `' Scroll forward. `' `' Scroll backward. On some keyboards, this key is known as or . `' Follow a cross reference at point. `' Move point forward to the next cross reference. `S-' Move point back to the previous cross reference. `Mouse-2' Follow a cross reference that you click on. When a command name (*note Running Commands by Name: M-x.) or variable name (*note Variables::) appears in the documentation, it normally appears inside paired single-quotes. You can click on the name with `Mouse-2', or move point there and type , to view the documentation of that command or variable. Use `C-c C-b' to retrace your steps. There are convenient commands for moving point to cross references in the help text. (`help-next-ref') moves point down to the next cross reference. Use `S-' to move point up to the previous cross reference (`help-previous-ref'). Other Help Commands =================== `C-h i' (`info') runs the Info program, which is used for browsing through structured documentation files. The entire Emacs manual is available within Info. Eventually all the documentation of the GNU system will be available. Type `h' after entering Info to run a tutorial on using Info. If you specify a numeric argument, `C-h i' prompts for the name of a documentation file. This way, you can browse a file which doesn't have an entry in the top-level Info menu. It is also handy when you need to get to the documentation quickly, and you know the exact name of the file. There are two special help commands for accessing Emacs documentation through Info. `C-h C-f FUNCTION ' enters Info and goes straight to the documentation of the Emacs function FUNCTION. `C-h C-k KEY' enters Info and goes straight to the documentation of the key KEY. These two keys run the commands `Info-goto-emacs-command-node' and `Info-goto-emacs-key-command-node'. You can use `C-h C-k' to find the documentation of a menu item: just select that menu item when `C-h C-k' prompts for a key. `C-h C-f' and `C-h C-k' know about commands and keys described in manuals other than the Emacs manual. Thus, they make it easier to find the documentation of commands and keys when you are not sure which manual describes them, like when using some specialized mode. When editing a program, if you have an Info version of the manual for the programming language, you can use the command `C-h C-i' to refer to the manual documentation for a symbol (keyword, function or variable). The details of how this command works depend on the major mode. If something surprising happens, and you are not sure what commands you typed, use `C-h l' (`view-lossage'). `C-h l' displays the last 100 command characters you typed in. If you see commands that you don't know, you can use `C-h c' to find out what they do. Emacs has numerous major modes, each of which redefines a few keys and makes a few other changes in how editing works. `C-h m' (`describe-mode') displays documentation on the current major mode, which normally describes all the commands that are changed in this mode. `C-h b' (`describe-bindings') and `C-h s' (`describe-syntax') present other information about the current Emacs mode. `C-h b' displays a list of all the key bindings now in effect, showing the local bindings defined by the current minor modes first, then the local bindings defined by the current major mode, and finally the global bindings (*note Key Bindings::). `C-h s' displays the contents of the syntax table, with explanations of each character's syntax (*note Syntax::). You can get a similar list for a particular prefix key by typing `C-h' after the prefix key. (There are a few prefix keys for which this does not work--those that provide their own bindings for `C-h'. One of these is , because ` C-h' is actually `C-M-h', which marks a defun.) The other `C-h' options display various files containing useful information. `C-h C-w' displays the full details on the complete absence of warranty for GNU Emacs. `C-h n' (`view-emacs-news') displays the file `emacs/etc/NEWS', which contains documentation on Emacs changes arranged chronologically. `C-h F' (`view-emacs-FAQ') displays the Emacs frequently-answered-questions list. `C-h t' (`help-with-tutorial') displays the learn-by-doing Emacs tutorial. `C-h C-c' (`describe-copying') displays the file `emacs/etc/COPYING', which tells you the conditions you must obey in distributing copies of Emacs. `C-h C-d' (`describe-distribution') displays the file `emacs/etc/DISTRIB', which tells you how you can order a copy of the latest version of Emacs. `C-h C-p' (`describe-project') displays general information about the GNU Project. `C-h P' (`view-emacs-problems') displays the file `emacs/etc/PROBLEMS', which lists known problems with Emacs in various situations with solutions or workarounds in many cases. Help on Active Text and Tooltips ================================ When a region of text is "active," so that you can select it with the mouse or a key like `RET', it often has associated help text. Areas of the mode line are examples. This help will normally be shown in the echo area when you move point into the active text. In a window system you can display the help text as a "tooltip" (sometimes known as "balloon help"). *Note Tooltips::. The Mark and the Region *********************** Many Emacs commands operate on an arbitrary contiguous part of the current buffer. To specify the text for such a command to operate on, you set "the mark" at one end of it, and move point to the other end. The text between point and the mark is called "the region". Emacs highlights the region whenever there is one, if you enable Transient Mark mode (*note Transient Mark::). Certain Emacs commands set the mark; other editing commands do not affect it, so the mark remains where you set it last. Each Emacs buffer has its own mark, and setting the mark in one buffer has no effect on other buffers' marks. When you return to a buffer that was current earlier, its mark is at the same place as before. The ends of the region are always point and the mark. It doesn't matter which of them was put in its current place first, or which one comes earlier in the text--the region starts from point or the mark (whichever comes first), and ends at point or the mark (whichever comes last). Every time you move point, or set the mark in a new place, the region changes. Many commands that insert text, such as `C-y' (`yank') and `M-x insert-buffer', position point and the mark at opposite ends of the inserted text, so that the region consists of the text just inserted. Aside from delimiting the region, the mark is also useful for remembering a spot that you may want to go back to. To make this feature more useful, each buffer remembers 16 previous locations of the mark in the "mark ring". Setting the Mark ================ Here are some commands for setting the mark: `C-' Set the mark where point is (`set-mark-command'). `C-@' The same. `C-x C-x' Interchange mark and point (`exchange-point-and-mark'). `Drag-Mouse-1' Set point and the mark around the text you drag across. `Mouse-3' Set the mark where point is, then move point to where you click (`mouse-save-then-kill'). For example, suppose you wish to convert part of the buffer to upper case, using the `C-x C-u' (`upcase-region') command, which operates on the text in the region. You can first go to the beginning of the text to be capitalized, type `C-' to put the mark there, move to the end, and then type `C-x C-u'. Or, you can set the mark at the end of the text, move to the beginning, and then type `C-x C-u'. The most common way to set the mark is with the `C-' command (`set-mark-command'). This sets the mark where point is. Then you can move point away, leaving the mark behind. There are two ways to set the mark with the mouse. You can drag mouse button one across a range of text; that puts point where you release the mouse button, and sets the mark at the other end of that range. Or you can click mouse button three, which sets the mark at point (like `C-') and then moves point (like `Mouse-1'). Both of these methods copy the region into the kill ring in addition to setting the mark; that gives behavior consistent with other window-driven applications, but if you don't want to modify the kill ring, you must use keyboard commands to set the mark. *Note Mouse Commands::. Ordinary terminals have only one cursor, so there is no way for Emacs to show you where the mark is located. You have to remember. The usual solution to this problem is to set the mark and then use it soon, before you forget where it is. Alternatively, you can see where the mark is with the command `C-x C-x' (`exchange-point-and-mark') which puts the mark where point was and point where the mark was. The extent of the region is unchanged, but the cursor and point are now at the previous position of the mark. In Transient Mark mode, this command reactivates the mark. `C-x C-x' is also useful when you are satisfied with the position of point but want to move the other end of the region (where the mark is); do `C-x C-x' to put point at that end of the region, and then move it. Using `C-x C-x' a second time, if necessary, puts the mark at the new position with point back at its original position. For more facilities that allow you to go to previously set marks, see *Note Mark Ring::. There is no such character as `C-' in ASCII; when you type while holding down , what you get on most ordinary terminals is the character `C-@'. This key is actually bound to `set-mark-command'. But unless you are unlucky enough to have a terminal where typing `C-' does not produce `C-@', you might as well think of this character as `C-'. Under X, `C-' is actually a distinct character, but its binding is still `set-mark-command'. Transient Mark Mode =================== On a terminal that supports colors, Emacs can highlight the current region. But normally it does not. Why not? Highlighting the region whenever it exists would not be desirable in Emacs, because once you have set a mark, there is _always_ a region (in that buffer). And highlighting the region all the time would be a nuisance. So normally Emacs highlights the region only immediately after you have selected one with the mouse. You can turn on region highlighting by enabling Transient Mark mode. This is a more rigid mode of operation in which the region "lasts" only temporarily, so you must set up a region for each command that uses one. In Transient Mark mode, most of the time there is no region; therefore, highlighting the region when it exists is useful and not annoying. To enable Transient Mark mode, type `M-x transient-mark-mode'. This command toggles the mode, so you can repeat the command to turn off the mode. Here are the details of Transient Mark mode: * To set the mark, type `C-' (`set-mark-command'). This makes the mark active and thus begins highlighting of the region. As you move point, you will see the highlighted region grow and shrink. * The mouse commands for specifying the mark also make it active. So do keyboard commands whose purpose is to specify a region, including `M-@', `C-M-@', `M-h', `C-M-h', `C-x C-p', and `C-x h'. * When the mark is active, you can execute commands that operate on the region, such as killing, indenting, or writing to a file. * Any change to the buffer, such as inserting or deleting a character, deactivates the mark. This means any subsequent command that operates on a region will get an error and refuse to operate. You can make the region active again by typing `C-x C-x'. * Commands like `M->' and `C-s', that "leave the mark behind" in addition to some other primary purpose, do not activate the new mark. You can activate the new region by executing `C-x C-x' (`exchange-point-and-mark'). * `C-s' when the mark is active does not alter the mark. * Quitting with `C-g' deactivates the mark. * Some commands operate on the region whenever it is active. For instance, `C-x u' in Transient Mark mode operates on the region when there is a region. Outside Transient Mark mode, you must type `C-u C-x u' if you want it to operate on the region. *Note Undo::. Other commands that act this way are identified in their own documentation. The highlighting of the region uses the `region' face; you can customize the appearance of the highlighted region by changing this face. *Note Face Customization::. When multiple windows show the same buffer, they can have different regions, because they can have different values of point (though they all share one common mark position). Ordinarily, only the selected window highlights its region (*note Windows::). However, if the variable `highlight-nonselected-windows' is non-`nil', then each window highlights its own region (provided that Transient Mark mode is enabled and the mark in the window's buffer is active). When Transient Mark mode is not enabled, every command that sets the mark also activates it, and nothing ever deactivates it. If the variable `mark-even-if-inactive' is non-`nil' in Transient Mark mode, then commands can use the mark and the region even when it is inactive. Region highlighting appears and disappears just as it normally does in Transient Mark mode, but the mark doesn't really go away when the highlighting disappears. Transient Mark mode is also sometimes known as "Zmacs mode" because the Zmacs editor on the MIT Lisp Machine handled the mark in a similar way. Operating on the Region ======================= Once you have a region and the mark is active, here are some of the ways you can operate on the region: * Kill it with `C-w' (*note Killing::). * Save it in a register with `C-x r s' (*note Registers::). * Save it in a buffer or a file (*note Accumulating Text::). * Convert case with `C-x C-l' or `C-x C-u' (*note Case::). * Indent it with `C-x ' or `C-M-\' (*note Indentation::). * Fill it as text with `M-x fill-region' (*note Filling::). * Print hardcopy with `M-x print-region' (*note Hardcopy::). * Evaluate it as Lisp code with `M-x eval-region' (*note Lisp Eval::). Most commands that operate on the text in the region have the word `region' in their names. Commands to Mark Textual Objects ================================ Here are the commands for placing point and the mark around a textual object such as a word, list, paragraph or page. `M-@' Set mark after end of next word (`mark-word'). This command and the following one do not move point. `C-M-@' Set mark after end of following balanced expression (`mark-sexp'). `M-h' Put region around current paragraph (`mark-paragraph'). `C-M-h' Put region around current defun (`mark-defun'). `C-x h' Put region around the entire buffer (`mark-whole-buffer'). `C-x C-p' Put region around current page (`mark-page'). `M-@' (`mark-word') puts the mark at the end of the next word, while `C-M-@' (`mark-sexp') puts it at the end of the next balanced expression (*note Expressions::). These commands handle arguments just like `M-f' and `C-M-f'. Other commands set both point and mark, to delimit an object in the buffer. For example, `M-h' (`mark-paragraph') moves point to the beginning of the paragraph that surrounds or follows point, and puts the mark at the end of that paragraph (*note Paragraphs::). It prepares the region so you can indent, case-convert, or kill a whole paragraph. `C-M-h' (`mark-defun') similarly puts point before, and the mark after, the current (or following) major top-level definition, or defun (*note Moving by Defuns::). `C-x C-p' (`mark-page') puts point before the current page, and mark at the end (*note Pages::). The mark goes after the terminating page delimiter (to include it in the region), while point goes after the preceding page delimiter (to exclude it). A numeric argument specifies a later page (if positive) or an earlier page (if negative) instead of the current page. Finally, `C-x h' (`mark-whole-buffer') sets up the entire buffer as the region, by putting point at the beginning and the mark at the end. In Transient Mark mode, all of these commands activate the mark. The Mark Ring ============= Aside from delimiting the region, the mark is also useful for remembering a spot that you may want to go back to. To make this feature more useful, each buffer remembers 16 previous locations of the mark, in the "mark ring". Commands that set the mark also push the old mark onto this ring. To return to a marked location, use `C-u C-' (or `C-u C-@'); this is the command `set-mark-command' given a numeric argument. It moves point to where the mark was, and restores the mark from the ring of former marks. Thus, repeated use of this command moves point to all of the old marks on the ring, one by one. The mark positions you move through in this way are not lost; they go to the end of the ring. Each buffer has its own mark ring. All editing commands use the current buffer's mark ring. In particular, `C-u C-' always stays in the same buffer. Many commands that can move long distances, such as `M-<' (`beginning-of-buffer'), start by setting the mark and saving the old mark on the mark ring. This is to make it easier for you to move back later. Searches set the mark if they move point. You can tell when a command sets the mark because it displays `Mark set' in the echo area. If you want to move back to the same place over and over, the mark ring may not be convenient enough. If so, you can record the position in a register for later retrieval (*note Saving Positions in Registers: RegPos.). The variable `mark-ring-max' specifies the maximum number of entries to keep in the mark ring. If that many entries exist and another one is pushed, the earliest one in the list is discarded. Repeating `C-u C-' cycles through the positions currently in the ring. The variable `mark-ring' holds the mark ring itself, as a list of marker objects, with the most recent first. This variable is local in every buffer. The Global Mark Ring ==================== In addition to the ordinary mark ring that belongs to each buffer, Emacs has a single "global mark ring". It records a sequence of buffers in which you have recently set the mark, so you can go back to those buffers. Setting the mark always makes an entry on the current buffer's mark ring. If you have switched buffers since the previous mark setting, the new mark position makes an entry on the global mark ring also. The result is that the global mark ring records a sequence of buffers that you have been in, and, for each buffer, a place where you set the mark. The command `C-x C-' (`pop-global-mark') jumps to the buffer and position of the latest entry in the global ring. It also rotates the ring, so that successive uses of `C-x C-' take you to earlier and earlier buffers. Deletion and Killing ==================== Most commands which erase text from the buffer save it in the kill ring so that you can move or copy it to other parts of the buffer. These commands are known as "kill" commands. The rest of the commands that erase text do not save it in the kill ring; they are known as "delete" commands. (This distinction is made only for erasure of text in the buffer.) If you do a kill or delete command by mistake, you can use the `C-x u' (`undo') command to undo it (*note Undo::). You cannot kill read-only text, since such text does not allow any kind of modification. But some users like to use the kill commands to copy read-only text into the kill ring, without actually changing it. If you set the variable `kill-read-only-ok' to a non-`nil' value, the kill commands work specially in a read-only buffer: they move over text, and copy it to the kill ring, without actually deleting it from the buffer. When this happens, a message in the echo area tells you what is happening. The delete commands include `C-d' (`delete-char') and (`delete-backward-char'), which delete only one character at a time, and those commands that delete only spaces or newlines. Commands that can destroy significant amounts of nontrivial data generally do a kill operation instead. The commands' names and individual descriptions use the words `kill' and `delete' to say which kind of operation they perform. Many window systems follow the convention that insertion while text is selected deletes the selected text. You can make Emacs behave this way by enabling Delete Selection mode, with `M-x delete-selection-mode', or using Custom. Another effect of this mode is that , `C-d' and some other keys, when a selection exists, will kill the whole selection. It also enables Transient Mark mode (*note Transient Mark::). Deletion -------- Deletion means erasing text and not saving it in the kill ring. For the most part, the Emacs commands that delete text are those that erase just one character or only whitespace. `C-d' `' Delete next character (`delete-char'). If your keyboard has a function key (usually located in the edit keypad), Emacs binds it to `delete-char' as well. `' `' Delete previous character (`delete-backward-char'). Some keyboards refer to this key as a "backspace key" and label it with a left arrow. `M-\' Delete spaces and tabs around point (`delete-horizontal-space'). `M-' Delete spaces and tabs around point, leaving one space (`just-one-space'). `C-x C-o' Delete blank lines around the current line (`delete-blank-lines'). `M-^' Join two lines by deleting the intervening newline, along with any indentation following it (`delete-indentation'). The most basic delete commands are `C-d' (`delete-char') and (`delete-backward-char'). `C-d' deletes the character after point, the one the cursor is "on top of." This doesn't move point. deletes the character before the cursor, and moves point back. You can delete newlines like any other characters in the buffer; deleting a newline joins two lines. Actually, `C-d' and aren't always delete commands; when given arguments, they kill instead, since they can erase more than one character this way. Every keyboard has a large key, labeled , , or , which is a short distance above the or key and is normally used for erasing what you have typed. Regardless of the actual name on the key, in Emacs it is equivalent to --or it should be. Many keyboards (including standard PC keyboards) have a key a short ways above or , and a key elsewhere. In that case, the key is , and the key is equivalent to `C-d'--or it should be. Why do we say "or it should be"? When Emacs starts up using a window system, it determines automatically which key or keys should be equivalent to . As a result, and/or keys normally do the right things. But in some unusual cases Emacs gets the wrong information from the system. If these keys don't do what they ought to do, you need to tell Emacs which key to use for . *Note DEL Does Not Delete::, for how to do this. On most text-only terminals, Emacs cannot tell which keys the keyboard really has, so it follows a uniform plan which may or may not fit your keyboard. The uniform plan is that the ASCII character deletes, and the ASCII (backspace) character asks for help (it is the same as `C-h'). If this is not right for your keyboard, such as if you find that the key which ought to delete backwards enters Help instead, see *Note DEL Does Not Delete::. The other delete commands are those which delete only whitespace characters: spaces, tabs and newlines. `M-\' (`delete-horizontal-space') deletes all the spaces and tab characters before and after point. `M-' (`just-one-space') does likewise but leaves a single space after point, regardless of the number of spaces that existed previously (even if there were none before). `C-x C-o' (`delete-blank-lines') deletes all blank lines after the current line. If the current line is blank, it deletes all blank lines preceding the current line as well (leaving one blank line, the current line). `M-^' (`delete-indentation') joins the current line and the previous line, by deleting a newline and all surrounding spaces, usually leaving a single space. *Note M-^: Indentation. Killing by Lines ---------------- `C-k' Kill rest of line or one or more lines (`kill-line'). The simplest kill command is `C-k'. If given at the beginning of a line, it kills all the text on the line, leaving it blank. When used on a blank line, it kills the whole line including its newline. To kill an entire non-blank line, go to the beginning and type `C-k' twice. More generally, `C-k' kills from point up to the end of the line, unless it is at the end of a line. In that case it kills the newline following point, thus merging the next line into the current one. Spaces and tabs that you can't see at the end of the line are ignored when deciding which case applies, so if point appears to be at the end of the line, you can be sure `C-k' will kill the newline. When `C-k' is given a positive argument, it kills that many lines and the newlines that follow them (however, text on the current line before point is not killed). With a negative argument -N, it kills N lines preceding the current line (together with the text on the current line before point). Thus, `C-u - 2 C-k' at the front of a line kills the two previous lines. `C-k' with an argument of zero kills the text before point on the current line. If the variable `kill-whole-line' is non-`nil', `C-k' at the very beginning of a line kills the entire line including the following newline. This variable is normally `nil'. Other Kill Commands ------------------- `C-w' Kill region (from point to the mark) (`kill-region'). `M-d' Kill word (`kill-word'). *Note Words::. `M-' Kill word backwards (`backward-kill-word'). `C-x ' Kill back to beginning of sentence (`backward-kill-sentence'). *Note Sentences::. `M-k' Kill to end of sentence (`kill-sentence'). `C-M-k' Kill the following balanced expression (`kill-sexp'). *Note Expressions::. `M-z CHAR' Kill through the next occurrence of CHAR (`zap-to-char'). A kill command which is very general is `C-w' (`kill-region'), which kills everything between point and the mark. With this command, you can kill any contiguous sequence of characters, if you first set the region around them. A convenient way of killing is combined with searching: `M-z' (`zap-to-char') reads a character and kills from point up to (and including) the next occurrence of that character in the buffer. A numeric argument acts as a repeat count. A negative argument means to search backward and kill text before point. Other syntactic units can be killed: words, with `M-' and `M-d' (*note Words::); balanced expressions, with `C-M-k' (*note Expressions::); and sentences, with `C-x ' and `M-k' (*note Sentences::). You can use kill commands in read-only buffers. They don't actually change the buffer, and they beep to warn you of that, but they do copy the text you tried to kill into the kill ring, so you can yank it into other buffers. Most of the kill commands move point across the text they copy in this way, so that successive kill commands build up a single kill ring entry as usual. Yanking ======= "Yanking" means reinserting text previously killed. This is what some systems call "pasting." The usual way to move or copy text is to kill it and then yank it elsewhere one or more times. `C-y' Yank last killed text (`yank'). `M-y' Replace text just yanked with an earlier batch of killed text (`yank-pop'). `M-w' Save region as last killed text without actually killing it (`kill-ring-save'). `C-M-w' Append next kill to last batch of killed text (`append-next-kill'). The Kill Ring ------------- All killed text is recorded in the "kill ring", a list of blocks of text that have been killed. There is only one kill ring, shared by all buffers, so you can kill text in one buffer and yank it in another buffer. This is the usual way to move text from one file to another. (*Note Accumulating Text::, for some other ways.) The command `C-y' (`yank') reinserts the text of the most recent kill. It leaves the cursor at the end of the text. It sets the mark at the beginning of the text. *Note Mark::. `C-u C-y' leaves the cursor in front of the text, and sets the mark after it. This happens only if the argument is specified with just a `C-u', precisely. Any other sort of argument, including `C-u' and digits, specifies an earlier kill to yank (*note Earlier Kills::). To copy a block of text, you can use `M-w' (`kill-ring-save'), which copies the region into the kill ring without removing it from the buffer. This is approximately equivalent to `C-w' followed by `C-x u', except that `M-w' does not alter the undo history and does not temporarily change the screen. Appending Kills --------------- Normally, each kill command pushes a new entry onto the kill ring. However, two or more kill commands in a row combine their text into a single entry, so that a single `C-y' yanks all the text as a unit, just as it was before it was killed. Thus, if you want to yank text as a unit, you need not kill all of it with one command; you can keep killing line after line, or word after word, until you have killed it all, and you can still get it all back at once. Commands that kill forward from point add onto the end of the previous killed text. Commands that kill backward from point add text onto the beginning. This way, any sequence of mixed forward and backward kill commands puts all the killed text into one entry without rearrangement. Numeric arguments do not break the sequence of appending kills. For example, suppose the buffer contains this text: This is a line -!-of sample text. with point shown by -!-. If you type `M-d M- M-d M-', killing alternately forward and backward, you end up with `a line of sample' as one entry in the kill ring, and `This is text.' in the buffer. (Note the double space between `is' and `text', which you can clean up with `M-' or `M-q'.) Another way to kill the same text is to move back two words with `M-b M-b', then kill all four words forward with `C-u M-d'. This produces exactly the same results in the buffer and in the kill ring. `M-f M-f C-u M-' kills the same text, all going backward; once again, the result is the same. The text in the kill ring entry always has the same order that it had in the buffer before you killed it. If a kill command is separated from the last kill command by other commands (not just numeric arguments), it starts a new entry on the kill ring. But you can force it to append by first typing the command `C-M-w' (`append-next-kill') right before it. The `C-M-w' tells the following command, if it is a kill command, to append the text it kills to the last killed text, instead of starting a new entry. With `C-M-w', you can kill several separated pieces of text and accumulate them to be yanked back in one place. A kill command following `M-w' does not append to the text that `M-w' copied into the kill ring. Yanking Earlier Kills --------------------- To recover killed text that is no longer the most recent kill, use the `M-y' command (`yank-pop'). It takes the text previously yanked and replaces it with the text from an earlier kill. So, to recover the text of the next-to-the-last kill, first use `C-y' to yank the last kill, and then use `M-y' to replace it with the previous kill. `M-y' is allowed only after a `C-y' or another `M-y'. You can understand `M-y' in terms of a "last yank" pointer which points at an entry in the kill ring. Each time you kill, the "last yank" pointer moves to the newly made entry at the front of the ring. `C-y' yanks the entry which the "last yank" pointer points to. `M-y' moves the "last yank" pointer to a different entry, and the text in the buffer changes to match. Enough `M-y' commands can move the pointer to any entry in the ring, so you can get any entry into the buffer. Eventually the pointer reaches the end of the ring; the next `M-y' loops back around to the first entry again. `M-y' moves the "last yank" pointer around the ring, but it does not change the order of the entries in the ring, which always runs from the most recent kill at the front to the oldest one still remembered. `M-y' can take a numeric argument, which tells it how many entries to advance the "last yank" pointer by. A negative argument moves the pointer toward the front of the ring; from the front of the ring, it moves "around" to the last entry and continues forward from there. Once the text you are looking for is brought into the buffer, you can stop doing `M-y' commands and it will stay there. It's just a copy of the kill ring entry, so editing it in the buffer does not change what's in the ring. As long as no new killing is done, the "last yank" pointer remains at the same place in the kill ring, so repeating `C-y' will yank another copy of the same previous kill. If you know how many `M-y' commands it would take to find the text you want, you can yank that text in one step using `C-y' with a numeric argument. `C-y' with an argument restores the text from the specified kill ring entry, counting back from the most recent as 1. Thus, `C-u 2 C-y' gets the next-to-the-last block of killed text--it is equivalent to `C-y M-y'. `C-y' with a numeric argument starts counting from the "last yank" pointer, and sets the "last yank" pointer to the entry that it yanks. The length of the kill ring is controlled by the variable `kill-ring-max'; no more than that many blocks of killed text are saved. The actual contents of the kill ring are stored in a variable named `kill-ring'; you can view the entire contents of the kill ring with the command `C-h v kill-ring'. Accumulating Text ================= Usually we copy or move text by killing it and yanking it, but there are other methods convenient for copying one block of text in many places, or for copying many scattered blocks of text into one place. To copy one block to many places, store it in a register (*note Registers::). Here we describe the commands to accumulate scattered pieces of text into a buffer or into a file. `M-x append-to-buffer' Append region to the contents of a specified buffer. `M-x prepend-to-buffer' Prepend region to the contents of a specified buffer. `M-x copy-to-buffer' Copy region into a specified buffer, deleting that buffer's old contents. `M-x insert-buffer' Insert the contents of a specified buffer into current buffer at point. `M-x append-to-file' Append region to the contents of a specified file, at the end. To accumulate text into a buffer, use `M-x append-to-buffer'. This reads a buffer name, then inserts a copy of the region into the buffer specified. If you specify a nonexistent buffer, `append-to-buffer' creates the buffer. The text is inserted wherever point is in that buffer. If you have been using the buffer for editing, the copied text goes into the middle of the text of the buffer, starting from wherever point happens to be at that moment. Point in that buffer is left at the end of the copied text, so successive uses of `append-to-buffer' accumulate the text in the specified buffer in the same order as they were copied. Strictly speaking, `append-to-buffer' does not always append to the text already in the buffer--it appends only if point in that buffer is at the end. However, if `append-to-buffer' is the only command you use to alter a buffer, then point is always at the end. `M-x prepend-to-buffer' is just like `append-to-buffer' except that point in the other buffer is left before the copied text, so successive prependings add text in reverse order. `M-x copy-to-buffer' is similar, except that any existing text in the other buffer is deleted, so the buffer is left containing just the text newly copied into it. To retrieve the accumulated text from another buffer, use the command `M-x insert-buffer'; this too takes BUFFERNAME as an argument. It inserts a copy of the whole text in buffer BUFFERNAME into the current buffer at point, and sets the mark after the inserted text. Alternatively, you can select the other buffer for editing, then copy text from it by killing. *Note Buffers::, for background information on buffers. Instead of accumulating text within Emacs, in a buffer, you can append text directly into a file with `M-x append-to-file', which takes FILENAME as an argument. It adds the text of the region to the end of the specified file. The file is changed immediately on disk. You should use `append-to-file' only with files that are _not_ being visited in Emacs. Using it on a file that you are editing in Emacs would change the file behind Emacs's back, which can lead to losing some of your editing. Rectangles ========== The rectangle commands operate on rectangular areas of the text: all the characters between a certain pair of columns, in a certain range of lines. Commands are provided to kill rectangles, yank killed rectangles, clear them out, fill them with blanks or text, or delete them. Rectangle commands are useful with text in multicolumn formats, and for changing text into or out of such formats. When you must specify a rectangle for a command to work on, you do it by putting the mark at one corner and point at the opposite corner. The rectangle thus specified is called the "region-rectangle" because you control it in much the same way as the region is controlled. But remember that a given combination of point and mark values can be interpreted either as a region or as a rectangle, depending on the command that uses them. If point and the mark are in the same column, the rectangle they delimit is empty. If they are in the same line, the rectangle is one line high. This asymmetry between lines and columns comes about because point (and likewise the mark) is between two columns, but within a line. `C-x r k' Kill the text of the region-rectangle, saving its contents as the "last killed rectangle" (`kill-rectangle'). `C-x r d' Delete the text of the region-rectangle (`delete-rectangle'). `C-x r y' Yank the last killed rectangle with its upper left corner at point (`yank-rectangle'). `C-x r o' Insert blank space to fill the space of the region-rectangle (`open-rectangle'). This pushes the previous contents of the region-rectangle rightward. `M-x clear-rectangle' Clear the region-rectangle by replacing its contents with spaces. `M-x delete-whitespace-rectangle' Delete whitespace in each of the lines on the specified rectangle, starting from the left edge column of the rectangle. `C-x r t STRING ' Replace rectangle contents with STRING on each line. (`string-rectangle'). `M-x string-insert-rectangle STRING ' Insert STRING on each line of the rectangle. The rectangle operations fall into two classes: commands for deleting and inserting rectangles, and commands for blank rectangles. There are two ways to get rid of the text in a rectangle: you can discard the text (delete it) or save it as the "last killed" rectangle. The commands for these two ways are `C-x r d' (`delete-rectangle') and `C-x r k' (`kill-rectangle'). In either case, the portion of each line that falls inside the rectangle's boundaries is deleted, causing any following text on the line to move left into the gap. Note that "killing" a rectangle is not killing in the usual sense; the rectangle is not stored in the kill ring, but in a special place that can only record the most recent rectangle killed. This is because yanking a rectangle is so different from yanking linear text that different yank commands have to be used and yank-popping is hard to make sense of. To yank the last killed rectangle, type `C-x r y' (`yank-rectangle'). Yanking a rectangle is the opposite of killing one. Point specifies where to put the rectangle's upper left corner. The rectangle's first line is inserted there, the rectangle's second line is inserted at the same horizontal position, but one line vertically down, and so on. The number of lines affected is determined by the height of the saved rectangle. You can convert single-column lists into double-column lists using rectangle killing and yanking; kill the second half of the list as a rectangle and then yank it beside the first line of the list. *Note Two-Column::, for another way to edit multi-column text. You can also copy rectangles into and out of registers with `C-x r r R' and `C-x r i R'. *Note Rectangle Registers: RegRect. There are two commands you can use for making blank rectangles: `M-x clear-rectangle' which blanks out existing text, and `C-x r o' (`open-rectangle') which inserts a blank rectangle. Clearing a rectangle is equivalent to deleting it and then inserting a blank rectangle of the same size. The command `M-x delete-whitespace-rectangle' deletes horizontal whitespace starting from a particular column. This applies to each of the lines in the rectangle, and the column is specified by the left edge of the rectangle. The right edge of the rectangle does not make any difference to this command. The command `C-x r t' (`string-rectangle') replaces the contents of a region-rectangle with a string on each line. The string's width need not be the same as the width of the rectangle. If the string's width is less, the text after the rectangle shifts left; if the string is wider than the rectangle, the text after the rectangle shifts right. The command `M-x string-insert-rectangle' is similar to `string-rectangle', but inserts the string on each line, shifting the original text to the right. Registers ********* Emacs "registers" are compartments where you can save text, rectangles, positions, and other things for later use. Once you save text or a rectangle in a register, you can copy it into the buffer once, or many times; you can move point to a position saved in a register once, or many times. Each register has a name, which consists of a single character. A register can store a piece of text, a rectangle, a position, a window configuration, or a file name, but only one thing at any given time. Whatever you store in a register remains there until you store something else in that register. To see what a register R contains, use `M-x view-register'. `M-x view-register R' Display a description of what register R contains. Saving Positions in Registers ============================= Saving a position records a place in a buffer so that you can move back there later. Moving to a saved position switches to that buffer and moves point to that place in it. `C-x r R' Save position of point in register R (`point-to-register'). `C-x r j R' Jump to the position saved in register R (`jump-to-register'). To save the current position of point in a register, choose a name R and type `C-x r R'. The register R retains the position thus saved until you store something else in that register. The command `C-x r j R' moves point to the position recorded in register R. The register is not affected; it continues to hold the same position. You can jump to the saved position any number of times. If you use `C-x r j' to go to a saved position, but the buffer it was saved from has been killed, `C-x r j' tries to create the buffer again by visiting the same file. Of course, this works only for buffers that were visiting files. Saving Text in Registers ======================== When you want to insert a copy of the same piece of text several times, it may be inconvenient to yank it from the kill ring, since each subsequent kill moves that entry further down the ring. An alternative is to store the text in a register and later retrieve it. `C-x r s R' Copy region into register R (`copy-to-register'). `C-x r i R' Insert text from register R (`insert-register'). `M-x append-to-register R' Append region to text in register R. `M-x prepend-to-register R' Prepend region to text in register R. `C-x r s R' stores a copy of the text of the region into the register named R. `C-u C-x r s R', the same command with a numeric argument, deletes the text from the buffer as well; you can think of this as "moving" the region text into the register. `M-x append-to-register R' appends the copy of the text in the region to the text already stored in the register named R. If invoked with a numeric argument, it deletes the region after appending it to the register. A similar command `prepend-to-register' works the same, except that it _prepends_ the region text to the text in the register, rather than _appending_ it. `C-x r i R' inserts in the buffer the text from register R. Normally it leaves point before the text and places the mark after, but with a numeric argument (`C-u') it puts point after the text and the mark before. Saving Rectangles in Registers ============================== A register can contain a rectangle instead of linear text. The rectangle is represented as a list of strings. *Note Rectangles::, for basic information on how to specify a rectangle in the buffer. `C-x r r R' Copy the region-rectangle into register R (`copy-rectangle-to-register'). With numeric argument, delete it as well. `C-x r i R' Insert the rectangle stored in register R (if it contains a rectangle) (`insert-register'). The `C-x r i R' command inserts a text string if the register contains one, and inserts a rectangle if the register contains one. See also the command `sort-columns', which you can think of as sorting a rectangle. *Note Sorting::. Saving Window Configurations in Registers ========================================= You can save the window configuration of the selected frame in a register, or even the configuration of all windows in all frames, and restore the configuration later. `C-x r w R' Save the state of the selected frame's windows in register R (`window-configuration-to-register'). `C-x r f R' Save the state of all frames, including all their windows, in register R (`frame-configuration-to-register'). Use `C-x r j R' to restore a window or frame configuration. This is the same command used to restore a cursor position. When you restore a frame configuration, any existing frames not included in the configuration become invisible. If you wish to delete these frames instead, use `C-u C-x r j R'. Keeping Numbers in Registers ============================ There are commands to store a number in a register, to insert the number in the buffer in decimal, and to increment it. These commands can be useful in keyboard macros (*note Keyboard Macros::). `C-u NUMBER C-x r n R' Store NUMBER into register R (`number-to-register'). `C-u NUMBER C-x r + R' Increment the number in register R by NUMBER (`increment-register'). `C-x r g R' Insert the number from register R into the buffer. `C-x r g' is the same command used to insert any other sort of register contents into the buffer. `C-x r +' with no numeric argument increments the register value by 1; `C-x r n' with no numeric argument stores zero in the register. Keeping File Names in Registers =============================== If you visit certain file names frequently, you can visit them more conveniently if you put their names in registers. Here's the Lisp code used to put a file name in a register: (set-register ?R '(file . NAME)) For example, (set-register ?z '(file . "/gd/gnu/emacs/19.0/src/ChangeLog")) puts the file name shown in register `z'. To visit the file whose name is in register R, type `C-x r j R'. (This is the same command used to jump to a position or restore a frame configuration.) Bookmarks ========= "Bookmarks" are somewhat like registers in that they record positions you can jump to. Unlike registers, they have long names, and they persist automatically from one Emacs session to the next. The prototypical use of bookmarks is to record "where you were reading" in various files. `C-x r m ' Set the bookmark for the visited file, at point. `C-x r m BOOKMARK ' Set the bookmark named BOOKMARK at point (`bookmark-set'). `C-x r b BOOKMARK ' Jump to the bookmark named BOOKMARK (`bookmark-jump'). `C-x r l' List all bookmarks (`list-bookmarks'). `M-x bookmark-save' Save all the current bookmark values in the default bookmark file. The prototypical use for bookmarks is to record one current position in each of several files. So the command `C-x r m', which sets a bookmark, uses the visited file name as the default for the bookmark name. If you name each bookmark after the file it points to, then you can conveniently revisit any of those files with `C-x r b', and move to the position of the bookmark at the same time. To display a list of all your bookmarks in a separate buffer, type `C-x r l' (`list-bookmarks'). If you switch to that buffer, you can use it to edit your bookmark definitions or annotate the bookmarks. Type `C-h m' in the bookmark buffer for more information about its special editing commands. When you kill Emacs, Emacs offers to save your bookmark values in your default bookmark file, `~/.emacs.bmk', if you have changed any bookmark values. You can also save the bookmarks at any time with the `M-x bookmark-save' command. The bookmark commands load your default bookmark file automatically. This saving and loading is how bookmarks persist from one Emacs session to the next. If you set the variable `bookmark-save-flag' to 1, then each command that sets a bookmark will also save your bookmarks; this way, you don't lose any bookmark values even if Emacs crashes. (The value, if a number, says how many bookmark modifications should go by between saving.) Bookmark position values are saved with surrounding context, so that `bookmark-jump' can find the proper position even if the file is modified slightly. The variable `bookmark-search-size' says how many characters of context to record on each side of the bookmark's position. Here are some additional commands for working with bookmarks: `M-x bookmark-load FILENAME ' Load a file named FILENAME that contains a list of bookmark values. You can use this command, as well as `bookmark-write', to work with other files of bookmark values in addition to your default bookmark file. `M-x bookmark-write FILENAME ' Save all the current bookmark values in the file FILENAME. `M-x bookmark-delete BOOKMARK ' Delete the bookmark named BOOKMARK. `M-x bookmark-insert-location BOOKMARK ' Insert in the buffer the name of the file that bookmark BOOKMARK points to. `M-x bookmark-insert BOOKMARK ' Insert in the buffer the _contents_ of the file that bookmark BOOKMARK points to. Controlling the Display *********************** Since only part of a large buffer fits in the window, Emacs tries to show a part that is likely to be interesting. Display-control commands allow you to specify which part of the text you want to see, and how to display it. Using Multiple Typefaces ======================== When using Emacs with a window system, you can set up multiple styles of displaying characters. Each style is called a "face". Each face can specify various attributes, such as the height, weight and slant of the characters, the foreground and background color, and underlining. But it does not have to specify all of them. Emacs on a character terminal supports only part of face attributes. Which attributes are supported depends on your display type, but many displays support inverse video, bold, and underline attributes, and some support colors. Features which rely on text in multiple faces (such as Font Lock mode) will also work on non-windowed terminals that can display more than one face, whether by colors or underlining and emboldening. This includes the console on GNU/Linux, an `xterm' which supports colors, the MS-DOS display (*note MS-DOS::), and the MS-Windows version invoked with the `-nw' option. Emacs determines automatically whether the terminal has this capability. You control the appearance of a part of the text in the buffer by specifying the face or faces to use for it. The style of display used for any given character is determined by combining the attributes of all the applicable faces specified for that character. Any attribute that isn't specified by these faces is taken from the `default' face, whose attributes reflect the default settings of the frame itself. Enriched mode, the mode for editing formatted text, includes several commands and menus for specifying faces for text in the buffer. *Note Format Faces::, for how to specify the font for text in the buffer. *Note Format Colors::, for how to specify the foreground and background color. To alter the appearance of a face, use the customization buffer. *Note Face Customization::. You can also use X resources to specify attributes of particular faces (*note Resources X::). Alternatively, you can change the foreground and background colors of a specific face with `M-x set-face-foreground' and `M-x set-face-background'. These commands prompt in the minibuffer for a face name and a color name, with completion, and then set that face to use the specified color. Changing the colors of the `default' face also changes the foreground and background colors on all frames, both existing and those to be created in the future. (You can also set foreground and background colors for the current frame only; see *Note Frame Parameters::.) Emacs 21 can correctly display variable-width fonts, but Emacs commands that calculate width and indentation do not know how to calculate variable widths. This can sometimes lead to incorrect results when you use variable-width fonts. In particular, indentation commands can give inconsistent results, so we recommend you avoid variable-width fonts for editing program source code. Filling will sometimes make lines too long or too short. We plan to address these issues in future Emacs versions. To see what faces are currently defined, and what they look like, type `M-x list-faces-display'. It's possible for a given face to look different in different frames; this command shows the appearance in the frame in which you type it. Here's a list of the standard defined faces: `default' This face is used for ordinary text that doesn't specify any other face. `mode-line' This face is used for mode lines. By default, it's drawn with shadows for a "raised" effect on window systems, and drawn as the inverse of the default face on non-windowed terminals. *Note Display Custom::. `header-line' Similar to `mode-line' for a window's header line. Most modes don't use the header line, but the Info mode does. `highlight' This face is used for highlighting portions of text, in various modes. For example, mouse-sensitive text is highlighted using this face. `isearch' This face is used for highlighting Isearch matches. `isearch-lazy-highlight-face' This face is used for lazy highlighting of Isearch matches other than the current one. `region' This face is used for displaying a selected region (when Transient Mark mode is enabled--see below). `secondary-selection' This face is used for displaying a secondary X selection (*note Secondary Selection::). `bold' This face uses a bold variant of the default font, if it has one. `italic' This face uses an italic variant of the default font, if it has one. `bold-italic' This face uses a bold italic variant of the default font, if it has one. `underline' This face underlines text. `fixed-pitch' The basic fixed-pitch face. `fringe' The face for the fringes to the left and right of windows on graphic displays. (The fringes are the narrow portions of the Emacs frame between the text area and the window's right and left borders.) `scroll-bar' This face determines the visual appearance of the scroll bar. `border' This face determines the color of the frame border. `cursor' This face determines the color of the cursor. `mouse' This face determines the color of the mouse pointer. `tool-bar' This is the basic tool-bar face. No text appears in the tool bar, but the colors of this face affect the appearance of tool bar icons. `tooltip' This face is used for tooltips. `menu' This face determines the colors and font of Emacs's menus. Setting the font of LessTif/Motif menus is currently not supported; attempts to set the font are ignored in this case. `trailing-whitespace' The face for highlighting trailing whitespace when `show-trailing-whitespace' is non-nil; see *Note Trailing Whitespace::. `variable-pitch' The basic variable-pitch face. When Transient Mark mode is enabled, the text of the region is highlighted when the mark is active. This uses the face named `region'; you can control the style of highlighting by changing the style of this face (*note Face Customization::). *Note Transient Mark::, for more information about Transient Mark mode and activation and deactivation of the mark. One easy way to use faces is to turn on Font Lock mode. This minor mode, which is always local to a particular buffer, arranges to choose faces according to the syntax of the text you are editing. It can recognize comments and strings in most languages; in several languages, it can also recognize and properly highlight various other important constructs. *Note Font Lock::, for more information about Font Lock mode and syntactic highlighting. You can print out the buffer with the highlighting that appears on your screen using the command `ps-print-buffer-with-faces'. *Note PostScript::. Font Lock mode ============== Font Lock mode is a minor mode, always local to a particular buffer, which highlights (or "fontifies") using various faces according to the syntax of the text you are editing. It can recognize comments and strings in most languages; in several languages, it can also recognize and properly highlight various other important constructs--for example, names of functions being defined or reserved keywords. The command `M-x font-lock-mode' turns Font Lock mode on or off according to the argument, and toggles the mode when it has no argument. The function `turn-on-font-lock' unconditionally enables Font Lock mode. This is useful in mode-hook functions. For example, to enable Font Lock mode whenever you edit a C file, you can do this: (add-hook 'c-mode-hook 'turn-on-font-lock) To turn on Font Lock mode automatically in all modes which support it, customize the user option `global-font-lock-mode' or use the function `global-font-lock-mode' in your `.emacs' file, like this: (global-font-lock-mode 1) Font Lock mode uses several specifically named faces to do its job, including `font-lock-string-face', `font-lock-comment-face', and others. The easiest way to find them all is to use completion on the face name in `set-face-foreground'. To change the colors or the fonts used by Font Lock mode to fontify different parts of text, just change these faces. There are two ways to do it: * Invoke `M-x set-face-foreground' or `M-x set-face-background' to change the colors of a particular face used by Font Lock. *Note Faces::. The command `M-x list-faces-display' displays all the faces currently known to Emacs, including those used by Font Lock. * Customize the faces interactively with `M-x customize-face', as described in *Note Face Customization::. To get the full benefit of Font Lock mode, you need to choose a default font which has bold, italic, and bold-italic variants; or else you need to have a color or gray-scale screen. The variable `font-lock-maximum-decoration' specifies the preferred level of fontification, for modes that provide multiple levels. Level 1 is the least amount of fontification; some modes support levels as high as 3. The normal default is "as high as possible." You can specify an integer, which applies to all modes, or you can specify different numbers for particular major modes; for example, to use level 1 for C/C++ modes, and the default level otherwise, use this: (setq font-lock-maximum-decoration '((c-mode . 1) (c++-mode . 1))) Fontification can be too slow for large buffers, so you can suppress it. The variable `font-lock-maximum-size' specifies a buffer size, beyond which buffer fontification is suppressed. Comment and string fontification (or "syntactic" fontification) relies on analysis of the syntactic structure of the buffer text. For the sake of speed, some modes, including C mode and Lisp mode, rely on a special convention: an open-parenthesis or open-brace in the leftmost column always defines the beginning of a defun, and is thus always outside any string or comment. (*Note Left Margin Paren::.) If you don't follow this convention, Font Lock mode can misfontify the text that follows an open-parenthesis or open-brace in the leftmost column that is inside a string or comment. The variable `font-lock-beginning-of-syntax-function' (always buffer-local) specifies how Font Lock mode can find a position guaranteed to be outside any comment or string. In modes which use the leftmost column parenthesis convention, the default value of the variable is `beginning-of-defun'--that tells Font Lock mode to use the convention. If you set this variable to `nil', Font Lock no longer relies on the convention. This avoids incorrect results, but the price is that, in some cases, fontification for a changed text must rescan buffer text from the beginning of the buffer. This can considerably slow down redisplay while scrolling, particularly if you are close to the end of a large buffer. Font Lock highlighting patterns already exist for many modes, but you may want to fontify additional patterns. You can use the function `font-lock-add-keywords', to add your own highlighting patterns for a particular mode. For example, to highlight `FIXME:' words in C comments, use this: (font-lock-add-keywords 'c-mode '(("\\<\\(FIXME\\):" 1 font-lock-warning-face t))) To remove keywords from the font-lock highlighting patterns, use the function `font-lock-remove-keywords'. Highlight Changes Mode ====================== Use `M-x highlight-changes-mode' to enable a minor mode that uses faces (colors, typically) to indicate which parts of the buffer were changed most recently. Interactive Highlighting by Matching ==================================== It is sometimes useful to highlight the strings that match a certain regular expression. For example, you might wish to see all the references to a certain variable in a program source file, or highlight certain parts in a voluminous output of some program, or make certain cliches stand out in an article. Use the `M-x hi-lock-mode' command to turn on a minor mode that allows you to specify regular expressions of the text to be highlighted. Hi-lock mode works like Font Lock (*note Font Lock::), except that it lets you specify explicitly what parts of text to highlight. You control Hi-lock mode with these commands: `C-x w h REGEXP FACE ' Highlight text that matches REGEXP using face FACE (`highlight-regexp'). By using this command more than once, you can highlight various parts of the text in different ways. `C-x w r REGEXP ' Unhighlight REGEXP (`unhighlight-regexp'). You must enter one of the regular expressions currently specified for highlighting. (You can use completion, or choose from a menu, to enter one of them conveniently.) `C-x w l REGEXP FACE ' Highlight entire lines containing a match for REGEXP, using face FACE (`highlight-lines-matching-regexp'). `C-x w b' Insert all the current highlighting regexp/face pairs into the buffer at point, with comment delimiters to prevent them from changing your program. This key binding runs the `hi-lock-write-interactive-patterns' command. These patterns will be read the next time you visit the file while Hi-lock mode is enabled, or whenever you use the `M-x hi-lock-find-patterns' command. `C-x w i' Re-read regexp/face pairs in the current buffer (`hi-lock-write-interactive-patterns'). The list of pairs is found no matter where in the buffer it may be. This command does nothing if the major mode is a member of the list `hi-lock-exclude-modes'. Trailing Whitespace =================== It is easy to leave unnecessary spaces at the end of a line without realizing it. In most cases, this "trailing whitespace" has no effect, but there are special circumstances where it matters. You can make trailing whitespace visible on the screen by setting the buffer-local variable `show-trailing-whitespace' to `t'. Then Emacs displays trailing whitespace in the face `trailing-whitespace'. Trailing whitespace is defined as spaces or tabs at the end of a line. But trailing whitespace is not displayed specially if point is at the end of the line containing the whitespace. (Doing that looks ugly while you are typing in new text, and the location of point is enough in that case to show you that the spaces are present.) To delete all trailing whitespace within the current buffer's restriction (*note Narrowing::), type `M-x delete-trailing-whitespace '. (This command does not remove the form-feed characters.) Emacs can indicate empty lines at the end of the buffer with a special bitmap on the left fringe of the window. To enable this feature, set the buffer-local variable `indicate-empty-lines' to a non-`nil' value. The default value of this variable is controlled by the variable `default-indicate-empty-lines'; by setting that variable, you can enable or disable this feature for all new buffers. Scrolling ========= If a buffer contains text that is too large to fit entirely within a window that is displaying the buffer, Emacs shows a contiguous portion of the text. The portion shown always contains point. "Scrolling" means moving text up or down in the window so that different parts of the text are visible. Scrolling forward means that text moves up, and new text appears at the bottom. Scrolling backward moves text down and new text appears at the top. Scrolling happens automatically if you move point past the bottom or top of the window. You can also explicitly request scrolling with the commands in this section. `C-l' Clear screen and redisplay, scrolling the selected window to center point vertically within it (`recenter'). `C-v' Scroll forward (a windowful or a specified number of lines) (`scroll-up'). `' `' Likewise, scroll forward. `M-v' Scroll backward (`scroll-down'). `' `' Likewise, scroll backward. `ARG C-l' Scroll so point is on line ARG (`recenter'). `C-M-l' Scroll heuristically to bring useful information onto the screen (`reposition-window'). The most basic scrolling command is `C-l' (`recenter') with no argument. It clears the entire screen and redisplays all windows. In addition, it scrolls the selected window so that point is halfway down from the top of the window. To read the buffer a windowful at a time, use `C-v' (`scroll-up') with no argument. This scrolls forward by nearly the whole window height. The effect is to take the two lines at the bottom of the window and put them at the top, followed by nearly a whole windowful of lines that were not previously visible. If point was in the text that scrolled off the top, it ends up at the new top of the window. `M-v' (`scroll-down') with no argument scrolls backward in a similar way, also with overlap. The number of lines of overlap across a `C-v' or `M-v' is controlled by the variable `next-screen-context-lines'; by default, it is 2. The function keys and , or and , are equivalent to `C-v' and `M-v'. The commands `C-v' and `M-v' with a numeric argument scroll the text in the selected window up or down a few lines. `C-v' with an argument moves the text and point up, together, that many lines; it brings the same number of new lines into view at the bottom of the window. `M-v' with numeric argument scrolls the text downward, bringing that many new lines into view at the top of the window. `C-v' with a negative argument is like `M-v' and vice versa. The names of scroll commands are based on the direction that the text moves in the window. Thus, the command to scroll forward is called `scroll-up' because it moves the text upward on the screen. The keys and derive their names and customary meanings from a different convention that developed elsewhere; hence the strange result that runs `scroll-up'. Some users like the full-screen scroll commands to keep point at the same screen line. To enable this behavior, set the variable `scroll-preserve-screen-position' to a non-`nil' value. This mode is convenient for browsing through a file by scrolling by screenfuls; if you come back to the screen where you started, point goes back to the line where it started. However, this mode is inconvenient when you move to the next screen in order to move point to the text there. Another way to do scrolling is with `C-l' with a numeric argument. `C-l' does not clear the screen when given an argument; it only scrolls the selected window. With a positive argument N, it repositions text to put point N lines down from the top. An argument of zero puts point on the very top line. Point does not move with respect to the text; rather, the text and point move rigidly on the screen. `C-l' with a negative argument puts point that many lines from the bottom of the window. For example, `C-u - 1 C-l' puts point on the bottom line, and `C-u - 5 C-l' puts it five lines from the bottom. `C-u C-l' scrolls to put point at the center (vertically) of the selected window. The `C-M-l' command (`reposition-window') scrolls the current window heuristically in a way designed to get useful information onto the screen. For example, in a Lisp file, this command tries to get the entire current defun onto the screen if possible. Scrolling happens automatically when point moves out of the visible portion of the text. Normally, automatic scrolling centers point vertically within the window. However, if you set `scroll-conservatively' to a small number N, then if you move point just a little off the screen--less than N lines--then Emacs scrolls the text just far enough to bring point back on screen. By default, `scroll-conservatively' is 0. When the window does scroll by a longer distance, you can control how aggressively it scrolls, by setting the variables `scroll-up-aggressively' and `scroll-down-aggressively'. The value of `scroll-up-aggressively' should be either `nil', or a fraction F between 0 and 1. A fraction specifies where on the screen to put point when scrolling upward. More precisely, when a window scrolls up because point is above the window start, the new start position is chosen to put point F part of the window height from the top. The larger F, the more aggressive the scrolling. `nil', which is the default, scrolls to put point at the center. So it is equivalent to .5. Likewise, `scroll-down-aggressively' is used for scrolling down. The value, F, specifies how far point should be placed from the bottom of the window; thus, as with `scroll-up-aggressively', a larger value is more aggressive. The variable `scroll-margin' restricts how close point can come to the top or bottom of a window. Its value is a number of screen lines; if point comes within that many lines of the top or bottom of the window, Emacs recenters the window. By default, `scroll-margin' is 0. Horizontal Scrolling ==================== "Horizontal scrolling" means shifting all the lines sideways within a window--so that some of the text near the left margin is not displayed at all. Emacs does this automatically in any window that uses line truncation rather than continuation: whenever point moves off the left or right edge of the screen, Emacs scrolls the buffer horizontally to make point visible. When a window has been scrolled horizontally, text lines are truncated rather than continued (*note Continuation Lines::), with a `$' appearing in the first column when there is text truncated to the left, and in the last column when there is text truncated to the right. You can use these commands to do explicit horizontal scrolling. `C-x <' Scroll text in current window to the left (`scroll-left'). `C-x >' Scroll to the right (`scroll-right'). The command `C-x <' (`scroll-left') scrolls the selected window to the left by N columns with argument N. This moves part of the beginning of each line off the left edge of the window. With no argument, it scrolls by almost the full width of the window (two columns less, to be precise). `C-x >' (`scroll-right') scrolls similarly to the right. The window cannot be scrolled any farther to the right once it is displayed normally (with each line starting at the window's left margin); attempting to do so has no effect. This means that you don't have to calculate the argument precisely for `C-x >'; any sufficiently large argument will restore the normal display. If you scroll a window horizontally by hand, that sets a lower bound for automatic horizontal scrolling. Automatic scrolling will continue to scroll the window, but never farther to the right than the amount you previously set by `scroll-left'. To disable automatic horizontal scrolling, set the variable `automatic-hscrolling' to `nil'. Follow Mode =========== "Follow mode" is a minor mode that makes two windows showing the same buffer scroll as one tall "virtual window." To use Follow mode, go to a frame with just one window, split it into two side-by-side windows using `C-x 3', and then type `M-x follow-mode'. From then on, you can edit the buffer in either of the two windows, or scroll either one; the other window follows it. In Follow mode, if you move point outside the portion visible in one window and into the portion visible in the other window, that selects the other window--again, treating the two as if they were parts of one large window. To turn off Follow mode, type `M-x follow-mode' a second time. Selective Display ================= Emacs has the ability to hide lines indented more than a certain number of columns (you specify how many columns). You can use this to get an overview of a part of a program. To hide lines, type `C-x $' (`set-selective-display') with a numeric argument N. Then lines with at least N columns of indentation disappear from the screen. The only indication of their presence is that three dots (`...') appear at the end of each visible line that is followed by one or more hidden ones. The commands `C-n' and `C-p' move across the hidden lines as if they were not there. The hidden lines are still present in the buffer, and most editing commands see them as usual, so you may find point in the middle of the hidden text. When this happens, the cursor appears at the end of the previous line, after the three dots. If point is at the end of the visible line, before the newline that ends it, the cursor appears before the three dots. To make all lines visible again, type `C-x $' with no argument. If you set the variable `selective-display-ellipses' to `nil', the three dots do not appear at the end of a line that precedes hidden lines. Then there is no visible indication of the hidden lines. This variable becomes local automatically when set. Optional Mode Line Features =========================== The current line number of point appears in the mode line when Line Number mode is enabled. Use the command `M-x line-number-mode' to turn this mode on and off; normally it is on. The line number appears before the buffer percentage POS, with the letter `L' to indicate what it is. *Note Minor Modes::, for more information about minor modes and about how to use this command. If you have narrowed the buffer (*note Narrowing::), the displayed line number is relative to the accessible portion of the buffer. If the buffer is very large (larger than the value of `line-number-display-limit'), then the line number doesn't appear. Emacs doesn't compute the line number when the buffer is large, because that would be too slow. Set it to `nil' to remove the limit. Line-number computation can also be slow if the lines in the buffer are too long. For this reason, Emacs normally doesn't display line numbers if the average width, in characters, of lines near point is larger than the value of the variable `line-number-display-limit-width'. The default value is 200 characters. You can also display the current column number by turning on Column Number mode. It displays the current column number preceded by the letter `C'. Type `M-x column-number-mode' to toggle this mode. Emacs can optionally display the time and system load in all mode lines. To enable this feature, type `M-x display-time' or customize the option `display-time-mode'. The information added to the mode line usually appears after the buffer name, before the mode names and their parentheses. It looks like this: HH:MMpm L.LL Here HH and MM are the hour and minute, followed always by `am' or `pm'. L.LL is the average number of running processes in the whole system recently. (Some fields may be missing if your operating system cannot support them.) If you prefer time display in 24-hour format, set the variable `display-time-24hr-format' to `t'. The word `Mail' appears after the load level if there is mail for you that you have not read yet. On a graphical display you can use an icon instead of `Mail' by customizing `display-time-use-mail-icon'; this may save some space on the mode line. You can customize `display-time-mail-face' to make the mail indicator prominent. By default, the mode line is drawn on graphics displays with 3D-style highlighting, like that of a button when it is not being pressed. If you don't like this effect, you can disable the 3D highlighting of the mode line, by customizing the attributes of the `mode-line' face in your `.emacs' init file, like this: (set-face-attribute 'mode-line nil :box nil) Alternatively, you can turn off the box attribute in your `.Xdefaults' file: Emacs.mode-line.AttributeBox: off How Text Is Displayed ===================== ASCII printing characters (octal codes 040 through 0176) in Emacs buffers are displayed with their graphics, as are non-ASCII multibyte printing characters (octal codes above 0400). Some ASCII control characters are displayed in special ways. The newline character (octal code 012) is displayed by starting a new line. The tab character (octal code 011) is displayed by moving to the next tab stop column (normally every 8 columns). Other ASCII control characters are normally displayed as a caret (`^') followed by the non-control version of the character; thus, control-A is displayed as `^A'. Non-ASCII characters 0200 through 0237 (octal) are displayed with octal escape sequences; thus, character code 0230 (octal) is displayed as `\230'. The display of character codes 0240 through 0377 (octal) may be either as escape sequences or as graphics. They do not normally occur in multibyte buffers, but if they do, they are displayed as Latin-1 graphics. In unibyte mode, if you enable European display they are displayed using their graphics (assuming your terminal supports them), otherwise as escape sequences. *Note Single-Byte Character Support::. Customization of Display ======================== This section contains information for customization only. Beginning users should skip it. The variable `mode-line-inverse-video' is an obsolete way of controlling whether the mode line is displayed in inverse video; the preferred way of doing this is to change the `mode-line' face. *Note Mode Line::. However, if `mode-line-inverse-video' has a value of `nil', then the `mode-line' face will be ignored, and mode-lines will be drawn using the default text face. *Note Faces::. If the variable `inverse-video' is non-`nil', Emacs attempts to invert all the lines of the display from what they normally are. If the variable `visible-bell' is non-`nil', Emacs attempts to make the whole screen blink when it would normally make an audible bell sound. This variable has no effect if your terminal does not have a way to make the screen blink. When you reenter Emacs after suspending, Emacs normally clears the screen and redraws the entire display. On some terminals with more than one page of memory, it is possible to arrange the termcap entry so that the `ti' and `te' strings (output to the terminal when Emacs is entered and exited, respectively) switch between pages of memory so as to use one page for Emacs and another page for other output. Then you might want to set the variable `no-redraw-on-reenter' non-`nil'; this tells Emacs to assume, when resumed, that the screen page it is using still contains what Emacs last wrote there. The variable `echo-keystrokes' controls the echoing of multi-character keys; its value is the number of seconds of pause required to cause echoing to start, or zero meaning don't echo at all. *Note Echo Area::. If the variable `ctl-arrow' is `nil', all control characters in the buffer are displayed with octal escape sequences, except for newline and tab. Altering the value of `ctl-arrow' makes it local to the current buffer; until that time, the default value is in effect. The default is initially `t'. *Note Display Tables: (elisp)Display Tables. Normally, a tab character in the buffer is displayed as whitespace which extends to the next display tab stop position, and display tab stops come at intervals equal to eight spaces. The number of spaces per tab is controlled by the variable `tab-width', which is made local by changing it, just like `ctl-arrow'. Note that how the tab character in the buffer is displayed has nothing to do with the definition of as a command. The variable `tab-width' must have an integer value between 1 and 1000, inclusive. If the variable `truncate-lines' is non-`nil', then each line of text gets just one screen line for display; if the text line is too long, display shows only the part that fits. If `truncate-lines' is `nil', then long text lines display as more than one screen line, enough to show the whole text of the line. *Note Continuation Lines::. Altering the value of `truncate-lines' makes it local to the current buffer; until that time, the default value is in effect. The default is initially `nil'. If the variable `truncate-partial-width-windows' is non-`nil', it forces truncation rather than continuation in any window less than the full width of the screen or frame, regardless of the value of `truncate-lines'. For information about side-by-side windows, see *Note Split Window::. See also *Note Display: (elisp)Display. The variable `baud-rate' holds the output speed of the terminal, as far as Emacs knows. Setting this variable does not change the speed of actual data transmission, but the value is used for calculations. On terminals, it affects padding, and decisions about whether to scroll part of the screen or redraw it instead. It also affects the behavior of incremental search. On window-systems, `baud-rate' is only used to determine how frequently to look for pending input during display updating. A higher value of `baud-rate' means that check for pending input will be done less frequently. You can customize the way any particular character code is displayed by means of a display table. *Note Display Tables: (elisp)Display Tables. On a window system, Emacs can optionally display the mouse pointer in a special shape to say that Emacs is busy. To turn this feature on or off, customize the group `cursor'. You can also control the amount of time Emacs must remain busy before the busy indicator is displayed, by setting the variable `hourglass-delay'. On some text-only terminals, bold face and inverse video together result in text that is hard to read. Call the function `tty-suppress-bold-inverse-default-colors' with a non-`nil' argument to suppress the effect of bold-face in this case. Displaying the Cursor ===================== There are a number of ways to customize the display of the cursor. `M-x hl-line-mode' enables or disables a minor mode which highlights the line containing point. On window systems, the command `M-x blink-cursor-mode' turns on or off the blinking of the cursor. (On terminals, the terminal itself blinks the cursor, and Emacs has no control over it.) You can customize the cursor's color, and whether it blinks, using the `cursor' Custom group (*note Easy Customization::). When displaying on a window system, Emacs can optionally draw the block cursor as wide as the character under the cursor--for example, if the cursor is on a tab character, it would cover the full width occupied by that tab character. To enable this feature, set the variable `x-stretch-cursor' to a non-`nil' value. Normally, the cursor in non-selected windows is shown as a hollow box. To turn off cursor display in non-selected windows, customize the option `cursor-in-non-selected-windows' to assign it a `nil' value. Searching and Replacement ************************* Like other editors, Emacs has commands for searching for occurrences of a string. The principal search command is unusual in that it is "incremental"; it begins to search before you have finished typing the search string. There are also nonincremental search commands more like those of other editors. Besides the usual `replace-string' command that finds all occurrences of one string and replaces them with another, Emacs has a more flexible replacement command called `query-replace', which asks interactively which occurrences to replace. Incremental Search ================== An incremental search begins searching as soon as you type the first character of the search string. As you type in the search string, Emacs shows you where the string (as you have typed it so far) would be found. When you have typed enough characters to identify the place you want, you can stop. Depending on what you plan to do next, you may or may not need to terminate the search explicitly with . `C-s' Incremental search forward (`isearch-forward'). `C-r' Incremental search backward (`isearch-backward'). `C-s' starts a forward incremental search. It reads characters from the keyboard, and moves point past the next occurrence of those characters. If you type `C-s' and then `F', that puts the cursor after the first `F' (the first following the starting point, since this is a forward search). Then if you type an `O', you will see the cursor move just after the first `FO' (the `F' in that `FO' may or may not be the first `F'). After another `O', the cursor moves after the first `FOO' after the place where you started the search. At each step, the buffer text that matches the search string is highlighted, if the terminal can do that; the current search string is always displayed in the echo area. If you make a mistake in typing the search string, you can cancel characters with . Each cancels the last character of search string. This does not happen until Emacs is ready to read another input character; first it must either find, or fail to find, the character you want to erase. If you do not want to wait for this to happen, use `C-g' as described below. When you are satisfied with the place you have reached, you can type , which stops searching, leaving the cursor where the search brought it. Also, any command not specially meaningful in searches stops the searching and is then executed. Thus, typing `C-a' would exit the search and then move to the beginning of the line. is necessary only if the next command you want to type is a printing character, , , or another character that is special within searches (`C-q', `C-w', `C-r', `C-s', `C-y', `M-y', `M-r', `M-s', and some other meta-characters). Sometimes you search for `FOO' and find one, but not the one you expected to find. There was a second `FOO' that you forgot about, before the one you were aiming for. In this event, type another `C-s' to move to the next occurrence of the search string. You can repeat this any number of times. If you overshoot, you can cancel some `C-s' characters with . After you exit a search, you can search for the same string again by typing just `C-s C-s': the first `C-s' is the key that invokes incremental search, and the second `C-s' means "search again." To reuse earlier search strings, use the "search ring". The commands `M-p' and `M-n' move through the ring to pick a search string to reuse. These commands leave the selected search ring element in the minibuffer, where you can edit it. Type `C-s' or `C-r' to terminate editing the string and search for it. If your string is not found at all, the echo area says `Failing I-Search'. The cursor is after the place where Emacs found as much of your string as it could. Thus, if you search for `FOOT', and there is no `FOOT', you might see the cursor after the `FOO' in `FOOL'. At this point there are several things you can do. If your string was mistyped, you can rub some of it out and correct it. If you like the place you have found, you can type or some other Emacs command to remain there. Or you can type `C-g', which removes from the search string the characters that could not be found (the `T' in `FOOT'), leaving those that were found (the `FOO' in `FOOT'). A second `C-g' at that point cancels the search entirely, returning point to where it was when the search started. An upper-case letter in the search string makes the search case-sensitive. If you delete the upper-case character from the search string, it ceases to have this effect. *Note Search Case::. To search for a newline, type `C-j'. To search for another control character, such as control-S or carriage return, you must quote it by typing `C-q' first. This function of `C-q' is analogous to its use for insertion (*note Inserting Text::): it causes the following character to be treated the way any "ordinary" character is treated in the same context. You can also specify a character by its octal code: enter `C-q' followed by a sequence of octal digits. To search for non-ASCII characters, you must use an input method (*note Input Methods::). If an input method is enabled in the current buffer when you start the search, you can use it while you type the search string also. Emacs indicates that by including the input method mnemonic in its prompt, like this: I-search [IM]: where IM is the mnemonic of the active input method. You can toggle (enable or disable) the input method while you type the search string with `C-\' (`isearch-toggle-input-method'). You can turn on a certain (non-default) input method with `C-^' (`isearch-toggle-specified-input-method'), which prompts for the name of the input method. The input method you enable during incremental search remains enabled in the current buffer afterwards. If a search is failing and you ask to repeat it by typing another `C-s', it starts again from the beginning of the buffer. Repeating a failing reverse search with `C-r' starts again from the end. This is called "wrapping around", and `Wrapped' appears in the search prompt once this has happened. If you keep on going past the original starting point of the search, it changes to `Overwrapped', which means that you are revisiting matches that you have already seen. The `C-g' "quit" character does special things during searches; just what it does depends on the status of the search. If the search has found what you specified and is waiting for input, `C-g' cancels the entire search. The cursor moves back to where you started the search. If `C-g' is typed when there are characters in the search string that have not been found--because Emacs is still searching for them, or because it has failed to find them--then the search string characters which have not been found are discarded from the search string. With them gone, the search is now successful and waiting for more input, so a second `C-g' will cancel the entire search. You can change to searching backwards with `C-r'. If a search fails because the place you started was too late in the file, you should do this. Repeated `C-r' keeps looking for more occurrences backwards. A `C-s' starts going forwards again. `C-r' in a search can be canceled with . If you know initially that you want to search backwards, you can use `C-r' instead of `C-s' to start the search, because `C-r' as a key runs a command (`isearch-backward') to search backward. A backward search finds matches that are entirely before the starting point, just as a forward search finds matches that begin after it. The characters `C-y' and `C-w' can be used in incremental search to grab text from the buffer into the search string. This makes it convenient to search for another occurrence of text at point. `C-w' copies the word after point as part of the search string, advancing point over that word. Another `C-s' to repeat the search will then search for a string including that word. `C-y' is similar to `C-w' but copies all the rest of the current line into the search string. Both `C-y' and `C-w' convert the text they copy to lower case if the search is currently not case-sensitive; this is so the search remains case-insensitive. The character `M-y' copies text from the kill ring into the search string. It uses the same text that `C-y' as a command would yank. `Mouse-2' in the echo area does the same. *Note Yanking::. When you exit the incremental search, it sets the mark to where point _was_, before the search. That is convenient for moving back there. In Transient Mark mode, incremental search sets the mark without activating it, and does so only if the mark is not already active. When you pause for a little while during incremental search, it highlights all other possible matches for the search string. This makes it easier to anticipate where you can get to by typing `C-s' or `C-r' to repeat the search. The short delay before highlighting other matches helps indicate which match is the current one. If you don't like this feature, you can turn it off by setting `isearch-lazy-highlight' to `nil'. You can control how this highlighting looks by customizing the faces `isearch' (used for the current match) and `isearch-lazy-highlight-face' (for all the other matches). To customize the special characters that incremental search understands, alter their bindings in the keymap `isearch-mode-map'. For a list of bindings, look at the documentation of `isearch-mode' with `C-h f isearch-mode '. Slow Terminal Incremental Search -------------------------------- Incremental search on a slow terminal uses a modified style of display that is designed to take less time. Instead of redisplaying the buffer at each place the search gets to, it creates a new single-line window and uses that to display the line that the search has found. The single-line window comes into play as soon as point moves outside of the text that is already on the screen. When you terminate the search, the single-line window is removed. Emacs then redisplays the window in which the search was done, to show its new position of point. The slow terminal style of display is used when the terminal baud rate is less than or equal to the value of the variable `search-slow-speed', initially 1200. See `baud-rate' in *Note Display Custom::. The number of lines to use in slow terminal search display is controlled by the variable `search-slow-window-lines'. Its normal value is 1. Nonincremental Search ===================== Emacs also has conventional nonincremental search commands, which require you to type the entire search string before searching begins. `C-s STRING ' Search for STRING. `C-r STRING ' Search backward for STRING. To do a nonincremental search, first type `C-s '. This enters the minibuffer to read the search string; terminate the string with , and then the search takes place. If the string is not found, the search command signals an error. When you type `C-s ', the `C-s' invokes incremental search as usual. That command is specially programmed to invoke nonincremental search, `search-forward', if the string you specify is empty. (Such an empty argument would otherwise be useless.) But it does not call `search-forward' right away. First it checks the next input character to see if is `C-w', which specifies a word search. *Note Word Search::. `C-r ' does likewise, for a reverse incremental search. Forward and backward nonincremental searches are implemented by the commands `search-forward' and `search-backward'. These commands may be bound to keys in the usual manner. The feature that you can get to them via the incremental search commands exists for historical reasons, and to avoid the need to find key sequences for them. Word Search =========== Word search searches for a sequence of words without regard to how the words are separated. More precisely, you type a string of many words, using single spaces to separate them, and the string can be found even if there are multiple spaces, newlines, or other punctuation characters between these words. Word search is useful for editing a printed document made with a text formatter. If you edit while looking at the printed, formatted version, you can't tell where the line breaks are in the source file. With word search, you can search without having to know them. `C-s C-w WORDS ' Search for WORDS, ignoring details of punctuation. `C-r C-w WORDS ' Search backward for WORDS, ignoring details of punctuation. Word search is a special case of nonincremental search and is invoked with `C-s C-w'. This is followed by the search string, which must always be terminated with . Being nonincremental, this search does not start until the argument is terminated. It works by constructing a regular expression and searching for that; see *Note Regexp Search::. Use `C-r C-w' to do backward word search. Forward and backward word searches are implemented by the commands `word-search-forward' and `word-search-backward'. These commands may be bound to keys in the usual manner. They are available via the incremental search commands both for historical reasons and to avoid the need to find suitable key sequences for them. Regular Expression Search ========================= A "regular expression" ("regexp", for short) is a pattern that denotes a class of alternative strings to match, possibly infinitely many. GNU Emacs provides both incremental and nonincremental ways to search for a match for a regexp. Incremental search for a regexp is done by typing `C-M-s' (`isearch-forward-regexp'), or by invoking `C-s' with a prefix argument (whose value does not matter). This command reads a search string incrementally just like `C-s', but it treats the search string as a regexp rather than looking for an exact match against the text in the buffer. Each time you add text to the search string, you make the regexp longer, and the new regexp is searched for. To search backward for a regexp, use `C-M-r' (`isearch-backward-regexp'), or `C-r' with a prefix argument. All of the control characters that do special things within an ordinary incremental search have the same function in incremental regexp search. Typing `C-s' or `C-r' immediately after starting the search retrieves the last incremental search regexp used; that is to say, incremental regexp and non-regexp searches have independent defaults. They also have separate search rings that you can access with `M-p' and `M-n'. If you type in incremental regexp search, it matches any sequence of whitespace characters, including newlines. If you want to match just a space, type `C-q '. Note that adding characters to the regexp in an incremental regexp search can make the cursor move back and start again. For example, if you have searched for `foo' and you add `\|bar', the cursor backs up in case the first `bar' precedes the first `foo'. Nonincremental search for a regexp is done by the functions `re-search-forward' and `re-search-backward'. You can invoke these with `M-x', or bind them to keys, or invoke them by way of incremental regexp search with `C-M-s ' and `C-M-r '. If you use the incremental regexp search commands with a prefix argument, they perform ordinary string search, like `isearch-forward' and `isearch-backward'. *Note Incremental Search::. Syntax of Regular Expressions ============================= Regular expressions have a syntax in which a few characters are special constructs and the rest are "ordinary". An ordinary character is a simple regular expression which matches that same character and nothing else. The special characters are `$', `^', `.', `*', `+', `?', `[', `]' and `\'. Any other character appearing in a regular expression is ordinary, unless a `\' precedes it. (When you use regular expressions in a Lisp program, each `\' must be doubled, see the example near the end of this section.) For example, `f' is not a special character, so it is ordinary, and therefore `f' is a regular expression that matches the string `f' and no other string. (It does _not_ match the string `ff'.) Likewise, `o' is a regular expression that matches only `o'. (When case distinctions are being ignored, these regexps also match `F' and `O', but we consider this a generalization of "the same string," rather than an exception.) Any two regular expressions A and B can be concatenated. The result is a regular expression which matches a string if A matches some amount of the beginning of that string and B matches the rest of the string. As a simple example, we can concatenate the regular expressions `f' and `o' to get the regular expression `fo', which matches only the string `fo'. Still trivial. To do something nontrivial, you need to use one of the special characters. Here is a list of them. `. (Period)' is a special character that matches any single character except a newline. Using concatenation, we can make regular expressions like `a.b', which matches any three-character string that begins with `a' and ends with `b'. `*' is not a construct by itself; it is a postfix operator that means to match the preceding regular expression repetitively as many times as possible. Thus, `o*' matches any number of `o's (including no `o's). `*' always applies to the _smallest_ possible preceding expression. Thus, `fo*' has a repeating `o', not a repeating `fo'. It matches `f', `fo', `foo', and so on. The matcher processes a `*' construct by matching, immediately, as many repetitions as can be found. Then it continues with the rest of the pattern. If that fails, backtracking occurs, discarding some of the matches of the `*'-modified construct in case that makes it possible to match the rest of the pattern. For example, in matching `ca*ar' against the string `caaar', the `a*' first tries to match all three `a's; but the rest of the pattern is `ar' and there is only `r' left to match, so this try fails. The next alternative is for `a*' to match only two `a's. With this choice, the rest of the regexp matches successfully. `+' is a postfix operator, similar to `*' except that it must match the preceding expression at least once. So, for example, `ca+r' matches the strings `car' and `caaaar' but not the string `cr', whereas `ca*r' matches all three strings. `?' is a postfix operator, similar to `*' except that it can match the preceding expression either once or not at all. For example, `ca?r' matches `car' or `cr'; nothing else. `*?, +?, ??' are non-greedy variants of the operators above. The normal operators `*', `+', `?' are "greedy" in that they match as much as they can, as long as the overall regexp can still match. With a following `?', they are non-greedy: they will match as little as possible. Thus, both `ab*' and `ab*?' can match the string `a' and the string `abbbb'; but if you try to match them both against the text `abbb', `ab*' will match it all (the longest valid match), while `ab*?' will match just `a' (the shortest valid match). `\{N\}' is a postfix operator that specifies repetition N times--that is, the preceding regular expression must match exactly N times in a row. For example, `x\{4\}' matches the string `xxxx' and nothing else. `\{N,M\}' is a postfix operator that specifies repetition between N and M times--that is, the preceding regular expression must match at least N times, but no more than M times. If M is omitted, then there is no upper limit, but the preceding regular expression must match at least N times. `\{0,1\}' is equivalent to `?'. `\{0,\}' is equivalent to `*'. `\{1,\}' is equivalent to `+'. `[ ... ]' is a "character set", which begins with `[' and is terminated by `]'. In the simplest case, the characters between the two brackets are what this set can match. Thus, `[ad]' matches either one `a' or one `d', and `[ad]*' matches any string composed of just `a's and `d's (including the empty string), from which it follows that `c[ad]*r' matches `cr', `car', `cdr', `caddaar', etc. You can also include character ranges in a character set, by writing the starting and ending characters with a `-' between them. Thus, `[a-z]' matches any lower-case ASCII letter. Ranges may be intermixed freely with individual characters, as in `[a-z$%.]', which matches any lower-case ASCII letter or `$', `%' or period. Note that the usual regexp special characters are not special inside a character set. A completely different set of special characters exists inside character sets: `]', `-' and `^'. To include a `]' in a character set, you must make it the first character. For example, `[]a]' matches `]' or `a'. To include a `-', write `-' as the first or last character of the set, or put it after a range. Thus, `[]-]' matches both `]' and `-'. To include `^' in a set, put it anywhere but at the beginning of the set. (At the beginning, it complements the set--see below.) When you use a range in case-insensitive search, you should write both ends of the range in upper case, or both in lower case, or both should be non-letters. The behavior of a mixed-case range such as `A-z' is somewhat ill-defined, and it may change in future Emacs versions. `[^ ... ]' `[^' begins a "complemented character set", which matches any character except the ones specified. Thus, `[^a-z0-9A-Z]' matches all characters _except_ ASCII letters and digits. `^' is not special in a character set unless it is the first character. The character following the `^' is treated as if it were first (in other words, `-' and `]' are not special there). A complemented character set can match a newline, unless newline is mentioned as one of the characters not to match. This is in contrast to the handling of regexps in programs such as `grep'. `^' is a special character that matches the empty string, but only at the beginning of a line in the text being matched. Otherwise it fails to match anything. Thus, `^foo' matches a `foo' that occurs at the beginning of a line. `$' is similar to `^' but matches only at the end of a line. Thus, `x+$' matches a string of one `x' or more at the end of a line. `\' has two functions: it quotes the special characters (including `\'), and it introduces additional special constructs. Because `\' quotes special characters, `\$' is a regular expression that matches only `$', and `\[' is a regular expression that matches only `[', and so on. Note: for historical compatibility, special characters are treated as ordinary ones if they are in contexts where their special meanings make no sense. For example, `*foo' treats `*' as ordinary since there is no preceding expression on which the `*' can act. It is poor practice to depend on this behavior; it is better to quote the special character anyway, regardless of where it appears. For the most part, `\' followed by any character matches only that character. However, there are several exceptions: two-character sequences starting with `\' that have special meanings. The second character in the sequence is always an ordinary character when used on its own. Here is a table of `\' constructs. `\|' specifies an alternative. Two regular expressions A and B with `\|' in between form an expression that matches some text if either A matches it or B matches it. It works by trying to match A, and if that fails, by trying to match B. Thus, `foo\|bar' matches either `foo' or `bar' but no other string. `\|' applies to the largest possible surrounding expressions. Only a surrounding `\( ... \)' grouping can limit the grouping power of `\|'. Full backtracking capability exists to handle multiple uses of `\|'. `\( ... \)' is a grouping construct that serves three purposes: 1. To enclose a set of `\|' alternatives for other operations. Thus, `\(foo\|bar\)x' matches either `foox' or `barx'. 2. To enclose a complicated expression for the postfix operators `*', `+' and `?' to operate on. Thus, `ba\(na\)*' matches `bananana', etc., with any (zero or more) number of `na' strings. 3. To record a matched substring for future reference. This last application is not a consequence of the idea of a parenthetical grouping; it is a separate feature that is assigned as a second meaning to the same `\( ... \)' construct. In practice there is usually no conflict between the two meanings; when there is a conflict, you can use a "shy" group. `\(?: ... \)' specifies a "shy" group that does not record the matched substring; you can't refer back to it with `\D'. This is useful in mechanically combining regular expressions, so that you can add groups for syntactic purposes without interfering with the numbering of the groups that were written by the user. `\D' matches the same text that matched the Dth occurrence of a `\( ... \)' construct. After the end of a `\( ... \)' construct, the matcher remembers the beginning and end of the text matched by that construct. Then, later on in the regular expression, you can use `\' followed by the digit D to mean "match the same text matched the Dth time by the `\( ... \)' construct." The strings matching the first nine `\( ... \)' constructs appearing in a regular expression are assigned numbers 1 through 9 in the order that the open-parentheses appear in the regular expression. So you can use `\1' through `\9' to refer to the text matched by the corresponding `\( ... \)' constructs. For example, `\(.*\)\1' matches any newline-free string that is composed of two identical halves. The `\(.*\)' matches the first half, which may be anything, but the `\1' that follows must match the same exact text. If a particular `\( ... \)' construct matches more than once (which can easily happen if it is followed by `*'), only the last match is recorded. `\`' matches the empty string, but only at the beginning of the buffer or string being matched against. `\'' matches the empty string, but only at the end of the buffer or string being matched against. `\=' matches the empty string, but only at point. `\b' matches the empty string, but only at the beginning or end of a word. Thus, `\bfoo\b' matches any occurrence of `foo' as a separate word. `\bballs?\b' matches `ball' or `balls' as a separate word. `\b' matches at the beginning or end of the buffer regardless of what text appears next to it. `\B' matches the empty string, but _not_ at the beginning or end of a word. `\<' matches the empty string, but only at the beginning of a word. `\<' matches at the beginning of the buffer only if a word-constituent character follows. `\>' matches the empty string, but only at the end of a word. `\>' matches at the end of the buffer only if the contents end with a word-constituent character. `\w' matches any word-constituent character. The syntax table determines which characters these are. *Note Syntax::. `\W' matches any character that is not a word-constituent. `\sC' matches any character whose syntax is C. Here C is a character that designates a particular syntax class: thus, `w' for word constituent, `-' or ` ' for whitespace, `.' for ordinary punctuation, etc. *Note Syntax::. `\SC' matches any character whose syntax is not C. `\cC' matches any character that belongs to the category C. For example, `\cc' matches Chinese characters, `\cg' matches Greek characters, etc. For the description of the known categories, type `M-x describe-categories '. `\CC' matches any character that does _not_ belong to category C. The constructs that pertain to words and syntax are controlled by the setting of the syntax table (*note Syntax::). Here is a complicated regexp, stored in `sentence-end' and used by Emacs to recognize the end of a sentence together with any whitespace that follows. We show its Lisp syntax to distinguish the spaces from the tab characters. In Lisp syntax, the string constant begins and ends with a double-quote. `\"' stands for a double-quote as part of the regexp, `\\' for a backslash as part of the regexp, `\t' for a tab, and `\n' for a newline. "[.?!][]\"')]*\\($\\| $\\|\t\\| \\)[ \t\n]*" This contains four parts in succession: a character set matching period, `?', or `!'; a character set matching close-brackets, quotes, or parentheses, repeated zero or more times; a set of alternatives within backslash-parentheses that matches either end-of-line, a space at the end of a line, a tab, or two spaces; and a character set matching whitespace characters, repeated any number of times. To enter the same regexp interactively, you would type to enter a tab, and `C-j' to enter a newline. (When typed interactively, `C-j' should be preceded by a `C-q', to prevent Emacs from running the command bound to a newline.) You would also type single backslashes as themselves, instead of doubling them for Lisp syntax. Searching and Case ================== Incremental searches in Emacs normally ignore the case of the text they are searching through, if you specify the text in lower case. Thus, if you specify searching for `foo', then `Foo' and `foo' are also considered a match. Regexps, and in particular character sets, are included: `[ab]' would match `a' or `A' or `b' or `B'. An upper-case letter anywhere in the incremental search string makes the search case-sensitive. Thus, searching for `Foo' does not find `foo' or `FOO'. This applies to regular expression search as well as to string search. The effect ceases if you delete the upper-case letter from the search string. Typing `M-c' within an incremental search toggles the case sensitivity of that search. The effect does not extend beyond the current incremental search to the next one, but it does override the effect of including an upper-case letter in the current search. If you set the variable `case-fold-search' to `nil', then all letters must match exactly, including case. This is a per-buffer variable; altering the variable affects only the current buffer, but there is a default value which you can change as well. *Note Locals::. This variable applies to nonincremental searches also, including those performed by the replace commands (*note Replace::) and the minibuffer history matching commands (*note Minibuffer History::). Replacement Commands ==================== Global search-and-replace operations are not needed often in Emacs, but they are available. In addition to the simple `M-x replace-string' command which is like that found in most editors, there is a `M-x query-replace' command which finds each occurrence of the pattern and asks you whether to replace it. The replace commands normally operate on the text from point to the end of the buffer; however, in Transient Mark mode, when the mark is active, they operate on the region. The replace commands all replace one string (or regexp) with one replacement string. It is possible to perform several replacements in parallel using the command `expand-region-abbrevs' (*note Expanding Abbrevs::). Unconditional Replacement ------------------------- `M-x replace-string STRING NEWSTRING ' Replace every occurrence of STRING with NEWSTRING. `M-x replace-regexp REGEXP NEWSTRING ' Replace every match for REGEXP with NEWSTRING. To replace every instance of `foo' after point with `bar', use the command `M-x replace-string' with the two arguments `foo' and `bar'. Replacement happens only in the text after point, so if you want to cover the whole buffer you must go to the beginning first. All occurrences up to the end of the buffer are replaced; to limit replacement to part of the buffer, narrow to that part of the buffer before doing the replacement (*note Narrowing::). In Transient Mark mode, when the region is active, replacement is limited to the region (*note Transient Mark::). When `replace-string' exits, it leaves point at the last occurrence replaced. It sets the mark to the prior position of point (where the `replace-string' command was issued); use `C-u C-' to move back there. A numeric argument restricts replacement to matches that are surrounded by word boundaries. The argument's value doesn't matter. Regexp Replacement ------------------ The `M-x replace-string' command replaces exact matches for a single string. The similar command `M-x replace-regexp' replaces any match for a specified pattern. In `replace-regexp', the NEWSTRING need not be constant: it can refer to all or part of what is matched by the REGEXP. `\&' in NEWSTRING stands for the entire match being replaced. `\D' in NEWSTRING, where D is a digit, stands for whatever matched the Dth parenthesized grouping in REGEXP. To include a `\' in the text to replace with, you must enter `\\'. For example, M-x replace-regexp c[ad]+r \&-safe replaces (for example) `cadr' with `cadr-safe' and `cddr' with `cddr-safe'. M-x replace-regexp \(c[ad]+r\)-safe \1 performs the inverse transformation. Replace Commands and Case ------------------------- If the first argument of a replace command is all lower case, the command ignores case while searching for occurrences to replace--provided `case-fold-search' is non-`nil'. If `case-fold-search' is set to `nil', case is always significant in all searches. In addition, when the NEWSTRING argument is all or partly lower case, replacement commands try to preserve the case pattern of each occurrence. Thus, the command M-x replace-string foo bar replaces a lower case `foo' with a lower case `bar', an all-caps `FOO' with `BAR', and a capitalized `Foo' with `Bar'. (These three alternatives--lower case, all caps, and capitalized, are the only ones that `replace-string' can distinguish.) If upper-case letters are used in the replacement string, they remain upper case every time that text is inserted. If upper-case letters are used in the first argument, the second argument is always substituted exactly as given, with no case conversion. Likewise, if either `case-replace' or `case-fold-search' is set to `nil', replacement is done without case conversion. Query Replace ------------- `M-% STRING NEWSTRING ' `M-x query-replace STRING NEWSTRING ' Replace some occurrences of STRING with NEWSTRING. `C-M-% REGEXP NEWSTRING ' `M-x query-replace-regexp REGEXP NEWSTRING ' Replace some matches for REGEXP with NEWSTRING. If you want to change only some of the occurrences of `foo' to `bar', not all of them, then you cannot use an ordinary `replace-string'. Instead, use `M-%' (`query-replace'). This command finds occurrences of `foo' one by one, displays each occurrence and asks you whether to replace it. Aside from querying, `query-replace' works just like `replace-string'. It preserves case, like `replace-string', provided `case-replace' is non-`nil', as it normally is. A numeric argument means consider only occurrences that are bounded by word-delimiter characters. `C-M-%' performs regexp search and replace (`query-replace-regexp'). The characters you can type when you are shown a match for the string or regexp are: `' to replace the occurrence with NEWSTRING. `' to skip to the next occurrence without replacing this one. `, (Comma)' to replace this occurrence and display the result. You are then asked for another input character to say what to do next. Since the replacement has already been made, and are equivalent in this situation; both move to the next occurrence. You can type `C-r' at this point (see below) to alter the replaced text. You can also type `C-x u' to undo the replacement; this exits the `query-replace', so if you want to do further replacement you must use `C-x ' to restart (*note Repetition::). `' to exit without doing any more replacements. `. (Period)' to replace this occurrence and then exit without searching for more occurrences. `!' to replace all remaining occurrences without asking again. `^' to go back to the position of the previous occurrence (or what used to be an occurrence), in case you changed it by mistake. This works by popping the mark ring. Only one `^' in a row is meaningful, because only one previous replacement position is kept during `query-replace'. `C-r' to enter a recursive editing level, in case the occurrence needs to be edited rather than just replaced with NEWSTRING. When you are done, exit the recursive editing level with `C-M-c' to proceed to the next occurrence. *Note Recursive Edit::. `C-w' to delete the occurrence, and then enter a recursive editing level as in `C-r'. Use the recursive edit to insert text to replace the deleted occurrence of STRING. When done, exit the recursive editing level with `C-M-c' to proceed to the next occurrence. `e' to edit the replacement string in the minibuffer. When you exit the minibuffer by typing , the minibuffer contents replace the current occurrence of the pattern. They also become the new replacement string for any further occurrences. `C-l' to redisplay the screen. Then you must type another character to specify what to do with this occurrence. `C-h' to display a message summarizing these options. Then you must type another character to specify what to do with this occurrence. Some other characters are aliases for the ones listed above: `y', `n' and `q' are equivalent to , and . Aside from this, any other character exits the `query-replace', and is then reread as part of a key sequence. Thus, if you type `C-k', it exits the `query-replace' and then kills to end of line. To restart a `query-replace' once it is exited, use `C-x ', which repeats the `query-replace' because it used the minibuffer to read its arguments. *Note C-x ESC ESC: Repetition. See also *Note Transforming File Names::, for Dired commands to rename, copy, or link files by replacing regexp matches in file names. Other Search-and-Loop Commands ============================== Here are some other commands that find matches for a regular expression. They all ignore case in matching, if the pattern contains no upper-case letters and `case-fold-search' is non-`nil'. Aside from `occur', all operate on the text from point to the end of the buffer, or on the active region in Transient Mark mode. `M-x occur REGEXP ' Display a list showing each line in the buffer that contains a match for REGEXP. To limit the search to part of the buffer, narrow to that part (*note Narrowing::). A numeric argument N specifies that N lines of context are to be displayed before and after each matching line. The buffer `*Occur*' containing the output serves as a menu for finding the occurrences in their original context. Click `Mouse-2' on an occurrence listed in `*Occur*', or position point there and type ; this switches to the buffer that was searched and moves point to the original of the chosen occurrence. `M-x list-matching-lines' Synonym for `M-x occur'. `M-x how-many REGEXP ' Print the number of matches for REGEXP that exist in the buffer after point. In Transient Mark mode, if the region is active, the command operates on the region instead. `M-x flush-lines REGEXP ' Delete each line that contains a match for REGEXP, operating on the text after point. In Transient Mark mode, if the region is active, the command operates on the region instead. `M-x keep-lines REGEXP ' Delete each line that _does not_ contain a match for REGEXP, operating on the text after point. In Transient Mark mode, if the region is active, the command operates on the region instead. You can also search multiple files under control of a tags table (*note Tags Search::) or through Dired `A' command (*note Operating on Files::), or ask the `grep' program to do it (*note Grep Searching::). Commands for Fixing Typos ************************* In this chapter we describe the commands that are especially useful for the times when you catch a mistake in your text just after you have made it, or change your mind while composing text on the fly. The most fundamental command for correcting erroneous editing is the undo command, `C-x u' or `C-_'. This command undoes a single command (usually), a part of a command (in the case of `query-replace'), or several consecutive self-inserting characters. Consecutive repetitions of `C-_' or `C-x u' undo earlier and earlier changes, back to the limit of the undo information available. *Note Undo::, for more information. Killing Your Mistakes ===================== `' Delete last character (`delete-backward-char'). `M-' Kill last word (`backward-kill-word'). `C-x ' Kill to beginning of sentence (`backward-kill-sentence'). The character (`delete-backward-char') is the most important correction command. It deletes the character before point. When follows a self-inserting character command, you can think of it as canceling that command. However, avoid the mistake of thinking of as a general way to cancel a command! When your mistake is longer than a couple of characters, it might be more convenient to use `M-' or `C-x '. `M-' kills back to the start of the last word, and `C-x ' kills back to the start of the last sentence. `C-x ' is particularly useful when you change your mind about the phrasing of the text you are writing. `M-' and `C-x ' save the killed text for `C-y' and `M-y' to retrieve. *Note Yanking::. `M-' is often useful even when you have typed only a few characters wrong, if you know you are confused in your typing and aren't sure exactly what you typed. At such a time, you cannot correct with except by looking at the screen to see what you did. Often it requires less thought to kill the whole word and start again. Transposing Text ================ `C-t' Transpose two characters (`transpose-chars'). `M-t' Transpose two words (`transpose-words'). `C-M-t' Transpose two balanced expressions (`transpose-sexps'). `C-x C-t' Transpose two lines (`transpose-lines'). The common error of transposing two characters can be fixed, when they are adjacent, with the `C-t' command (`transpose-chars'). Normally, `C-t' transposes the two characters on either side of point. When given at the end of a line, rather than transposing the last character of the line with the newline, which would be useless, `C-t' transposes the last two characters on the line. So, if you catch your transposition error right away, you can fix it with just a `C-t'. If you don't catch it so fast, you must move the cursor back between the two transposed characters before you type `C-t'. If you transposed a space with the last character of the word before it, the word motion commands are a good way of getting there. Otherwise, a reverse search (`C-r') is often the best way. *Note Search::. `M-t' transposes the word before point with the word after point (`transpose-words'). It moves point forward over a word, dragging the word preceding or containing point forward as well. The punctuation characters between the words do not move. For example, `FOO, BAR' transposes into `BAR, FOO' rather than `BAR FOO,'. `C-M-t' (`transpose-sexps') is a similar command for transposing two expressions (*note Expressions::), and `C-x C-t' (`transpose-lines') exchanges lines. They work like `M-t' except as regards what units of text they transpose. A numeric argument to a transpose command serves as a repeat count: it tells the transpose command to move the character (word, expression, line) before or containing point across several other characters (words, expressions, lines). For example, `C-u 3 C-t' moves the character before point forward across three other characters. It would change `f-!-oobar' into `oobf-!-ar'. This is equivalent to repeating `C-t' three times. `C-u - 4 M-t' moves the word before point backward across four words. `C-u - C-M-t' would cancel the effect of plain `C-M-t'. A numeric argument of zero is assigned a special meaning (because otherwise a command with a repeat count of zero would do nothing): to transpose the character (word, expression, line) ending after point with the one ending after the mark. Case Conversion =============== `M-- M-l' Convert last word to lower case. Note `Meta--' is Meta-minus. `M-- M-u' Convert last word to all upper case. `M-- M-c' Convert last word to lower case with capital initial. A very common error is to type words in the wrong case. Because of this, the word case-conversion commands `M-l', `M-u' and `M-c' have a special feature when used with a negative argument: they do not move the cursor. As soon as you see you have mistyped the last word, you can simply case-convert it and go on typing. *Note Case::. Checking and Correcting Spelling ================================ This section describes the commands to check the spelling of a single word or of a portion of a buffer. These commands work with the spelling checker program Ispell, which is not part of Emacs. *Note Ispell: (ispell.info)Top. `M-x flyspell-mode' Enable Flyspell mode, which highlights all misspelled words. `M-$' Check and correct spelling of the word at point (`ispell-word'). `M-' Complete the word before point based on the spelling dictionary (`ispell-complete-word'). `M-x ispell' Spell-check the active region or the current buffer. `M-x ispell-buffer' Check and correct spelling of each word in the buffer. `M-x ispell-region' Check and correct spelling of each word in the region. `M-x ispell-message' Check and correct spelling of each word in a draft mail message, excluding cited material. `M-x ispell-change-dictionary DICT ' Restart the Ispell process, using DICT as the dictionary. `M-x ispell-kill-ispell' Kill the Ispell subprocess. Flyspell mode is a fully-automatic way to check spelling as you edit in Emacs. It operates by checking words as you change or insert them. When it finds a word that it does not recognize, it highlights that word. This does not interfere with your editing, but when you see the highlighted word, you can move to it and fix it. Type `M-x flyspell-mode' to enable or disable this mode in the current buffer. When Flyspell mode highlights a word as misspelled, you can click on it with `Mouse-2' to display a menu of possible corrections and actions. You can also correct the word by editing it manually in any way you like. The other Emacs spell-checking features check or look up words when you give an explicit command to do so. Checking all or part of the buffer is useful when you have text that was written outside of this Emacs session and might contain any number of misspellings. To check the spelling of the word around or next to point, and optionally correct it as well, use the command `M-$' (`ispell-word'). If the word is not correct, the command offers you various alternatives for what to do about it. To check the entire current buffer, use `M-x ispell-buffer'. Use `M-x ispell-region' to check just the current region. To check spelling in an email message you are writing, use `M-x ispell-message'; that command checks the whole buffer, except for material that is indented or appears to be cited from other messages. The `M-x ispell' command spell-checks the active region if the Transient Mark mode is on (*note Transient Mark::), otherwise it spell-checks the current buffer. Each time these commands encounter an incorrect word, they ask you what to do. They display a list of alternatives, usually including several "near-misses"--words that are close to the word being checked. Then you must type a single-character response. Here are the valid responses: `' Skip this word--continue to consider it incorrect, but don't change it here. `r NEW ' Replace the word (just this time) with NEW. `R NEW ' Replace the word with NEW, and do a `query-replace' so you can replace it elsewhere in the buffer if you wish. `DIGIT' Replace the word (just this time) with one of the displayed near-misses. Each near-miss is listed with a digit; type that digit to select it. `a' Accept the incorrect word--treat it as correct, but only in this editing session. `A' Accept the incorrect word--treat it as correct, but only in this editing session and for this buffer. `i' Insert this word in your private dictionary file so that Ispell will consider it correct from now on, even in future sessions. `u' Insert the lower-case version of this word in your private dictionary file. `m' Like `i', but you can also specify dictionary completion information. `l WORD ' Look in the dictionary for words that match WORD. These words become the new list of "near-misses"; you can select one of them as the replacement by typing a digit. You can use `*' in WORD as a wildcard. `C-g' Quit interactive spell checking. You can restart it again afterward with `C-u M-$'. `X' Same as `C-g'. `x' Quit interactive spell checking and move point back to where it was when you started spell checking. `q' Quit interactive spell checking and kill the Ispell subprocess. `C-l' Refresh the screen. `C-z' This key has its normal command meaning (suspend Emacs or iconify this frame). The command `ispell-complete-word', which is bound to the key `M-' in Text mode and related modes, shows a list of completions based on spelling correction. Insert the beginning of a word, and then type `M-'; the command displays a completion list window. To choose one of the completions listed, click `Mouse-2' on it, or move the cursor there in the completions window and type . *Note Text Mode::. Once started, the Ispell subprocess continues to run (waiting for something to do), so that subsequent spell checking commands complete more quickly. If you want to get rid of the Ispell process, use `M-x ispell-kill-ispell'. This is not usually necessary, since the process uses no time except when you do spelling correction. Ispell uses two dictionaries: the standard dictionary and your private dictionary. The variable `ispell-dictionary' specifies the file name of the standard dictionary to use. A value of `nil' says to use the default dictionary. The command `M-x ispell-change-dictionary' sets this variable and then restarts the Ispell subprocess, so that it will use a different dictionary. File Handling ************* The operating system stores data permanently in named "files", so most of the text you edit with Emacs comes from a file and is ultimately stored in a file. To edit a file, you must tell Emacs to read the file and prepare a buffer containing a copy of the file's text. This is called "visiting" the file. Editing commands apply directly to text in the buffer; that is, to the copy inside Emacs. Your changes appear in the file itself only when you "save" the buffer back into the file. In addition to visiting and saving files, Emacs can delete, copy, rename, and append to files, keep multiple versions of them, and operate on file directories. File Names ========== Most Emacs commands that operate on a file require you to specify the file name. (Saving and reverting are exceptions; the buffer knows which file name to use for them.) You enter the file name using the minibuffer (*note Minibuffer::). "Completion" is available (*note Completion::) to make it easier to specify long file names. When completing file names, Emacs ignores those whose file-name extensions appear in the variable `completion-ignored-extensions'; see *Note Completion Options::. For most operations, there is a "default file name" which is used if you type just to enter an empty argument. Normally the default file name is the name of the file visited in the current buffer; this makes it easy to operate on that file with any of the Emacs file commands. Each buffer has a default directory which is normally the same as the directory of the file visited in that buffer. When you enter a file name without a directory, the default directory is used. If you specify a directory in a relative fashion, with a name that does not start with a slash, it is interpreted with respect to the default directory. The default directory is kept in the variable `default-directory', which has a separate value in every buffer. For example, if the default file name is `/u/rms/gnu/gnu.tasks' then the default directory is `/u/rms/gnu/'. If you type just `foo', which does not specify a directory, it is short for `/u/rms/gnu/foo'. `../.login' would stand for `/u/rms/.login'. `new/foo' would stand for the file name `/u/rms/gnu/new/foo'. The command `M-x pwd' displays the current buffer's default directory, and the command `M-x cd' sets it (to a value read using the minibuffer). A buffer's default directory changes only when the `cd' command is used. A file-visiting buffer's default directory is initialized to the directory of the file that is visited in that buffer. If you create a buffer with `C-x b', its default directory is copied from that of the buffer that was current at the time. The default directory actually appears in the minibuffer when the minibuffer becomes active to read a file name. This serves two purposes: it _shows_ you what the default is, so that you can type a relative file name and know with certainty what it will mean, and it allows you to _edit_ the default to specify a different directory. This insertion of the default directory is inhibited if the variable `insert-default-directory' is set to `nil'. Note that it is legitimate to type an absolute file name after you enter the minibuffer, ignoring the presence of the default directory name as part of the text. The final minibuffer contents may look invalid, but that is not so. For example, if the minibuffer starts out with `/usr/tmp/' and you add `/x1/rms/foo', you get `/usr/tmp//x1/rms/foo'; but Emacs ignores everything through the first slash in the double slash; the result is `/x1/rms/foo'. *Note Minibuffer File::. `$' in a file name is used to substitute environment variables. For example, if you have used the shell command `export FOO=rms/hacks' to set up an environment variable named `FOO', then you can use `/u/$FOO/test.c' or `/u/${FOO}/test.c' as an abbreviation for `/u/rms/hacks/test.c'. The environment variable name consists of all the alphanumeric characters after the `$'; alternatively, it may be enclosed in braces after the `$'. Note that shell commands to set environment variables affect Emacs only if done before Emacs is started. You can use the `~/' in a file name to mean your home directory, or `~USER-ID/' to mean the home directory of a user whose login name is `user-id'. (On DOS and Windows systems, where a user doesn't have a home directory, Emacs substitutes `~/' with the value of the environment variable `HOME'; see *Note General Variables::.) To access a file with `$' in its name, type `$$'. This pair is converted to a single `$' at the same time as variable substitution is performed for a single `$'. Alternatively, quote the whole file name with `/:' (*note Quoted File Names::). File names which begin with a literal `~' should also be quoted with `/:'. The Lisp function that performs the substitution is called `substitute-in-file-name'. The substitution is performed only on file names read as such using the minibuffer. You can include non-ASCII characters in file names if you set the variable `file-name-coding-system' to a non-`nil' value. *Note Specify Coding::. Visiting Files ============== `C-x C-f' Visit a file (`find-file'). `C-x C-r' Visit a file for viewing, without allowing changes to it (`find-file-read-only'). `C-x C-v' Visit a different file instead of the one visited last (`find-alternate-file'). `C-x 4 f' Visit a file, in another window (`find-file-other-window'). Don't alter what is displayed in the selected window. `C-x 5 f' Visit a file, in a new frame (`find-file-other-frame'). Don't alter what is displayed in the selected frame. `M-x find-file-literally' Visit a file with no conversion of the contents. "Visiting" a file means copying its contents into an Emacs buffer so you can edit them. Emacs makes a new buffer for each file that you visit. We often say that this buffer "is visiting" that file, or that the buffer's "visited file" is that file. Emacs constructs the buffer name from the file name by throwing away the directory, keeping just the name proper. For example, a file named `/usr/rms/emacs.tex' would get a buffer named `emacs.tex'. If there is already a buffer with that name, Emacs constructs a unique name--the normal method is to append `<2>', `<3>', and so on, but you can select other methods (*note Uniquify::). Each window's mode line shows the name of the buffer that is being displayed in that window, so you can always tell what buffer you are editing. The changes you make with editing commands are made in the Emacs buffer. They do not take effect in the file that you visited, or any place permanent, until you "save" the buffer. Saving the buffer means that Emacs writes the current contents of the buffer into its visited file. *Note Saving::. If a buffer contains changes that have not been saved, we say the buffer is "modified". This is important because it implies that some changes will be lost if the buffer is not saved. The mode line displays two stars near the left margin to indicate that the buffer is modified. To visit a file, use the command `C-x C-f' (`find-file'). Follow the command with the name of the file you wish to visit, terminated by a . The file name is read using the minibuffer (*note Minibuffer::), with defaulting and completion in the standard manner (*note File Names::). While in the minibuffer, you can abort `C-x C-f' by typing `C-g'. File-name completion ignores certain filenames; for more about this, see *Note Completion Options::. When Emacs is built with a suitable GUI toolkit, it pops up the standard File Selection dialog of that toolkit instead of prompting for the file name in the minibuffer. On Unix and GNU/Linux platforms, Emacs does that when built with LessTif and Motif toolkits; on MS-Windows, the GUI version does that by default. Your confirmation that `C-x C-f' has completed successfully is the appearance of new text on the screen and a new buffer name in the mode line. If the specified file does not exist and could not be created, or cannot be read, then you get an error, with an error message displayed in the echo area. If you visit a file that is already in Emacs, `C-x C-f' does not make another copy. It selects the existing buffer containing that file. However, before doing so, it checks that the file itself has not changed since you visited or saved it last. If the file has changed, a warning message is shown. *Note Simultaneous Editing: Interlocking. Since Emacs reads the visited file in its entirety, files whose size is larger than the maximum Emacs buffer size (*note Buffers::) cannot be visited; if you try, Emacs will display an error message saying that the maximum buffer size has been exceeded. What if you want to create a new file? Just visit it. Emacs displays `(New file)' in the echo area, but in other respects behaves as if you had visited an existing empty file. If you make any changes and save them, the file is created. Emacs recognizes from the contents of a file which convention it uses to separate lines--newline (used on GNU/Linux and on Unix), carriage-return linefeed (used on Microsoft systems), or just carriage-return (used on the Macintosh)--and automatically converts the contents to the normal Emacs convention, which is that the newline character separates lines. This is a part of the general feature of coding system conversion (*note Coding Systems::), and makes it possible to edit files imported from different operating systems with equal convenience. If you change the text and save the file, Emacs performs the inverse conversion, changing newlines back into carriage-return linefeed or just carriage-return if appropriate. If the file you specify is actually a directory, `C-x C-f' invokes Dired, the Emacs directory browser, so that you can "edit" the contents of the directory (*note Dired::). Dired is a convenient way to delete, look at, or operate on the files in the directory. However, if the variable `find-file-run-dired' is `nil', then it is an error to try to visit a directory. Files which are actually collections of other files, or "file archives", are visited in special modes which invoke a Dired-like environment to allow operations on archive members. *Note File Archives::, for more about these features. If the file name you specify contains shell-style wildcard characters, Emacs visits all the files that match it. Wildcards include `?', `*', and `[...]' sequences. *Note Quoted File Names::, for information on how to visit a file whose name actually contains wildcard characters. You can disable the wildcard feature by customizing `find-file-wildcards'. If you visit a file that the operating system won't let you modify, Emacs makes the buffer read-only, so that you won't go ahead and make changes that you'll have trouble saving afterward. You can make the buffer writable with `C-x C-q' (`vc-toggle-read-only'). *Note Misc Buffer::. Occasionally you might want to visit a file as read-only in order to protect yourself from entering changes accidentally; do so by visiting the file with the command `C-x C-r' (`find-file-read-only'). If you visit a nonexistent file unintentionally (because you typed the wrong file name), use the `C-x C-v' command (`find-alternate-file') to visit the file you really wanted. `C-x C-v' is similar to `C-x C-f', but it kills the current buffer (after first offering to save it if it is modified). When `C-x C-v' reads the file name to visit, it inserts the entire default file name in the buffer, with point just after the directory part; this is convenient if you made a slight error in typing the name. If you find a file which exists but cannot be read, `C-x C-f' signals an error. `C-x 4 f' (`find-file-other-window') is like `C-x C-f' except that the buffer containing the specified file is selected in another window. The window that was selected before `C-x 4 f' continues to show the same buffer it was already showing. If this command is used when only one window is being displayed, that window is split in two, with one window showing the same buffer as before, and the other one showing the newly requested file. *Note Windows::. `C-x 5 f' (`find-file-other-frame') is similar, but opens a new frame, or makes visible any existing frame showing the file you seek. This feature is available only when you are using a window system. *Note Frames::. If you wish to edit a file as a sequence of ASCII characters with no special encoding or conversion, use the `M-x find-file-literally' command. It visits a file, like `C-x C-f', but does not do format conversion (*note Formatted Text::), character code conversion (*note Coding Systems::), or automatic uncompression (*note Compressed Files::), and does not add a final newline because of `require-final-newline'. If you already have visited the same file in the usual (non-literal) manner, this command asks you whether to visit it literally instead. Two special hook variables allow extensions to modify the operation of visiting files. Visiting a file that does not exist runs the functions in the list `find-file-not-found-hooks'; this variable holds a list of functions, and the functions are called one by one (with no arguments) until one of them returns non-`nil'. This is not a normal hook, and the name ends in `-hooks' rather than `-hook' to indicate that fact. Successful visiting of any file, whether existing or not, calls the functions in the list `find-file-hooks', with no arguments. This variable is really a normal hook, but it has an abnormal name for historical compatibility. In the case of a nonexistent file, the `find-file-not-found-hooks' are run first. *Note Hooks::. There are several ways to specify automatically the major mode for editing the file (*note Choosing Modes::), and to specify local variables defined for that file (*note File Variables::). Saving Files ============ "Saving" a buffer in Emacs means writing its contents back into the file that was visited in the buffer. `C-x C-s' Save the current buffer in its visited file on disk (`save-buffer'). `C-x s' Save any or all buffers in their visited files (`save-some-buffers'). `M-~' Forget that the current buffer has been changed (`not-modified'). With prefix argument (`C-u'), mark the current buffer as changed. `C-x C-w' Save the current buffer as a specified file name (`write-file'). `M-x set-visited-file-name' Change the file name under which the current buffer will be saved. When you wish to save the file and make your changes permanent, type `C-x C-s' (`save-buffer'). After saving is finished, `C-x C-s' displays a message like this: Wrote /u/rms/gnu/gnu.tasks If the selected buffer is not modified (no changes have been made in it since the buffer was created or last saved), saving is not really done, because it would have no effect. Instead, `C-x C-s' displays a message like this in the echo area: (No changes need to be saved) The command `C-x s' (`save-some-buffers') offers to save any or all modified buffers. It asks you what to do with each buffer. The possible responses are analogous to those of `query-replace': `y' Save this buffer and ask about the rest of the buffers. `n' Don't save this buffer, but ask about the rest of the buffers. `!' Save this buffer and all the rest with no more questions. `' Terminate `save-some-buffers' without any more saving. `.' Save this buffer, then exit `save-some-buffers' without even asking about other buffers. `C-r' View the buffer that you are currently being asked about. When you exit View mode, you get back to `save-some-buffers', which asks the question again. `C-h' Display a help message about these options. `C-x C-c', the key sequence to exit Emacs, invokes `save-some-buffers' and therefore asks the same questions. If you have changed a buffer but you do not want to save the changes, you should take some action to prevent it. Otherwise, each time you use `C-x s' or `C-x C-c', you are liable to save this buffer by mistake. One thing you can do is type `M-~' (`not-modified'), which clears out the indication that the buffer is modified. If you do this, none of the save commands will believe that the buffer needs to be saved. (`~' is often used as a mathematical symbol for `not'; thus `M-~' is `not', metafied.) You could also use `set-visited-file-name' (see below) to mark the buffer as visiting a different file name, one which is not in use for anything important. Alternatively, you can cancel all the changes made since the file was visited or saved, by reading the text from the file again. This is called "reverting". *Note Reverting::. You could also undo all the changes by repeating the undo command `C-x u' until you have undone all the changes; but reverting is easier. `M-x set-visited-file-name' alters the name of the file that the current buffer is visiting. It reads the new file name using the minibuffer. Then it marks the buffer as visiting that file name, and changes the buffer name correspondingly. `set-visited-file-name' does not save the buffer in the newly visited file; it just alters the records inside Emacs in case you do save later. It also marks the buffer as "modified" so that `C-x C-s' in that buffer _will_ save. If you wish to mark the buffer as visiting a different file and save it right away, use `C-x C-w' (`write-file'). It is precisely equivalent to `set-visited-file-name' followed by `C-x C-s'. `C-x C-s' used on a buffer that is not visiting a file has the same effect as `C-x C-w'; that is, it reads a file name, marks the buffer as visiting that file, and saves it there. The default file name in a buffer that is not visiting a file is made by combining the buffer name with the buffer's default directory (*note File Names::). If the new file name implies a major mode, then `C-x C-w' switches to that major mode, in most cases. The command `set-visited-file-name' also does this. *Note Choosing Modes::. If Emacs is about to save a file and sees that the date of the latest version on disk does not match what Emacs last read or wrote, Emacs notifies you of this fact, because it probably indicates a problem caused by simultaneous editing and requires your immediate attention. *Note Simultaneous Editing: Interlocking. If the value of the variable `require-final-newline' is `t', Emacs silently puts a newline at the end of any file that doesn't already end in one, every time a file is saved or written. If the value is `nil', Emacs leaves the end of the file unchanged; if it's neither `nil' nor `t', Emacs asks you whether to add a newline. The default is `nil'. Backup Files ------------ On most operating systems, rewriting a file automatically destroys all record of what the file used to contain. Thus, saving a file from Emacs throws away the old contents of the file--or it would, except that Emacs carefully copies the old contents to another file, called the "backup" file, before actually saving. For most files, the variable `make-backup-files' determines whether to make backup files. On most operating systems, its default value is `t', so that Emacs does write backup files. For files managed by a version control system (*note Version Control::), the variable `vc-make-backup-files' determines whether to make backup files. By default it is `nil', since backup files are redundant when you store all the previous versions in a version control system. *Note General VC Options::. The default value of the `backup-enable-predicate' variable prevents backup files being written for files in the directories used for temporary files, specified by `temporary-file-directory' or `small-temporary-file-directory'. At your option, Emacs can keep either a single backup file or a series of numbered backup files for each file that you edit. Emacs makes a backup for a file only the first time the file is saved from one buffer. No matter how many times you save a file, its backup file continues to contain the contents from before the file was visited. Normally this means that the backup file contains the contents from before the current editing session; however, if you kill the buffer and then visit the file again, a new backup file will be made by the next save. You can also explicitly request making another backup file from a buffer even though it has already been saved at least once. If you save the buffer with `C-u C-x C-s', the version thus saved will be made into a backup file if you save the buffer again. `C-u C-u C-x C-s' saves the buffer, but first makes the previous file contents into a new backup file. `C-u C-u C-u C-x C-s' does both things: it makes a backup from the previous contents, and arranges to make another from the newly saved contents if you save again. Single or Numbered Backups .......................... If you choose to have a single backup file (this is the default), the backup file's name is normally constructed by appending `~' to the file name being edited; thus, the backup file for `eval.c' would be `eval.c~'. You can change this behavior by defining the variable `make-backup-file-name-function' to a suitable function. Alternatively you can customize the variable `backup-directory-alist' to specify that files matching certain patterns should be backed up in specific directories. A typical use is to add an element `("." . DIR)' to make all backups in the directory with absolute name DIR; Emacs modifies the backup file names to avoid clashes between files with the same names originating in different directories. Alternatively, adding, say, `("." . ".~")' would make backups in the invisible subdirectory `.~' of the original file's directory. Emacs creates the directory, if necessary, to make the backup. If access control stops Emacs from writing backup files under the usual names, it writes the backup file as `%backup%~' in your home directory. Only one such file can exist, so only the most recently made such backup is available. If you choose to have a series of numbered backup files, backup file names contain `.~', the number, and another `~' after the original file name. Thus, the backup files of `eval.c' would be called `eval.c.~1~', `eval.c.~2~', and so on, all the way through names like `eval.c.~259~' and beyond. The variable `backup-directory-alist' applies to numbered backups just as usual. The choice of single backup or numbered backups is controlled by the variable `version-control'. Its possible values are `t' Make numbered backups. `nil' Make numbered backups for files that have numbered backups already. Otherwise, make single backups. `never' Never make numbered backups; always make single backups. You can set `version-control' locally in an individual buffer to control the making of backups for that buffer's file. For example, Rmail mode locally sets `version-control' to `never' to make sure that there is only one backup for an Rmail file. *Note Locals::. If you set the environment variable `VERSION_CONTROL', to tell various GNU utilities what to do with backup files, Emacs also obeys the environment variable by setting the Lisp variable `version-control' accordingly at startup. If the environment variable's value is `t' or `numbered', then `version-control' becomes `t'; if the value is `nil' or `existing', then `version-control' becomes `nil'; if it is `never' or `simple', then `version-control' becomes `never'. Automatic Deletion of Backups ............................. To prevent excessive consumption of disk space, Emacs can delete numbered backup versions automatically. Generally Emacs keeps the first few backups and the latest few backups, deleting any in between. This happens every time a new backup is made. The two variables `kept-old-versions' and `kept-new-versions' control this deletion. Their values are, respectively, the number of oldest (lowest-numbered) backups to keep and the number of newest (highest-numbered) ones to keep, each time a new backup is made. The backups in the middle (excluding those oldest and newest) are the excess middle versions--those backups are deleted. These variables' values are used when it is time to delete excess versions, just after a new backup version is made; the newly made backup is included in the count in `kept-new-versions'. By default, both variables are 2. If `delete-old-versions' is non-`nil', Emacs deletes the excess backup files silently. If it is `nil', the default, Emacs asks you whether it should delete the excess backup versions. Dired's `.' (Period) command can also be used to delete old versions. *Note Dired Deletion::. Copying vs. Renaming .................... Backup files can be made by copying the old file or by renaming it. This makes a difference when the old file has multiple names (hard links). If the old file is renamed into the backup file, then the alternate names become names for the backup file. If the old file is copied instead, then the alternate names remain names for the file that you are editing, and the contents accessed by those names will be the new contents. The method of making a backup file may also affect the file's owner and group. If copying is used, these do not change. If renaming is used, you become the file's owner, and the file's group becomes the default (different operating systems have different defaults for the group). Having the owner change is usually a good idea, because then the owner always shows who last edited the file. Also, the owners of the backups show who produced those versions. Occasionally there is a file whose owner should not change; it is a good idea for such files to contain local variable lists to set `backup-by-copying-when-mismatch' locally (*note File Variables::). The choice of renaming or copying is controlled by four variables. Renaming is the default choice. If the variable `backup-by-copying' is non-`nil', copying is used. Otherwise, if the variable `backup-by-copying-when-linked' is non-`nil', then copying is used for files that have multiple names, but renaming may still be used when the file being edited has only one name. If the variable `backup-by-copying-when-mismatch' is non-`nil', then copying is used if renaming would cause the file's owner or group to change. `backup-by-copying-when-mismatch' is `t' by default if you start Emacs as the superuser. The fourth variable, `backup-by-copying-when-privileged-mismatch', gives the highest numeric user-id for which `backup-by-copying-when-mismatch' will be forced on. This is useful when low-numbered user-ids are assigned to special system users, such as `root', `bin', `daemon', etc., which must maintain ownership of files. When a file is managed with a version control system (*note Version Control::), Emacs does not normally make backups in the usual way for that file. But check-in and check-out are similar in some ways to making backups. One unfortunate similarity is that these operations typically break hard links, disconnecting the file name you visited from any alternate names for the same file. This has nothing to do with Emacs--the version control system does it. Protection against Simultaneous Editing --------------------------------------- Simultaneous editing occurs when two users visit the same file, both make changes, and then both save them. If nobody were informed that this was happening, whichever user saved first would later find that his changes were lost. On some systems, Emacs notices immediately when the second user starts to change the file, and issues an immediate warning. On all systems, Emacs checks when you save the file, and warns if you are about to overwrite another user's changes. You can prevent loss of the other user's work by taking the proper corrective action instead of saving the file. When you make the first modification in an Emacs buffer that is visiting a file, Emacs records that the file is "locked" by you. (It does this by creating a symbolic link in the same directory with a different name.) Emacs removes the lock when you save the changes. The idea is that the file is locked whenever an Emacs buffer visiting it has unsaved changes. If you begin to modify the buffer while the visited file is locked by someone else, this constitutes a "collision". When Emacs detects a collision, it asks you what to do, by calling the Lisp function `ask-user-about-lock'. You can redefine this function for the sake of customization. The standard definition of this function asks you a question and accepts three possible answers: `s' Steal the lock. Whoever was already changing the file loses the lock, and you gain the lock. `p' Proceed. Go ahead and edit the file despite its being locked by someone else. `q' Quit. This causes an error (`file-locked'), and the buffer contents remain unchanged--the modification you were trying to make does not actually take place. Note that locking works on the basis of a file name; if a file has multiple names, Emacs does not realize that the two names are the same file and cannot prevent two users from editing it simultaneously under different names. However, basing locking on names means that Emacs can interlock the editing of new files that will not really exist until they are saved. Some systems are not configured to allow Emacs to make locks, and there are cases where lock files cannot be written. In these cases, Emacs cannot detect trouble in advance, but it still can detect the collision when you try to save a file and overwrite someone else's changes. If Emacs or the operating system crashes, this may leave behind lock files which are stale, so you may occasionally get warnings about spurious collisions. When you determine that the collision is spurious, just use `p' to tell Emacs to go ahead anyway. Every time Emacs saves a buffer, it first checks the last-modification date of the existing file on disk to verify that it has not changed since the file was last visited or saved. If the date does not match, it implies that changes were made in the file in some other way, and these changes are about to be lost if Emacs actually does save. To prevent this, Emacs displays a warning message and asks for confirmation before saving. Occasionally you will know why the file was changed and know that it does not matter; then you can answer `yes' and proceed. Otherwise, you should cancel the save with `C-g' and investigate the situation. The first thing you should do when notified that simultaneous editing has already taken place is to list the directory with `C-u C-x C-d' (*note Directories::). This shows the file's current author. You should attempt to contact him to warn him not to continue editing. Often the next step is to save the contents of your Emacs buffer under a different name, and use `diff' to compare the two files. Shadowing Files --------------- `M-x shadow-initialize' Set up file shadowing. `M-x shadow-define-literal-group' Declare a single file to be shared between sites. `M-x shadow-define-regexp-group' Make all files that match each of a group of files be shared between hosts. `M-x shadow-define-cluster NAME ' Define a shadow file cluster NAME. `M-x shadow-copy-files' Copy all pending shadow files. `M-x shadow-cancel' Cancel the instruction to shadow some files. You can arrange to keep identical "shadow" copies of certain files in more than one place--possibly on different machines. To do this, first you must set up a "shadow file group", which is a set of identically-named files shared between a list of sites. The file group is permanent and applies to further Emacs sessions as well as the current one. Once the group is set up, every time you exit Emacs, it will copy the file you edited to the other files in its group. You can also do the copying without exiting Emacs, by typing `M-x shadow-copy-files'. To set up a shadow file group, use `M-x shadow-define-literal-group' or `M-x shadow-define-regexp-group'. See their documentation strings for further information. Before copying a file to its shadows, Emacs asks for confirmation. You can answer "no" to bypass copying of this file, this time. If you want to cancel the shadowing permanently for a certain file, use `M-x shadow-cancel' to eliminate or change the shadow file group. A "shadow cluster" is a group of hosts that share directories, so that copying to or from one of them is sufficient to update the file on all of them. Each shadow cluster has a name, and specifies the network address of a primary host (the one we copy files to), and a regular expression that matches the host names of all the other hosts in the cluster. You can define a shadow cluster with `M-x shadow-define-cluster'. Updating Time Stamps Automatically ---------------------------------- You can arrange to put a time stamp in a file, so that it will be updated automatically each time you edit and save the file. The time stamp has to be in the first eight lines of the file, and you should insert it like this: Time-stamp: <> or like this: Time-stamp: "" Then add the hook function `time-stamp' to the hook `write-file-hooks'; that hook function will automatically update the time stamp, inserting the current date and time when you save the file. You can also use the command `M-x time-stamp' to update the time stamp manually. For other customizations, see the Custom group `time-stamp'. Note that non-numeric fields in the time stamp are formatted according to your locale setting (*note Environment::). Reverting a Buffer ================== If you have made extensive changes to a file and then change your mind about them, you can get rid of them by reading in the previous version of the file. To do this, use `M-x revert-buffer', which operates on the current buffer. Since reverting a buffer unintentionally could lose a lot of work, you must confirm this command with `yes'. `revert-buffer' keeps point at the same distance (measured in characters) from the beginning of the file. If the file was edited only slightly, you will be at approximately the same piece of text after reverting as before. If you have made drastic changes, the same value of point in the old file may address a totally different piece of text. Reverting marks the buffer as "not modified" until another change is made. Some kinds of buffers whose contents reflect data bases other than files, such as Dired buffers, can also be reverted. For them, reverting means recalculating their contents from the appropriate data base. Buffers created explicitly with `C-x b' cannot be reverted; `revert-buffer' reports an error when asked to do so. When you edit a file that changes automatically and frequently--for example, a log of output from a process that continues to run--it may be useful for Emacs to revert the file without querying you, whenever you visit the file again with `C-x C-f'. To request this behavior, set the variable `revert-without-query' to a list of regular expressions. When a file name matches one of these regular expressions, `find-file' and `revert-buffer' will revert it automatically if it has changed--provided the buffer itself is not modified. (If you have edited the text, it would be wrong to discard your changes.) You may find it useful to have Emacs revert files automatically when they change. Two minor modes are available to do this. In Global Auto-Revert mode, Emacs periodically checks all file buffers and reverts any when the corresponding file has changed. The local variant, Auto-Revert mode, applies only to buffers in which it was activated. Checking the files is done at intervals determined by the variable `auto-revert-interval'. Auto-Saving: Protection Against Disasters ========================================= Emacs saves all the visited files from time to time (based on counting your keystrokes) without being asked. This is called "auto-saving". It prevents you from losing more than a limited amount of work if the system crashes. When Emacs determines that it is time for auto-saving, each buffer is considered, and is auto-saved if auto-saving is turned on for it and it has been changed since the last time it was auto-saved. The message `Auto-saving...' is displayed in the echo area during auto-saving, if any files are actually auto-saved. Errors occurring during auto-saving are caught so that they do not interfere with the execution of commands you have been typing. Auto-Save Files --------------- Auto-saving does not normally save in the files that you visited, because it can be very undesirable to save a program that is in an inconsistent state when you have made half of a planned change. Instead, auto-saving is done in a different file called the "auto-save file", and the visited file is changed only when you request saving explicitly (such as with `C-x C-s'). Normally, the auto-save file name is made by appending `#' to the front and rear of the visited file name. Thus, a buffer visiting file `foo.c' is auto-saved in a file `#foo.c#'. Most buffers that are not visiting files are auto-saved only if you request it explicitly; when they are auto-saved, the auto-save file name is made by appending `#%' to the front and `#' to the rear of buffer name. For example, the `*mail*' buffer in which you compose messages to be sent is auto-saved in a file named `#%*mail*#'. Auto-save file names are made this way unless you reprogram parts of Emacs to do something different (the functions `make-auto-save-file-name' and `auto-save-file-name-p'). The file name to be used for auto-saving in a buffer is calculated when auto-saving is turned on in that buffer. When you delete a substantial part of the text in a large buffer, auto save turns off temporarily in that buffer. This is because if you deleted the text unintentionally, you might find the auto-save file more useful if it contains the deleted text. To reenable auto-saving after this happens, save the buffer with `C-x C-s', or use `C-u 1 M-x auto-save'. If you want auto-saving to be done in the visited file rather than in a separate auto-save file, set the variable `auto-save-visited-file-name' to a non-`nil' value. In this mode, there is no real difference between auto-saving and explicit saving. A buffer's auto-save file is deleted when you save the buffer in its visited file. To inhibit this, set the variable `delete-auto-save-files' to `nil'. Changing the visited file name with `C-x C-w' or `set-visited-file-name' renames any auto-save file to go with the new visited name. Controlling Auto-Saving ----------------------- Each time you visit a file, auto-saving is turned on for that file's buffer if the variable `auto-save-default' is non-`nil' (but not in batch mode; *note Entering Emacs::). The default for this variable is `t', so auto-saving is the usual practice for file-visiting buffers. Auto-saving can be turned on or off for any existing buffer with the command `M-x auto-save-mode'. Like other minor mode commands, `M-x auto-save-mode' turns auto-saving on with a positive argument, off with a zero or negative argument; with no argument, it toggles. Emacs does auto-saving periodically based on counting how many characters you have typed since the last time auto-saving was done. The variable `auto-save-interval' specifies how many characters there are between auto-saves. By default, it is 300. Auto-saving also takes place when you stop typing for a while. The variable `auto-save-timeout' says how many seconds Emacs should wait before it does an auto save (and perhaps also a garbage collection). (The actual time period is longer if the current buffer is long; this is a heuristic which aims to keep out of your way when you are editing long buffers, in which auto-save takes an appreciable amount of time.) Auto-saving during idle periods accomplishes two things: first, it makes sure all your work is saved if you go away from the terminal for a while; second, it may avoid some auto-saving while you are actually typing. Emacs also does auto-saving whenever it gets a fatal error. This includes killing the Emacs job with a shell command such as `kill %emacs', or disconnecting a phone line or network connection. You can request an auto-save explicitly with the command `M-x do-auto-save'. Recovering Data from Auto-Saves ------------------------------- You can use the contents of an auto-save file to recover from a loss of data with the command `M-x recover-file FILE '. This visits FILE and then (after your confirmation) restores the contents from its auto-save file `#FILE#'. You can then save with `C-x C-s' to put the recovered text into FILE itself. For example, to recover file `foo.c' from its auto-save file `#foo.c#', do: M-x recover-file foo.c yes C-x C-s Before asking for confirmation, `M-x recover-file' displays a directory listing describing the specified file and the auto-save file, so you can compare their sizes and dates. If the auto-save file is older, `M-x recover-file' does not offer to read it. If Emacs or the computer crashes, you can recover all the files you were editing from their auto save files with the command `M-x recover-session'. This first shows you a list of recorded interrupted sessions. Move point to the one you choose, and type `C-c C-c'. Then `recover-session' asks about each of the files that were being edited during that session, asking whether to recover that file. If you answer `y', it calls `recover-file', which works in its normal fashion. It shows the dates of the original file and its auto-save file, and asks once again whether to recover that file. When `recover-session' is done, the files you've chosen to recover are present in Emacs buffers. You should then save them. Only this--saving them--updates the files themselves. Emacs records interrupted sessions for later recovery in files named `~/.emacs.d/auto-save-list/.saves-PID-HOSTNAME'. The `~/.emacs.d/auto-save-list/.saves-' portion of these names comes from the value of `auto-save-list-file-prefix'. You can record sessions in a different place by customizing that variable. If you set `auto-save-list-file-prefix' to `nil' in your `.emacs' file, sessions are not recorded for recovery. File Name Aliases ================= Symbolic links and hard links both make it possible for several file names to refer to the same file. Hard links are alternate names that refer directly to the file; all the names are equally valid, and no one of them is preferred. By contrast, a symbolic link is a kind of defined alias: when `foo' is a symbolic link to `bar', you can use either name to refer to the file, but `bar' is the real name, while `foo' is just an alias. More complex cases occur when symbolic links point to directories. If you visit two names for the same file, normally Emacs makes two different buffers, but it warns you about the situation. Normally, if you visit a file which Emacs is already visiting under a different name, Emacs displays a message in the echo area and uses the existing buffer visiting that file. This can happen on systems that support symbolic links, or if you use a long file name on a system that truncates long file names. You can suppress the message by setting the variable `find-file-suppress-same-file-warnings' to a non-`nil' value. You can disable this feature entirely by setting the variable `find-file-existing-other-name' to `nil': then if you visit the same file under two different names, you get a separate buffer for each file name. If the variable `find-file-visit-truename' is non-`nil', then the file name recorded for a buffer is the file's "truename" (made by replacing all symbolic links with their target names), rather than the name you specify. Setting `find-file-visit-truename' also implies the effect of `find-file-existing-other-name'. Version Control =============== "Version control systems" are packages that can record multiple versions of a source file, usually storing the unchanged parts of the file just once. Version control systems also record history information such as the creation time of each version, who created it, and a description of what was changed in that version. The Emacs version control interface is called VC. Its commands work with three version control systems--RCS, CVS, and SCCS. The GNU project recommends RCS and CVS, which are free software and available from the Free Software Foundation. We also have free software to replace SCCS, known as CSSC; if you are using SCCS and don't want to make the incompatible change to RCS or CVS, you can switch to CSSC. Introduction to Version Control ------------------------------- VC allows you to use a version control system from within Emacs, integrating the version control operations smoothly with editing. VC provides a uniform interface to version control, so that regardless of which version control system is in use, you can use it the same way. This section provides a general overview of version control, and describes the version control systems that VC supports. You can skip this section if you are already familiar with the version control system you want to use. Supported Version Control Systems ................................. VC currently works with three different version control systems or "back ends": RCS, CVS, and SCCS. RCS is a free version control system that is available from the Free Software Foundation. It is perhaps the most mature of the supported back ends, and the VC commands are conceptually closest to RCS. Almost everything you can do with RCS can be done through VC. CVS is built on top of RCS, and extends the features of RCS, allowing for more sophisticated release management, and concurrent multi-user development. VC supports basic editing operations under CVS, but for some less common tasks you still need to call CVS from the command line. Note also that before using CVS you must set up a repository, which is a subject too complex to treat here. SCCS is a proprietary but widely used version control system. In terms of capabilities, it is the weakest of the three that VC supports. VC compensates for certain features missing in SCCS (snapshots, for example) by implementing them itself, but some other VC features, such as multiple branches, are not available with SCCS. You should use SCCS only if for some reason you cannot use RCS. Concepts of Version Control ........................... When a file is under version control, we also say that it is "registered" in the version control system. Each registered file has a corresponding "master file" which represents the file's present state plus its change history--enough to reconstruct the current version or any earlier version. Usually the master file also records a "log entry" for each version, describing in words what was changed in that version. The file that is maintained under version control is sometimes called the "work file" corresponding to its master file. You edit the work file and make changes in it, as you would with an ordinary file. (With SCCS and RCS, you must "lock" the file before you start to edit it.) After you are done with a set of changes, you "check the file in", which records the changes in the master file, along with a log entry for them. With CVS, there are usually multiple work files corresponding to a single master file--often each user has his own copy. It is also possible to use RCS in this way, but this is not the usual way to use RCS. A version control system typically has some mechanism to coordinate between users who want to change the same file. One method is "locking" (analogous to the locking that Emacs uses to detect simultaneous editing of a file, but distinct from it). The other method is to merge your changes with other people's changes when you check them in. With version control locking, work files are normally read-only so that you cannot change them. You ask the version control system to make a work file writable for you by locking it; only one user can do this at any given time. When you check in your changes, that unlocks the file, making the work file read-only again. This allows other users to lock the file to make further changes. SCCS always uses locking, and RCS normally does. The other alternative for RCS is to let each user modify the work file at any time. In this mode, locking is not required, but it is permitted; check-in is still the way to record a new version. CVS normally allows each user to modify his own copy of the work file at any time, but requires merging with changes from other users at check-in time. However, CVS can also be set up to require locking. (*note CVS Options::). Version Control and the Mode Line --------------------------------- When you visit a file that is under version control, Emacs indicates this on the mode line. For example, `RCS-1.3' says that RCS is used for that file, and the current version is 1.3. The character between the back-end name and the version number indicates the version control status of the file. `-' means that the work file is not locked (if locking is in use), or not modified (if locking is not in use). `:' indicates that the file is locked, or that it is modified. If the file is locked by some other user (for instance, `jim'), that is displayed as `RCS:jim:1.3'. Basic Editing under Version Control ----------------------------------- The principal VC command is an all-purpose command that performs either locking or check-in, depending on the situation. `C-x C-q' `C-x v v' Perform the next logical version control operation on this file. Strictly speaking, the command for this job is `vc-next-action', bound to `C-x v v'. However, the normal meaning of `C-x C-q' is to make a read-only buffer writable, or vice versa; we have extended it to do the same job properly for files managed by version control, by performing the appropriate version control operations. When you type `C-x C-q' on a registered file, it acts like `C-x v v'. The precise action of this command depends on the state of the file, and whether the version control system uses locking or not. SCCS and RCS normally use locking; CVS normally does not use locking. Basic Version Control with Locking .................................. If locking is used for the file (as with SCCS, and RCS in its default mode), `C-x C-q' can either lock a file or check it in: * If the file is not locked, `C-x C-q' locks it, and makes it writable so that you can change it. * If the file is locked by you, and contains changes, `C-x C-q' checks in the changes. In order to do this, it first reads the log entry for the new version. *Note Log Buffer::. * If the file is locked by you, but you have not changed it since you locked it, `C-x C-q' releases the lock and makes the file read-only again. * If the file is locked by some other user, `C-x C-q' asks you whether you want to "steal the lock" from that user. If you say yes, the file becomes locked by you, but a message is sent to the person who had formerly locked the file, to inform him of what has happened. These rules also apply when you use CVS in locking mode, except that there is no such thing as stealing a lock. Basic Version Control without Locking ..................................... When there is no locking--the default for CVS--work files are always writable; you do not need to do anything before you begin to edit a file. The status indicator on the mode line is `-' if the file is unmodified; it flips to `:' as soon as you save any changes in the work file. Here is what `C-x C-q' does when using CVS: * If some other user has checked in changes into the master file, Emacs asks you whether you want to merge those changes into your own work file. You must do this before you can check in your own changes. (To pick up any recent changes from the master file _without_ trying to commit your own changes, type `C-x v m '.) *Note Merging::. * If there are no new changes in the master file, but you have made modifications in your work file, `C-x C-q' checks in your changes. In order to do this, it first reads the log entry for the new version. *Note Log Buffer::. * If the file is not modified, the `C-x C-q' does nothing. These rules also apply when you use RCS in the mode that does not require locking, except that automatic merging of changes from the master file is not implemented. Unfortunately, this means that nothing informs you if another user has checked in changes in the same file since you began editing it, and when this happens, his changes will be effectively removed when you check in your version (though they will remain in the master file, so they will not be entirely lost). You must therefore verify the current version is unchanged, before you check in your changes. We hope to eliminate this risk and provide automatic merging with RCS in a future Emacs version. In addition, locking is possible with RCS even in this mode, although it is not required; `C-x C-q' with an unmodified file locks the file, just as it does with RCS in its normal (locking) mode. Advanced Control in `C-x C-q' ............................. When you give a prefix argument to `vc-next-action' (`C-u C-x C-q'), it still performs the next logical version control operation, but accepts additional arguments to specify precisely how to do the operation. * If the file is modified (or locked), you can specify the version number to use for the new version that you check in. This is one way to create a new branch (*note Branches::). * If the file is not modified (and unlocked), you can specify the version to select; this lets you start working from an older version, or on another branch. If you do not enter any version, that takes you to the highest version on the current branch; therefore `C-u C-x C-q ' is a convenient way to get the latest version of a file from the repository. * Instead of the version number, you can also specify the name of a version control system. This is useful when one file is being managed with two version control systems at the same time (*note Local Version Control::). Features of the Log Entry Buffer ................................ When you check in changes, `C-x C-q' first reads a log entry. It pops up a buffer called `*VC-Log*' for you to enter the log entry. When you are finished, type `C-c C-c' in the `*VC-Log*' buffer. That is when check-in really happens. To abort check-in, just *don't* type `C-c C-c' in that buffer. You can switch buffers and do other editing. As long as you don't try to check in another file, the entry you were editing remains in the `*VC-Log*' buffer, and you can go back to that buffer at any time to complete the check-in. If you change several source files for the same reason, it is often convenient to specify the same log entry for many of the files. To do this, use the history of previous log entries. The commands `M-n', `M-p', `M-s' and `M-r' for doing this work just like the minibuffer history commands (except that these versions are used outside the minibuffer). Each time you check in a file, the log entry buffer is put into VC Log mode, which involves running two hooks: `text-mode-hook' and `vc-log-mode-hook'. *Note Hooks::. Examining And Comparing Old Versions ------------------------------------ One of the convenient features of version control is the ability to examine any version of a file, or compare two versions. `C-x v ~ VERSION ' Examine version VERSION of the visited file, in a buffer of its own. `C-x v =' Compare the current buffer contents with the latest checked-in version of the file. `C-u C-x v = FILE OLDVERS NEWVERS ' Compare the specified two versions of FILE. `C-x v g' Display the result of the CVS annotate command using colors. To examine an old version in its entirety, visit the file and then type `C-x v ~ VERSION ' (`vc-version-other-window'). This puts the text of version VERSION in a file named `FILENAME.~VERSION~', and visits it in its own buffer in a separate window. (In RCS, you can also select an old version and create a branch from it. *Note Branches::.) It is usually more convenient to compare two versions of the file, with the command `C-x v =' (`vc-diff'). Plain `C-x v =' compares the current buffer contents (saving them in the file if necessary) with the last checked-in version of the file. `C-u C-x v =', with a numeric argument, reads a file name and two version numbers, then compares those versions of the specified file. Both forms display the output in a special buffer in another window. You can specify a checked-in version by its number; an empty input specifies the current contents of the work file (which may be different from all the checked-in versions). You can also specify a snapshot name (*note Snapshots::) instead of one or both version numbers. If you supply a directory name instead of the name of a registered file, this command compares the two specified versions of all registered files in that directory and its subdirectories. `C-x v =' works by running a variant of the `diff' utility designed to work with the version control system in use. When you invoke `diff' this way, in addition to the options specified by `diff-switches' (*note Comparing Files::), it receives those specified by `vc-diff-switches', plus those specified for the specific back end by `vc-BACKEND-diff-switches'. For instance, when the version control back end is RCS, `diff' uses the options in `vc-rcs-diff-switches'. The `vc...diff-switches' variables are `nil' by default. Unlike the `M-x diff' command, `C-x v =' does not try to locate the changes in the old and new versions. This is because normally one or both versions do not exist as files when you compare them; they exist only in the records of the master file. *Note Comparing Files::, for more information about `M-x diff'. For CVS-controlled files, you can display the result of the CVS annotate command, using colors to enhance the visual appearance. Use the command `M-x vc-annotate' to do this. It creates a new buffer to display file's text, colored to show how old each part is. Text colored red is new, blue means old, and intermediate colors indicate intermediate ages. By default, the time scale is 360 days, so that everything more than one year old is shown in blue. When you give a prefix argument to this command, it uses the minibuffer to read two arguments: which version number to display and annotate (instead of the current file contents), and a stretch factor for the time scale. A stretch factor of 0.1 means that the color range from red to blue spans the past 36 days instead of 360 days. A stretch factor greater than 1 means the color range spans more than a year. The Secondary Commands of VC ---------------------------- This section explains the secondary commands of VC; those that you might use once a day. Registering a File for Version Control ...................................... You can put any file under version control by simply visiting it, and then typing `C-x v i' (`vc-register'). `C-x v i' Register the visited file for version control. To register the file, Emacs must choose which version control system to use for it. If the file's directory already contains files registered in a version control system, Emacs uses that system. If there is more than one system in use for a directory, Emacs uses the one that appears first in `vc-handled-backends' (*note Customizing VC::). On the other hand, if there are no files already registered, Emacs uses the first system from `vc-handled-backends' that could register the file--for example, you cannot register a file under CVS if its directory is not already part of a CVS tree. With the default value of `vc-handled-backends', this means that Emacs uses RCS if there are any files under RCS control, CVS if there are any files under CVS, SCCS if any files are under SCCS, or RCS as the ultimate default. If locking is in use, `C-x v i' leaves the file unlocked and read-only. Type `C-x C-q' if you wish to start editing it. After registering a file with CVS, you must subsequently commit the initial version by typing `C-x C-q'. The initial version number for a newly registered file is 1.1, by default. You can specify a different default by setting the variable `vc-default-init-version', or you can give `C-x v i' a numeric argument; then it reads the initial version number for this particular file using the minibuffer. If `vc-initial-comment' is non-`nil', `C-x v i' reads an initial comment to describe the purpose of this source file. Reading the initial comment works like reading a log entry (*note Log Buffer::). VC Status Commands .................. `C-x v l' Display version control state and change history. To view the detailed version control status and history of a file, type `C-x v l' (`vc-print-log'). It displays the history of changes to the current file, including the text of the log entries. The output appears in a separate window. Undoing Version Control Actions ............................... `C-x v u' Revert the buffer and the file to the last checked-in version. `C-x v c' Remove the last-entered change from the master for the visited file. This undoes your last check-in. If you want to discard your current set of changes and revert to the last version checked in, use `C-x v u' (`vc-revert-buffer'). This leaves the file unlocked; if locking is in use, you must first lock the file again before you change it again. `C-x v u' requires confirmation, unless it sees that you haven't made any changes since the last checked-in version. `C-x v u' is also the command to unlock a file if you lock it and then decide not to change it. To cancel a change that you already checked in, use `C-x v c' (`vc-cancel-version'). This command discards all record of the most recent checked-in version. `C-x v c' also offers to revert your work file and buffer to the previous version (the one that precedes the version that is deleted). If you answer `no', VC keeps your changes in the buffer, and locks the file. The no-revert option is useful when you have checked in a change and then discover a trivial error in it; you can cancel the erroneous check-in, fix the error, and check the file in again. When `C-x v c' does not revert the buffer, it unexpands all version control headers in the buffer instead (*note Version Headers::). This is because the buffer no longer corresponds to any existing version. If you check it in again, the check-in process will expand the headers properly for the new version number. However, it is impossible to unexpand the RCS `$Log$' header automatically. If you use that header feature, you have to unexpand it by hand--by deleting the entry for the version that you just canceled. Be careful when invoking `C-x v c', as it is easy to lose a lot of work with it. To help you be careful, this command always requires confirmation with `yes'. Note also that this command is disabled under CVS, because canceling versions is very dangerous and discouraged with CVS. Dired under VC .............. The VC Dired Mode described here works with all the version control systems that VC supports. Another more powerful facility, designed specifically for CVS, is called PCL-CVS. *Note About PCL-CVS: (pcl-cvs)Top. When you are working on a large program, it is often useful to find out which files have changed within an entire directory tree, or to view the status of all files under version control at once, and to perform version control operations on collections of files. You can use the command `C-x v d' (`vc-directory') to make a directory listing that includes only files relevant for version control. `C-x v d' creates a buffer which uses VC Dired Mode. This looks much like an ordinary Dired buffer (*note Dired::); however, normally it shows only the noteworthy files (those locked or not up-to-date). This is called "terse display". If you set the variable `vc-dired-terse-display' to `nil', then VC Dired shows all relevant files--those managed under version control, plus all subdirectories ("full display"). The command `v t' in a VC Dired buffer toggles between terse display and full display (*note VC Dired Commands::). By default, VC Dired produces a recursive listing of noteworthy or relevant files at or below the given directory. You can change this by setting the variable `vc-dired-recurse' to `nil'; then VC Dired shows only the files in the given directory. The line for an individual file shows the version control state in the place of the hard link count, owner, group, and size of the file. If the file is unmodified, in sync with the master file, the version control state shown is blank. Otherwise it consists of text in parentheses. Under RCS and SCCS, the name of the user locking the file is shown; under CVS, an abbreviated version of the `cvs status' output is used. Here is an example using RCS: /home/jim/project: -rw-r--r-- (jim) Apr 2 23:39 file1 -r--r--r-- Apr 5 20:21 file2 The files `file1' and `file2' are under version control, `file1' is locked by user jim, and `file2' is unlocked. Here is an example using CVS: /home/joe/develop: -rw-r--r-- (modified) Aug 2 1997 file1.c -rw-r--r-- Apr 4 20:09 file2.c -rw-r--r-- (merge) Sep 13 1996 file3.c Here `file1.c' is modified with respect to the repository, and `file2.c' is not. `file3.c' is modified, but other changes have also been checked in to the repository--you need to merge them with the work file before you can check it in. When VC Dired displays subdirectories (in the "full" display mode), it omits some that should never contain any files under version control. By default, this includes Version Control subdirectories such as `RCS' and `CVS'; you can customize this by setting the variable `vc-directory-exclusion-list'. You can fine-tune VC Dired's format by typing `C-u C-x v d'--as in ordinary Dired, that allows you to specify additional switches for the `ls' command. VC Dired Commands ................. All the usual Dired commands work normally in VC Dired mode, except for `v', which is redefined as the version control prefix. You can invoke VC commands such as `vc-diff' and `vc-print-log' by typing `v =', or `v l', and so on. Most of these commands apply to the file name on the current line. The command `v v' (`vc-next-action') operates on all the marked files, so that you can lock or check in several files at once. If it operates on more than one file, it handles each file according to its current state; thus, it might lock one file, but check in another file. This could be confusing; it is up to you to avoid confusing behavior by marking a set of files that are in a similar state. If any files call for check-in, `v v' reads a single log entry, then uses it for all the files being checked in. This is convenient for registering or checking in several files at once, as part of the same change. You can toggle between terse display (only locked files, or files not up-to-date) and full display at any time by typing `v t' (`vc-dired-toggle-terse-mode'). There is also a special command `* l' (`vc-dired-mark-locked'), which marks all files currently locked (or, with CVS, all files not up-to-date). Thus, typing `* l t k' is another way to delete from the buffer all files except those currently locked. Multiple Branches of a File --------------------------- One use of version control is to maintain multiple "current" versions of a file. For example, you might have different versions of a program in which you are gradually adding various unfinished new features. Each such independent line of development is called a "branch". VC allows you to create branches, switch between different branches, and merge changes from one branch to another. Please note, however, that branches are only supported for RCS at the moment. A file's main line of development is usually called the "trunk". The versions on the trunk are normally numbered 1.1, 1.2, 1.3, etc. At any such version, you can start an independent branch. A branch starting at version 1.2 would have version number 1.2.1.1, and consecutive versions on this branch would have numbers 1.2.1.2, 1.2.1.3, 1.2.1.4, and so on. If there is a second branch also starting at version 1.2, it would consist of versions 1.2.2.1, 1.2.2.2, 1.2.2.3, etc. If you omit the final component of a version number, that is called a "branch number". It refers to the highest existing version on that branch--the "head version" of that branch. The branches in the example above have branch numbers 1.2.1 and 1.2.2. Switching between Branches .......................... To switch between branches, type `C-u C-x C-q' and specify the version number you want to select. This version is then visited _unlocked_ (write-protected), so you can examine it before locking it. Switching branches in this way is allowed only when the file is not locked. You can omit the minor version number, thus giving only the branch number; this takes you to the head version on the chosen branch. If you only type , Emacs goes to the highest version on the trunk. After you have switched to any branch (including the main branch), you stay on it for subsequent VC commands, until you explicitly select some other branch. Creating New Branches ..................... To create a new branch from a head version (one that is the latest in the branch that contains it), first select that version if necessary, lock it with `C-x C-q', and make whatever changes you want. Then, when you check in the changes, use `C-u C-x C-q'. This lets you specify the version number for the new version. You should specify a suitable branch number for a branch starting at the current version. For example, if the current version is 2.5, the branch number should be 2.5.1, 2.5.2, and so on, depending on the number of existing branches at that point. To create a new branch at an older version (one that is no longer the head of a branch), first select that version (*note Switching Branches::), then lock it with `C-x C-q'. You'll be asked to confirm, when you lock the old version, that you really mean to create a new branch--if you say no, you'll be offered a chance to lock the latest version instead. Then make your changes and type `C-x C-q' again to check in a new version. This automatically creates a new branch starting from the selected version. You need not specially request a new branch, because that's the only way to add a new version at a point that is not the head of a branch. After the branch is created, you "stay" on it. That means that subsequent check-ins create new versions on that branch. To leave the branch, you must explicitly select a different version with `C-u C-x C-q'. To transfer changes from one branch to another, use the merge command, described in the next section. Merging Branches ................ When you have finished the changes on a certain branch, you will often want to incorporate them into the file's main line of development (the trunk). This is not a trivial operation, because development might also have proceeded on the trunk, so that you must "merge" the changes into a file that has already been changed otherwise. VC allows you to do this (and other things) with the `vc-merge' command. `C-x v m (vc-merge)' Merge changes into the work file. `C-x v m' (`vc-merge') takes a set of changes and merges it into the current version of the work file. It firsts asks you in the minibuffer where the changes should come from. If you just type , Emacs merges any changes that were made on the same branch since you checked the file out (we call this "merging the news"). This is the common way to pick up recent changes from the repository, regardless of whether you have already changed the file yourself. You can also enter a branch number or a pair of version numbers in the minibuffer. Then `C-x v m' finds the changes from that branch, or the differences between the two versions you specified, and merges them into the current version of the current file. As an example, suppose that you have finished a certain feature on branch 1.3.1. In the meantime, development on the trunk has proceeded to version 1.5. To merge the changes from the branch to the trunk, first go to the head version of the trunk, by typing `C-u C-x C-q '. Version 1.5 is now current. If locking is used for the file, type `C-x C-q' to lock version 1.5 so that you can change it. Next, type `C-x v m 1.3.1 '. This takes the entire set of changes on branch 1.3.1 (relative to version 1.3, where the branch started, up to the last version on the branch) and merges it into the current version of the work file. You can now check in the changed file, thus creating version 1.6 containing the changes from the branch. It is possible to do further editing after merging the branch, before the next check-in. But it is usually wiser to check in the merged version, then lock it and make the further changes. This will keep a better record of the history of changes. When you merge changes into a file that has itself been modified, the changes might overlap. We call this situation a "conflict", and reconciling the conflicting changes is called "resolving a conflict". Whenever conflicts occur during merging, VC detects them, tells you about them in the echo area, and asks whether you want help in merging. If you say yes, it starts an Ediff session (*note Ediff: (ediff)Top.). If you say no, the conflicting changes are both inserted into the file, surrounded by "conflict markers". The example below shows how a conflict region looks; the file is called `name' and the current master file version with user B's changes in it is 1.11. <<<<<<< name USER A'S VERSION ======= USER B'S VERSION >>>>>>> 1.11 Then you can resolve the conflicts by editing the file manually. Or you can type `M-x vc-resolve-conflicts' after visiting the file. This starts an Ediff session, as described above. Don't forget to check in the merged version afterwards. Multi-User Branching .................... It is often useful for multiple developers to work simultaneously on different branches of a file. CVS allows this by default; for RCS, it is possible if you create multiple source directories. Each source directory should have a link named `RCS' which points to a common directory of RCS master files. Then each source directory can have its own choice of selected versions, but all share the same common RCS records. This technique works reliably and automatically, provided that the source files contain RCS version headers (*note Version Headers::). The headers enable Emacs to be sure, at all times, which version number is present in the work file. If the files do not have version headers, you must instead tell Emacs explicitly in each session which branch you are working on. To do this, first find the file, then type `C-u C-x C-q' and specify the correct branch number. This ensures that Emacs knows which branch it is using during this particular editing session. Remote Repositories ------------------- A common way of using CVS is to set up a central CVS repository on some Internet host, then have each developer check out a personal working copy of the files on his local machine. Committing changes to the repository, and picking up changes from other users into one's own working area, then works by direct interactions with the CVS server. One difficulty is that access to the CVS server is often slow, and that developers might need to work off-line as well. VC is designed to reduce the amount of network interaction necessary. Version Backups ............... When VC sees that the CVS repository for a file is on a remote machine, it automatically makes local backups of unmodified versions of the file--"automatic version backups". This means that you can compare the file to the repository version (`C-x v ='), or revert to that version (`C-x v u'), without any network interactions. The local copy of the unmodified file is called a "version backup" to indicate that it corresponds exactly to a version that is stored in the repository. Note that version backups are not the same as ordinary Emacs backup files (*note Backup::). But they follow a similar naming convention. For a file that comes from a remote CVS repository, VC makes a version backup whenever you save the first changes to the file, and removes it after you have committed your modified version to the repository. You can disable the making of automatic version backups by setting `vc-cvs-stay-local' to `nil' (*note CVS Options::). The name of the automatic version backup for version VERSION of file FILE is `FILE.~VERSION.~'. This is almost the same as the name used by `C-x v ~' (*note Old Versions::), the only difference being the additional dot (`.') after the version number. This similarity is intentional, because both kinds of files store the same kind of information. The file made by `C-x v ~' acts as a "manual version backup". All the VC commands that operate on old versions of a file can use both kinds of version backups. For instance, `C-x v ~' uses either an automatic or a manual version backup, if possible, to get the contents of the version you request. Likewise, `C-x v =' and `C-x v u' use either an automatic or a manual version backup, if one of them exists, to get the contents of a version to compare or revert to. If you changed a file outside of Emacs, so that no automatic version backup was created for the previous text, you can create a manual backup of that version using `C-x v ~', and thus obtain the benefit of the local copy for Emacs commands. The only difference in Emacs's handling of manual and automatic version backups, once they exist, is that Emacs deletes automatic version backups when you commit to the repository. By contrast, manual version backups remain until you delete them. Local Version Control ..................... When you make many changes to a file that comes from a remote repository, it can be convenient to have version control on your local machine as well. You can then record intermediate versions, revert to a previous state, etc., before you actually commit your changes to the remote server. VC lets you do this by putting a file under a second, local version control system, so that the file is effectively registered in two systems at the same time. For the description here, we will assume that the remote system is CVS, and you use RCS locally, although the mechanism works with any combination of version control systems ("back ends"). To make it work with other back ends, you must make sure that the "more local" back end comes before the "more remote" back end in the setting of `vc-handled-backends' (*note Customizing VC::). By default, this variable is set up so that you can use remote CVS and local RCS as described here. To start using local RCS for a file that comes from a remote CVS server, you must _register the file in RCS_, by typing `C-u C-x v v rcs '. (In other words, use `vc-next-action' with a prefix argument, and specify RCS as the back end.) You can do this at any time; it does not matter whether you have already modified the file with respect to the version in the CVS repository. If possible, VC tries to make the RCS master start with the unmodified repository version, then checks in any local changes as a new version. This works if you have not made any changes yet, or if the unmodified repository version exists locally as a version backup (*note Version Backups::). If the unmodified version is not available locally, the RCS master starts with the modified version; the only drawback to this is that you cannot compare your changes locally to what is stored in the repository. The version number of the RCS master is derived from the current CVS version, starting a branch from it. For example, if the current CVS version is 1.23, the local RCS branch will be 1.23.1. Version 1.23 in the RCS master will be identical to version 1.23 under CVS; your first changes are checked in as 1.23.1.1. (If the unmodified file is not available locally, VC will check in the modified file twice, both as 1.23 and 1.23.1.1, to make the revision numbers consistent.) If you do not use locking under CVS (the default), locking is also disabled for RCS, so that editing under RCS works exactly as under CVS. When you are done with local editing, you can commit the final version back to the CVS repository by typing `C-u C-x v v cvs '. This initializes the log entry buffer (*note Log Buffer::) to contain all the log entries you have recorded in the RCS master; you can edit them as you wish, and then commit in CVS by typing `C-c C-c'. If the commit is successful, VC removes the RCS master, so that the file is once again registered under CVS only. (The RCS master is not actually deleted, just renamed by appending `~' to the name, so that you can refer to it later if you wish.) While using local RCS, you can pick up recent changes from the CVS repository into your local file, or commit some of your changes back to CVS, without terminating local RCS version control. To do this, switch to the CVS back end temporarily, with the `C-x v b' command: `C-x v b' Switch to another back end that the current file is registered under (`vc-switch-backend'). `C-u C-x v b BACKEND ' Switch to BACKEND for the current file. `C-x v b' does not change the buffer contents, or any files; it only changes VC's perspective on how to handle the file. Any subsequent VC commands for that file will operate on the back end that is currently selected. If the current file is registered in more than one back end, typing `C-x v b' "cycles" through all of these back ends. With a prefix argument, it asks for the back end to use in the minibuffer. Thus, if you are using local RCS, and you want to pick up some recent changes in the file from remote CVS, first visit the file, then type `C-x v b' to switch to CVS, and finally use `C-x v m ' to merge the news (*note Merging::). You can then switch back to RCS by typing `C-x v b' again, and continue to edit locally. But if you do this, the revision numbers in the RCS master no longer correspond to those of CVS. Technically, this is not a problem, but it can become difficult to keep track of what is in the CVS repository and what is not. So we suggest that you return from time to time to CVS-only operation, using `C-u C-x v v cvs '. Snapshots --------- A "snapshot" is a named set of file versions (one for each registered file) that you can treat as a unit. One important kind of snapshot is a "release", a (theoretically) stable version of the system that is ready for distribution to users. Making and Using Snapshots .......................... There are two basic commands for snapshots; one makes a snapshot with a given name, the other retrieves a named snapshot. `C-x v s NAME ' Define the last saved versions of every registered file in or under the current directory as a snapshot named NAME (`vc-create-snapshot'). `C-x v r NAME ' For all registered files at or below the current directory level, select whatever versions correspond to the snapshot NAME (`vc-retrieve-snapshot'). This command reports an error if any files are locked at or below the current directory, without changing anything; this is to avoid overwriting work in progress. A snapshot uses a very small amount of resources--just enough to record the list of file names and which version belongs to the snapshot. Thus, you need not hesitate to create snapshots whenever they are useful. You can give a snapshot name as an argument to `C-x v =' or `C-x v ~' (*note Old Versions::). Thus, you can use it to compare a snapshot against the current files, or two snapshots against each other, or a snapshot against a named version. Snapshot Caveats ................ VC's snapshot facilities are modeled on RCS's named-configuration support. They use RCS's native facilities for this, so under VC snapshots made using RCS are visible even when you bypass VC. For SCCS, VC implements snapshots itself. The files it uses contain name/file/version-number triples. These snapshots are visible only through VC. A snapshot is a set of checked-in versions. So make sure that all the files are checked in and not locked when you make a snapshot. File renaming and deletion can create some difficulties with snapshots. This is not a VC-specific problem, but a general design issue in version control systems that no one has solved very well yet. If you rename a registered file, you need to rename its master along with it (the command `vc-rename-file' does this automatically). If you are using SCCS, you must also update the records of the snapshot, to mention the file by its new name (`vc-rename-file' does this, too). An old snapshot that refers to a master file that no longer exists under the recorded name is invalid; VC can no longer retrieve it. It would be beyond the scope of this manual to explain enough about RCS and SCCS to explain how to update the snapshots by hand. Using `vc-rename-file' makes the snapshot remain valid for retrieval, but it does not solve all problems. For example, some of the files in your program probably refer to others by name. At the very least, the makefile probably mentions the file that you renamed. If you retrieve an old snapshot, the renamed file is retrieved under its new name, which is not the name that the makefile expects. So the program won't really work as retrieved. Miscellaneous Commands and Features of VC ----------------------------------------- This section explains the less-frequently-used features of VC. Change Logs and VC .................. If you use RCS or CVS for a program and also maintain a change log file for it (*note Change Log::), you can generate change log entries automatically from the version control log entries: `C-x v a' Visit the current directory's change log file and, for registered files in that directory, create new entries for versions checked in since the most recent entry in the change log file. (`vc-update-change-log'). This command works with RCS or CVS only, not with SCCS. `C-u C-x v a' As above, but only find entries for the current buffer's file. `M-1 C-x v a' As above, but find entries for all the currently visited files that are maintained with version control. This works only with RCS, and it puts all entries in the log for the default directory, which may not be appropriate. For example, suppose the first line of `ChangeLog' is dated 1999-04-10, and that the only check-in since then was by Nathaniel Bowditch to `rcs2log' on 1999-05-22 with log text `Ignore log messages that start with `#'.'. Then `C-x v a' visits `ChangeLog' and inserts text like this: 1999-05-22 Nathaniel Bowditch * rcs2log: Ignore log messages that start with `#'. You can then edit the new change log entry further as you wish. Some of the new change log entries may duplicate what's already in ChangeLog. You will have to remove these duplicates by hand. Normally, the log entry for file `foo' is displayed as `* foo: TEXT OF LOG ENTRY'. The `:' after `foo' is omitted if the text of the log entry starts with `(FUNCTIONNAME): '. For example, if the log entry for `vc.el' is `(vc-do-command): Check call-process status.', then the text in `ChangeLog' looks like this: 1999-05-06 Nathaniel Bowditch * vc.el (vc-do-command): Check call-process status. When `C-x v a' adds several change log entries at once, it groups related log entries together if they all are checked in by the same author at nearly the same time. If the log entries for several such files all have the same text, it coalesces them into a single entry. For example, suppose the most recent check-ins have the following log entries: * For `vc.texinfo': `Fix expansion typos.' * For `vc.el': `Don't call expand-file-name.' * For `vc-hooks.el': `Don't call expand-file-name.' They appear like this in `ChangeLog': 1999-04-01 Nathaniel Bowditch * vc.texinfo: Fix expansion typos. * vc.el, vc-hooks.el: Don't call expand-file-name. Normally, `C-x v a' separates log entries by a blank line, but you can mark several related log entries to be clumped together (without an intervening blank line) by starting the text of each related log entry with a label of the form `{CLUMPNAME} '. The label itself is not copied to `ChangeLog'. For example, suppose the log entries are: * For `vc.texinfo': `{expand} Fix expansion typos.' * For `vc.el': `{expand} Don't call expand-file-name.' * For `vc-hooks.el': `{expand} Don't call expand-file-name.' Then the text in `ChangeLog' looks like this: 1999-04-01 Nathaniel Bowditch * vc.texinfo: Fix expansion typos. * vc.el, vc-hooks.el: Don't call expand-file-name. A log entry whose text begins with `#' is not copied to `ChangeLog'. For example, if you merely fix some misspellings in comments, you can log the change with an entry beginning with `#' to avoid putting such trivia into `ChangeLog'. Renaming VC Work Files and Master Files ....................................... When you rename a registered file, you must also rename its master file correspondingly to get proper results. Use `vc-rename-file' to rename the source file as you specify, and rename its master file accordingly. It also updates any snapshots (*note Snapshots::) that mention the file, so that they use the new name; despite this, the snapshot thus modified may not completely work (*note Snapshot Caveats::). You cannot use `vc-rename-file' on a file that is locked by someone else. Inserting Version Control Headers ................................. Sometimes it is convenient to put version identification strings directly into working files. Certain special strings called "version headers" are replaced in each successive version by the number of that version. If you are using RCS, and version headers are present in your working files, Emacs can use them to determine the current version and the locking state of the files. This is more reliable than referring to the master files, which is done when there are no version headers. Note that in a multi-branch environment, version headers are necessary to make VC behave correctly (*note Multi-User Branching::). Searching for version headers is controlled by the variable `vc-consult-headers'. If it is non-`nil' (the default), Emacs searches for headers to determine the version number you are editing. Setting it to `nil' disables this feature. You can use the `C-x v h' command (`vc-insert-headers') to insert a suitable header string. `C-x v h' Insert headers in a file for use with your version-control system. The default header string is `$Id$' for RCS and `%W%' for SCCS. You can specify other headers to insert by setting the variable `vc-header-alist'. Its value is a list of elements of the form `(PROGRAM . STRING)' where PROGRAM is `RCS' or `SCCS' and STRING is the string to use. Instead of a single string, you can specify a list of strings; then each string in the list is inserted as a separate header on a line of its own. It is often necessary to use "superfluous" backslashes when writing the strings that you put in this variable. For instance, you might write `"$Id\$"' rather than `"$Id$"'. The extra backslash prevents the string constant from being interpreted as a header, if the Emacs Lisp file containing it is maintained with version control. Each header is inserted surrounded by tabs, inside comment delimiters, on a new line at point. Normally the ordinary comment start and comment end strings of the current mode are used, but for certain modes, there are special comment delimiters for this purpose; the variable `vc-comment-alist' specifies them. Each element of this list has the form `(MODE STARTER ENDER)'. The variable `vc-static-header-alist' specifies further strings to add based on the name of the buffer. Its value should be a list of elements of the form `(REGEXP . FORMAT)'. Whenever REGEXP matches the buffer name, FORMAT is inserted as part of the header. A header line is inserted for each element that matches the buffer name, and for each string specified by `vc-header-alist'. The header line is made by processing the string from `vc-header-alist' with the format taken from the element. The default value for `vc-static-header-alist' is as follows: (("\\.c$" . "\n#ifndef lint\nstatic char vcid[] = \"\%s\";\n\ #endif /* lint */\n")) It specifies insertion of text of this form: #ifndef lint static char vcid[] = "STRING"; #endif /* lint */ Note that the text above starts with a blank line. If you use more than one version header in a file, put them close together in the file. The mechanism in `revert-buffer' that preserves markers may not handle markers positioned between two version headers. Customizing VC -------------- The variable `vc-handled-backends' determines which version control systems VC should handle. The default value is `(RCS CVS SCCS)', so it contains all three version systems that are currently supported. If you want VC to ignore one or more of these systems, exclude its name from the list. The order of systems in the list is significant: when you visit a file registered in more than one system (*note Local Version Control::), VC uses the system that comes first in `vc-handled-backends' by default. The order is also significant when you register a file for the first time, *note Registering:: for details. General Options ............... Emacs normally does not save backup files for source files that are maintained with version control. If you want to make backup files even for files that use version control, set the variable `vc-make-backup-files' to a non-`nil' value. Normally the work file exists all the time, whether it is locked or not. If you set `vc-keep-workfiles' to `nil', then checking in a new version with `C-x C-q' deletes the work file; but any attempt to visit the file with Emacs creates it again. (With CVS, work files are always kept.) Editing a version-controlled file through a symbolic link can be dangerous. It bypasses the version control system--you can edit the file without locking it, and fail to check your changes in. Also, your changes might overwrite those of another user. To protect against this, VC checks each symbolic link that you visit, to see if it points to a file under version control. The variable `vc-follow-symlinks' controls what to do when a symbolic link points to a version-controlled file. If it is `nil', VC only displays a warning message. If it is `t', VC automatically follows the link, and visits the real file instead, telling you about this in the echo area. If the value is `ask' (the default), VC asks you each time whether to follow the link. If `vc-suppress-confirm' is non-`nil', then `C-x C-q' and `C-x v i' can save the current buffer without asking, and `C-x v u' also operates without asking for confirmation. (This variable does not affect `C-x v c'; that operation is so drastic that it should always ask for confirmation.) VC mode does much of its work by running the shell commands for RCS, CVS and SCCS. If `vc-command-messages' is non-`nil', VC displays messages to indicate which shell commands it runs, and additional messages when the commands finish. You can specify additional directories to search for version control programs by setting the variable `vc-path'. These directories are searched before the usual search path. It is rarely necessary to set this variable, because VC normally finds the proper files automatically. Options for RCS and SCCS ........................ By default, RCS uses locking to coordinate the activities of several users, but there is a mode called "non-strict locking" in which you can check-in changes without locking the file first. Use `rcs -U' to switch to non-strict locking for a particular file, see the `rcs' manual page for details. When deducing the version control state of an RCS file, VC first looks for an RCS version header string in the file (*note Version Headers::). If there is no header string, VC normally looks at the file permissions of the work file; this is fast. But there might be situations when the file permissions cannot be trusted. In this case the master file has to be consulted, which is rather expensive. Also the master file can only tell you _if_ there's any lock on the file, but not whether your work file really contains that locked version. You can tell VC not to use version headers to determine the file status by setting `vc-consult-headers' to `nil'. VC then always uses the file permissions (if it is supposed to trust them), or else checks the master file. You can specify the criterion for whether to trust the file permissions by setting the variable `vc-mistrust-permissions'. Its value can be `t' (always mistrust the file permissions and check the master file), `nil' (always trust the file permissions), or a function of one argument which makes the decision. The argument is the directory name of the `RCS' subdirectory. A non-`nil' value from the function says to mistrust the file permissions. If you find that the file permissions of work files are changed erroneously, set `vc-mistrust-permissions' to `t'. Then VC always checks the master file to determine the file's status. VC determines the version control state of files under SCCS much as with RCS. It does not consider SCCS version headers, though. Thus, the variable `vc-mistrust-permissions' affects SCCS use, but `vc-consult-headers' does not. Options specific for CVS ........................ By default, CVS does not use locking to coordinate the activities of several users; anyone can change a work file at any time. However, there are ways to restrict this, resulting in behavior that resembles locking. For one thing, you can set the `CVSREAD' environment variable (the value you use makes no difference). If this variable is defined, CVS makes your work files read-only by default. In Emacs, you must type `C-x C-q' to make the file writable, so that editing works in fact similar as if locking was used. Note however, that no actual locking is performed, so several users can make their files writable at the same time. When setting `CVSREAD' for the first time, make sure to check out all your modules anew, so that the file protections are set correctly. Another way to achieve something similar to locking is to use the "watch" feature of CVS. If a file is being watched, CVS makes it read-only by default, and you must also use `C-x C-q' in Emacs to make it writable. VC calls `cvs edit' to make the file writable, and CVS takes care to notify other developers of the fact that you intend to change the file. See the CVS documentation for details on using the watch feature. When a file's repository is on a remote machine, VC tries to keep network interactions to a minimum. This is controlled by the variable `vc-cvs-stay-local'. If it is `t' (the default), then VC uses only the entry in the local CVS subdirectory to determine the file's state (and possibly information returned by previous CVS commands). One consequence of this is that when you have modified a file, and somebody else has already checked in other changes to the file, you are not notified of it until you actually try to commit. (But you can try to pick up any recent changes from the repository first, using `C-x v m ', *note Merging::). When `vc-cvs-stay-local' is `t', VC also makes local version backups, so that simple diff and revert operations are completely local (*note Version Backups::). On the other hand, if you set `vc-cvs-stay-local' to `nil', then VC queries the remote repository _before_ it decides what to do in `vc-next-action' (`C-x v v'), just as it does for local repositories. It also does not make any version backups. You can also set `vc-cvs-stay-local' to a regular expression that is matched against the repository host name; VC then stays local only for repositories from hosts that match the pattern. File Directories ================ The file system groups files into "directories". A "directory listing" is a list of all the files in a directory. Emacs provides commands to create and delete directories, and to make directory listings in brief format (file names only) and verbose format (sizes, dates, and authors included). There is also a directory browser called Dired; see *Note Dired::. `C-x C-d DIR-OR-PATTERN ' Display a brief directory listing (`list-directory'). `C-u C-x C-d DIR-OR-PATTERN ' Display a verbose directory listing. `M-x make-directory DIRNAME ' Create a new directory named DIRNAME. `M-x delete-directory DIRNAME ' Delete the directory named DIRNAME. It must be empty, or you get an error. The command to display a directory listing is `C-x C-d' (`list-directory'). It reads using the minibuffer a file name which is either a directory to be listed or a wildcard-containing pattern for the files to be listed. For example, C-x C-d /u2/emacs/etc lists all the files in directory `/u2/emacs/etc'. Here is an example of specifying a file name pattern: C-x C-d /u2/emacs/src/*.c Normally, `C-x C-d' displays a brief directory listing containing just file names. A numeric argument (regardless of value) tells it to make a verbose listing including sizes, dates, and owners (like `ls -l'). The text of a directory listing is obtained by running `ls' in an inferior process. Two Emacs variables control the switches passed to `ls': `list-directory-brief-switches' is a string giving the switches to use in brief listings (`"-CF"' by default), and `list-directory-verbose-switches' is a string giving the switches to use in a verbose listing (`"-l"' by default). Comparing Files =============== The command `M-x diff' compares two files, displaying the differences in an Emacs buffer named `*diff*'. It works by running the `diff' program, using options taken from the variable `diff-switches'. The value of `diff-switches' should be a string; the default is `"-c"' to specify a context diff. The buffer `*diff*' has Compilation mode as its major mode, so you can use `C-x `' to visit successive changed locations in the two source files. You can also move to a particular hunk of changes and type or `C-c C-c', or click `Mouse-2' on it, to move to the corresponding source location. You can also use the other special commands of Compilation mode: and for scrolling, and `M-p' and `M-n' for cursor motion. *Note Compilation::. The command `M-x diff-backup' compares a specified file with its most recent backup. If you specify the name of a backup file, `diff-backup' compares it with the source file that it is a backup of. The command `M-x compare-windows' compares the text in the current window with that in the next window. Comparison starts at point in each window, and each starting position is pushed on the mark ring in its respective buffer. Then point moves forward in each window, a character at a time, until a mismatch between the two windows is reached. Then the command is finished. For more information about windows in Emacs, *Note Windows::. With a numeric argument, `compare-windows' ignores changes in whitespace. If the variable `compare-ignore-case' is non-`nil', it ignores differences in case as well. Differences between versions of files are often distributed as "patches", which are the output from `diff' or a version control system that uses `diff'. `M-x diff-mode' turns on Diff mode, a major mode for viewing and editing patches, either as "unified diffs" or "context diffs." You can use `M-x smerge-mode' to turn on Smerge mode, a minor mode for editing output from the `diff3' program. This is typically the result of a failed merge from a version control system "update" outside VC, due to conflicting changes to a file. Smerge mode provides commands to resolve conflicts by selecting specific changes. See also *Note Emerge::, and *Note Top: (ediff)Top, for convenient facilities for merging two similar files. Miscellaneous File Operations ============================= Emacs has commands for performing many other operations on files. All operate on one file; they do not accept wildcard file names. `M-x view-file' allows you to scan or read a file by sequential screenfuls. It reads a file name argument using the minibuffer. After reading the file into an Emacs buffer, `view-file' displays the beginning. You can then type to scroll forward one windowful, or to scroll backward. Various other commands are provided for moving around in the file, but none for changing it; type `?' while viewing for a list of them. They are mostly the same as normal Emacs cursor motion commands. To exit from viewing, type `q'. The commands for viewing are defined by a special major mode called View mode. A related command, `M-x view-buffer', views a buffer already present in Emacs. *Note Misc Buffer::. `M-x insert-file' (also `C-x i') inserts a copy of the contents of the specified file into the current buffer at point, leaving point unchanged before the contents and the mark after them. `M-x write-region' is the inverse of `M-x insert-file'; it copies the contents of the region into the specified file. `M-x append-to-file' adds the text of the region to the end of the specified file. *Note Accumulating Text::. `M-x delete-file' deletes the specified file, like the `rm' command in the shell. If you are deleting many files in one directory, it may be more convenient to use Dired (*note Dired::). `M-x rename-file' reads two file names OLD and NEW using the minibuffer, then renames file OLD as NEW. If the file name NEW already exists, you must confirm with `yes' or renaming is not done; this is because renaming causes the old meaning of the name NEW to be lost. If OLD and NEW are on different file systems, the file OLD is copied and deleted. The similar command `M-x add-name-to-file' is used to add an additional name to an existing file without removing its old name. The new name is created as a "hard link" to the existing file. The new name must belong on the same file system that the file is on. On Windows, this command works only if the file resides in an NTFS file system. On MS-DOS, it works by copying the file. `M-x copy-file' reads the file OLD and writes a new file named NEW with the same contents. Confirmation is required if a file named NEW already exists, because copying has the consequence of overwriting the old contents of the file NEW. `M-x make-symbolic-link' reads two file names TARGET and LINKNAME, then creates a symbolic link named LINKNAME, which points at TARGET. The effect is that future attempts to open file LINKNAME will refer to whatever file is named TARGET at the time the opening is done, or will get an error if the name TARGET is not in use at that time. This command does not expand the argument TARGET, so that it allows you to specify a relative name as the target of the link. Confirmation is required when creating the link if LINKNAME is in use. Note that not all systems support symbolic links; on systems that don't support them, this command is not defined. Accessing Compressed Files ========================== Emacs comes with a library that can automatically uncompress compressed files when you visit them, and automatically recompress them if you alter them and save them. To enable this feature, type the command `M-x auto-compression-mode'. You can enable it permanently by customizing the option `auto-compression-mode'. When automatic compression (which implies automatic uncompression as well) is enabled, Emacs recognizes compressed files by their file names. File names ending in `.gz' indicate a file compressed with `gzip'. Other endings indicate other compression programs. Automatic uncompression and compression apply to all the operations in which Emacs uses the contents of a file. This includes visiting it, saving it, inserting its contents into a buffer, loading it, and byte compiling it. File Archives ============= A file whose name ends in `.tar' is normally an "archive" made by the `tar' program. Emacs views these files in a special mode called Tar mode which provides a Dired-like list of the contents (*note Dired::). You can move around through the list just as you would in Dired, and visit the subfiles contained in the archive. However, not all Dired commands are available in Tar mode. If you enable Auto Compression mode (*note Compressed Files::), then Tar mode is used also for compressed archives--files with extensions `.tgz', `.tar.Z' and `.tar.gz'. The keys `e', `f' and all extract a component file into its own buffer. You can edit it there and when you save the buffer the edited version will replace the version in the Tar buffer. `v' extracts a file into a buffer in View mode. `o' extracts the file and displays it in another window, so you could edit the file and operate on the archive simultaneously. `d' marks a file for deletion when you later use `x', and `u' unmarks a file, as in Dired. `C' copies a file from the archive to disk and `R' renames a file. `g' reverts the buffer from the archive on disk. The keys `M', `G', and `O' change the file's permission bits, group, and owner, respectively. If your display supports colors and the mouse, moving the mouse pointer across a file name highlights that file name, indicating that you can click on it. Clicking `Mouse-2' on the highlighted file name extracts the file into a buffer and displays that buffer. Saving the Tar buffer writes a new version of the archive to disk with the changes you made to the components. You don't need the `tar' program to use Tar mode--Emacs reads the archives directly. However, accessing compressed archives requires the appropriate uncompression program. A separate but similar Archive mode is used for archives produced by the programs `arc', `jar', `lzh', `zip', and `zoo', which have extensions corresponding to the program names. The key bindings of Archive mode are similar to those in Tar mode, with the addition of the `m' key which marks a file for subsequent operations, and `M-' which unmarks all the marked files. Also, the `a' key toggles the display of detailed file information, for those archive types where it won't fit in a single line. Operations such as renaming a subfile, or changing its mode or owner, are supported only for some of the archive formats. Unlike Tar mode, Archive mode runs the archiving program to unpack and repack archives. Details of the program names and their options can be set in the `Archive' Customize group. However, you don't need these programs to look at the archive table of contents, only to extract or manipulate the subfiles in the archive. Remote Files ============ You can refer to files on other machines using a special file name syntax: /HOST:FILENAME /USER@HOST:FILENAME /USER@HOST#PORT:FILENAME When you do this, Emacs uses the FTP program to read and write files on the specified host. It logs in through FTP using your user name or the name USER. It may ask you for a password from time to time; this is used for logging in on HOST. The form using PORT allows you to access servers running on a non-default TCP port. If you want to disable backups for remote files, set the variable `ange-ftp-make-backup-files' to `nil'. Normally, if you do not specify a user name in a remote file name, that means to use your own user name. But if you set the variable `ange-ftp-default-user' to a string, that string is used instead. (The Emacs package that implements FTP file access is called `ange-ftp'.) To visit files accessible by anonymous FTP, you use special user names `anonymous' or `ftp'. Passwords for these user names are handled specially. The variable `ange-ftp-generate-anonymous-password' controls what happens: if the value of this variable is a string, then that string is used as the password; if non-`nil' (the default), then the value of `user-mail-address' is used; if `nil', the user is prompted for a password as normal. Sometimes you may be unable to access files on a remote machine because a "firewall" in between blocks the connection for security reasons. If you can log in on a "gateway" machine from which the target files _are_ accessible, and whose FTP server supports gatewaying features, you can still use remote file names; all you have to do is specify the name of the gateway machine by setting the variable `ange-ftp-gateway-host', and set `ange-ftp-smart-gateway' to `t'. Otherwise you may be able to make remote file names work, but the procedure is complex. You can read the instructions by typing `M-x finder-commentary ange-ftp '. You can entirely turn off the FTP file name feature by removing the entries `ange-ftp-completion-hook-function' and `ange-ftp-hook-function' from the variable `file-name-handler-alist'. You can turn off the feature in individual cases by quoting the file name with `/:' (*note Quoted File Names::). Quoted File Names ================= You can "quote" an absolute file name to prevent special characters and syntax in it from having their special effects. The way to do this is to add `/:' at the beginning. For example, you can quote a local file name which appears remote, to prevent it from being treated as a remote file name. Thus, if you have a directory named `/foo:' and a file named `bar' in it, you can refer to that file in Emacs as `/:/foo:/bar'. `/:' can also prevent `~' from being treated as a special character for a user's home directory. For example, `/:/tmp/~hack' refers to a file whose name is `~hack' in directory `/tmp'. Likewise, quoting with `/:' is one way to enter in the minibuffer a file name that contains `$'. However, the `/:' must be at the beginning of the minibuffer in order to quote `$'. You can also quote wildcard characters with `/:', for visiting. For example, `/:/tmp/foo*bar' visits the file `/tmp/foo*bar'. However, in most cases you can simply type the wildcard characters for themselves. For example, if the only file name in `/tmp' that starts with `foo' and ends with `bar' is `foo*bar', then specifying `/tmp/foo*bar' will visit just `/tmp/foo*bar'. Another way is to specify `/tmp/foo[*]bar'. File Name Cache =============== You can use the "file name cache" to make it easy to locate a file by name, without having to remember exactly where it is located. When typing a file name in the minibuffer, `C-' (`file-cache-minibuffer-complete') completes it using the file name cache. If you repeat `C-', that cycles through the possible completions of what you had originally typed. Note that the `C-' character cannot be typed on most text-only terminals. The file name cache does not fill up automatically. Instead, you load file names into the cache using these commands: `M-x file-cache-add-directory DIRECTORY ' Add each file name in DIRECTORY to the file name cache. `M-x file-cache-add-directory-using-find DIRECTORY ' Add each file name in DIRECTORY and all of its nested subdirectories to the file name cache. `M-x file-cache-add-directory-using-locate DIRECTORY ' Add each file name in DIRECTORY and all of its nested subdirectories to the file name cache, using `locate' to find them all. `M-x file-cache-add-directory-list VARIABLE ' Add each file name in each directory listed in VARIABLE to the file name cache. VARIABLE should be a Lisp variable such as `load-path' or `exec-path', whose value is a list of directory names. `M-x file-cache-clear-cache ' Clear the cache; that is, remove all file names from it. Convenience Features for Finding Files ====================================== If you enable Recentf mode, with `M-x recentf-mode', the `File' menu includes a submenu containing a list of recently opened files. `M-x recentf-save-list' saves the current `recent-file-list' to a file, and `M-x recentf-edit-list' edits it. When Auto-image-file minor mode is enabled, visiting an image file displays it as an image, not as text. Likewise, inserting an image file into a buffer inserts it as an image. This works only when Emacs can display the relevant image type. The variables `image-file-name-extensions' or `image-file-name-regexps' control which file names are recognized as containing images. The `M-x ffap' command generalizes `find-file' with more powerful heuristic defaults (*note FFAP::), often based on the text at point. Partial Completion mode offers other features extending `find-file', which can be used with `ffap'. *Note Completion Options::. Using Multiple Buffers ********************** The text you are editing in Emacs resides in an object called a "buffer". Each time you visit a file, a buffer is created to hold the file's text. Each time you invoke Dired, a buffer is created to hold the directory listing. If you send a message with `C-x m', a buffer named `*mail*' is used to hold the text of the message. When you ask for a command's documentation, that appears in a buffer called `*Help*'. At any time, one and only one buffer is "current". It is also called the "selected buffer". Often we say that a command operates on "the buffer" as if there were only one; but really this means that the command operates on the current buffer (most commands do). When Emacs has multiple windows, each window has its own chosen buffer and displays it; at any time, only one of the windows is selected, and its chosen buffer is the current buffer. Each window's mode line normally displays the name of the window's chosen buffer (*note Windows::). Each buffer has a name, which can be of any length, and you can select any buffer by giving its name. Most buffers are made by visiting files, and their names are derived from the files' names. But you can also create an empty buffer with any name you want. A newly started Emacs has a buffer named `*scratch*' which can be used for evaluating Lisp expressions in Emacs. The distinction between upper and lower case matters in buffer names. Each buffer records individually what file it is visiting, whether it is modified, and what major mode and minor modes are in effect in it (*note Major Modes::). Any Emacs variable can be made "local to" a particular buffer, meaning its value in that buffer can be different from the value in other buffers. *Note Locals::. A buffer's size cannot be larger than some maximum, which is defined by the largest buffer position representable by the "Emacs integer" data type. This is because Emacs tracks buffer positions using that data type. For 32-bit machines, the largest buffer size is 128 megabytes. Creating and Selecting Buffers ============================== `C-x b BUFFER ' Select or create a buffer named BUFFER (`switch-to-buffer'). `C-x 4 b BUFFER ' Similar, but select BUFFER in another window (`switch-to-buffer-other-window'). `C-x 5 b BUFFER ' Similar, but select BUFFER in a separate frame (`switch-to-buffer-other-frame'). To select the buffer named BUFNAME, type `C-x b BUFNAME '. This runs the command `switch-to-buffer' with argument BUFNAME. You can use completion on an abbreviation for the buffer name you want (*note Completion::). An empty argument to `C-x b' specifies the buffer that was current most recently among those not now displayed in any window. To select a buffer in a window other than the current one, type `C-x 4 b BUFNAME '. This runs the command `switch-to-buffer-other-window' which displays the buffer BUFNAME in another window. By default, if displaying the buffer causes two vertically adjacent windows to be displayed, the heights of those windows are evened out; to countermand that and preserve the window configuration, set the variable `even-window-heights' to `nil'. Similarly, `C-x 5 b BUFFER ' runs the command `switch-to-buffer-other-frame' which selects a buffer in another frame. You can control how certain buffers are handled by these commands by customizing the variables `special-display-buffer-names', `special-display-regexps', `same-window-buffer-names', and `same-window-regexps'. See *Note Force Same Window::, and *Note Special Buffer Frames::, for more about these variables. In addition, if the value of `display-buffer-reuse-frames' is non-`nil', and the buffer you want to switch to is already displayed in some frame, Emacs will raise that frame. Most buffers are created by visiting files, or by Emacs commands that want to display some text, but you can also create a buffer explicitly by typing `C-x b BUFNAME '. This makes a new, empty buffer that is not visiting any file, and selects it for editing. Such buffers are used for making notes to yourself. If you try to save one, you are asked for the file name to use. The new buffer's major mode is determined by the value of `default-major-mode' (*note Major Modes::). Note that `C-x C-f', and any other command for visiting a file, can also be used to switch to an existing file-visiting buffer. *Note Visiting::. Emacs uses buffer names that start with a space for internal purposes. It treats these buffers specially in minor ways--for example, by default they do not record undo information. It is best to avoid using such buffer names yourself. Listing Existing Buffers ======================== `C-x C-b' List the existing buffers (`list-buffers'). To display a list of all the buffers that exist, type `C-x C-b'. Each line in the list shows one buffer's name, major mode and visited file. The buffers are listed in the order that they were current; the buffers that were current most recently come first. `*' at the beginning of a line indicates the buffer is "modified." If several buffers are modified, it may be time to save some with `C-x s' (*note Saving::). `%' indicates a read-only buffer. `.' marks the current buffer. Here is an example of a buffer list: MR Buffer Size Mode File -- ------ ---- ---- ---- .* emacs.tex 383402 Texinfo /u2/emacs/man/emacs.tex *Help* 1287 Fundamental files.el 23076 Emacs-Lisp /u2/emacs/lisp/files.el % RMAIL 64042 RMAIL /u/rms/RMAIL *% man 747 Dired /u2/emacs/man/ net.emacs 343885 Fundamental /u/rms/net.emacs fileio.c 27691 C /u2/emacs/src/fileio.c NEWS 67340 Text /u2/emacs/etc/NEWS *scratch* 0 Lisp Interaction Note that the buffer `*Help*' was made by a help request; it is not visiting any file. The buffer `man' was made by Dired on the directory `/u2/emacs/man/'. You can list only buffers that are visiting files by giving the command a prefix; for instance, by typing `C-u C-x C-b'. Miscellaneous Buffer Operations =============================== `C-x C-q' Toggle read-only status of buffer (`vc-toggle-read-only'). `M-x rename-buffer NAME ' Change the name of the current buffer. `M-x rename-uniquely' Rename the current buffer by adding `' to the end. `M-x view-buffer BUFFER ' Scroll through buffer BUFFER. A buffer can be "read-only", which means that commands to change its contents are not allowed. The mode line indicates read-only buffers with `%%' or `%*' near the left margin. Read-only buffers are usually made by subsystems such as Dired and Rmail that have special commands to operate on the text; also by visiting a file whose access control says you cannot write it. If you wish to make changes in a read-only buffer, use the command `C-x C-q' (`vc-toggle-read-only'). It makes a read-only buffer writable, and makes a writable buffer read-only. In most cases, this works by setting the variable `buffer-read-only', which has a local value in each buffer and makes the buffer read-only if its value is non-`nil'. If the file is maintained with version control, `C-x C-q' works through the version control system to change the read-only status of the file as well as the buffer. *Note Version Control::. `M-x rename-buffer' changes the name of the current buffer. Specify the new name as a minibuffer argument. There is no default. If you specify a name that is in use for some other buffer, an error happens and no renaming is done. `M-x rename-uniquely' renames the current buffer to a similar name with a numeric suffix added to make it both different and unique. This command does not need an argument. It is useful for creating multiple shell buffers: if you rename the `*Shell*' buffer, then do `M-x shell' again, it makes a new shell buffer named `*Shell*'; meanwhile, the old shell buffer continues to exist under its new name. This method is also good for mail buffers, compilation buffers, and most Emacs features that create special buffers with particular names. `M-x view-buffer' is much like `M-x view-file' (*note Misc File Ops::) except that it examines an already existing Emacs buffer. View mode provides commands for scrolling through the buffer conveniently but not for changing it. When you exit View mode with `q', that switches back to the buffer (and the position) which was previously displayed in the window. Alternatively, if you exit View mode with `e', the buffer and the value of point that resulted from your perusal remain in effect. The commands `M-x append-to-buffer' and `M-x insert-buffer' can be used to copy text from one buffer to another. *Note Accumulating Text::. Killing Buffers =============== If you continue an Emacs session for a while, you may accumulate a large number of buffers. You may then find it convenient to "kill" the buffers you no longer need. On most operating systems, killing a buffer releases its space back to the operating system so that other programs can use it. Here are some commands for killing buffers: `C-x k BUFNAME ' Kill buffer BUFNAME (`kill-buffer'). `M-x kill-some-buffers' Offer to kill each buffer, one by one. `C-x k' (`kill-buffer') kills one buffer, whose name you specify in the minibuffer. The default, used if you type just in the minibuffer, is to kill the current buffer. If you kill the current buffer, another buffer becomes current: one that was current in the recent past but is not displayed in any window now. If you ask to kill a file-visiting buffer that is modified (has unsaved editing), then you must confirm with `yes' before the buffer is killed. The command `M-x kill-some-buffers' asks about each buffer, one by one. An answer of `y' means to kill the buffer. Killing the current buffer or a buffer containing unsaved changes selects a new buffer or asks for confirmation just like `kill-buffer'. The buffer menu feature (*note Several Buffers::) is also convenient for killing various buffers. If you want to do something special every time a buffer is killed, you can add hook functions to the hook `kill-buffer-hook' (*note Hooks::). If you run one Emacs session for a period of days, as many people do, it can fill up with buffers that you used several days ago. The command `M-x clean-buffer-list' is a convenient way to purge them; it kills all the unmodified buffers that you have not used for a long time. An ordinary buffer is killed if it has not been displayed for three days; however, you can specify certain buffers that should never be killed automatically, and others that should be killed if they have been unused for a mere hour. You can also have this buffer purging done for you, every day at midnight, by enabling Midnight mode. Midnight mode operates each day at midnight; at that time, it runs `clean-buffer-list', or whichever functions you have placed in the normal hook `midnight-hook' (*note Hooks::). To enable Midnight mode, use the Customization buffer to set the variable `midnight-mode' to `t'. *Note Easy Customization::. Operating on Several Buffers ============================ The "buffer-menu" facility is like a "Dired for buffers"; it allows you to request operations on various Emacs buffers by editing an Emacs buffer containing a list of them. You can save buffers, kill them (here called "deleting" them, for consistency with Dired), or display them. `M-x buffer-menu' Begin editing a buffer listing all Emacs buffers. The command `buffer-menu' writes a list of all Emacs buffers into the buffer `*Buffer List*', and selects that buffer in Buffer Menu mode. The buffer is read-only, and can be changed only through the special commands described in this section. The usual Emacs cursor motion commands can be used in the `*Buffer List*' buffer. The following commands apply to the buffer described on the current line. `d' Request to delete (kill) the buffer, then move down. The request shows as a `D' on the line, before the buffer name. Requested deletions take place when you type the `x' command. `C-d' Like `d' but move up afterwards instead of down. `s' Request to save the buffer. The request shows as an `S' on the line. Requested saves take place when you type the `x' command. You may request both saving and deletion for the same buffer. `x' Perform previously requested deletions and saves. `u' Remove any request made for the current line, and move down. `' Move to previous line and remove any request made for that line. The `d', `C-d', `s' and `u' commands to add or remove flags also move down (or up) one line. They accept a numeric argument as a repeat count. These commands operate immediately on the buffer listed on the current line: `~' Mark the buffer "unmodified." The command `~' does this immediately when you type it. `%' Toggle the buffer's read-only flag. The command `%' does this immediately when you type it. `t' Visit the buffer as a tags table. *Note Select Tags Table::. There are also commands to select another buffer or buffers: `q' Quit the buffer menu--immediately display the most recent formerly visible buffer in its place. `' `f' Immediately select this line's buffer in place of the `*Buffer List*' buffer. `o' Immediately select this line's buffer in another window as if by `C-x 4 b', leaving `*Buffer List*' visible. `C-o' Immediately display this line's buffer in another window, but don't select the window. `1' Immediately select this line's buffer in a full-screen window. `2' Immediately set up two windows, with this line's buffer in one, and the previously current buffer (aside from the buffer `*Buffer List*') in the other. `b' Bury the buffer listed on this line. `m' Mark this line's buffer to be displayed in another window if you exit with the `v' command. The request shows as a `>' at the beginning of the line. (A single buffer may not have both a delete request and a display request.) `v' Immediately select this line's buffer, and also display in other windows any buffers previously marked with the `m' command. If you have not marked any buffers, this command is equivalent to `1'. All that `buffer-menu' does directly is create and switch to a suitable buffer, and turn on Buffer Menu mode. Everything else described above is implemented by the special commands provided in Buffer Menu mode. One consequence of this is that you can switch from the `*Buffer List*' buffer to another Emacs buffer, and edit there. You can reselect the `*Buffer List*' buffer later, to perform the operations already requested, or you can kill it, or pay no further attention to it. The only difference between `buffer-menu' and `list-buffers' is that `buffer-menu' switches to the `*Buffer List*' buffer in the selected window; `list-buffers' displays it in another window. If you run `list-buffers' (that is, type `C-x C-b') and select the buffer list manually, you can use all of the commands described here. The buffer `*Buffer List*' is not updated automatically when buffers are created and killed; its contents are just text. If you have created, deleted or renamed buffers, the way to update `*Buffer List*' to show what you have done is to type `g' (`revert-buffer') or repeat the `buffer-menu' command. Indirect Buffers ================ An "indirect buffer" shares the text of some other buffer, which is called the "base buffer" of the indirect buffer. In some ways it is the analogue, for buffers, of a symbolic link between files. `M-x make-indirect-buffer BASE-BUFFER INDIRECT-NAME ' Create an indirect buffer named INDIRECT-NAME whose base buffer is BASE-BUFFER. `M-x clone-indirect-buffer ' Create an indirect buffer that is a twin copy of the current buffer. `C-x 4 c' Create an indirect buffer that is a twin copy of the current buffer, and select it in another window (`clone-indirect-buffer-other-window'). The text of the indirect buffer is always identical to the text of its base buffer; changes made by editing either one are visible immediately in the other. But in all other respects, the indirect buffer and its base buffer are completely separate. They have different names, different values of point, different narrowing, different markers, different major modes, and different local variables. An indirect buffer cannot visit a file, but its base buffer can. If you try to save the indirect buffer, that actually works by saving the base buffer. Killing the base buffer effectively kills the indirect buffer, but killing an indirect buffer has no effect on its base buffer. One way to use indirect buffers is to display multiple views of an outline. *Note Outline Views::. A quick and handy way to make an indirect buffer is with the command `M-x clone-indirect-buffer'. It creates and selects an indirect buffer whose base buffer is the current buffer. With a numeric argument, it prompts for the name of the indirect buffer; otherwise it defaults to the name of the current buffer, modifying it by adding a `' prefix if required. `C-x 4 c' (`clone-indirect-buffer-other-window') works like `M-x clone-indirect-buffer', but it selects the cloned buffer in another window. These commands come in handy if you want to create new `*info*' or `*Help*' buffers, for example. The more general way is with the command `M-x make-indirect-buffer'. It creates an indirect buffer from buffer BASE-BUFFER, under the name INDIRECT-NAME. It prompts for both BASE-BUFFER and INDIRECT-NAME using the minibuffer. Convenience Features and Customization of Buffer Handling ========================================================= This section describes several modes and features that make it more convenient to switch between buffers. Making Buffer Names Unique -------------------------- When several buffers visit identically-named files, Emacs must give the buffers distinct names. The usual method for making buffer names unique adds `<2>', `<3>', etc. to the end of the buffer names (all but one of them). Other methods work by adding parts of each file's directory to the buffer name. To select one, customize the variable `uniquify-buffer-name-style' (*note Easy Customization::). For instance, the `forward' naming method puts part of the directory name at the beginning of the buffer name; using this method, buffers visiting `/u/mernst/tmp/Makefile' and `/usr/projects/zaphod/Makefile' would be named `tmp/Makefile' and `zaphod/Makefile', respectively (instead of `Makefile' and `Makefile<2>'). By contrast, the `post-forward' naming method would call the buffers `Makefile|tmp' and `Makefile|zaphod', and the `reverse' naming method would call them `Makefile\tmp' and `Makefile\zaphod'. The nontrivial difference between `post-forward' and `reverse' occurs when just one directory name is not enough to distinguish two files; then `reverse' puts the directory names in reverse order, so that `/top/middle/file' becomes `file\middle\top', while `post-forward' puts them in forward order after the file name, as in `file|top/middle'. Which rule to follow for putting the directory names in the buffer name is not very important if you are going to _look_ at the buffer names before you type one. But as an experienced user, if you know the rule, you won't have to look. And then you may find that one rule or another is easier for you to remember and utilize fast. Switching Between Buffers using Substrings ------------------------------------------ Iswitchb global minor mode provides convenient switching between buffers using substrings of their names. It replaces the normal definitions of `C-x b', `C-x 4 b', `C-x 5 b', and `C-x 4 C-o' with alternative commands that are somewhat "smarter." When one of these commands prompts you for a buffer name, you can type in just a substring of the name you want to choose. As you enter the substring, Iswitchb mode continuously displays a list of buffers that match the substring you have typed. At any time, you can type to select the first buffer in the list. So the way to select a particular buffer is to make it the first in the list. There are two ways to do this. You can type more of the buffer name and thus narrow down the list, excluding unwanted buffers above the desired one. Alternatively, you can use `C-s' and `C-r' to rotate the list until the desired buffer is first. while entering the buffer name performs completion on the string you have entered, based on the displayed list of buffers. To enable Iswitchb mode, type `M-x iswitchb-mode', or customize the variable `iswitchb-mode' to `t' (*note Easy Customization::). Customizing Buffer Menus ------------------------ `M-x bs-show' Make a list of buffers similarly to `M-x list-buffers' but customizable. `M-x bs-show' pops up a buffer list similar to the one normally displayed by `C-x C-b' but which you can customize. If you prefer this to the usual buffer list, you can bind this command to `C-x C-b'. To customize this buffer list, use the `bs' Custom group (*note Easy Customization::). MSB global minor mode ("MSB" stands for "mouse select buffer") provides a different and customizable mouse buffer menu which you may prefer. It replaces the bindings of `mouse-buffer-menu', normally on `C-Down-Mouse-1', and the menu bar buffer menu. You can customize the menu in the `msb' Custom group. Multiple Windows **************** Emacs can split a frame into two or many windows. Multiple windows can display parts of different buffers, or different parts of one buffer. Multiple frames always imply multiple windows, because each frame has its own set of windows. Each window belongs to one and only one frame. Concepts of Emacs Windows ========================= Each Emacs window displays one Emacs buffer at any time. A single buffer may appear in more than one window; if it does, any changes in its text are displayed in all the windows where it appears. But the windows showing the same buffer can show different parts of it, because each window has its own value of point. At any time, one of the windows is the "selected window"; the buffer this window is displaying is the current buffer. The terminal's cursor shows the location of point in this window. Each other window has a location of point as well, but since the terminal has only one cursor there is no way to show where those locations are. When multiple frames are visible in X, each frame has a cursor which appears in the frame's selected window. The cursor in the selected frame is solid; the cursor in other frames is a hollow box. Commands to move point affect the value of point for the selected Emacs window only. They do not change the value of point in any other Emacs window, even one showing the same buffer. The same is true for commands such as `C-x b' to change the current buffer in the selected window; they do not affect other windows at all. However, there are other commands such as `C-x 4 b' that select a different window and switch buffers in it. Also, all commands that display information in a window, including (for example) `C-h f' (`describe-function') and `C-x C-b' (`list-buffers'), work by switching buffers in a nonselected window without affecting the selected window. When multiple windows show the same buffer, they can have different regions, because they can have different values of point. However, they all have the same value for the mark, because each buffer has only one mark position. Each window has its own mode line, which displays the buffer name, modification status and major and minor modes of the buffer that is displayed in the window. *Note Mode Line::, for full details on the mode line. Splitting Windows ================= `C-x 2' Split the selected window into two windows, one above the other (`split-window-vertically'). `C-x 3' Split the selected window into two windows positioned side by side (`split-window-horizontally'). `C-Mouse-2' In the mode line or scroll bar of a window, split that window. The command `C-x 2' (`split-window-vertically') breaks the selected window into two windows, one above the other. Both windows start out displaying the same buffer, with the same value of point. By default the two windows each get half the height of the window that was split; a numeric argument specifies how many lines to give to the top window. `C-x 3' (`split-window-horizontally') breaks the selected window into two side-by-side windows. A numeric argument specifies how many columns to give the one on the left. A line of vertical bars separates the two windows. Windows that are not the full width of the screen have mode lines, but they are truncated. On terminals where Emacs does not support highlighting, truncated mode lines sometimes do not appear in inverse video. You can split a window horizontally or vertically by clicking `C-Mouse-2' in the mode line or the scroll bar. (This does not work in scroll bars implemented by X toolkits.) The line of splitting goes through the place where you click: if you click on the mode line, the new scroll bar goes above the spot; if you click in the scroll bar, the mode line of the split window is side by side with your click. When a window is less than the full width, text lines too long to fit are frequent. Continuing all those lines might be confusing. The variable `truncate-partial-width-windows' can be set non-`nil' to force truncation in all windows less than the full width of the screen, independent of the buffer being displayed and its value for `truncate-lines'. *Note Continuation Lines::. Horizontal scrolling is often used in side-by-side windows. *Note Display::. If `split-window-keep-point' is non-`nil', the default, both of the windows resulting from `C-x 2' inherit the value of point from the window that was split. This means that scrolling is inevitable. If this variable is `nil', then `C-x 2' tries to avoid scrolling the text currently visible on the screen, by putting point in each window at a position already visible in the window. It also selects whichever window contain the screen line that the cursor was previously on. Some users prefer the latter mode on slow terminals. Using Other Windows =================== `C-x o' Select another window (`other-window'). That is `o', not zero. `C-M-v' Scroll the next window (`scroll-other-window'). `M-x compare-windows' Find next place where the text in the selected window does not match the text in the next window. `Mouse-1' `Mouse-1', in a window's mode line, selects that window but does not move point in it (`mouse-select-window'). To select a different window, click with `Mouse-1' on its mode line. With the keyboard, you can switch windows by typing `C-x o' (`other-window'). That is an `o', for "other," not a zero. When there are more than two windows, this command moves through all the windows in a cyclic order, generally top to bottom and left to right. After the rightmost and bottommost window, it goes back to the one at the upper left corner. A numeric argument means to move several steps in the cyclic order of windows. A negative argument moves around the cycle in the opposite order. When the minibuffer is active, the minibuffer is the last window in the cycle; you can switch from the minibuffer window to one of the other windows, and later switch back and finish supplying the minibuffer argument that is requested. *Note Minibuffer Edit::. The usual scrolling commands (*note Display::) apply to the selected window only, but there is one command to scroll the next window. `C-M-v' (`scroll-other-window') scrolls the window that `C-x o' would select. It takes arguments, positive and negative, like `C-v'. (In the minibuffer, `C-M-v' scrolls the window that contains the minibuffer help display, if any, rather than the next window in the standard cyclic order.) The command `M-x compare-windows' lets you compare two files or buffers visible in two windows, by moving through them to the next mismatch. *Note Comparing Files::, for details. Displaying in Another Window ============================ `C-x 4' is a prefix key for commands that select another window (splitting the window if there is only one) and select a buffer in that window. Different `C-x 4' commands have different ways of finding the buffer to select. `C-x 4 b BUFNAME ' Select buffer BUFNAME in another window. This runs `switch-to-buffer-other-window'. `C-x 4 C-o BUFNAME ' Display buffer BUFNAME in another window, but don't select that buffer or that window. This runs `display-buffer'. `C-x 4 f FILENAME ' Visit file FILENAME and select its buffer in another window. This runs `find-file-other-window'. *Note Visiting::. `C-x 4 d DIRECTORY ' Select a Dired buffer for directory DIRECTORY in another window. This runs `dired-other-window'. *Note Dired::. `C-x 4 m' Start composing a mail message in another window. This runs `mail-other-window'; its same-window analogue is `C-x m' (*note Sending Mail::). `C-x 4 .' Find a tag in the current tags table, in another window. This runs `find-tag-other-window', the multiple-window variant of `M-.' (*note Tags::). `C-x 4 r FILENAME ' Visit file FILENAME read-only, and select its buffer in another window. This runs `find-file-read-only-other-window'. *Note Visiting::. Forcing Display in the Same Window ================================== Certain Emacs commands switch to a specific buffer with special contents. For example, `M-x shell' switches to a buffer named `*Shell*'. By convention, all these commands are written to pop up the buffer in a separate window. But you can specify that certain of these buffers should appear in the selected window. If you add a buffer name to the list `same-window-buffer-names', the effect is that such commands display that particular buffer by switching to it in the selected window. For example, if you add the element `"*grep*"' to the list, the `grep' command will display its output buffer in the selected window. The default value of `same-window-buffer-names' is not `nil': it specifies buffer names `*info*', `*mail*' and `*shell*' (as well as others used by more obscure Emacs packages). This is why `M-x shell' normally switches to the `*shell*' buffer in the selected window. If you delete this element from the value of `same-window-buffer-names', the behavior of `M-x shell' will change--it will pop up the buffer in another window instead. You can specify these buffers more generally with the variable `same-window-regexps'. Set it to a list of regular expressions; then any buffer whose name matches one of those regular expressions is displayed by switching to it in the selected window. (Once again, this applies only to buffers that normally get displayed for you in a separate window.) The default value of this variable specifies Telnet and rlogin buffers. An analogous feature lets you specify buffers which should be displayed in their own individual frames. *Note Special Buffer Frames::. Deleting and Rearranging Windows ================================ `C-x 0' Delete the selected window (`delete-window'). The last character in this key sequence is a zero. `C-x 1' Delete all windows in the selected frame except the selected window (`delete-other-windows'). `C-x 4 0' Delete the selected window and kill the buffer that was showing in it (`kill-buffer-and-window'). The last character in this key sequence is a zero. `C-x ^' Make selected window taller (`enlarge-window'). `C-x }' Make selected window wider (`enlarge-window-horizontally'). `C-x {' Make selected window narrower (`shrink-window-horizontally'). `C-x -' Shrink this window if its buffer doesn't need so many lines (`shrink-window-if-larger-than-buffer'). `C-x +' Make all windows the same height (`balance-windows'). `Drag-Mouse-1' Dragging a window's mode line up or down with `Mouse-1' changes window heights. `Mouse-2' `Mouse-2' in a window's mode line deletes all other windows in the frame (`mouse-delete-other-windows'). `Mouse-3' `Mouse-3' in a window's mode line deletes that window (`mouse-delete-window'), unless the frame has only one window, in which case it buries the current buffer instead and switches to another buffer. To delete a window, type `C-x 0' (`delete-window'). (That is a zero.) The space occupied by the deleted window is given to an adjacent window (but not the minibuffer window, even if that is active at the time). Once a window is deleted, its attributes are forgotten; only restoring a window configuration can bring it back. Deleting the window has no effect on the buffer it used to display; the buffer continues to exist, and you can select it in any window with `C-x b'. `C-x 4 0' (`kill-buffer-and-window') is a stronger command than `C-x 0'; it kills the current buffer and then deletes the selected window. `C-x 1' (`delete-other-windows') is more powerful in a different way; it deletes all the windows except the selected one (and the minibuffer); the selected window expands to use the whole frame except for the echo area. You can also delete a window by clicking on its mode line with `Mouse-2', and delete all the windows in a frame except one window by clicking on that window's mode line with `Mouse-3'. The easiest way to adjust window heights is with a mouse. If you press `Mouse-1' on a mode line, you can drag that mode line up or down, changing the heights of the windows above and below it. To readjust the division of space among vertically adjacent windows, use `C-x ^' (`enlarge-window'). It makes the currently selected window get one line bigger, or as many lines as is specified with a numeric argument. With a negative argument, it makes the selected window smaller. `C-x }' (`enlarge-window-horizontally') makes the selected window wider by the specified number of columns. `C-x {' (`shrink-window-horizontally') makes the selected window narrower by the specified number of columns. When you make a window bigger, the space comes from one of its neighbors. If this makes any window too small, it is deleted and its space is given to an adjacent window. The minimum size is specified by the variables `window-min-height' and `window-min-width'. The command `C-x -' (`shrink-window-if-larger-than-buffer') reduces the height of the selected window, if it is taller than necessary to show the whole text of the buffer it is displaying. It gives the extra lines to other windows in the frame. You can also use `C-x +' (`balance-windows') to even out the heights of all the windows in the selected frame. Window Handling Convenience Features and Customization ====================================================== `M-x winner-mode' is a global minor mode that records the changes in the window configuration (i.e. how the frames are partitioned into windows), so that you can "undo" them. To undo, use `C-x left' (`winner-undo'). If you change your mind while undoing, you can redo the changes you had undone using `C-x right' (`M-x winner-redo'). Another way to enable Winner mode is by customizing the variable `winner-mode'. The Windmove commands move directionally between neighboring windows in a frame. `M-x windmove-right' selects the window immediately to the right of the currently selected one, and similarly for the "left," "up," and "down" counterparts. `M-x windmove-default-keybindings' binds these commands to `S-right' etc. (Not all terminals support shifted arrow keys, however.) Follow minor mode (`M-x follow-mode') synchronizes several windows on the same buffer so that they always display adjacent sections of that buffer. *Note Follow Mode::. `M-x scroll-all-mode' provides commands to scroll all visible windows together. You can also turn it on by customizing the variable `scroll-all-mode'. The commands provided are `M-x scroll-all-scroll-down-all', `M-x scroll-all-page-down-all' and their corresponding "up" equivalents. To make this mode useful, you should bind these commands to appropriate keys. Frames and X Windows ******************** When using the X Window System, you can create multiple windows at the X level in a single Emacs session. Each X window that belongs to Emacs displays a "frame" which can contain one or several Emacs windows. A frame initially contains a single general-purpose Emacs window which you can subdivide vertically or horizontally into smaller windows. A frame normally contains its own echo area and minibuffer, but you can make frames that don't have these--they use the echo area and minibuffer of another frame. Editing you do in one frame also affects the other frames. For instance, if you put text in the kill ring in one frame, you can yank it in another frame. If you exit Emacs through `C-x C-c' in one frame, it terminates all the frames. To delete just one frame, use `C-x 5 0' (that is zero, not `o'). To avoid confusion, we reserve the word "window" for the subdivisions that Emacs implements, and never use it to refer to a frame. Emacs compiled for MS-DOS emulates some aspects of the window system so that you can use many of the features described in this chapter. *Note MS-DOS Input::, for more information. Emacs compiled for MS Windows mostly supports the same features as under X. However, images, tool bars, and tooltips are not yet available in Emacs version 21.1 on MS-Windows. Mouse Commands for Editing ========================== The mouse commands for selecting and copying a region are mostly compatible with the `xterm' program. You can use the same mouse commands for copying between Emacs and other X client programs. If you select a region with any of these mouse commands, and then immediately afterward type the function key, it deletes the region that you selected. The function key and the ASCII character do not do this; if you type any other key in between the mouse command and , it does not do this. `Mouse-1' Move point to where you click (`mouse-set-point'). This is normally the left button. `Drag-Mouse-1' Set the region to the text you select by dragging, and copy it to the kill ring (`mouse-set-region'). You can specify both ends of the region with this single command. If you move the mouse off the top or bottom of the window while dragging, the window scrolls at a steady rate until you move the mouse back into the window. This way, you can select regions that don't fit entirely on the screen. The number of lines scrolled per step depends on how far away from the window edge the mouse has gone; the variable `mouse-scroll-min-lines' specifies a minimum step size. `Mouse-2' Yank the last killed text, where you click (`mouse-yank-at-click'). This is normally the middle button. `Mouse-3' This command, `mouse-save-then-kill', has several functions depending on where you click and the status of the region. The most basic case is when you click `Mouse-1' in one place and then `Mouse-3' in another. This selects the text between those two positions as the region. It also copies the new region to the kill ring, so that you can copy it to someplace else. If you click `Mouse-1' in the text, scroll with the scroll bar, and then click `Mouse-3', it remembers where point was before scrolling (where you put it with `Mouse-1'), and uses that position as the other end of the region. This is so that you can select a region that doesn't fit entirely on the screen. More generally, if you do not have a highlighted region, `Mouse-3' selects the text between point and the click position as the region. It does this by setting the mark where point was, and moving point to where you click. If you have a highlighted region, or if the region was set just before by dragging button 1, `Mouse-3' adjusts the nearer end of the region by moving it to where you click. The adjusted region's text also replaces the old region's text in the kill ring. If you originally specified the region using a double or triple `Mouse-1', so that the region is defined to consist of entire words or lines, then adjusting the region with `Mouse-3' also proceeds by entire words or lines. If you use `Mouse-3' a second time consecutively, at the same place, that kills the region already selected. `Double-Mouse-1' This key sets the region around the word which you click on. If you click on a character with "symbol" syntax (such as underscore, in C mode), it sets the region around the symbol surrounding that character. If you click on a character with open-parenthesis or close-parenthesis syntax, it sets the region around the parenthetical grouping which that character starts or ends. If you click on a character with string-delimiter syntax (such as a singlequote or doublequote in C), it sets the region around the string constant (using heuristics to figure out whether that character is the beginning or the end of it). `Double-Drag-Mouse-1' This key selects a region made up of the words you drag across. `Triple-Mouse-1' This key sets the region around the line you click on. `Triple-Drag-Mouse-1' This key selects a region made up of the lines you drag across. The simplest way to kill text with the mouse is to press `Mouse-1' at one end, then press `Mouse-3' twice at the other end. *Note Killing::. To copy the text into the kill ring without deleting it from the buffer, press `Mouse-3' just once--or just drag across the text with `Mouse-1'. Then you can copy it elsewhere by yanking it. To yank the killed or copied text somewhere else, move the mouse there and press `Mouse-2'. *Note Yanking::. However, if `mouse-yank-at-point' is non-`nil', `Mouse-2' yanks at point. Then it does not matter where you click, or even which of the frame's windows you click on. The default value is `nil'. This variable also affects yanking the secondary selection. To copy text to another X window, kill it or save it in the kill ring. Under X, this also sets the "primary selection". Then use the "paste" or "yank" command of the program operating the other window to insert the text from the selection. To copy text from another X window, use the "cut" or "copy" command of the program operating the other window, to select the text you want. Then yank it in Emacs with `C-y' or `Mouse-2'. The standard coding system for X selections is `compound-text'. To specify another coding system for X selections, use `C-x x' or `C-x X'. *Note Specify Coding::. These cutting and pasting commands also work on MS-Windows. When Emacs puts text into the kill ring, or rotates text to the front of the kill ring, it sets the "primary selection" in the X server. This is how other X clients can access the text. Emacs also stores the text in the cut buffer, but only if the text is short enough (the value of `x-cut-buffer-max' specifies the maximum number of characters); putting long strings in the cut buffer can be slow. The commands to yank the first entry in the kill ring actually check first for a primary selection in another program; after that, they check for text in the cut buffer. If neither of those sources provides text to yank, the kill ring contents are used. Secondary Selection =================== The "secondary selection" is another way of selecting text using X. It does not use point or the mark, so you can use it to kill text without setting point or the mark. `M-Drag-Mouse-1' Set the secondary selection, with one end at the place where you press down the button, and the other end at the place where you release it (`mouse-set-secondary'). The highlighting appears and changes as you drag. You can control the appearance of the highlighting by customizing the `secondary-selection' face (*note Face Customization::). If you move the mouse off the top or bottom of the window while dragging, the window scrolls at a steady rate until you move the mouse back into the window. This way, you can mark regions that don't fit entirely on the screen. `M-Mouse-1' Set one endpoint for the "secondary selection" (`mouse-start-secondary'). `M-Mouse-3' Make a secondary selection, using the place specified with `M-Mouse-1' as the other end (`mouse-secondary-save-then-kill'). A second click at the same place kills the secondary selection just made. `M-Mouse-2' Insert the secondary selection where you click (`mouse-yank-secondary'). This places point at the end of the yanked text. Double or triple clicking of `M-Mouse-1' operates on words and lines, much like `Mouse-1'. If `mouse-yank-at-point' is non-`nil', `M-Mouse-2' yanks at point. Then it does not matter precisely where you click; all that matters is which window you click on. *Note Mouse Commands::. Using the Clipboard =================== As well as the primary and secondary selection types, X supports a "clipboard" selection type which is used by some applications, particularly under OpenWindows and Gnome. The command `M-x menu-bar-enable-clipboard' makes the `Cut', `Paste' and `Copy' menu items, as well as the keys of the same names, all use the clipboard. You can customize the option `x-select-enable-clipboard' to make the Emacs yank functions consult the clipboard before the primary selection, and to make the kill functions to store in the clipboard as well as the primary selection. Otherwise they do not access the clipboard at all. Using the clipboard is the default on MS-Windows, unlike most systems. Following References with the Mouse =================================== Some Emacs buffers display lists of various sorts. These include lists of files, of buffers, of possible completions, of matches for a pattern, and so on. Since yanking text into these buffers is not very useful, most of them define `Mouse-2' specially, as a command to use or view the item you click on. For example, if you click `Mouse-2' on a file name in a Dired buffer, you visit that file. If you click `Mouse-2' on an error message in the `*Compilation*' buffer, you go to the source code for that error message. If you click `Mouse-2' on a completion in the `*Completions*' buffer, you choose that completion. You can usually tell when `Mouse-2' has this special sort of meaning because the sensitive text highlights when you move the mouse over it. Mouse Clicks for Menus ====================== Mouse clicks modified with the and keys bring up menus. `C-Mouse-1' This menu is for selecting a buffer. The MSB ("mouse select buffer") global minor mode makes this menu smarter and more customizable. *Note Buffer Menus::. `C-Mouse-2' This menu is for specifying faces and other text properties for editing formatted text. *Note Formatted Text::. `C-Mouse-3' This menu is mode-specific. For most modes if Menu-bar mode is on, this menu has the same items as all the mode-specific menu-bar menus put together. Some modes may specify a different menu for this button.(1) If Menu-bar mode is off, this menu contains all the items which would be present in the menu bar--not just the mode-specific ones--so that you can access them without having to display the menu bar. `S-Mouse-1' This menu is for specifying the frame's principal font. ---------- Footnotes ---------- (1) Some systems use `Mouse-3' for a mode-specific menu. We took a survey of users, and found they preferred to keep `Mouse-3' for selecting and killing regions. Hence the decision to use `C-Mouse-3' for this menu. Mode Line Mouse Commands ======================== You can use mouse clicks on window mode lines to select and manipulate windows. `Mouse-1' `Mouse-1' on a mode line selects the window above. By dragging `Mouse-1' on the mode line, you can move it, thus changing the height of the windows above and below. `Mouse-2' `Mouse-2' on a mode line expands that window to fill its frame. `Mouse-3' `Mouse-3' on a mode line deletes the window above. If the frame has only one window, it buries the current buffer instead and switches to another buffer. `C-Mouse-2' `C-Mouse-2' on a mode line splits the window above horizontally, above the place in the mode line where you click. `C-Mouse-2' on a scroll bar splits the corresponding window vertically, unless you are using an X toolkit's implementation of scroll bars. *Note Split Window::. The commands above apply to areas of the mode line which do not have special mouse bindings of their own. Some areas, such as the buffer name and the major mode name, have their own special mouse bindings. Emacs displays information about these bindings when you hold the mouse over such a place (*note Tooltips::). Creating Frames =============== The prefix key `C-x 5' is analogous to `C-x 4', with parallel subcommands. The difference is that `C-x 5' commands create a new frame rather than just a new window in the selected frame (*note Pop Up Window::). If an existing visible or iconified frame already displays the requested material, these commands use the existing frame, after raising or deiconifying as necessary. The various `C-x 5' commands differ in how they find or create the buffer to select: `C-x 5 2' Create a new frame (`make-frame-command'). `C-x 5 b BUFNAME ' Select buffer BUFNAME in another frame. This runs `switch-to-buffer-other-frame'. `C-x 5 f FILENAME ' Visit file FILENAME and select its buffer in another frame. This runs `find-file-other-frame'. *Note Visiting::. `C-x 5 d DIRECTORY ' Select a Dired buffer for directory DIRECTORY in another frame. This runs `dired-other-frame'. *Note Dired::. `C-x 5 m' Start composing a mail message in another frame. This runs `mail-other-frame'. It is the other-frame variant of `C-x m'. *Note Sending Mail::. `C-x 5 .' Find a tag in the current tag table in another frame. This runs `find-tag-other-frame', the multiple-frame variant of `M-.'. *Note Tags::. `C-x 5 r FILENAME ' Visit file FILENAME read-only, and select its buffer in another frame. This runs `find-file-read-only-other-frame'. *Note Visiting::. You can control the appearance of new frames you create by setting the frame parameters in `default-frame-alist'. You can use the variable `initial-frame-alist' to specify parameters that affect only the initial frame. *Note Initial Parameters: (elisp)Initial Parameters, for more information. The easiest way to specify the principal font for all your Emacs frames is with an X resource (*note Font X::), but you can also do it by modifying `default-frame-alist' to specify the `font' parameter, as shown here: (add-to-list 'default-frame-alist '(font . "10x20")) Here's a similar example for specifying a foreground color: (add-to-list 'default-frame-alist '(background-color . "blue")) Frame Commands ============== The following commands let you create, delete and operate on frames: `C-z' Iconify the selected Emacs frame (`iconify-or-deiconify-frame'). The normal meaning of `C-z', to suspend Emacs, is not useful under a window system, so it has a different binding in that case. If you type this command on an Emacs frame's icon, it deiconifies the frame. `C-x 5 0' Delete the selected frame (`delete-frame'). This is not allowed if there is only one frame. `C-x 5 o' Select another frame, raise it, and warp the mouse to it so that it stays selected. If you repeat this command, it cycles through all the frames on your terminal. `C-x 5 1' Delete all frames except the selected one. Making and Using a Speedbar Frame ================================= An Emacs frame can have a "speedbar", which is a vertical window that serves as a scrollable menu of files you could visit and tags within those files. To create a speedbar, type `M-x speedbar'; this creates a speedbar window for the selected frame. From then on, you can click on a file name in the speedbar to visit that file in the corresponding Emacs frame, or click on a tag name to jump to that tag in the Emacs frame. Initially the speedbar lists the immediate contents of the current directory, one file per line. Each line also has a box, `[+]' or `<+>', that you can click on with `Mouse-2' to "open up" the contents of that item. If the line names a directory, opening it adds the contents of that directory to the speedbar display, underneath the directory's own line. If the line lists an ordinary file, opening it up adds a list of the tags in that file to the speedbar display. When a file is opened up, the `[+]' changes to `[-]'; you can click on that box to "close up" that file (hide its contents). Some major modes, including Rmail mode, Info, and GUD, have specialized ways of putting useful items into the speedbar for you to select. For example, in Rmail mode, the speedbar shows a list of Rmail files, and lets you move the current message to another Rmail file by clicking on its `' box. A speedbar belongs to one Emacs frame, and always operates on that frame. If you use multiple frames, you can make a speedbar for some or all of the frames; type `M-x speedbar' in any given frame to make a speedbar for it. Multiple Displays ================= A single Emacs can talk to more than one X display. Initially, Emacs uses just one display--the one specified with the `DISPLAY' environment variable or with the `--display' option (*note Initial Options::). To connect to another display, use the command `make-frame-on-display': `M-x make-frame-on-display DISPLAY ' Create a new frame on display DISPLAY. A single X server can handle more than one screen. When you open frames on two screens belonging to one server, Emacs knows they share a single keyboard, and it treats all the commands arriving from these screens as a single stream of input. When you open frames on different X servers, Emacs makes a separate input stream for each server. This way, two users can type simultaneously on the two displays, and Emacs will not garble their input. Each server also has its own selected frame. The commands you enter with a particular X server apply to that server's selected frame. Despite these features, people using the same Emacs job from different displays can still interfere with each other if they are not careful. For example, if any one types `C-x C-c', that exits the Emacs job for all of them! Special Buffer Frames ===================== You can make certain chosen buffers, for which Emacs normally creates a second window when you have just one window, appear in special frames of their own. To do this, set the variable `special-display-buffer-names' to a list of buffer names; any buffer whose name is in that list automatically gets a special frame, when an Emacs command wants to display it "in another window." For example, if you set the variable this way, (setq special-display-buffer-names '("*Completions*" "*grep*" "*tex-shell*")) then completion lists, `grep' output and the TeX mode shell buffer get individual frames of their own. These frames, and the windows in them, are never automatically split or reused for any other buffers. They continue to show the buffers they were created for, unless you alter them by hand. Killing the special buffer deletes its frame automatically. More generally, you can set `special-display-regexps' to a list of regular expressions; then a buffer gets its own frame if its name matches any of those regular expressions. (Once again, this applies only to buffers that normally get displayed for you in a separate window.) The variable `special-display-frame-alist' specifies the frame parameters for these frames. It has a default value, so you don't need to set it. For those who know Lisp, an element of `special-display-buffer-names' or `special-display-regexps' can also be a list. Then the first element is the buffer name or regular expression; the rest of the list specifies how to create the frame. It can be an association list specifying frame parameter values; these values take precedence over parameter values specified in `special-display-frame-alist'. Alternatively, it can have this form: (FUNCTION ARGS...) where FUNCTION is a symbol. Then the frame is constructed by calling FUNCTION; its first argument is the buffer, and its remaining arguments are ARGS. An analogous feature lets you specify buffers which should be displayed in the selected window. *Note Force Same Window::. The same-window feature takes precedence over the special-frame feature; therefore, if you add a buffer name to `special-display-buffer-names' and it has no effect, check to see whether that feature is also in use for the same buffer name. Setting Frame Parameters ======================== This section describes commands for altering the display style and window management behavior of the selected frame. `M-x set-foreground-color COLOR ' Specify color COLOR for the foreground of the selected frame. (This also changes the foreground color of the default face.) `M-x set-background-color COLOR ' Specify color COLOR for the background of the selected frame. (This also changes the background color of the default face.) `M-x set-cursor-color COLOR ' Specify color COLOR for the cursor of the selected frame. `M-x set-mouse-color COLOR ' Specify color COLOR for the mouse cursor when it is over the selected frame. `M-x set-border-color COLOR ' Specify color COLOR for the border of the selected frame. `M-x list-colors-display' Display the defined color names and show what the colors look like. This command is somewhat slow. `M-x auto-raise-mode' Toggle whether or not the selected frame should auto-raise. Auto-raise means that every time you move the mouse onto the frame, it raises the frame. Note that this auto-raise feature is implemented by Emacs itself. Some window managers also implement auto-raise. If you enable auto-raise for Emacs frames in your X window manager, it should work, but it is beyond Emacs's control and therefore `auto-raise-mode' has no effect on it. `M-x auto-lower-mode' Toggle whether or not the selected frame should auto-lower. Auto-lower means that every time you move the mouse off the frame, the frame moves to the bottom of the stack of X windows. The command `auto-lower-mode' has no effect on auto-lower implemented by the X window manager. To control that, you must use the appropriate window manager features. `M-x set-frame-font FONT ' Specify font FONT as the principal font for the selected frame. The principal font controls several face attributes of the `default' face (*note Faces::). For example, if the principal font has a height of 12 pt, all text will be drawn in 12 pt fonts, unless you use another face that specifies a different height. *Note Font X::, for ways to list the available fonts on your system. You can also set a frame's principal font through a pop-up menu. Press `S-Mouse-1' to activate this menu. In Emacs versions that use an X toolkit, the color-setting and font-setting functions don't affect menus and the menu bar, since they are displayed by their own widget classes. To change the appearance of the menus and menu bar, you must use X resources (*note Resources X::). *Note Colors X::, regarding colors. *Note Font X::, regarding choice of font. Colors, fonts, and other attributes of the frame's display can also be customized by setting frame parameters in the variable `default-frame-alist' (*note Creating Frames::). For a detailed description of frame parameters and customization, see *Note Frame Parameters: (elisp)Frame Parameters. Scroll Bars =========== When using X, Emacs normally makes a "scroll bar" at the left of each Emacs window.(1) The scroll bar runs the height of the window, and shows a moving rectangular inner box which represents the portion of the buffer currently displayed. The entire height of the scroll bar represents the entire length of the buffer. You can use `Mouse-2' (normally, the middle button) in the scroll bar to move or drag the inner box up and down. If you move it to the top of the scroll bar, you see the top of the buffer. If you move it to the bottom of the scroll bar, you see the bottom of the buffer. The left and right buttons in the scroll bar scroll by controlled increments. `Mouse-1' (normally, the left button) moves the line at the level where you click up to the top of the window. `Mouse-3' (normally, the right button) moves the line at the top of the window down to the level where you click. By clicking repeatedly in the same place, you can scroll by the same distance over and over. If you are using Emacs's own implementation of scroll bars, as opposed to scroll bars from an X toolkit, you can also click `C-Mouse-2' in the scroll bar to split a window vertically. The split occurs on the line where you click. You can enable or disable Scroll Bar mode with the command `M-x scroll-bar-mode'. With no argument, it toggles the use of scroll bars. With an argument, it turns use of scroll bars on if and only if the argument is positive. This command applies to all frames, including frames yet to be created. Customize the option `scroll-bar-mode' to control the use of scroll bars at startup. You can use it to specify that they are placed at the right of windows if you prefer that. You can use the X resource `verticalScrollBars' to control the initial setting of Scroll Bar mode similarly. *Note Resources X::. To enable or disable scroll bars for just the selected frame, use the `M-x toggle-scroll-bar' command. You can control the scroll bar width by changing the value of the `scroll-bar-width' frame parameter. ---------- Footnotes ---------- (1) Placing it at the left is usually more useful with overlapping frames with text starting at the left margin. Scrolling With "Wheeled" Mice ============================= Some mice have a "wheel" instead of a third button. You can usually click the wheel to act as either `Mouse-2' or `Mouse-3', depending on the setup. You can also use the wheel to scroll windows instead of using the scroll bar or keyboard commands. To do so, turn on Mouse Wheel global minor mode with the command `M-x mouse-wheel-mode' or by customizing the option `mouse-wheel-mode'. Support for the wheel depends on the system generating appropriate events for Emacs. The variables `mouse-wheel-follow-mouse' and `mouse-wheel-scroll-amount' determine where and by how much buffers are scrolled. Menu Bars ========= You can turn display of menu bars on or off with `M-x menu-bar-mode' or by customizing the option `menu-bar-mode'. With no argument, this command toggles Menu Bar mode, a minor mode. With an argument, the command turns Menu Bar mode on if the argument is positive, off if the argument is not positive. You can use the X resource `menuBarLines' to control the initial setting of Menu Bar mode. *Note Resources X::. Expert users often turn off the menu bar, especially on text-only terminals, where this makes one additional line available for text. If the menu bar is off, you can still pop up a menu of its contents with `C-Mouse-3' on a display which supports pop-up menus. *Note Menu Mouse Clicks::. *Note Menu Bar::, for information on how to invoke commands with the menu bar. Tool Bars ========= The "tool bar" is a line (or multiple lines) of icons at the top of the Emacs window. You can click on these icons with the mouse to do various jobs. The global tool bar contains general commands. Some major modes define their own tool bars to replace it. A few "special" modes that are not designed for ordinary editing remove some items from the global tool bar. Tool bars work only on a graphical display. The tool bar uses colored XPM icons if Emacs was built with XPM support. Otherwise, the tool bar uses monochrome icons (PBM or XBM format). You can turn display of tool bars on or off with `M-x tool-bar-mode'. Using Dialog Boxes ================== A dialog box is a special kind of menu for asking you a yes-or-no question or some other special question. Many Emacs commands use a dialog box to ask a yes-or-no question, if you used the mouse to invoke the command to begin with. You can customize the option `use-dialog-box' to suppress the use of dialog boxes. This also controls whether to use file selection windows (but those are not supported on all platforms). Tooltips (or "Balloon Help") ============================ Tooltips are small X windows displaying a help string at the current mouse position, typically over text--including the mode line--which can be activated with the mouse or other keys. (This facility is sometimes known as "balloon help".) Help text may be available for menu items too. To use tooltips, enable Tooltip mode with the command `M-x tooltip-mode'. The customization group `tooltip' controls various aspects of how tooltips work. When Tooltip mode is disabled, the help text is displayed in the echo area instead. As of Emacs 21.1, tooltips are not supported on MS-Windows. So help text always appears in the echo area. Mouse Avoidance =============== Mouse Avoidance mode keeps the window system mouse pointer away from point, to avoid obscuring text. Whenever it moves the mouse, it also raises the frame. To use Mouse Avoidance mode, customize the option `mouse-avoidance-mode'. You can set this to various values to move the mouse in several ways: `banish' Move the mouse to the upper-right corner on any key-press; `exile' Move the mouse to the corner only if the cursor gets too close, and allow it to return once the cursor is out of the way; `jump' If the cursor gets too close to the mouse, displace the mouse a random distance & direction; `animate' As `jump', but shows steps along the way for illusion of motion; `cat-and-mouse' The same as `animate'; `proteus' As `animate', but changes the shape of the mouse pointer too. You can also use the command `M-x mouse-avoidance-mode' to enable the mode. Non-Window Terminals ==================== If your terminal does not have a window system that Emacs supports, then it can display only one Emacs frame at a time. However, you can still create multiple Emacs frames, and switch between them. Switching frames on these terminals is much like switching between different window configurations. Use `C-x 5 2' to create a new frame and switch to it; use `C-x 5 o' to cycle through the existing frames; use `C-x 5 0' to delete the current frame. Each frame has a number to distinguish it. If your terminal can display only one frame at a time, the selected frame's number N appears near the beginning of the mode line, in the form `FN'. `FN' is actually the frame's name. You can also specify a different name if you wish, and you can select a frame by its name. Use the command `M-x set-frame-name NAME ' to specify a new name for the selected frame, and use `M-x select-frame-by-name NAME ' to select a frame according to its name. The name you specify appears in the mode line when the frame is selected. Using a Mouse in Terminal Emulators =================================== Some terminal emulators under X support mouse clicks in the terminal window. In a terminal emulator which is compatible with `xterm', you can use `M-x xterm-mouse-mode' to enable simple use of the mouse--only single clicks are supported. The normal `xterm' mouse functionality is still available by holding down the `SHIFT' key when you press the mouse button. The Linux console supports this mode if it has support for the mouse enabled, e.g. using the `gpm' daemon. International Character Set Support *********************************** Emacs supports a wide variety of international character sets, including European variants of the Latin alphabet, as well as Chinese, Cyrillic, Devanagari (Hindi and Marathi), Ethiopic, Greek, Hebrew, IPA, Japanese, Korean, Lao, Thai, Tibetan, and Vietnamese scripts. These features have been merged from the modified version of Emacs known as MULE (for "MULti-lingual Enhancement to GNU Emacs") Emacs also supports various encodings of these characters used by other internationalized software, such as word processors and mailers. Emacs allows editing text with international characters by supporting all the related activities: * You can visit files with non-ASCII characters, save non-ASCII text, and pass non-ASCII text between Emacs and programs it invokes (such as compilers, spell-checkers, and mailers). Setting your language environment (*note Language Environments::) takes care of setting up the coding systems and other options for a specific language or culture. Alternatively, you can specify how Emacs should encode or decode text for each command; see *Note Specify Coding::. * You can display non-ASCII characters encoded by the various scripts. This works by using appropriate fonts on X and similar graphics displays (*note Defining Fontsets::), and by sending special codes to text-only displays (*note Specify Coding::). If some characters are displayed incorrectly, refer to *Note Undisplayable Characters::, which describes possible problems and explains how to solve them. * You can insert non-ASCII characters or search for them. To do that, you can specify an input method (*note Select Input Method::) suitable for your language, or use the default input method set up when you set your language environment. (Emacs input methods are part of the Leim package, which must be installed for you to be able to use them.) If your keyboard can produce non-ASCII characters, you can select an appropriate keyboard coding system (*note Specify Coding::), and Emacs will accept those characters. Latin-1 characters can also be input by using the `C-x 8' prefix, see *Note C-x 8: Single-Byte Character Support. On X Window systems, your locale should be set to an appropriate value to make sure Emacs interprets keyboard input correctly, see *Note locales: Language Environments. The rest of this chapter describes these issues in detail. Introduction to International Character Sets ============================================ The users of international character sets and scripts have established many more-or-less standard coding systems for storing files. Emacs internally uses a single multibyte character encoding, so that it can intermix characters from all these scripts in a single buffer or string. This encoding represents each non-ASCII character as a sequence of bytes in the range 0200 through 0377. Emacs translates between the multibyte character encoding and various other coding systems when reading and writing files, when exchanging data with subprocesses, and (in some cases) in the `C-q' command (*note Multibyte Conversion::). The command `C-h h' (`view-hello-file') displays the file `etc/HELLO', which shows how to say "hello" in many languages. This illustrates various scripts. If some characters can't be displayed on your terminal, they appear as `?' or as hollow boxes (*note Undisplayable Characters::). Keyboards, even in the countries where these character sets are used, generally don't have keys for all the characters in them. So Emacs supports various "input methods", typically one for each script or language, to make it convenient to type them. The prefix key `C-x ' is used for commands that pertain to multibyte characters, coding systems, and input methods. Enabling Multibyte Characters ============================= You can enable or disable multibyte character support, either for Emacs as a whole, or for a single buffer. When multibyte characters are disabled in a buffer, then each byte in that buffer represents a character, even codes 0200 through 0377. The old features for supporting the European character sets, ISO Latin-1 and ISO Latin-2, work as they did in Emacs 19 and also work for the other ISO 8859 character sets. However, there is no need to turn off multibyte character support to use ISO Latin; the Emacs multibyte character set includes all the characters in these character sets, and Emacs can translate automatically to and from the ISO codes. By default, Emacs starts in multibyte mode, because that allows you to use all the supported languages and scripts without limitations. To edit a particular file in unibyte representation, visit it using `find-file-literally'. *Note Visiting::. To convert a buffer in multibyte representation into a single-byte representation of the same characters, the easiest way is to save the contents in a file, kill the buffer, and find the file again with `find-file-literally'. You can also use `C-x c' (`universal-coding-system-argument') and specify `raw-text' as the coding system with which to find or save a file. *Note Specify Coding::. Finding a file as `raw-text' doesn't disable format conversion, uncompression and auto mode selection as `find-file-literally' does. To turn off multibyte character support by default, start Emacs with the `--unibyte' option (*note Initial Options::), or set the environment variable `EMACS_UNIBYTE'. You can also customize `enable-multibyte-characters' or, equivalently, directly set the variable `default-enable-multibyte-characters' to `nil' in your init file to have basically the same effect as `--unibyte'. To convert a unibyte session to a multibyte session, set `default-enable-multibyte-characters' to `t'. Buffers which were created in the unibyte session before you turn on multibyte support will stay unibyte. You can turn on multibyte support in a specific buffer by invoking the command `toggle-enable-multibyte-characters' in that buffer. With `--unibyte', multibyte strings are not created during initialization from the values of environment variables, `/etc/passwd' entries etc. that contain non-ASCII 8-bit characters. Emacs normally loads Lisp files as multibyte, regardless of whether you used `--unibyte'. This includes the Emacs initialization file, `.emacs', and the initialization files of Emacs packages such as Gnus. However, you can specify unibyte loading for a particular Lisp file, by putting `-*-unibyte: t;-*-' in a comment on the first line. Then that file is always loaded as unibyte text, even if you did not start Emacs with `--unibyte'. The motivation for these conventions is that it is more reliable to always load any particular Lisp file in the same way. However, you can load a Lisp file as unibyte, on any one occasion, by typing `C-x c raw-text ' immediately before loading it. The mode line indicates whether multibyte character support is enabled in the current buffer. If it is, there are two or more characters (most often two dashes) before the colon near the beginning of the mode line. When multibyte characters are not enabled, just one dash precedes the colon. Language Environments ===================== All supported character sets are supported in Emacs buffers whenever multibyte characters are enabled; there is no need to select a particular language in order to display its characters in an Emacs buffer. However, it is important to select a "language environment" in order to set various defaults. The language environment really represents a choice of preferred script (more or less) rather than a choice of language. The language environment controls which coding systems to recognize when reading text (*note Recognize Coding::). This applies to files, incoming mail, netnews, and any other text you read into Emacs. It may also specify the default coding system to use when you create a file. Each language environment also specifies a default input method. To select a language environment, customize the option `current-language-environment' or use the command `M-x set-language-environment'. It makes no difference which buffer is current when you use this command, because the effects apply globally to the Emacs session. The supported language environments include: Chinese-BIG5, Chinese-CNS, Chinese-GB, Cyrillic-ALT, Cyrillic-ISO, Cyrillic-KOI8, Czech, Devanagari, Dutch, English, Ethiopic, German, Greek, Hebrew, IPA, Japanese, Korean, Lao, Latin-1, Latin-2, Latin-3, Latin-4, Latin-5, Latin-8 (Celtic), Latin-9 (updated Latin-1, with the Euro sign), Polish, Romanian, Slovak, Slovenian, Spanish, Thai, Tibetan, Turkish, and Vietnamese. To display the script(s) used by your language environment on a graphical display, you need to have a suitable font. If some of the characters appear as empty boxes, you should install the GNU Intlfonts package, which includes fonts for all supported scripts.(1) *Note Fontsets::, for more details about setting up your fonts. Some operating systems let you specify the character-set locale you are using by setting the locale environment variables `LC_ALL', `LC_CTYPE', or `LANG'.(2) During startup, Emacs looks up your character-set locale's name in the system locale alias table, matches its canonical name against entries in the value of the variables `locale-charset-language-names' and `locale-language-names', and selects the corresponding language environment if a match is found. (The former variable overrides the latter.) It also adjusts the display table and terminal coding system, the locale coding system, the preferred coding system as needed for the locale, and--last but not least--the way Emacs decodes non-ASCII characters sent by your keyboard. If you modify the `LC_ALL', `LC_CTYPE', or `LANG' environment variables while running Emacs, you may want to invoke the `set-locale-environment' function afterwards to readjust the language environment from the new locale. The `set-locale-environment' function normally uses the preferred coding system established by the language environment to decode system messages. But if your locale matches an entry in the variable `locale-preferred-coding-systems', Emacs uses the corresponding coding system instead. For example, if the locale `ja_JP.PCK' matches `japanese-shift-jis' in `locale-preferred-coding-systems', Emacs uses that encoding even though it might normally use `japanese-iso-8bit'. You can override the language environment chosen at startup with explicit use of the command `set-language-environment', or with customization of `current-language-environment' in your init file. To display information about the effects of a certain language environment LANG-ENV, use the command `C-h L LANG-ENV ' (`describe-language-environment'). This tells you which languages this language environment is useful for, and lists the character sets, coding systems, and input methods that go with it. It also shows some sample text to illustrate scripts used in this language environment. By default, this command describes the chosen language environment. You can customize any language environment with the normal hook `set-language-environment-hook'. The command `set-language-environment' runs that hook after setting up the new language environment. The hook functions can test for a specific language environment by checking the variable `current-language-environment'. This hook is where you should put non-default settings for specific language environment, such as coding systems for keyboard input and terminal output, the default input method, etc. Before it starts to set up the new language environment, `set-language-environment' first runs the hook `exit-language-environment-hook'. This hook is useful for undoing customizations that were made with `set-language-environment-hook'. For instance, if you set up a special key binding in a specific language environment using `set-language-environment-hook', you should set up `exit-language-environment-hook' to restore the normal binding for that key. ---------- Footnotes ---------- (1) If you run Emacs on X, you need to inform the X server about the location of the newly installed fonts with the following commands: xset fp+ /usr/local/share/emacs/fonts xset fp rehash (2) If more than one of these is set, the first one that is nonempty specifies your locale for this purpose. Input Methods ============= An "input method" is a kind of character conversion designed specifically for interactive input. In Emacs, typically each language has its own input method; sometimes several languages which use the same characters can share one input method. A few languages support several input methods. The simplest kind of input method works by mapping ASCII letters into another alphabet; this allows you to use one other alphabet instead of ASCII. The Greek and Russian input methods work this way. A more powerful technique is composition: converting sequences of characters into one letter. Many European input methods use composition to produce a single non-ASCII letter from a sequence that consists of a letter followed by accent characters (or vice versa). For example, some methods convert the sequence `a'' into a single accented letter. These input methods have no special commands of their own; all they do is compose sequences of printing characters. The input methods for syllabic scripts typically use mapping followed by composition. The input methods for Thai and Korean work this way. First, letters are mapped into symbols for particular sounds or tone marks; then, sequences of these which make up a whole syllable are mapped into one syllable sign. Chinese and Japanese require more complex methods. In Chinese input methods, first you enter the phonetic spelling of a Chinese word (in input method `chinese-py', among others), or a sequence of portions of the character (input methods `chinese-4corner' and `chinese-sw', and others). One input sequence typically corresponds to many possible Chinese characters. You select the one you mean using keys such as `C-f', `C-b', `C-n', `C-p', and digits, which have special meanings in this situation. The possible characters are conceptually arranged in several rows, with each row holding up to 10 alternatives. Normally, Emacs displays just one row at a time, in the echo area; `(I/J)' appears at the beginning, to indicate that this is the Ith row out of a total of J rows. Type `C-n' or `C-p' to display the next row or the previous row. Type `C-f' and `C-b' to move forward and backward among the alternatives in the current row. As you do this, Emacs highlights the current alternative with a special color; type `C-' to select the current alternative and use it as input. The alternatives in the row are also numbered; the number appears before the alternative. Typing a digit N selects the Nth alternative of the current row and uses it as input. in these Chinese input methods displays a buffer showing all the possible characters at once; then clicking `Mouse-2' on one of them selects that alternative. The keys `C-f', `C-b', `C-n', `C-p', and digits continue to work as usual, but they do the highlighting in the buffer showing the possible characters, rather than in the echo area. In Japanese input methods, first you input a whole word using phonetic spelling; then, after the word is in the buffer, Emacs converts it into one or more characters using a large dictionary. One phonetic spelling corresponds to a number of different Japanese words; to select one of them, use `C-n' and `C-p' to cycle through the alternatives. Sometimes it is useful to cut off input method processing so that the characters you have just entered will not combine with subsequent characters. For example, in input method `latin-1-postfix', the sequence `e '' combines to form an `e' with an accent. What if you want to enter them as separate characters? One way is to type the accent twice; this is a special feature for entering the separate letter and accent. For example, `e ' '' gives you the two characters `e''. Another way is to type another letter after the `e'--something that won't combine with that--and immediately delete it. For example, you could type `e e '' to get separate `e' and `''. Another method, more general but not quite as easy to type, is to use `C-\ C-\' between two characters to stop them from combining. This is the command `C-\' (`toggle-input-method') used twice. *Note Select Input Method::. `C-\ C-\' is especially useful inside an incremental search, because it stops waiting for more characters to combine, and starts searching for what you have already entered. The variables `input-method-highlight-flag' and `input-method-verbose-flag' control how input methods explain what is happening. If `input-method-highlight-flag' is non-`nil', the partial sequence is highlighted in the buffer (for most input methods--some disable this feature). If `input-method-verbose-flag' is non-`nil', the list of possible characters to type next is displayed in the echo area (but not when you are in the minibuffer). Input methods are implemented in the separate Leim package: they are available only if the system administrator used Leim when building Emacs. If Emacs was built without Leim, you will find that no input methods are defined. Selecting an Input Method ========================= `C-\' Enable or disable use of the selected input method. `C-x C-\ METHOD ' Select a new input method for the current buffer. `C-h I METHOD ' `C-h C-\ METHOD ' Describe the input method METHOD (`describe-input-method'). By default, it describes the current input method (if any). This description should give you the full details of how to use any particular input method. `M-x list-input-methods' Display a list of all the supported input methods. To choose an input method for the current buffer, use `C-x C-\' (`set-input-method'). This command reads the input method name from the minibuffer; the name normally starts with the language environment that it is meant to be used with. The variable `current-input-method' records which input method is selected. Input methods use various sequences of ASCII characters to stand for non-ASCII characters. Sometimes it is useful to turn off the input method temporarily. To do this, type `C-\' (`toggle-input-method'). To reenable the input method, type `C-\' again. If you type `C-\' and you have not yet selected an input method, it prompts for you to specify one. This has the same effect as using `C-x C-\' to specify an input method. When invoked with a numeric argument, as in `C-u C-\', `toggle-input-method' always prompts you for an input method, suggesting the most recently selected one as the default. Selecting a language environment specifies a default input method for use in various buffers. When you have a default input method, you can select it in the current buffer by typing `C-\'. The variable `default-input-method' specifies the default input method (`nil' means there is none). In some language environments, which support several different input methods, you might want to use an input method different from the default chosen by `set-language-environment'. You can instruct Emacs to select a different default input method for a certain language environment, if you wish, by using `set-language-environment-hook' (*note set-language-environment-hook: Language Environments.). For example: (defun my-chinese-setup () "Set up my private Chinese environment." (if (equal current-language-environment "Chinese-GB") (setq default-input-method "chinese-tonepy"))) (add-hook 'set-language-environment-hook 'my-chinese-setup) This sets the default input method to be `chinese-tonepy' whenever you choose a Chinese-GB language environment. Some input methods for alphabetic scripts work by (in effect) remapping the keyboard to emulate various keyboard layouts commonly used for those scripts. How to do this remapping properly depends on your actual keyboard layout. To specify which layout your keyboard has, use the command `M-x quail-set-keyboard-layout'. To display a list of all the supported input methods, type `M-x list-input-methods'. The list gives information about each input method, including the string that stands for it in the mode line. Unibyte and Multibyte Non-ASCII characters ========================================== When multibyte characters are enabled, character codes 0240 (octal) through 0377 (octal) are not really legitimate in the buffer. The valid non-ASCII printing characters have codes that start from 0400. If you type a self-inserting character in the range 0240 through 0377, or if you use `C-q' to insert one, Emacs assumes you intended to use one of the ISO Latin-N character sets, and converts it to the Emacs code representing that Latin-N character. You select _which_ ISO Latin character set to use through your choice of language environment (*note Language Environments::). If you do not specify a choice, the default is Latin-1. If you insert a character in the range 0200 through 0237, which forms the `eight-bit-control' character set, it is inserted literally. You should normally avoid doing this since buffers containing such characters have to be written out in either the `emacs-mule' or `raw-text' coding system, which is usually not what you want. Coding Systems ============== Users of various languages have established many more-or-less standard coding systems for representing them. Emacs does not use these coding systems internally; instead, it converts from various coding systems to its own system when reading data, and converts the internal coding system to other coding systems when writing data. Conversion is possible in reading or writing files, in sending or receiving from the terminal, and in exchanging data with subprocesses. Emacs assigns a name to each coding system. Most coding systems are used for one language, and the name of the coding system starts with the language name. Some coding systems are used for several languages; their names usually start with `iso'. There are also special coding systems `no-conversion', `raw-text' and `emacs-mule' which do not convert printing characters at all. A special class of coding systems, collectively known as "codepages", is designed to support text encoded by MS-Windows and MS-DOS software. To use any of these systems, you need to create it with `M-x codepage-setup'. *Note MS-DOS and MULE::. After creating the coding system for the codepage, you can use it as any other coding system. For example, to visit a file encoded in codepage 850, type `C-x c cp850 C-x C-f FILENAME '. In addition to converting various representations of non-ASCII characters, a coding system can perform end-of-line conversion. Emacs handles three different conventions for how to separate lines in a file: newline, carriage-return linefeed, and just carriage-return. `C-h C CODING ' Describe coding system CODING. `C-h C ' Describe the coding systems currently in use. `M-x list-coding-systems' Display a list of all the supported coding systems. The command `C-h C' (`describe-coding-system') displays information about particular coding systems. You can specify a coding system name as the argument; alternatively, with an empty argument, it describes the coding systems currently selected for various purposes, both in the current buffer and as the defaults, and the priority list for recognizing coding systems (*note Recognize Coding::). To display a list of all the supported coding systems, type `M-x list-coding-systems'. The list gives information about each coding system, including the letter that stands for it in the mode line (*note Mode Line::). Each of the coding systems that appear in this list--except for `no-conversion', which means no conversion of any kind--specifies how and whether to convert printing characters, but leaves the choice of end-of-line conversion to be decided based on the contents of each file. For example, if the file appears to use the sequence carriage-return linefeed to separate lines, DOS end-of-line conversion will be used. Each of the listed coding systems has three variants which specify exactly what to do for end-of-line conversion: `...-unix' Don't do any end-of-line conversion; assume the file uses newline to separate lines. (This is the convention normally used on Unix and GNU systems.) `...-dos' Assume the file uses carriage-return linefeed to separate lines, and do the appropriate conversion. (This is the convention normally used on Microsoft systems.(1)) `...-mac' Assume the file uses carriage-return to separate lines, and do the appropriate conversion. (This is the convention normally used on the Macintosh system.) These variant coding systems are omitted from the `list-coding-systems' display for brevity, since they are entirely predictable. For example, the coding system `iso-latin-1' has variants `iso-latin-1-unix', `iso-latin-1-dos' and `iso-latin-1-mac'. The coding system `raw-text' is good for a file which is mainly ASCII text, but may contain byte values above 127 which are not meant to encode non-ASCII characters. With `raw-text', Emacs copies those byte values unchanged, and sets `enable-multibyte-characters' to `nil' in the current buffer so that they will be interpreted properly. `raw-text' handles end-of-line conversion in the usual way, based on the data encountered, and has the usual three variants to specify the kind of end-of-line conversion to use. In contrast, the coding system `no-conversion' specifies no character code conversion at all--none for non-ASCII byte values and none for end of line. This is useful for reading or writing binary files, tar files, and other files that must be examined verbatim. It, too, sets `enable-multibyte-characters' to `nil'. The easiest way to edit a file with no conversion of any kind is with the `M-x find-file-literally' command. This uses `no-conversion', and also suppresses other Emacs features that might convert the file contents before you see them. *Note Visiting::. The coding system `emacs-mule' means that the file contains non-ASCII characters stored with the internal Emacs encoding. It handles end-of-line conversion based on the data encountered, and has the usual three variants to specify the kind of end-of-line conversion. ---------- Footnotes ---------- (1) It is also specified for MIME `text/*' bodies and in other network transport contexts. It is different from the SGML reference syntax record-start/record-end format which Emacs doesn't support directly. Recognizing Coding Systems ========================== Emacs tries to recognize which coding system to use for a given text as an integral part of reading that text. (This applies to files being read, output from subprocesses, text from X selections, etc.) Emacs can select the right coding system automatically most of the time--once you have specified your preferences. Some coding systems can be recognized or distinguished by which byte sequences appear in the data. However, there are coding systems that cannot be distinguished, not even potentially. For example, there is no way to distinguish between Latin-1 and Latin-2; they use the same byte values with different meanings. Emacs handles this situation by means of a priority list of coding systems. Whenever Emacs reads a file, if you do not specify the coding system to use, Emacs checks the data against each coding system, starting with the first in priority and working down the list, until it finds a coding system that fits the data. Then it converts the file contents assuming that they are represented in this coding system. The priority list of coding systems depends on the selected language environment (*note Language Environments::). For example, if you use French, you probably want Emacs to prefer Latin-1 to Latin-2; if you use Czech, you probably want Latin-2 to be preferred. This is one of the reasons to specify a language environment. However, you can alter the priority list in detail with the command `M-x prefer-coding-system'. This command reads the name of a coding system from the minibuffer, and adds it to the front of the priority list, so that it is preferred to all others. If you use this command several times, each use adds one element to the front of the priority list. If you use a coding system that specifies the end-of-line conversion type, such as `iso-8859-1-dos', what this means is that Emacs should attempt to recognize `iso-8859-1' with priority, and should use DOS end-of-line conversion when it does recognize `iso-8859-1'. Sometimes a file name indicates which coding system to use for the file. The variable `file-coding-system-alist' specifies this correspondence. There is a special function `modify-coding-system-alist' for adding elements to this list. For example, to read and write all `.txt' files using the coding system `china-iso-8bit', you can execute this Lisp expression: (modify-coding-system-alist 'file "\\.txt\\'" 'china-iso-8bit) The first argument should be `file', the second argument should be a regular expression that determines which files this applies to, and the third argument says which coding system to use for these files. Emacs recognizes which kind of end-of-line conversion to use based on the contents of the file: if it sees only carriage-returns, or only carriage-return linefeed sequences, then it chooses the end-of-line conversion accordingly. You can inhibit the automatic use of end-of-line conversion by setting the variable `inhibit-eol-conversion' to non-`nil'. If you do that, DOS-style files will be displayed with the `^M' characters visible in the buffer; some people prefer this to the more subtle `(DOS)' end-of-line type indication near the left edge of the mode line (*note eol-mnemonic: Mode Line.). By default, the automatic detection of coding system is sensitive to escape sequences. If Emacs sees a sequence of characters that begin with an escape character, and the sequence is valid as an ISO-2022 code, that tells Emacs to use one of the ISO-2022 encodings to decode the file. However, there may be cases that you want to read escape sequences in a file as is. In such a case, you can set the variable `inhibit-iso-escape-detection' to non-`nil'. Then the code detection ignores any escape sequences, and never uses an ISO-2022 encoding. The result is that all escape sequences become visible in the buffer. The default value of `inhibit-iso-escape-detection' is `nil'. We recommend that you not change it permanently, only for one specific operation. That's because many Emacs Lisp source files in the Emacs distribution contain non-ASCII characters encoded in the coding system `iso-2022-7bit', and they won't be decoded correctly when you visit those files if you suppress the escape sequence detection. You can specify the coding system for a particular file using the `-*-...-*-' construct at the beginning of a file, or a local variables list at the end (*note File Variables::). You do this by defining a value for the "variable" named `coding'. Emacs does not really have a variable `coding'; instead of setting a variable, this uses the specified coding system for the file. For example, `-*-mode: C; coding: latin-1;-*-' specifies use of the Latin-1 coding system, as well as C mode. When you specify the coding explicitly in the file, that overrides `file-coding-system-alist'. The variables `auto-coding-alist' and `auto-coding-regexp-alist' are the strongest way to specify the coding system for certain patterns of file names, or for files containing certain patterns; these variables even override `-*-coding:-*-' tags in the file itself. Emacs uses `auto-coding-alist' for tar and archive files, to prevent it from being confused by a `-*-coding:-*-' tag in a member of the archive and thinking it applies to the archive file as a whole. Likewise, Emacs uses `auto-coding-regexp-alist' to ensure that RMAIL files, whose names in general don't match any particular pattern, are decoded correctly. If Emacs recognizes the encoding of a file incorrectly, you can reread the file using the correct coding system by typing `C-x c CODING-SYSTEM M-x revert-buffer '. To see what coding system Emacs actually used to decode the file, look at the coding system mnemonic letter near the left edge of the mode line (*note Mode Line::), or type `C-h C '. Once Emacs has chosen a coding system for a buffer, it stores that coding system in `buffer-file-coding-system' and uses that coding system, by default, for operations that write from this buffer into a file. This includes the commands `save-buffer' and `write-region'. If you want to write files from this buffer using a different coding system, you can specify a different coding system for the buffer using `set-buffer-file-coding-system' (*note Specify Coding::). You can insert any possible character into any Emacs buffer, but most coding systems can only handle some of the possible characters. This means that it is possible for you to insert characters that cannot be encoded with the coding system that will be used to save the buffer. For example, you could start with an ASCII file and insert a few Latin-1 characters into it, or you could edit a text file in Polish encoded in `iso-8859-2' and add some Russian words to it. When you save the buffer, Emacs cannot use the current value of `buffer-file-coding-system', because the characters you added cannot be encoded by that coding system. When that happens, Emacs tries the most-preferred coding system (set by `M-x prefer-coding-system' or `M-x set-language-environment'), and if that coding system can safely encode all of the characters in the buffer, Emacs uses it, and stores its value in `buffer-file-coding-system'. Otherwise, Emacs displays a list of coding systems suitable for encoding the buffer's contents, and asks you to choose one of those coding systems. If you insert the unsuitable characters in a mail message, Emacs behaves a bit differently. It additionally checks whether the most-preferred coding system is recommended for use in MIME messages; if not, Emacs tells you that the most-preferred coding system is not recommended and prompts you for another coding system. This is so you won't inadvertently send a message encoded in a way that your recipient's mail software will have difficulty decoding. (If you do want to use the most-preferred coding system, you can still type its name in response to the question.) When you send a message with Mail mode (*note Sending Mail::), Emacs has four different ways to determine the coding system to use for encoding the message text. It tries the buffer's own value of `buffer-file-coding-system', if that is non-`nil'. Otherwise, it uses the value of `sendmail-coding-system', if that is non-`nil'. The third way is to use the default coding system for new files, which is controlled by your choice of language environment, if that is non-`nil'. If all of these three values are `nil', Emacs encodes outgoing mail using the Latin-1 coding system. When you get new mail in Rmail, each message is translated automatically from the coding system it is written in, as if it were a separate file. This uses the priority list of coding systems that you have specified. If a MIME message specifies a character set, Rmail obeys that specification, unless `rmail-decode-mime-charset' is `nil'. For reading and saving Rmail files themselves, Emacs uses the coding system specified by the variable `rmail-file-coding-system'. The default value is `nil', which means that Rmail files are not translated (they are read and written in the Emacs internal character code). Specifying a Coding System ========================== In cases where Emacs does not automatically choose the right coding system, you can use these commands to specify one: `C-x f CODING ' Use coding system CODING for the visited file in the current buffer. `C-x c CODING ' Specify coding system CODING for the immediately following command. `C-x k CODING ' Use coding system CODING for keyboard input. `C-x t CODING ' Use coding system CODING for terminal output. `C-x p INPUT-CODING OUTPUT-CODING ' Use coding systems INPUT-CODING and OUTPUT-CODING for subprocess input and output in the current buffer. `C-x x CODING ' Use coding system CODING for transferring selections to and from other programs through the window system. `C-x X CODING ' Use coding system CODING for transferring _one_ selection--the next one--to or from the window system. The command `C-x f' (`set-buffer-file-coding-system') specifies the file coding system for the current buffer--in other words, which coding system to use when saving or rereading the visited file. You specify which coding system using the minibuffer. Since this command applies to a file you have already visited, it affects only the way the file is saved. Another way to specify the coding system for a file is when you visit the file. First use the command `C-x c' (`universal-coding-system-argument'); this command uses the minibuffer to read a coding system name. After you exit the minibuffer, the specified coding system is used for _the immediately following command_. So if the immediately following command is `C-x C-f', for example, it reads the file using that coding system (and records the coding system for when the file is saved). Or if the immediately following command is `C-x C-w', it writes the file using that coding system. Other file commands affected by a specified coding system include `C-x C-i' and `C-x C-v', as well as the other-window variants of `C-x C-f'. `C-x c' also affects commands that start subprocesses, including `M-x shell' (*note Shell::). However, if the immediately following command does not use the coding system, then `C-x c' ultimately has no effect. An easy way to visit a file with no conversion is with the `M-x find-file-literally' command. *Note Visiting::. The variable `default-buffer-file-coding-system' specifies the choice of coding system to use when you create a new file. It applies when you find a new file, and when you create a buffer and then save it in a file. Selecting a language environment typically sets this variable to a good choice of default coding system for that language environment. The command `C-x t' (`set-terminal-coding-system') specifies the coding system for terminal output. If you specify a character code for terminal output, all characters output to the terminal are translated into that coding system. This feature is useful for certain character-only terminals built to support specific languages or character sets--for example, European terminals that support one of the ISO Latin character sets. You need to specify the terminal coding system when using multibyte text, so that Emacs knows which characters the terminal can actually handle. By default, output to the terminal is not translated at all, unless Emacs can deduce the proper coding system from your terminal type or your locale specification (*note Language Environments::). The command `C-x k' (`set-keyboard-coding-system') or the Custom option `keyboard-coding-system' specifies the coding system for keyboard input. Character-code translation of keyboard input is useful for terminals with keys that send non-ASCII graphic characters--for example, some terminals designed for ISO Latin-1 or subsets of it. By default, keyboard input is not translated at all. There is a similarity between using a coding system translation for keyboard input, and using an input method: both define sequences of keyboard input that translate into single characters. However, input methods are designed to be convenient for interactive use by humans, and the sequences that are translated are typically sequences of ASCII printing characters. Coding systems typically translate sequences of non-graphic characters. The command `C-x x' (`set-selection-coding-system') specifies the coding system for sending selected text to the window system, and for receiving the text of selections made in other applications. This command applies to all subsequent selections, until you override it by using the command again. The command `C-x X' (`set-next-selection-coding-system') specifies the coding system for the next selection made in Emacs or read by Emacs. The command `C-x p' (`set-buffer-process-coding-system') specifies the coding system for input and output to a subprocess. This command applies to the current buffer; normally, each subprocess has its own buffer, and thus you can use this command to specify translation to and from a particular subprocess by giving the command in the corresponding buffer. The default for translation of process input and output depends on the current language environment. The variable `file-name-coding-system' specifies a coding system to use for encoding file names. If you set the variable to a coding system name (as a Lisp symbol or a string), Emacs encodes file names using that coding system for all file operations. This makes it possible to use non-ASCII characters in file names--or, at least, those non-ASCII characters which the specified coding system can encode. If `file-name-coding-system' is `nil', Emacs uses a default coding system determined by the selected language environment. In the default language environment, any non-ASCII characters in file names are not encoded specially; they appear in the file system using the internal Emacs representation. *Warning:* if you change `file-name-coding-system' (or the language environment) in the middle of an Emacs session, problems can result if you have already visited files whose names were encoded using the earlier coding system and cannot be encoded (or are encoded differently) under the new coding system. If you try to save one of these buffers under the visited file name, saving may use the wrong file name, or it may get an error. If such a problem happens, use `C-x C-w' to specify a new file name for that buffer. The variable `locale-coding-system' specifies a coding system to use when encoding and decoding system strings such as system error messages and `format-time-string' formats and time stamps. That coding system is also used for decoding non-ASCII keyboard input on X Window systems. You should choose a coding system that is compatible with the underlying system's text representation, which is normally specified by one of the environment variables `LC_ALL', `LC_CTYPE', and `LANG'. (The first one, in the order specified above, whose value is nonempty is the one that determines the text representation.) Fontsets ======== A font for X typically defines shapes for a single alphabet or script. Therefore, displaying the entire range of scripts that Emacs supports requires a collection of many fonts. In Emacs, such a collection is called a "fontset". A fontset is defined by a list of fonts, each assigned to handle a range of character codes. Each fontset has a name, like a font. The available X fonts are defined by the X server; fontsets, however, are defined within Emacs itself. Once you have defined a fontset, you can use it within Emacs by specifying its name, anywhere that you could use a single font. Of course, Emacs fontsets can use only the fonts that the X server supports; if certain characters appear on the screen as hollow boxes, this means that the fontset in use for them has no font for those characters.(1) Emacs creates two fontsets automatically: the "standard fontset" and the "startup fontset". The standard fontset is most likely to have fonts for a wide variety of non-ASCII characters; however, this is not the default for Emacs to use. (By default, Emacs tries to find a font that has bold and italic variants.) You can specify use of the standard fontset with the `-fn' option, or with the `Font' X resource (*note Font X::). For example, emacs -fn fontset-standard A fontset does not necessarily specify a font for every character code. If a fontset specifies no font for a certain character, or if it specifies a font that does not exist on your system, then it cannot display that character properly. It will display that character as an empty box instead. The fontset height and width are determined by the ASCII characters (that is, by the font used for ASCII characters in that fontset). If another font in the fontset has a different height, or a different width, then characters assigned to that font are clipped to the fontset's size. If `highlight-wrong-size-font' is non-`nil', a box is displayed around these wrong-size characters as well. ---------- Footnotes ---------- (1) The Emacs installation instructions have information on additional font support. Defining fontsets ================= Emacs creates a standard fontset automatically according to the value of `standard-fontset-spec'. This fontset's name is -*-fixed-medium-r-normal-*-16-*-*-*-*-*-fontset-standard or just `fontset-standard' for short. Bold, italic, and bold-italic variants of the standard fontset are created automatically. Their names have `bold' instead of `medium', or `i' instead of `r', or both. If you specify a default ASCII font with the `Font' resource or the `-fn' argument, Emacs generates a fontset from it automatically. This is the "startup fontset" and its name is `fontset-startup'. It does this by replacing the FOUNDRY, FAMILY, ADD_STYLE, and AVERAGE_WIDTH fields of the font name with `*', replacing CHARSET_REGISTRY field with `fontset', and replacing CHARSET_ENCODING field with `startup', then using the resulting string to specify a fontset. For instance, if you start Emacs this way, emacs -fn "*courier-medium-r-normal--14-140-*-iso8859-1" Emacs generates the following fontset and uses it for the initial X window frame: -*-*-medium-r-normal-*-14-140-*-*-*-*-fontset-startup With the X resource `Emacs.Font', you can specify a fontset name just like an actual font name. But be careful not to specify a fontset name in a wildcard resource like `Emacs*Font'--that wildcard specification matches various other resources, such as for menus, and menus cannot handle fontsets. You can specify additional fontsets using X resources named `Fontset-N', where N is an integer starting from 0. The resource value should have this form: FONTPATTERN, [CHARSETNAME:FONTNAME]... FONTPATTERN should have the form of a standard X font name, except for the last two fields. They should have the form `fontset-ALIAS'. The fontset has two names, one long and one short. The long name is FONTPATTERN. The short name is `fontset-ALIAS'. You can refer to the fontset by either name. The construct `CHARSET:FONT' specifies which font to use (in this fontset) for one particular character set. Here, CHARSET is the name of a character set, and FONT is the font to use for that character set. You can use this construct any number of times in defining one fontset. For the other character sets, Emacs chooses a font based on FONTPATTERN. It replaces `fontset-ALIAS' with values that describe the character set. For the ASCII character font, `fontset-ALIAS' is replaced with `ISO8859-1'. In addition, when several consecutive fields are wildcards, Emacs collapses them into a single wildcard. This is to prevent use of auto-scaled fonts. Fonts made by scaling larger fonts are not usable for editing, and scaling a smaller font is not useful because it is better to use the smaller font in its own size, which is what Emacs does. Thus if FONTPATTERN is this, -*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24 the font specification for ASCII characters would be this: -*-fixed-medium-r-normal-*-24-*-ISO8859-1 and the font specification for Chinese GB2312 characters would be this: -*-fixed-medium-r-normal-*-24-*-gb2312*-* You may not have any Chinese font matching the above font specification. Most X distributions include only Chinese fonts that have `song ti' or `fangsong ti' in FAMILY field. In such a case, `Fontset-N' can be specified as below: Emacs.Fontset-0: -*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24,\ chinese-gb2312:-*-*-medium-r-normal-*-24-*-gb2312*-* Then, the font specifications for all but Chinese GB2312 characters have `fixed' in the FAMILY field, and the font specification for Chinese GB2312 characters has a wild card `*' in the FAMILY field. The function that processes the fontset resource value to create the fontset is called `create-fontset-from-fontset-spec'. You can also call this function explicitly to create a fontset. *Note Font X::, for more information about font naming in X. Undisplayable Characters ======================== Your terminal may be unable to display some non-ASCII characters. Most non-windowing terminals can only use a single character set (use the variable `default-terminal-coding-system' (*note Specify Coding::) to tell Emacs which one); characters which can't be encoded in that coding system are displayed as `?' by default. Windowing terminals can display a broader range of characters, but you may not have fonts installed for all of them; characters that have no font appear as a hollow box. If you use Latin-1 characters but your terminal can't display Latin-1, you can arrange to display mnemonic ASCII sequences instead, e.g. `"o' for o-umlaut. Load the library `iso-ascii' to do this. If your terminal can display Latin-1, you can display characters from other European character sets using a mixture of equivalent Latin-1 characters and ASCII mnemonics. Use the Custom option `latin1-display' to enable this. The mnemonic ASCII sequences mostly correspond to those of the prefix input methods. Single-byte Character Set Support ================================= The ISO 8859 Latin-N character sets define character codes in the range 0240 to 0377 octal (160 to 255 decimal) to handle the accented letters and punctuation needed by various European languages (and some non-European ones). If you disable multibyte characters, Emacs can still handle _one_ of these character codes at a time. To specify _which_ of these codes to use, invoke `M-x set-language-environment' and specify a suitable language environment such as `Latin-N'. For more information about unibyte operation, see *Note Enabling Multibyte::. Note particularly that you probably want to ensure that your initialization files are read as unibyte if they contain non-ASCII characters. Emacs can also display those characters, provided the terminal or font in use supports them. This works automatically. Alternatively, if you are using a window system, Emacs can also display single-byte characters through fontsets, in effect by displaying the equivalent multibyte characters according to the current language environment. To request this, set the variable `unibyte-display-via-language-environment' to a non-`nil' value. If your terminal does not support display of the Latin-1 character set, Emacs can display these characters as ASCII sequences which at least give you a clear idea of what the characters are. To do this, load the library `iso-ascii'. Similar libraries for other Latin-N character sets could be implemented, but we don't have them yet. Normally non-ISO-8859 characters (decimal codes between 128 and 159 inclusive) are displayed as octal escapes. You can change this for non-standard "extended" versions of ISO-8859 character sets by using the function `standard-display-8bit' in the `disp-table' library. There are several ways you can input single-byte non-ASCII characters: * If your keyboard can generate character codes 128 (decimal) and up, representing non-ASCII characters, you can type those character codes directly. On a windowing terminal, you should not need to do anything special to use these keys; they should simply work. On a text-only terminal, you should use the command `M-x set-keyboard-coding-system' or the Custom option `keyboard-coding-system' to specify which coding system your keyboard uses (*note Specify Coding::). Enabling this feature will probably require you to use `ESC' to type Meta characters; however, on a Linux console or in `xterm', you can arrange for Meta to be converted to `ESC' and still be able type 8-bit characters present directly on the keyboard or using `Compose' or `AltGr' keys. *Note User Input::. * You can use an input method for the selected language environment. *Note Input Methods::. When you use an input method in a unibyte buffer, the non-ASCII character you specify with it is converted to unibyte. * For Latin-1 only, you can use the key `C-x 8' as a "compose character" prefix for entry of non-ASCII Latin-1 printing characters. `C-x 8' is good for insertion (in the minibuffer as well as other buffers), for searching, and in any other context where a key sequence is allowed. `C-x 8' works by loading the `iso-transl' library. Once that library is loaded, the modifier key, if you have one, serves the same purpose as `C-x 8'; use together with an accent character to modify the following letter. In addition, if you have keys for the Latin-1 "dead accent characters," they too are defined to compose with the following character, once `iso-transl' is loaded. Use `C-x 8 C-h' to list the available translations as mnemonic command names. * For Latin-1, Latin-2 and Latin-3, `M-x iso-accents-mode' enables a minor mode that works much like the `latin-1-prefix' input method, but does not depend on having the input methods installed. This mode is buffer-local. It can be customized for various languages with `M-x iso-accents-customize'. Major Modes *********** Emacs provides many alternative "major modes", each of which customizes Emacs for editing text of a particular sort. The major modes are mutually exclusive, and each buffer has one major mode at any time. The mode line normally shows the name of the current major mode, in parentheses (*note Mode Line::). The least specialized major mode is called "Fundamental mode". This mode has no mode-specific redefinitions or variable settings, so that each Emacs command behaves in its most general manner, and each option is in its default state. For editing text of a specific type that Emacs knows about, such as Lisp code or English text, you should switch to the appropriate major mode, such as Lisp mode or Text mode. Selecting a major mode changes the meanings of a few keys to become more specifically adapted to the language being edited. The ones that are changed frequently are , , and `C-j'. The prefix key `C-c' normally contains mode-specific commands. In addition, the commands which handle comments use the mode to determine how comments are to be delimited. Many major modes redefine the syntactical properties of characters appearing in the buffer. *Note Syntax::. The major modes fall into three major groups. The first group contains modes for normal text, either plain or with mark-up. It includes Text mode, HTML mode, SGML mode, TeX mode and Outline mode. The second group contains modes for specific programming languages. These include Lisp mode (which has several variants), C mode, Fortran mode, and others. The remaining major modes are not intended for use on users' files; they are used in buffers created for specific purposes by Emacs, such as Dired mode for buffers made by Dired (*note Dired::), Mail mode for buffers made by `C-x m' (*note Sending Mail::), and Shell mode for buffers used for communicating with an inferior shell process (*note Interactive Shell::). Most programming-language major modes specify that only blank lines separate paragraphs. This is to make the paragraph commands useful. (*Note Paragraphs::.) They also cause Auto Fill mode to use the definition of to indent the new lines it creates. This is because most lines in a program are usually indented (*note Indentation::). How Major Modes are Chosen ========================== You can select a major mode explicitly for the current buffer, but most of the time Emacs determines which mode to use based on the file name or on special text in the file. Explicit selection of a new major mode is done with a `M-x' command. From the name of a major mode, add `-mode' to get the name of a command to select that mode. Thus, you can enter Lisp mode by executing `M-x lisp-mode'. When you visit a file, Emacs usually chooses the right major mode based on the file's name. For example, files whose names end in `.c' are edited in C mode. The correspondence between file names and major modes is controlled by the variable `auto-mode-alist'. Its value is a list in which each element has this form, (REGEXP . MODE-FUNCTION) or this form, (REGEXP MODE-FUNCTION FLAG) For example, one element normally found in the list has the form `("\\.c\\'" . c-mode)', and it is responsible for selecting C mode for files whose names end in `.c'. (Note that `\\' is needed in Lisp syntax to include a `\' in the string, which must be used to suppress the special meaning of `.' in regexps.) If the element has the form `(REGEXP MODE-FUNCTION FLAG)' and FLAG is non-`nil', then after calling MODE-FUNCTION, the suffix that matched REGEXP is discarded and the list is searched again for another match. You can specify which major mode should be used for editing a certain file by a special sort of text in the first nonblank line of the file. The mode name should appear in this line both preceded and followed by `-*-'. Other text may appear on the line as well. For example, ;-*-Lisp-*- tells Emacs to use Lisp mode. Such an explicit specification overrides any defaults based on the file name. Note how the semicolon is used to make Lisp treat this line as a comment. Another format of mode specification is -*- mode: MODENAME;-*- which allows you to specify local variables as well, like this: -*- mode: MODENAME; VAR: VALUE; ... -*- *Note File Variables::, for more information about this. When a file's contents begin with `#!', it can serve as an executable shell command, which works by running an interpreter named on the file's first line. The rest of the file is used as input to the interpreter. When you visit such a file in Emacs, if the file's name does not specify a major mode, Emacs uses the interpreter name on the first line to choose a mode. If the first line is the name of a recognized interpreter program, such as `perl' or `tcl', Emacs uses a mode appropriate for programs for that interpreter. The variable `interpreter-mode-alist' specifies the correspondence between interpreter program names and major modes. When the first line starts with `#!', you cannot (on many systems) use the `-*-' feature on the first line, because the system would get confused when running the interpreter. So Emacs looks for `-*-' on the second line in such files as well as on the first line. When you visit a file that does not specify a major mode to use, or when you create a new buffer with `C-x b', the variable `default-major-mode' specifies which major mode to use. Normally its value is the symbol `fundamental-mode', which specifies Fundamental mode. If `default-major-mode' is `nil', the major mode is taken from the previously current buffer. If you change the major mode of a buffer, you can go back to the major mode Emacs would choose automatically: use the command `M-x normal-mode' to do this. This is the same function that `find-file' calls to choose the major mode. It also processes the file's local variables list (if any). The commands `C-x C-w' and `set-visited-file-name' change to a new major mode if the new file name implies a mode (*note Saving::). However, this does not happen if the buffer contents specify a major mode, and certain "special" major modes do not allow the mode to change. You can turn off this mode-changing feature by setting `change-major-mode-with-file-name' to `nil'. Indentation *********** This chapter describes the Emacs commands that add, remove, or adjust indentation. `' Indent the current line "appropriately" in a mode-dependent fashion. `C-j' Perform followed by (`newline-and-indent'). `M-^' Merge the previous and the current line (`delete-indentation'). This would cancel out the effect of `C-j'. `C-M-o' Split the current line at point; text on the line after point becomes a new line indented to the same column where point is located (`split-line'). `M-m' Move (forward or back) to the first nonblank character on the current line (`back-to-indentation'). `C-M-\' Indent several lines to the same column (`indent-region'). `C-x ' Shift a block of lines rigidly right or left (`indent-rigidly'). `M-i' Indent from point to the next prespecified tab stop column (`tab-to-tab-stop'). `M-x indent-relative' Indent from point to under an indentation point in the previous line. Most programming languages have some indentation convention. For Lisp code, lines are indented according to their nesting in parentheses. The same general idea is used for C code, though many details are different. Whatever the language, to indent a line, use the command. Each major mode defines this command to perform the sort of indentation appropriate for the particular language. In Lisp mode, aligns the line according to its depth in parentheses. No matter where in the line you are when you type , it aligns the line as a whole. In C mode, implements a subtle and sophisticated indentation style that knows about many aspects of C syntax. In Text mode, runs the command `tab-to-tab-stop', which indents to the next tab stop column. You can set the tab stops with `M-x edit-tab-stops'. Normally, inserts an optimal mix of tabs and spaces for the intended indentation. *Note Just Spaces::, for how to prevent use of tabs. Indentation Commands and Techniques =================================== To move over the indentation on a line, do `M-m' (`back-to-indentation'). This command, given anywhere on a line, positions point at the first nonblank character on the line. To insert an indented line before the current line, do `C-a C-o '. To make an indented line after the current line, use `C-e C-j'. If you just want to insert a tab character in the buffer, you can type `C-q '. `C-M-o' (`split-line') moves the text from point to the end of the line vertically down, so that the current line becomes two lines. `C-M-o' first moves point forward over any spaces and tabs. Then it inserts after point a newline and enough indentation to reach the same column point is on. Point remains before the inserted newline; in this regard, `C-M-o' resembles `C-o'. To join two lines cleanly, use the `M-^' (`delete-indentation') command. It deletes the indentation at the front of the current line, and the line boundary as well, replacing them with a single space. As a special case (useful for Lisp code) the single space is omitted if the characters to be joined are consecutive open parentheses or closing parentheses, or if the junction follows another newline. To delete just the indentation of a line, go to the beginning of the line and use `M-\' (`delete-horizontal-space'), which deletes all spaces and tabs around the cursor. If you have a fill prefix, `M-^' deletes the fill prefix if it appears after the newline that is deleted. *Note Fill Prefix::. There are also commands for changing the indentation of several lines at once. `C-M-\' (`indent-region') applies to all the lines that begin in the region; it indents each line in the "usual" way, as if you had typed at the beginning of the line. A numeric argument specifies the column to indent to, and each line is shifted left or right so that its first nonblank character appears in that column. `C-x ' (`indent-rigidly') moves all of the lines in the region right by its argument (left, for negative arguments). The whole group of lines moves rigidly sideways, which is how the command gets its name. `M-x indent-relative' indents at point based on the previous line (actually, the last nonempty line). It inserts whitespace at point, moving point, until it is underneath an indentation point in the previous line. An indentation point is the end of a sequence of whitespace or the end of the line. If point is farther right than any indentation point in the previous line, the whitespace before point is deleted and the first indentation point then applicable is used. If no indentation point is applicable even then, `indent-relative' runs `tab-to-tab-stop' (*note Tab Stops::), unless it is called with a numeric argument, in which case it does nothing. `indent-relative' is the definition of in Indented Text mode. *Note Text::. *Note Format Indentation::, for another way of specifying the indentation for part of your text. Tab Stops ========= For typing in tables, you can use Text mode's definition of , `tab-to-tab-stop'. This command inserts indentation before point, enough to reach the next tab stop column. If you are not in Text mode, this command can be found on the key `M-i'. You can specify the tab stops used by `M-i'. They are stored in a variable called `tab-stop-list', as a list of column-numbers in increasing order. The convenient way to set the tab stops is with `M-x edit-tab-stops', which creates and selects a buffer containing a description of the tab stop settings. You can edit this buffer to specify different tab stops, and then type `C-c C-c' to make those new tab stops take effect. `edit-tab-stops' records which buffer was current when you invoked it, and stores the tab stops back in that buffer; normally all buffers share the same tab stops and changing them in one buffer affects all, but if you happen to make `tab-stop-list' local in one buffer then `edit-tab-stops' in that buffer will edit the local settings. Here is what the text representing the tab stops looks like for ordinary tab stops every eight columns. : : : : : : 0 1 2 3 4 0123456789012345678901234567890123456789012345678 To install changes, type C-c C-c The first line contains a colon at each tab stop. The remaining lines are present just to help you see where the colons are and know what to do. Note that the tab stops that control `tab-to-tab-stop' have nothing to do with displaying tab characters in the buffer. *Note Display Custom::, for more information on that. Tabs vs. Spaces =============== Emacs normally uses both tabs and spaces to indent lines. If you prefer, all indentation can be made from spaces only. To request this, set `indent-tabs-mode' to `nil'. This is a per-buffer variable, so altering the variable affects only the current buffer, but there is a default value which you can change as well. *Note Locals::. There are also commands to convert tabs to spaces or vice versa, always preserving the columns of all nonblank text. `M-x tabify' scans the region for sequences of spaces, and converts sequences of at least three spaces to tabs if that can be done without changing indentation. `M-x untabify' changes all tabs in the region to appropriate numbers of spaces. Commands for Human Languages **************************** The term "text" has two widespread meanings in our area of the computer field. One is data that is a sequence of characters. Any file that you edit with Emacs is text, in this sense of the word. The other meaning is more restrictive: a sequence of characters in a human language for humans to read (possibly after processing by a text formatter), as opposed to a program or commands for a program. Human languages have syntactic/stylistic conventions that can be supported or used to advantage by editor commands: conventions involving words, sentences, paragraphs, and capital letters. This chapter describes Emacs commands for all of these things. There are also commands for "filling", which means rearranging the lines of a paragraph to be approximately equal in length. The commands for moving over and killing words, sentences and paragraphs, while intended primarily for editing text, are also often useful for editing programs. Emacs has several major modes for editing human-language text. If the file contains text pure and simple, use Text mode, which customizes Emacs in small ways for the syntactic conventions of text. Outline mode provides special commands for operating on text with an outline structure. For text which contains embedded commands for text formatters, Emacs has other major modes, each for a particular text formatter. Thus, for input to TeX, you would use TeX mode. For input to nroff, use Nroff mode. Instead of using a text formatter, you can edit formatted text in WYSIWYG style ("what you see is what you get"), with Enriched mode. Then the formatting appears on the screen in Emacs while you edit. The "automatic typing" features may be useful when writing text. *Note Autotyping: (autotype)Top. Words ===== Emacs has commands for moving over or operating on words. By convention, the keys for them are all Meta characters. `M-f' Move forward over a word (`forward-word'). `M-b' Move backward over a word (`backward-word'). `M-d' Kill up to the end of a word (`kill-word'). `M-' Kill back to the beginning of a word (`backward-kill-word'). `M-@' Mark the end of the next word (`mark-word'). `M-t' Transpose two words or drag a word across other words (`transpose-words'). Notice how these keys form a series that parallels the character-based `C-f', `C-b', `C-d', and `C-t'. `M-@' is cognate to `C-@', which is an alias for `C-'. The commands `M-f' (`forward-word') and `M-b' (`backward-word') move forward and backward over words. These Meta characters are thus analogous to the corresponding control characters, `C-f' and `C-b', which move over single characters in the text. The analogy extends to numeric arguments, which serve as repeat counts. `M-f' with a negative argument moves backward, and `M-b' with a negative argument moves forward. Forward motion stops right after the last letter of the word, while backward motion stops right before the first letter. `M-d' (`kill-word') kills the word after point. To be precise, it kills everything from point to the place `M-f' would move to. Thus, if point is in the middle of a word, `M-d' kills just the part after point. If some punctuation comes between point and the next word, it is killed along with the word. (If you wish to kill only the next word but not the punctuation before it, simply do `M-f' to get the end, and kill the word backwards with `M-'.) `M-d' takes arguments just like `M-f'. `M-' (`backward-kill-word') kills the word before point. It kills everything from point back to where `M-b' would move to. If point is after the space in `FOO, BAR', then `FOO, ' is killed. (If you wish to kill just `FOO', and not the comma and the space, use `M-b M-d' instead of `M-'.) `M-t' (`transpose-words') exchanges the word before or containing point with the following word. The delimiter characters between the words do not move. For example, `FOO, BAR' transposes into `BAR, FOO' rather than `BAR FOO,'. *Note Transpose::, for more on transposition and on arguments to transposition commands. To operate on the next N words with an operation which applies between point and mark, you can either set the mark at point and then move over the words, or you can use the command `M-@' (`mark-word') which does not move point, but sets the mark where `M-f' would move to. `M-@' accepts a numeric argument that says how many words to scan for the place to put the mark. In Transient Mark mode, this command activates the mark. The word commands' understanding of syntax is completely controlled by the syntax table. Any character can, for example, be declared to be a word delimiter. *Note Syntax::. Sentences ========= The Emacs commands for manipulating sentences and paragraphs are mostly on Meta keys, so as to be like the word-handling commands. `M-a' Move back to the beginning of the sentence (`backward-sentence'). `M-e' Move forward to the end of the sentence (`forward-sentence'). `M-k' Kill forward to the end of the sentence (`kill-sentence'). `C-x ' Kill back to the beginning of the sentence (`backward-kill-sentence'). The commands `M-a' and `M-e' (`backward-sentence' and `forward-sentence') move to the beginning and end of the current sentence, respectively. They were chosen to resemble `C-a' and `C-e', which move to the beginning and end of a line. Unlike them, `M-a' and `M-e' if repeated or given numeric arguments move over successive sentences. Moving backward over a sentence places point just before the first character of the sentence; moving forward places point right after the punctuation that ends the sentence. Neither one moves over the whitespace at the sentence boundary. Just as `C-a' and `C-e' have a kill command, `C-k', to go with them, so `M-a' and `M-e' have a corresponding kill command `M-k' (`kill-sentence') which kills from point to the end of the sentence. With minus one as an argument it kills back to the beginning of the sentence. Larger arguments serve as a repeat count. There is also a command, `C-x ' (`backward-kill-sentence'), for killing back to the beginning of a sentence. This command is useful when you change your mind in the middle of composing text. The sentence commands assume that you follow the American typist's convention of putting two spaces at the end of a sentence; they consider a sentence to end wherever there is a `.', `?' or `!' followed by the end of a line or two spaces, with any number of `)', `]', `'', or `"' characters allowed in between. A sentence also begins or ends wherever a paragraph begins or ends. The variable `sentence-end' controls recognition of the end of a sentence. It is a regexp that matches the last few characters of a sentence, together with the whitespace following the sentence. Its normal value is "[.?!][]\"')]*\\($\\| $\\|\t\\| \\)[ \t\n]*" This example is explained in the section on regexps. *Note Regexps::. If you want to use just one space between sentences, you should set `sentence-end' to this value: "[.?!][]\"')]*\\($\\|\t\\| \\)[ \t\n]*" You should also set the variable `sentence-end-double-space' to `nil' so that the fill commands expect and leave just one space at the end of a sentence. Note that this makes it impossible to distinguish between periods that end sentences and those that indicate abbreviations. Paragraphs ========== The Emacs commands for manipulating paragraphs are also Meta keys. `M-{' Move back to previous paragraph beginning (`backward-paragraph'). `M-}' Move forward to next paragraph end (`forward-paragraph'). `M-h' Put point and mark around this or next paragraph (`mark-paragraph'). `M-{' moves to the beginning of the current or previous paragraph, while `M-}' moves to the end of the current or next paragraph. Blank lines and text-formatter command lines separate paragraphs and are not considered part of any paragraph. In Fundamental mode, but not in Text mode, an indented line also starts a new paragraph. (If a paragraph is preceded by a blank line, these commands treat that blank line as the beginning of the paragraph.) In major modes for programs, paragraphs begin and end only at blank lines. This makes the paragraph commands continue to be useful even though there are no paragraphs per se. When there is a fill prefix, then paragraphs are delimited by all lines which don't start with the fill prefix. *Note Filling::. When you wish to operate on a paragraph, you can use the command `M-h' (`mark-paragraph') to set the region around it. Thus, for example, `M-h C-w' kills the paragraph around or after point. The `M-h' command puts point at the beginning and mark at the end of the paragraph point was in. In Transient Mark mode, it activates the mark. If point is between paragraphs (in a run of blank lines, or at a boundary), the paragraph following point is surrounded by point and mark. If there are blank lines preceding the first line of the paragraph, one of these blank lines is included in the region. The precise definition of a paragraph boundary is controlled by the variables `paragraph-separate' and `paragraph-start'. The value of `paragraph-start' is a regexp that should match any line that either starts or separates paragraphs. The value of `paragraph-separate' is another regexp that should match only lines that separate paragraphs without being part of any paragraph (for example, blank lines). Lines that start a new paragraph and are contained in it must match only `paragraph-start', not `paragraph-separate'. For example, in Fundamental mode, `paragraph-start' is `"[ \t\n\f]"', and `paragraph-separate' is `"[ \t\f]*$"'. Normally it is desirable for page boundaries to separate paragraphs. The default values of these variables recognize the usual separator for pages. Pages ===== Files are often thought of as divided into "pages" by the "formfeed" character (ASCII control-L, octal code 014). When you print hardcopy for a file, this character forces a page break; thus, each page of the file goes on a separate page on paper. Most Emacs commands treat the page-separator character just like any other character: you can insert it with `C-q C-l', and delete it with . Thus, you are free to paginate your file or not. However, since pages are often meaningful divisions of the file, Emacs provides commands to move over them and operate on them. `C-x [' Move point to previous page boundary (`backward-page'). `C-x ]' Move point to next page boundary (`forward-page'). `C-x C-p' Put point and mark around this page (or another page) (`mark-page'). `C-x l' Count the lines in this page (`count-lines-page'). The `C-x [' (`backward-page') command moves point to immediately after the previous page delimiter. If point is already right after a page delimiter, it skips that one and stops at the previous one. A numeric argument serves as a repeat count. The `C-x ]' (`forward-page') command moves forward past the next page delimiter. The `C-x C-p' command (`mark-page') puts point at the beginning of the current page and the mark at the end. The page delimiter at the end is included (the mark follows it). The page delimiter at the front is excluded (point follows it). In Transient Mark mode, this command activates the mark. `C-x C-p C-w' is a handy way to kill a page to move it elsewhere. If you move to another page delimiter with `C-x [' and `C-x ]', then yank the killed page, all the pages will be properly delimited once again. The reason `C-x C-p' includes only the following page delimiter in the region is to ensure that. A numeric argument to `C-x C-p' is used to specify which page to go to, relative to the current one. Zero means the current page. One means the next page, and -1 means the previous one. The `C-x l' command (`count-lines-page') is good for deciding where to break a page in two. It displays in the echo area the total number of lines in the current page, and then divides it up into those preceding the current line and those following, as in Page has 96 (72+25) lines Notice that the sum is off by one; this is correct if point is not at the beginning of a line. The variable `page-delimiter' controls where pages begin. Its value is a regexp that matches the beginning of a line that separates pages. The normal value of this variable is `"^\f"', which matches a formfeed character at the beginning of a line. Filling Text ============ "Filling" text means breaking it up into lines that fit a specified width. Emacs does filling in two ways. In Auto Fill mode, inserting text with self-inserting characters also automatically fills it. There are also explicit fill commands that you can use when editing text leaves it unfilled. When you edit formatted text, you can specify a style of filling for each portion of the text (*note Formatted Text::). Auto Fill Mode -------------- "Auto Fill" mode is a minor mode in which lines are broken automatically when they become too wide. Breaking happens only when you type a or . `M-x auto-fill-mode' Enable or disable Auto Fill mode. `' `' In Auto Fill mode, break lines when appropriate. `M-x auto-fill-mode' turns Auto Fill mode on if it was off, or off if it was on. With a positive numeric argument it always turns Auto Fill mode on, and with a negative argument always turns it off. You can see when Auto Fill mode is in effect by the presence of the word `Fill' in the mode line, inside the parentheses. Auto Fill mode is a minor mode which is enabled or disabled for each buffer individually. *Note Minor Modes::. In Auto Fill mode, lines are broken automatically at spaces when they get longer than the desired width. Line breaking and rearrangement takes place only when you type or . If you wish to insert a space or newline without permitting line-breaking, type `C-q ' or `C-q C-j' (recall that a newline is really a control-J). Also, `C-o' inserts a newline without line breaking. Auto Fill mode works well with programming-language modes, because it indents new lines with . If a line ending in a comment gets too long, the text of the comment is split into two comment lines. Optionally, new comment delimiters are inserted at the end of the first line and the beginning of the second so that each line is a separate comment; the variable `comment-multi-line' controls the choice (*note Comments::). Adaptive filling (*note Adaptive Fill::) works for Auto Filling as well as for explicit fill commands. It takes a fill prefix automatically from the second or first line of a paragraph. Auto Fill mode does not refill entire paragraphs; it can break lines but cannot merge lines. So editing in the middle of a paragraph can result in a paragraph that is not correctly filled. The easiest way to make the paragraph properly filled again is usually with the explicit fill commands. *Note Fill Commands::. Many users like Auto Fill mode and want to use it in all text files. The section on init files says how to arrange this permanently for yourself. *Note Init File::. Refill Mode ----------- Refill minor mode provides support for keeping paragraphs filled as you type or modify them in other ways. It provides an effect similar to typical word processor behavior. This works by running a paragraph-filling command at suitable times. When you are typing text, only characters which normally trigger auto filling, like the space character, will trigger refilling. This is to avoid making it too slow. Apart from self-inserting characters, other commands which modify the text cause refilling. The current implementation is preliminary and probably not robust. We expect to improve on it. To toggle the use of Refill mode in the current buffer, type `M-x refill-mode'. Explicit Fill Commands ---------------------- `M-q' Fill current paragraph (`fill-paragraph'). `C-x f' Set the fill column (`set-fill-column'). `M-x fill-region' Fill each paragraph in the region (`fill-region'). `M-x fill-region-as-paragraph' Fill the region, considering it as one paragraph. `M-s' Center a line. To refill a paragraph, use the command `M-q' (`fill-paragraph'). This operates on the paragraph that point is inside, or the one after point if point is between paragraphs. Refilling works by removing all the line-breaks, then inserting new ones where necessary. To refill many paragraphs, use `M-x fill-region', which divides the region into paragraphs and fills each of them. `M-q' and `fill-region' use the same criteria as `M-h' for finding paragraph boundaries (*note Paragraphs::). For more control, you can use `M-x fill-region-as-paragraph', which refills everything between point and mark. This command deletes any blank lines within the region, so separate blocks of text end up combined into one block. A numeric argument to `M-q' causes it to "justify" the text as well as filling it. This means that extra spaces are inserted to make the right margin line up exactly at the fill column. To remove the extra spaces, use `M-q' with no argument. (Likewise for `fill-region'.) Another way to control justification, and choose other styles of filling, is with the `justification' text property; see *Note Format Justification::. The command `M-s' (`center-line') centers the current line within the current fill column. With an argument N, it centers N lines individually and moves past them. The maximum line width for filling is in the variable `fill-column'. Altering the value of `fill-column' makes it local to the current buffer; until that time, the default value is in effect. The default is initially 70. *Note Locals::. The easiest way to set `fill-column' is to use the command `C-x f' (`set-fill-column'). With a numeric argument, it uses that as the new fill column. With just `C-u' as argument, it sets `fill-column' to the current horizontal position of point. Emacs commands normally consider a period followed by two spaces or by a newline as the end of a sentence; a period followed by just one space indicates an abbreviation and not the end of a sentence. To preserve the distinction between these two ways of using a period, the fill commands do not break a line after a period followed by just one space. If the variable `sentence-end-double-space' is `nil', the fill commands expect and leave just one space at the end of a sentence. Ordinarily this variable is `t', so the fill commands insist on two spaces for the end of a sentence, as explained above. *Note Sentences::. If the variable `colon-double-space' is non-`nil', the fill commands put two spaces after a colon. Some languages do not use period to indicate end of sentence. For example, a sentence in Thai text ends with double space but without a period. Set the variable `sentence-end-without-period' to `t' to tell the sentence commands that a period is not necessary. The Fill Prefix --------------- To fill a paragraph in which each line starts with a special marker (which might be a few spaces, giving an indented paragraph), you can use the "fill prefix" feature. The fill prefix is a string that Emacs expects every line to start with, and which is not included in filling. You can specify a fill prefix explicitly; Emacs can also deduce the fill prefix automatically (*note Adaptive Fill::). `C-x .' Set the fill prefix (`set-fill-prefix'). `M-q' Fill a paragraph using current fill prefix (`fill-paragraph'). `M-x fill-individual-paragraphs' Fill the region, considering each change of indentation as starting a new paragraph. `M-x fill-nonuniform-paragraphs' Fill the region, considering only paragraph-separator lines as starting a new paragraph. To specify a fill prefix, move to a line that starts with the desired prefix, put point at the end of the prefix, and give the command `C-x .' (`set-fill-prefix'). That's a period after the `C-x'. To turn off the fill prefix, specify an empty prefix: type `C-x .' with point at the beginning of a line. When a fill prefix is in effect, the fill commands remove the fill prefix from each line before filling and insert it on each line after filling. Auto Fill mode also inserts the fill prefix automatically when it makes a new line. The `C-o' command inserts the fill prefix on new lines it creates, when you use it at the beginning of a line (*note Blank Lines::). Conversely, the command `M-^' deletes the prefix (if it occurs) after the newline that it deletes (*note Indentation::). For example, if `fill-column' is 40 and you set the fill prefix to `;; ', then `M-q' in the following text ;; This is an ;; example of a paragraph ;; inside a Lisp-style comment. produces this: ;; This is an example of a paragraph ;; inside a Lisp-style comment. Lines that do not start with the fill prefix are considered to start paragraphs, both in `M-q' and the paragraph commands; this gives good results for paragraphs with hanging indentation (every line indented except the first one). Lines which are blank or indented once the prefix is removed also separate or start paragraphs; this is what you want if you are writing multi-paragraph comments with a comment delimiter on each line. You can use `M-x fill-individual-paragraphs' to set the fill prefix for each paragraph automatically. This command divides the region into paragraphs, treating every change in the amount of indentation as the start of a new paragraph, and fills each of these paragraphs. Thus, all the lines in one "paragraph" have the same amount of indentation. That indentation serves as the fill prefix for that paragraph. `M-x fill-nonuniform-paragraphs' is a similar command that divides the region into paragraphs in a different way. It considers only paragraph-separating lines (as defined by `paragraph-separate') as starting a new paragraph. Since this means that the lines of one paragraph may have different amounts of indentation, the fill prefix used is the smallest amount of indentation of any of the lines of the paragraph. This gives good results with styles that indent a paragraph's first line more or less that the rest of the paragraph. The fill prefix is stored in the variable `fill-prefix'. Its value is a string, or `nil' when there is no fill prefix. This is a per-buffer variable; altering the variable affects only the current buffer, but there is a default value which you can change as well. *Note Locals::. The `indentation' text property provides another way to control the amount of indentation paragraphs receive. *Note Format Indentation::. Adaptive Filling ---------------- The fill commands can deduce the proper fill prefix for a paragraph automatically in certain cases: either whitespace or certain punctuation characters at the beginning of a line are propagated to all lines of the paragraph. If the paragraph has two or more lines, the fill prefix is taken from the paragraph's second line, but only if it appears on the first line as well. If a paragraph has just one line, fill commands _may_ take a prefix from that line. The decision is complicated because there are three reasonable things to do in such a case: * Use the first line's prefix on all the lines of the paragraph. * Indent subsequent lines with whitespace, so that they line up under the text that follows the prefix on the first line, but don't actually copy the prefix from the first line. * Don't do anything special with the second and following lines. All three of these styles of formatting are commonly used. So the fill commands try to determine what you would like, based on the prefix that appears and on the major mode. Here is how. If the prefix found on the first line matches `adaptive-fill-first-line-regexp', or if it appears to be a comment-starting sequence (this depends on the major mode), then the prefix found is used for filling the paragraph, provided it would not act as a paragraph starter on subsequent lines. Otherwise, the prefix found is converted to an equivalent number of spaces, and those spaces are used as the fill prefix for the rest of the lines, provided they would not act as a paragraph starter on subsequent lines. In Text mode, and other modes where only blank lines and page delimiters separate paragraphs, the prefix chosen by adaptive filling never acts as a paragraph starter, so it can always be used for filling. The variable `adaptive-fill-regexp' determines what kinds of line beginnings can serve as a fill prefix: any characters at the start of the line that match this regular expression are used. If you set the variable `adaptive-fill-mode' to `nil', the fill prefix is never chosen automatically. You can specify more complex ways of choosing a fill prefix automatically by setting the variable `adaptive-fill-function' to a function. This function is called with point after the left margin of a line, and it should return the appropriate fill prefix based on that line. If it returns `nil', that means it sees no fill prefix in that line. Case Conversion Commands ======================== Emacs has commands for converting either a single word or any arbitrary range of text to upper case or to lower case. `M-l' Convert following word to lower case (`downcase-word'). `M-u' Convert following word to upper case (`upcase-word'). `M-c' Capitalize the following word (`capitalize-word'). `C-x C-l' Convert region to lower case (`downcase-region'). `C-x C-u' Convert region to upper case (`upcase-region'). The word conversion commands are the most useful. `M-l' (`downcase-word') converts the word after point to lower case, moving past it. Thus, repeating `M-l' converts successive words. `M-u' (`upcase-word') converts to all capitals instead, while `M-c' (`capitalize-word') puts the first letter of the word into upper case and the rest into lower case. All these commands convert several words at once if given an argument. They are especially convenient for converting a large amount of text from all upper case to mixed case, because you can move through the text using `M-l', `M-u' or `M-c' on each word as appropriate, occasionally using `M-f' instead to skip a word. When given a negative argument, the word case conversion commands apply to the appropriate number of words before point, but do not move point. This is convenient when you have just typed a word in the wrong case: you can give the case conversion command and continue typing. If a word case conversion command is given in the middle of a word, it applies only to the part of the word which follows point. This is just like what `M-d' (`kill-word') does. With a negative argument, case conversion applies only to the part of the word before point. The other case conversion commands are `C-x C-u' (`upcase-region') and `C-x C-l' (`downcase-region'), which convert everything between point and mark to the specified case. Point and mark do not move. The region case conversion commands `upcase-region' and `downcase-region' are normally disabled. This means that they ask for confirmation if you try to use them. When you confirm, you may enable the command, which means it will not ask for confirmation again. *Note Disabling::. Text Mode ========= When you edit files of text in a human language, it's more convenient to use Text mode rather than Fundamental mode. To enter Text mode, type `M-x text-mode'. In Text mode, only blank lines and page delimiters separate paragraphs. As a result, paragraphs can be indented, and adaptive filling determines what indentation to use when filling a paragraph. *Note Adaptive Fill::. Text mode defines to run `indent-relative' (*note Indentation::), so that you can conveniently indent a line like the previous line. When the previous line is not indented, `indent-relative' runs `tab-to-tab-stop', which uses Emacs tab stops that you can set (*note Tab Stops::). Text mode turns off the features concerned with comments except when you explicitly invoke them. It changes the syntax table so that periods are not considered part of a word, while apostrophes, backspaces and underlines are considered part of words. If you indent the first lines of paragraphs, then you should use Paragraph-Indent Text mode rather than Text mode. In this mode, you do not need to have blank lines between paragraphs, because the first-line indentation is sufficient to start a paragraph; however paragraphs in which every line is indented are not supported. Use `M-x paragraph-indent-text-mode' to enter this mode. Use `M-x paragraph-indent-minor-mode' to enter an equivalent minor mode, for instance during mail composition. Text mode, and all the modes based on it, define `M-' as the command `ispell-complete-word', which performs completion of the partial word in the buffer before point, using the spelling dictionary as the space of possible words. *Note Spelling::. Entering Text mode runs the hook `text-mode-hook'. Other major modes related to Text mode also run this hook, followed by hooks of their own; this includes Paragraph-Indent Text mode, Nroff mode, TeX mode, Outline mode, and Mail mode. Hook functions on `text-mode-hook' can look at the value of `major-mode' to see which of these modes is actually being entered. *Note Hooks::. Emacs provides two other modes for editing text that is to be passed through a text formatter to produce fancy formatted printed output. *Note Nroff Mode::, for editing input to the formatter nroff. *Note TeX Mode::, for editing input to the formatter TeX. Another mode is used for editing outlines. It allows you to view the text at various levels of detail. You can view either the outline headings alone or both headings and text; you can also hide some of the headings at lower levels from view to make the high level structure more visible. *Note Outline Mode::. Outline Mode ============ Outline mode is a major mode much like Text mode but intended for editing outlines. It allows you to make parts of the text temporarily invisible so that you can see the outline structure. Type `M-x outline-mode' to switch to Outline mode as the major mode of the current buffer. When Outline mode makes a line invisible, the line does not appear on the screen. The screen appears exactly as if the invisible line were deleted, except that an ellipsis (three periods in a row) appears at the end of the previous visible line (only one ellipsis no matter how many invisible lines follow). Editing commands that operate on lines, such as `C-n' and `C-p', treat the text of the invisible line as part of the previous visible line. Killing an entire visible line, including its terminating newline, really kills all the following invisible lines along with it. Outline minor mode provides the same commands as the major mode, Outline mode, but you can use it in conjunction with other major modes. Type `M-x outline-minor-mode' to enable the Outline minor mode in the current buffer. You can also specify this in the text of a file, with a file local variable of the form `mode: outline-minor' (*note File Variables::). The major mode, Outline mode, provides special key bindings on the `C-c' prefix. Outline minor mode provides similar bindings with `C-c @' as the prefix; this is to reduce the conflicts with the major mode's special commands. (The variable `outline-minor-mode-prefix' controls the prefix used.) Entering Outline mode runs the hook `text-mode-hook' followed by the hook `outline-mode-hook' (*note Hooks::). Format of Outlines ------------------ Outline mode assumes that the lines in the buffer are of two types: "heading lines" and "body lines". A heading line represents a topic in the outline. Heading lines start with one or more stars; the number of stars determines the depth of the heading in the outline structure. Thus, a heading line with one star is a major topic; all the heading lines with two stars between it and the next one-star heading are its subtopics; and so on. Any line that is not a heading line is a body line. Body lines belong with the preceding heading line. Here is an example: * Food This is the body, which says something about the topic of food. ** Delicious Food This is the body of the second-level header. ** Distasteful Food This could have a body too, with several lines. *** Dormitory Food * Shelter Another first-level topic with its header line. A heading line together with all following body lines is called collectively an "entry". A heading line together with all following deeper heading lines and their body lines is called a "subtree". You can customize the criterion for distinguishing heading lines by setting the variable `outline-regexp'. Any line whose beginning has a match for this regexp is considered a heading line. Matches that start within a line (not at the left margin) do not count. The length of the matching text determines the level of the heading; longer matches make a more deeply nested level. Thus, for example, if a text formatter has commands `@chapter', `@section' and `@subsection' to divide the document into chapters and sections, you could make those lines count as heading lines by setting `outline-regexp' to `"@chap\\|@\\(sub\\)*section"'. Note the trick: the two words `chapter' and `section' are equally long, but by defining the regexp to match only `chap' we ensure that the length of the text matched on a chapter heading is shorter, so that Outline mode will know that sections are contained in chapters. This works as long as no other command starts with `@chap'. You can change the rule for calculating the level of a heading line by setting the variable `outline-level'. The value of `outline-level' should be a function that takes no arguments and returns the level of the current heading. Some major modes such as C, Nroff, and Emacs Lisp mode set this variable and `outline-regexp' in order to work with Outline minor mode. Outline Motion Commands ----------------------- Outline mode provides special motion commands that move backward and forward to heading lines. `C-c C-n' Move point to the next visible heading line (`outline-next-visible-heading'). `C-c C-p' Move point to the previous visible heading line (`outline-previous-visible-heading'). `C-c C-f' Move point to the next visible heading line at the same level as the one point is on (`outline-forward-same-level'). `C-c C-b' Move point to the previous visible heading line at the same level (`outline-backward-same-level'). `C-c C-u' Move point up to a lower-level (more inclusive) visible heading line (`outline-up-heading'). `C-c C-n' (`outline-next-visible-heading') moves down to the next heading line. `C-c C-p' (`outline-previous-visible-heading') moves similarly backward. Both accept numeric arguments as repeat counts. The names emphasize that invisible headings are skipped, but this is not really a special feature. All editing commands that look for lines ignore the invisible lines automatically. More powerful motion commands understand the level structure of headings. `C-c C-f' (`outline-forward-same-level') and `C-c C-b' (`outline-backward-same-level') move from one heading line to another visible heading at the same depth in the outline. `C-c C-u' (`outline-up-heading') moves backward to another heading that is less deeply nested. Outline Visibility Commands --------------------------- The other special commands of outline mode are used to make lines visible or invisible. Their names all start with `hide' or `show'. Most of them fall into pairs of opposites. They are not undoable; instead, you can undo right past them. Making lines visible or invisible is simply not recorded by the undo mechanism. `C-c C-t' Make all body lines in the buffer invisible (`hide-body'). `C-c C-a' Make all lines in the buffer visible (`show-all'). `C-c C-d' Make everything under this heading invisible, not including this heading itself (`hide-subtree'). `C-c C-s' Make everything under this heading visible, including body, subheadings, and their bodies (`show-subtree'). `C-c C-l' Make the body of this heading line, and of all its subheadings, invisible (`hide-leaves'). `C-c C-k' Make all subheadings of this heading line, at all levels, visible (`show-branches'). `C-c C-i' Make immediate subheadings (one level down) of this heading line visible (`show-children'). `C-c C-c' Make this heading line's body invisible (`hide-entry'). `C-c C-e' Make this heading line's body visible (`show-entry'). `C-c C-q' Hide everything except the top N levels of heading lines (`hide-sublevels'). `C-c C-o' Hide everything except for the heading or body that point is in, plus the headings leading up from there to the top level of the outline (`hide-other'). Two commands that are exact opposites are `C-c C-c' (`hide-entry') and `C-c C-e' (`show-entry'). They are used with point on a heading line, and apply only to the body lines of that heading. Subheadings and their bodies are not affected. Two more powerful opposites are `C-c C-d' (`hide-subtree') and `C-c C-s' (`show-subtree'). Both expect to be used when point is on a heading line, and both apply to all the lines of that heading's "subtree": its body, all its subheadings, both direct and indirect, and all of their bodies. In other words, the subtree contains everything following this heading line, up to and not including the next heading of the same or higher rank. Intermediate between a visible subtree and an invisible one is having all the subheadings visible but none of the body. There are two commands for doing this, depending on whether you want to hide the bodies or make the subheadings visible. They are `C-c C-l' (`hide-leaves') and `C-c C-k' (`show-branches'). A little weaker than `show-branches' is `C-c C-i' (`show-children'). It makes just the direct subheadings visible--those one level down. Deeper subheadings remain invisible, if they were invisible. Two commands have a blanket effect on the whole file. `C-c C-t' (`hide-body') makes all body lines invisible, so that you see just the outline structure. `C-c C-a' (`show-all') makes all lines visible. These commands can be thought of as a pair of opposites even though `C-c C-a' applies to more than just body lines. The command `C-c C-q' (`hide-sublevels') hides all but the top level headings. With a numeric argument N, it hides everything except the top N levels of heading lines. The command `C-c C-o' (`hide-other') hides everything except the heading or body text that point is in, plus its parents (the headers leading up from there to top level in the outline). You can turn off the use of ellipses at the ends of visible lines by setting `selective-display-ellipses' to `nil'. Then there is no visible indication of the presence of invisible lines. When incremental search finds text that is hidden by Outline mode, it makes that part of the buffer visible. If you exit the search at that position, the text remains visible. Viewing One Outline in Multiple Views ------------------------------------- You can display two views of a single outline at the same time, in different windows. To do this, you must create an indirect buffer using `M-x make-indirect-buffer'. The first argument of this command is the existing outline buffer name, and its second argument is the name to use for the new indirect buffer. *Note Indirect Buffers::. Once the indirect buffer exists, you can display it in a window in the normal fashion, with `C-x 4 b' or other Emacs commands. The Outline mode commands to show and hide parts of the text operate on each buffer independently; as a result, each buffer can have its own view. If you want more than two views on the same outline, create additional indirect buffers. Folding Editing --------------- The Foldout package extends Outline mode and Outline minor mode with "folding" commands. The idea of folding is that you zoom in on a nested portion of the outline, while hiding its relatives at higher levels. Consider an Outline mode buffer all the text and subheadings under level-1 headings hidden. To look at what is hidden under one of these headings, you could use `C-c C-e' (`M-x show-entry') to expose the body, or `C-c C-i' to expose the child (level-2) headings. With Foldout, you use `C-c C-z' (`M-x foldout-zoom-subtree'). This exposes the body and child subheadings, and narrows the buffer so that only the level-1 heading, the body and the level-2 headings are visible. Now to look under one of the level-2 headings, position the cursor on it and use `C-c C-z' again. This exposes the level-2 body and its level-3 child subheadings and narrows the buffer again. Zooming in on successive subheadings can be done as much as you like. A string in the mode line shows how deep you've gone. When zooming in on a heading, to see only the child subheadings specify a numeric argument: `C-u C-c C-z'. The number of levels of children can be specified too (compare `M-x show-children'), e.g. `M-2 C-c C-z' exposes two levels of child subheadings. Alternatively, the body can be specified with a negative argument: `M-- C-c C-z'. The whole subtree can be expanded, similarly to `C-c C-s' (`M-x show-subtree'), by specifying a zero argument: `M-0 C-c C-z'. While you're zoomed in, you can still use Outline mode's exposure and hiding functions without disturbing Foldout. Also, since the buffer is narrowed, "global" editing actions will only affect text under the zoomed-in heading. This is useful for restricting changes to a particular chapter or section of your document. To unzoom (exit) a fold, use `C-c C-x' (`M-x foldout-exit-fold'). This hides all the text and subheadings under the top-level heading and returns you to the previous view of the buffer. Specifying a numeric argument exits that many levels of folds. Specifying a zero argument exits all folds. To cancel the narrowing of a fold without hiding the text and subheadings, specify a negative argument. For example, `M--2 C-c C-x' exits two folds and leaves the text and subheadings exposed. Foldout mode also provides mouse commands for entering and exiting folds, and for showing and hiding text: `M-C-Mouse-1' zooms in on the heading clicked on single click: expose body. double click: expose subheadings. triple click: expose body and subheadings. quad click: expose entire subtree. `M-C-Mouse-2' exposes text under the heading clicked on single click: expose body. double click: expose subheadings. triple click: expose body and subheadings. quad click: expose entire subtree. `M-C-Mouse-3' hides text under the heading clicked on or exits fold single click: hide subtree. double click: exit fold and hide text. triple click: exit fold without hiding text. quad click: exit all folds and hide text. You can specify different modifier keys (instead of `Control-Meta-') by setting `foldout-mouse-modifiers'; but if you have already loaded the `foldout.el' library, you must reload it in order for this to take effect. To use the Foldout package, you can type `M-x load-library foldout '; or you can arrange for to do that automatically by putting this in your `.emacs' file: (eval-after-load "outline" '(require 'foldout)) TeX Mode ======== TeX is a powerful text formatter written by Donald Knuth; it is also free, like GNU Emacs. LaTeX is a simplified input format for TeX, implemented by TeX macros; it comes with TeX. SliTeX is a special form of LaTeX.(1) Emacs has a special TeX mode for editing TeX input files. It provides facilities for checking the balance of delimiters and for invoking TeX on all or part of the file. TeX mode has three variants, Plain TeX mode, LaTeX mode, and SliTeX mode (these three distinct major modes differ only slightly). They are designed for editing the three different formats. The command `M-x tex-mode' looks at the contents of the buffer to determine whether the contents appear to be either LaTeX input or SliTeX input; if so, it selects the appropriate mode. If the file contents do not appear to be LaTeX or SliTeX, it selects Plain TeX mode. If the contents are insufficient to determine this, the variable `tex-default-mode' controls which mode is used. When `M-x tex-mode' does not guess right, you can use the commands `M-x plain-tex-mode', `M-x latex-mode', and `M-x slitex-mode' to select explicitly the particular variants of TeX mode. ---------- Footnotes ---------- (1) SliTeX is obsoleted by the `slides' document class in recent LaTeX versions. TeX Editing Commands -------------------- Here are the special commands provided in TeX mode for editing the text of the file. `"' Insert, according to context, either ```' or `"' or `''' (`tex-insert-quote'). `C-j' Insert a paragraph break (two newlines) and check the previous paragraph for unbalanced braces or dollar signs (`tex-terminate-paragraph'). `M-x tex-validate-region' Check each paragraph in the region for unbalanced braces or dollar signs. `C-c {' Insert `{}' and position point between them (`tex-insert-braces'). `C-c }' Move forward past the next unmatched close brace (`up-list'). In TeX, the character `"' is not normally used; we use ```' to start a quotation and `''' to end one. To make editing easier under this formatting convention, TeX mode overrides the normal meaning of the key `"' with a command that inserts a pair of single-quotes or backquotes (`tex-insert-quote'). To be precise, this command inserts ```' after whitespace or an open brace, `"' after a backslash, and `''' after any other character. If you need the character `"' itself in unusual contexts, use `C-q' to insert it. Also, `"' with a numeric argument always inserts that number of `"' characters. You can turn off the feature of `"' expansion by eliminating that binding in the local map (*note Key Bindings::). In TeX mode, `$' has a special syntax code which attempts to understand the way TeX math mode delimiters match. When you insert a `$' that is meant to exit math mode, the position of the matching `$' that entered math mode is displayed for a second. This is the same feature that displays the open brace that matches a close brace that is inserted. However, there is no way to tell whether a `$' enters math mode or leaves it; so when you insert a `$' that enters math mode, the previous `$' position is shown as if it were a match, even though they are actually unrelated. TeX uses braces as delimiters that must match. Some users prefer to keep braces balanced at all times, rather than inserting them singly. Use `C-c {' (`tex-insert-braces') to insert a pair of braces. It leaves point between the two braces so you can insert the text that belongs inside. Afterward, use the command `C-c }' (`up-list') to move forward past the close brace. There are two commands for checking the matching of braces. `C-j' (`tex-terminate-paragraph') checks the paragraph before point, and inserts two newlines to start a new paragraph. It outputs a message in the echo area if any mismatch is found. `M-x tex-validate-region' checks a region, paragraph by paragraph. The errors are listed in the `*Occur*' buffer, and you can use `C-c C-c' or `Mouse-2' in that buffer to go to a particular mismatch. Note that Emacs commands count square brackets and parentheses in TeX mode, not just braces. This is not strictly correct for the purpose of checking TeX syntax. However, parentheses and square brackets are likely to be used in text as matching delimiters and it is useful for the various motion commands and automatic match display to work with them. LaTeX Editing Commands ---------------------- LaTeX mode, and its variant, SliTeX mode, provide a few extra features not applicable to plain TeX. `C-c C-o' Insert `\begin' and `\end' for LaTeX block and position point on a line between them (`tex-latex-block'). `C-c C-e' Close the innermost LaTeX block not yet closed (`tex-close-latex-block'). In LaTeX input, `\begin' and `\end' commands are used to group blocks of text. To insert a `\begin' and a matching `\end' (on a new line following the `\begin'), use `C-c C-o' (`tex-latex-block'). A blank line is inserted between the two, and point is left there. You can use completion when you enter the block type; to specify additional block type names beyond the standard list, set the variable `latex-block-names'. For example, here's how to add `theorem', `corollary', and `proof': (setq latex-block-names '("theorem" "corollary" "proof")) In LaTeX input, `\begin' and `\end' commands must balance. You can use `C-c C-e' (`tex-close-latex-block') to insert automatically a matching `\end' to match the last unmatched `\begin'. It indents the `\end' to match the corresponding `\begin'. It inserts a newline after `\end' if point is at the beginning of a line. TeX Printing Commands --------------------- You can invoke TeX as an inferior of Emacs on either the entire contents of the buffer or just a region at a time. Running TeX in this way on just one chapter is a good way to see what your changes look like without taking the time to format the entire file. `C-c C-r' Invoke TeX on the current region, together with the buffer's header (`tex-region'). `C-c C-b' Invoke TeX on the entire current buffer (`tex-buffer'). `C-c ' Invoke BibTeX on the current file (`tex-bibtex-file'). `C-c C-f' Invoke TeX on the current file (`tex-file'). `C-c C-l' Recenter the window showing output from the inferior TeX so that the last line can be seen (`tex-recenter-output-buffer'). `C-c C-k' Kill the TeX subprocess (`tex-kill-job'). `C-c C-p' Print the output from the last `C-c C-r', `C-c C-b', or `C-c C-f' command (`tex-print'). `C-c C-v' Preview the output from the last `C-c C-r', `C-c C-b', or `C-c C-f' command (`tex-view'). `C-c C-q' Show the printer queue (`tex-show-print-queue'). You can pass the current buffer through an inferior TeX by means of `C-c C-b' (`tex-buffer'). The formatted output appears in a temporary file; to print it, type `C-c C-p' (`tex-print'). Afterward, you can use `C-c C-q' (`tex-show-print-queue') to view the progress of your output towards being printed. If your terminal has the ability to display TeX output files, you can preview the output on the terminal with `C-c C-v' (`tex-view'). You can specify the directory to use for running TeX by setting the variable `tex-directory'. `"."' is the default value. If your environment variable `TEXINPUTS' contains relative directory names, or if your files contains `\input' commands with relative file names, then `tex-directory' _must_ be `"."' or you will get the wrong results. Otherwise, it is safe to specify some other directory, such as `"/tmp"'. If you want to specify which shell commands are used in the inferior TeX, you can do so by setting the values of the variables `tex-run-command', `latex-run-command', `slitex-run-command', `tex-dvi-print-command', `tex-dvi-view-command', and `tex-show-queue-command'. You _must_ set the value of `tex-dvi-view-command' for your particular terminal; this variable has no default value. The other variables have default values that may (or may not) be appropriate for your system. Normally, the file name given to these commands comes at the end of the command string; for example, `latex FILENAME'. In some cases, however, the file name needs to be embedded in the command; an example is when you need to provide the file name as an argument to one command whose output is piped to another. You can specify where to put the file name with `*' in the command string. For example, (setq tex-dvi-print-command "dvips -f * | lpr") The terminal output from TeX, including any error messages, appears in a buffer called `*tex-shell*'. If TeX gets an error, you can switch to this buffer and feed it input (this works as in Shell mode; *note Interactive Shell::). Without switching to this buffer you can scroll it so that its last line is visible by typing `C-c C-l'. Type `C-c C-k' (`tex-kill-job') to kill the TeX process if you see that its output is no longer useful. Using `C-c C-b' or `C-c C-r' also kills any TeX process still running. You can also pass an arbitrary region through an inferior TeX by typing `C-c C-r' (`tex-region'). This is tricky, however, because most files of TeX input contain commands at the beginning to set parameters and define macros, without which no later part of the file will format correctly. To solve this problem, `C-c C-r' allows you to designate a part of the file as containing essential commands; it is included before the specified region as part of the input to TeX. The designated part of the file is called the "header". To indicate the bounds of the header in Plain TeX mode, you insert two special strings in the file. Insert `%**start of header' before the header, and `%**end of header' after it. Each string must appear entirely on one line, but there may be other text on the line before or after. The lines containing the two strings are included in the header. If `%**start of header' does not appear within the first 100 lines of the buffer, `C-c C-r' assumes that there is no header. In LaTeX mode, the header begins with `\documentclass' or `\documentstyle' and ends with `\begin{document}'. These are commands that LaTeX requires you to use in any case, so nothing special needs to be done to identify the header. The commands (`tex-buffer') and (`tex-region') do all of their work in a temporary directory, and do not have available any of the auxiliary files needed by TeX for cross-references; these commands are generally not suitable for running the final copy in which all of the cross-references need to be correct. When you want the auxiliary files for cross references, use `C-c C-f' (`tex-file') which runs TeX on the current buffer's file, in that file's directory. Before running TeX, it offers to save any modified buffers. Generally, you need to use (`tex-file') twice to get the cross-references right. The value of the variable `tex-start-options-string' specifies options for the TeX run. The default value causes TeX to run in nonstop mode. To run TeX interactively, set the variable to `""'. Large TeX documents are often split into several files--one main file, plus subfiles. Running TeX on a subfile typically does not work; you have to run it on the main file. In order to make `tex-file' useful when you are editing a subfile, you can set the variable `tex-main-file' to the name of the main file. Then `tex-file' runs TeX on that file. The most convenient way to use `tex-main-file' is to specify it in a local variable list in each of the subfiles. *Note File Variables::. For LaTeX files, you can use BibTeX to process the auxiliary file for the current buffer's file. BibTeX looks up bibliographic citations in a data base and prepares the cited references for the bibliography section. The command `C-c TAB' (`tex-bibtex-file') runs the shell command (`tex-bibtex-command') to produce a `.bbl' file for the current buffer's file. Generally, you need to do `C-c C-f' (`tex-file') once to generate the `.aux' file, then do `C-c TAB' (`tex-bibtex-file'), and then repeat `C-c C-f' (`tex-file') twice more to get the cross-references correct. TeX Mode Miscellany ------------------- Entering any variant of TeX mode runs the hooks `text-mode-hook' and `tex-mode-hook'. Then it runs either `plain-tex-mode-hook', `latex-mode-hook', or `slitex-mode-hook', whichever is appropriate. Starting the TeX shell runs the hook `tex-shell-hook'. *Note Hooks::. TeX encoding The commands `M-x iso-iso2tex', `M-x iso-tex2iso', `M-x iso-iso2gtex' and `M-x iso-gtex2iso' can be used to convert between Latin-1 encoded files and TeX-encoded equivalents. For managing all kinds of references for LaTeX, you can use RefTeX. *Note RefTeX: (reftex)Top. Nroff Mode ========== Nroff mode is a mode like Text mode but modified to handle nroff commands present in the text. Invoke `M-x nroff-mode' to enter this mode. It differs from Text mode in only a few ways. All nroff command lines are considered paragraph separators, so that filling will never garble the nroff commands. Pages are separated by `.bp' commands. Comments start with backslash-doublequote. Also, three special commands are provided that are not in Text mode: `M-n' Move to the beginning of the next line that isn't an nroff command (`forward-text-line'). An argument is a repeat count. `M-p' Like `M-n' but move up (`backward-text-line'). `M-?' Displays in the echo area the number of text lines (lines that are not nroff commands) in the region (`count-text-lines'). The other feature of Nroff mode is that you can turn on Electric Nroff mode. This is a minor mode that you can turn on or off with `M-x electric-nroff-mode' (*note Minor Modes::). When the mode is on, each time you use to end a line that contains an nroff command that opens a kind of grouping, the matching nroff command to close that grouping is automatically inserted on the following line. For example, if you are at the beginning of a line and type `. ( b ', this inserts the matching command `.)b' on a new line following point. If you use Outline minor mode with Nroff mode (*note Outline Mode::), heading lines are lines of the form `.H' followed by a number (the header level). Entering Nroff mode runs the hook `text-mode-hook', followed by the hook `nroff-mode-hook' (*note Hooks::). Editing Formatted Text ====================== "Enriched mode" is a minor mode for editing files that contain formatted text in WYSIWYG fashion, as in a word processor. Currently, formatted text in Enriched mode can specify fonts, colors, underlining, margins, and types of filling and justification. In the future, we plan to implement other formatting features as well. Enriched mode is a minor mode (*note Minor Modes::). It is typically used in conjunction with Text mode (*note Text Mode::), but you can also use it with other major modes such as Outline mode and Paragraph-Indent Text mode. Potentially, Emacs can store formatted text files in various file formats. Currently, only one format is implemented: "text/enriched" format, which is defined by the MIME protocol. *Note Format Conversion: (elisp)Format Conversion, for details of how Emacs recognizes and converts file formats. The Emacs distribution contains a formatted text file that can serve as an example. Its name is `etc/enriched.doc'. It contains samples illustrating all the features described in this section. It also contains a list of ideas for future enhancements. Requesting to Edit Formatted Text --------------------------------- Whenever you visit a file that Emacs saved in the text/enriched format, Emacs automatically converts the formatting information in the file into Emacs's own internal format (text properties), and turns on Enriched mode. To create a new file of formatted text, first visit the nonexistent file, then type `M-x enriched-mode' before you start inserting text. This command turns on Enriched mode. Do this before you begin inserting text, to ensure that the text you insert is handled properly. More generally, the command `enriched-mode' turns Enriched mode on if it was off, and off if it was on. With a prefix argument, this command turns Enriched mode on if the argument is positive, and turns the mode off otherwise. When you save a buffer while Enriched mode is enabled in it, Emacs automatically converts the text to text/enriched format while writing it into the file. When you visit the file again, Emacs will automatically recognize the format, reconvert the text, and turn on Enriched mode again. Normally, after visiting a file in text/enriched format, Emacs refills each paragraph to fit the specified right margin. You can turn off this refilling, to save time, by setting the variable `enriched-fill-after-visiting' to `nil' or to `ask'. However, when visiting a file that was saved from Enriched mode, there is no need for refilling, because Emacs saves the right margin settings along with the text. You can add annotations for saving additional text properties, which Emacs normally does not save, by adding to `enriched-translations'. Note that the text/enriched standard requires any non-standard annotations to have names starting with `x-', as in `x-read-only'. This ensures that they will not conflict with standard annotations that may be added later. Hard and Soft Newlines ---------------------- In formatted text, Emacs distinguishes between two different kinds of newlines, "hard" newlines and "soft" newlines. Hard newlines are used to separate paragraphs, or items in a list, or anywhere that there should always be a line break regardless of the margins. The command (`newline') and `C-o' (`open-line') insert hard newlines. Soft newlines are used to make text fit between the margins. All the fill commands, including Auto Fill, insert soft newlines--and they delete only soft newlines. Although hard and soft newlines look the same, it is important to bear the difference in mind. Do not use to break lines in the middle of filled paragraphs, or else you will get hard newlines that are barriers to further filling. Instead, let Auto Fill mode break lines, so that if the text or the margins change, Emacs can refill the lines properly. *Note Auto Fill::. On the other hand, in tables and lists, where the lines should always remain as you type them, you can use to end lines. For these lines, you may also want to set the justification style to `unfilled'. *Note Format Justification::. Editing Format Information -------------------------- There are two ways to alter the formatting information for a formatted text file: with keyboard commands, and with the mouse. The easiest way to add properties to your document is with the Text Properties menu. You can get to this menu in two ways: from the Edit menu in the menu bar (use ` e t' if you have no mouse), or with `C-Mouse-2' (hold the key and press the middle mouse button). There are also keyboard commands described in the following section. Most of the items in the Text Properties menu lead to other submenus. These are described in the sections that follow. Some items run commands directly: `Remove Face Properties' Delete from the region all the text properties that the Text Properties menu works with (`facemenu-remove-face-props'). `Remove All' Delete _all_ text properties from the region (`facemenu-remove-all'). `List Properties' List all the text properties of the character following point (`list-text-properties-at'). `Display Faces' Display a list of all the defined faces (`list-faces-display'). `Display Colors' Display a list of all the defined colors (`list-colors-display'). Faces in Formatted Text ----------------------- The Faces submenu lists various Emacs faces including `bold', `italic', and `underline'. Selecting one of these adds the chosen face to the region. *Note Faces::. You can also specify a face with these keyboard commands: `M-g d' Set the region, or the next inserted character, to the `default' face (`facemenu-set-default'). `M-g b' Set the region, or the next inserted character, to the `bold' face (`facemenu-set-bold'). `M-g i' Set the region, or the next inserted character, to the `italic' face (`facemenu-set-italic'). `M-g l' Set the region, or the next inserted character, to the `bold-italic' face (`facemenu-set-bold-italic'). `M-g u' Set the region, or the next inserted character, to the `underline' face (`facemenu-set-underline'). `M-g o FACE ' Set the region, or the next inserted character, to the face FACE (`facemenu-set-face'). If you use these commands with a prefix argument--or, in Transient Mark mode, if the region is not active--then these commands specify a face to use for your next self-inserting input. *Note Transient Mark::. This applies to both the keyboard commands and the menu commands. Enriched mode defines two additional faces: `excerpt' and `fixed'. These correspond to codes used in the text/enriched file format. The `excerpt' face is intended for quotations. This face is the same as `italic' unless you customize it (*note Face Customization::). The `fixed' face means, "Use a fixed-width font for this part of the text." This makes a visible difference only if you have specified a variable-width font in the default face; however, even if the default font is fixed-width, applying the `fixed' face to a part of the text will cause that part of the text to appear in a fixed-width font, if the file is ever displayed with a variable-width default font. This applies to Emacs and to other systems that display text/enriched format. So if you specifically want a certain part of the text to use a fixed-width font, you should specify the `fixed' face for that part. The `fixed' face is normally set up to use a different font from the default, even if the default face is also fixed-width. Different systems have different fonts installed, so you may need to customize this. *Note Face Customization::. If your terminal cannot display different faces, you will not be able to see them, but you can still edit documents containing faces, and even add faces and colors to documents. The faces you specify will be visible when the file is viewed on a terminal that can display them. Colors in Formatted Text ------------------------ You can specify foreground and background colors for portions of the text. There is a menu for specifying the foreground color and a menu for specifying the background color. Each color menu lists all the colors that you have used in Enriched mode in the current Emacs session. If you specify a color with a prefix argument--or, in Transient Mark mode, if the region is not active--then it applies to your next self-inserting input. *Note Transient Mark::. Otherwise, the command applies to the region. Each color menu contains one additional item: `Other'. You can use this item to specify a color that is not listed in the menu; it reads the color name with the minibuffer. To display list of available colors and their names, use the `Display Colors' menu item in the Text Properties menu (*note Editing Format Info::). Any color that you specify in this way, or that is mentioned in a formatted text file that you read in, is added to both color menus for the duration of the Emacs session. There are no key bindings for specifying colors, but you can do so with the extended commands `M-x facemenu-set-foreground' and `M-x facemenu-set-background'. Both of these commands read the name of the color with the minibuffer. Indentation in Formatted Text ----------------------------- When editing formatted text, you can specify different amounts of indentation for the right or left margin of an entire paragraph or a part of a paragraph. The margins you specify automatically affect the Emacs fill commands (*note Filling::) and line-breaking commands. The Indentation submenu provides a convenient interface for specifying these properties. The submenu contains four items: `Indent More' Indent the region by 4 columns (`increase-left-margin'). In Enriched mode, this command is also available on `C-x '; if you supply a numeric argument, that says how many columns to add to the margin (a negative argument reduces the number of columns). `Indent Less' Remove 4 columns of indentation from the region. `Indent Right More' Make the text narrower by indenting 4 columns at the right margin. `Indent Right Less' Remove 4 columns of indentation from the right margin. You can use these commands repeatedly to increase or decrease the indentation. The most common way to use these commands is to change the indentation of an entire paragraph. However, that is not the only use. You can change the margins at any point; the new values take effect at the end of the line (for right margins) or the beginning of the next line (for left margins). This makes it possible to format paragraphs with "hanging indents", which means that the first line is indented less than subsequent lines. To set up a hanging indent, increase the indentation of the region starting after the first word of the paragraph and running until the end of the paragraph. Indenting the first line of a paragraph is easier. Set the margin for the whole paragraph where you want it to be for the body of the paragraph, then indent the first line by inserting extra spaces or tabs. Sometimes, as a result of editing, the filling of a paragraph becomes messed up--parts of the paragraph may extend past the left or right margins. When this happens, use `M-q' (`fill-paragraph') to refill the paragraph. The variable `standard-indent' specifies how many columns these commands should add to or subtract from the indentation. The default value is 4. The overall default right margin for Enriched mode is controlled by the variable `fill-column', as usual. The fill prefix, if any, works in addition to the specified paragraph indentation: `C-x .' does not include the specified indentation's whitespace in the new value for the fill prefix, and the fill commands look for the fill prefix after the indentation on each line. *Note Fill Prefix::. Justification in Formatted Text ------------------------------- When editing formatted text, you can specify various styles of justification for a paragraph. The style you specify automatically affects the Emacs fill commands. The Justification submenu provides a convenient interface for specifying the style. The submenu contains five items: `Flush Left' This is the most common style of justification (at least for English). Lines are aligned at the left margin but left uneven at the right. `Flush Right' This aligns each line with the right margin. Spaces and tabs are added on the left, if necessary, to make lines line up on the right. `Full' This justifies the text, aligning both edges of each line. Justified text looks very nice in a printed book, where the spaces can all be adjusted equally, but it does not look as nice with a fixed-width font on the screen. Perhaps a future version of Emacs will be able to adjust the width of spaces in a line to achieve elegant justification. `Center' This centers every line between the current margins. `None' This turns off filling entirely. Each line will remain as you wrote it; the fill and auto-fill functions will have no effect on text which has this setting. You can, however, still indent the left margin. In unfilled regions, all newlines are treated as hard newlines (*note Hard and Soft Newlines::) . In Enriched mode, you can also specify justification from the keyboard using the `M-j' prefix character: `M-j l' Make the region left-filled (`set-justification-left'). `M-j r' Make the region right-filled (`set-justification-right'). `M-j f' Make the region fully-justified (`set-justification-full'). `M-j c' `M-S' Make the region centered (`set-justification-center'). `M-j u' Make the region unfilled (`set-justification-none'). Justification styles apply to entire paragraphs. All the justification-changing commands operate on the paragraph containing point, or, if the region is active, on all paragraphs which overlap the region. The default justification style is specified by the variable `default-justification'. Its value should be one of the symbols `left', `right', `full', `center', or `none'. Setting Other Text Properties ----------------------------- The Other Properties menu lets you add or remove three other useful text properties: `read-only', `invisible' and `intangible'. The `intangible' property disallows moving point within the text, the `invisible' text property hides text from display, and the `read-only' property disallows alteration of the text. Each of these special properties has a menu item to add it to the region. The last menu item, `Remove Special', removes all of these special properties from the text in the region. Currently, the `invisible' and `intangible' properties are _not_ saved in the text/enriched format. The `read-only' property is saved, but it is not a standard part of the text/enriched format, so other editors may not respect it. Forcing Enriched Mode --------------------- Normally, Emacs knows when you are editing formatted text because it recognizes the special annotations used in the file that you visited. However, there are situations in which you must take special actions to convert file contents or turn on Enriched mode: * When you visit a file that was created with some other editor, Emacs may not recognize the file as being in the text/enriched format. In this case, when you visit the file you will see the formatting commands rather than the formatted text. Type `M-x format-decode-buffer' to translate it. * When you _insert_ a file into a buffer, rather than visiting it. Emacs does the necessary conversions on the text which you insert, but it does not enable Enriched mode. If you wish to do that, type `M-x enriched-mode'. The command `format-decode-buffer' translates text in various formats into Emacs's internal format. It asks you to specify the format to translate from; however, normally you can type just , which tells Emacs to guess the format. If you wish to look at text/enriched file in its raw form, as a sequence of characters rather than as formatted text, use the `M-x find-file-literally' command. This visits a file, like `find-file', but does not do format conversion. It also inhibits character code conversion (*note Coding Systems::) and automatic uncompression (*note Compressed Files::). To disable format conversion but allow character code conversion and/or automatic uncompression if appropriate, use `format-find-file' with suitable arguments. Editing Programs **************** Emacs provides many features to facilitate editing programs. Some of these features can * Find or move over top-level definitions (*note Defuns::). * Apply the usual indentation conventions of the language (*note Program Indent::). * Insert, kill or align comments (*note Comments::). * Balance parentheses (*note Parentheses::). * Highlight program syntax (*note Font Lock::). This chapter describes these features and many more. Major Modes for Programming Languages ===================================== Emacs has specialized major modes for various programming languages. *Note Major Modes::. A programming language major mode typically specifies the syntax of expressions, the customary rules for indentation, how to do syntax highlighting for the language, and how to find the beginning of a function definition. It often customizes or provides facilities for compiling and debugging programs as well. Ideally, Emacs should provide a major mode for each programming language that you might want to edit; if it doesn't have a mode for your favorite language, you can contribute one. But often the mode for one language can serve for other syntactically similar languages. The major mode for language L is called `L-mode', and you can select it by typing `M-x L-mode '. *Note Choosing Modes::. The existing programming language major modes include Lisp, Scheme (a variant of Lisp) and the Scheme-based DSSSL expression language, Ada, Awk, C, C++, Delphi (Object Pascal), Fortran (free format and fixed format), Icon, IDL (CORBA), IDLWAVE, Java, Metafont (TeX's companion for font creation), Modula2, Objective-C, Octave, Pascal, Perl, Pike, PostScript, Prolog, Simula, Tcl, and VHDL. There is also a major mode for makefiles, called Makefile mode. An alternative mode for Perl is called CPerl mode. Modes are available for the scripting languages of the common GNU and Unix shells, VMS DCL, and MS-DOS/MS-Windows `BAT' files. There are also major modes for editing various sorts of configuration files. In most programming languages, indentation should vary from line to line to illustrate the structure of the program. So the major modes for programming languages arrange for to update the indentation of the current line. They also rebind to treat a tab as if it were the equivalent number of spaces; this lets you delete one column of indentation without worrying whether the whitespace consists of spaces or tabs. Use `C-b C-d' to delete a tab character before point, in these modes. Separate manuals are available for the modes for Ada (*note Ada Mode: (ada-mode)Top.), C/C++/Objective C/Java/Corba IDL (*note CC Mode: (ccmode)Top.) and the IDLWAVE modes (*note IDLWAVE: (idlwave)Top.). Turning on a major mode runs a normal hook called the "mode hook", which is the value of a Lisp variable. Each major mode has a mode hook, and the hook's name is always made from the mode command's name by adding `-hook'. For example, turning on C mode runs the hook `c-mode-hook', while turning on Lisp mode runs the hook `lisp-mode-hook'. The purpose of the mode hook is to give you a place to set up customizations for that major mode. *Note Hooks::. Top-Level Definitions, or Defuns ================================ In Emacs, a major definition at the top level in the buffer is called a "defun". The name comes from Lisp, but in Emacs we use it for all languages. In most programming language modes, Emacs assumes that a defun is any pair of parentheses (or braces, if the language uses braces this way) that starts at the left margin. For example, in C, the body of a function definition is normally a defun, because the open-brace that begins it is normally at the left margin. A variable's initializer can also count as a defun, if the open-brace that begins the initializer is at the left margin. However, some language modes provide their own code for recognizing defuns in a way that suits the language syntax and conventions better. Left Margin Convention ---------------------- In most major modes, Emacs assumes that any opening delimiter found at the left margin is the start of a top-level definition, or defun. Therefore, *never put an opening delimiter at the left margin unless it should have that significance.* For instance, never put an open-parenthesis at the left margin in a Lisp file unless it is the start of a top-level list. Never put an open-brace or other opening delimiter at the beginning of a line of C code unless it is at top level. If you don't follow this convention, not only will you have trouble when you explicitly use the commands for motion by defuns; other features that use them will also give you trouble. This includes the indentation commands (*note Program Indent::) and Font Lock mode (*note Font Lock::). The most likely problem case is when you want an opening delimiter at the start of a line inside a string. To avoid trouble, put an escape character (`\', in C and Emacs Lisp, `/' in some other Lisp dialects) before the opening delimiter. This will not affect the contents of the string, but will prevent that opening delimiter from starting a defun. Here's an example: (insert "Foo: \(bar) ") In the earliest days, the original Emacs found defuns by moving upward a level of parentheses or braces until there were no more levels to go up. This always required scanning all the way back to the beginning of the buffer, even for a small function. To speed up the operation, we changed Emacs to assume that any opening delimiter at the left margin is the start of a defun. This heuristic is nearly always right, and avoids the need to scan back to the beginning of the buffer. However, it mandates following the convention described above. Moving by Defuns ---------------- These commands move point or set up the region based on top-level major definitions, also called "defuns". `C-M-a' Move to beginning of current or preceding defun (`beginning-of-defun'). `C-M-e' Move to end of current or following defun (`end-of-defun'). `C-M-h' Put region around whole current or following defun (`mark-defun'). The commands to move to the beginning and end of the current defun are `C-M-a' (`beginning-of-defun') and `C-M-e' (`end-of-defun'). If you repeat one of these commands, or use a positive numeric argument, each repetition moves to the next defun in the direction of motion. `C-M-a' with a negative argument -N moves forward N times to the next beginning of a defun. This is not exactly the same place that `C-M-e' with argument N would move to; the end of this defun is not usually exactly the same place as the beginning of the following defun. (Whitespace, comments, and perhaps declarations can separate them.) Likewise, `C-M-e' with a negative argument moves back to an end of a defun, which is not quite the same as `C-M-a' with a positive argument. To operate on the current defun, use `C-M-h' (`mark-defun') which puts point at the beginning and mark at the end of the current defun. This is the easiest way to get ready to kill the defun in order to move it to a different place in the file. If you use the command while point is between defuns, it uses the following defun. In C mode, `C-M-h' runs the function `c-mark-function', which is almost the same as `mark-defun'; the difference is that it backs up over the argument declarations, function name and returned data type so that the entire C function is inside the region. This is an example of how major modes adjust the standard key bindings so that they do their standard jobs in a way better fitting a particular language. Other major modes may replace any or all of these key bindings for that purpose. Imenu ----- The Imenu facility offers a way to find the the major definitions in a file by name. It is also useful in text formatter major modes, where it treats each chapter, section, etc., as a definition. (*Note Tags::, for a more powerful feature that handles multiple files together.) If you type `M-x imenu', it reads the name of a definition using the minibuffer, then moves point to that definition. You can use completion to specify the name; the command always displays the whole list of valid names. Alternatively, you can bind the command `imenu' to a mouse click. Then it displays mouse menus for you to select a definition name. You can also add the buffer's index to the menu bar by calling `imenu-add-menubar-index'. If you want to have this menu bar item available for all buffers in a certain major mode, you can do this by adding `imenu-add-menubar-index' to its mode hook. But if you have done that, you will have to wait each time you visit a file in that mode, while Emacs finds all the definitions in that buffer. When you change the contents of a buffer, if you add or delete definitions, you can update the buffer's index based on the new contents by invoking the `*Rescan*' item in the menu. Rescanning happens automatically if you set `imenu-auto-rescan' to a non-`nil' value. There is no need to rescan because of small changes in the text. You can customize the way the menus are sorted by setting the variable `imenu-sort-function'. By default, names are ordered as they occur in the buffer; if you want alphabetic sorting, use the symbol `imenu--sort-by-name' as the value. You can also define your own comparison function by writing Lisp code. Imenu provides the information to guide Which Function mode (*note Which Function::). The Speedbar can also use it (*note Speedbar::). Which Function Mode ------------------- Which Function mode is a minor mode that displays the current function name in the mode line, updating it as you move around in a buffer. To enable (or disable) Which Function mode, use the command `M-x which-function-mode'. This command is global; it applies to all buffers, both existing ones and those yet to be created. However, it only takes effect in certain major modes, those listed in the value of `which-func-modes'. If the value is `t', then Which Function mode applies to all major modes that know how to support it--in other words, all the major modes that support Imenu. Indentation for Programs ======================== The best way to keep a program properly indented is to use Emacs to reindent it as you change it. Emacs has commands to indent properly either a single line, a specified number of lines, or all of the lines inside a single parenthetical grouping. Emacs also provides a Lisp pretty-printer in the library `pp'. This program reformats a Lisp object with indentation chosen to look nice. Basic Program Indentation Commands ---------------------------------- The basic indentation commands indent a single line according to the usual conventions of the language you are editing. `' Adjust indentation of current line. `C-j' Equivalent to followed by (`newline-and-indent'). `' This key, if the keyboard has it, is another way to enter `C-j'. The basic indentation command is , which gives the current line the correct indentation as determined from the previous lines. The function that runs depends on the major mode; it is `indent-for-tab-command' in Lisp mode, `c-indent-command' in C mode, etc. These functions understand the syntax and conventions of different languages, but they all do conceptually the same job: in any programming-language major mode inserts or deletes whitespace at the beginning of the current line, independent of where point is in the line. If point was inside the whitespace at the beginning of the line, puts it at the end of that whitespace; otherwise, keeps point fixed with respect to the characters around it. Use `C-q ' to insert a tab at point. When entering lines of new code, use `C-j' (`newline-and-indent'), which is equivalent to a followed by a . `C-j' at the end of a line creates a blank line and then gives it the appropriate indentation. indents lines that start within a parenthetical grouping each under the preceding line (or the text after the parenthesis). Therefore, if you manually give one of these lines a nonstandard indentation, the lines below will tend to follow it. This behavior is convenient in cases where you have overridden the standard result of because you find it unaesthetic for a particular line. Remember that an open-parenthesis, open-brace or other opening delimiter at the left margin is assumed by Emacs (including the indentation routines) to be the start of a function. Therefore, you must never have an opening delimiter in column zero that is not the beginning of a function, not even inside a string. This restriction is vital for making the indentation commands fast; you must simply accept it. *Note Left Margin Paren::, for more information on this. Normally, lines are indented with tabs and spaces. If you want Emacs to use spaces only, see *Note Just Spaces::. Indenting Several Lines ----------------------- When you wish to reindent several lines of code which have been altered or moved to a different level in the parenthesis structure, you have several commands available. `C-M-q' Reindent all the lines within one parenthetical grouping(`indent-sexp'). `C-M-\' Reindent all lines in the region (`indent-region'). `C-u ' Shift an entire parenthetical grouping rigidly sideways so that its first line is properly indented. `M-x indent-code-rigidly' Shift all the lines in the region rigidly sideways, but do not alter lines that start inside comments and strings. You can reindent the contents of a single parenthetical grouping by positioning point before the beginning of it and typing `C-M-q' (`indent-sexp' in Lisp mode, `c-indent-exp' in C mode; also bound to other suitable commands in other modes). The indentation of the line where the grouping starts is not changed; therefore, this changes only the relative indentation within the grouping, not its overall indentation. To correct that as well, type first. Another way to specify the range to be reindented is with the region. The command `C-M-\' (`indent-region') applies to every line whose first character is between point and mark. If you like the relative indentation within a grouping, but not the indentation of its first line, you can type `C-u ' to reindent the whole grouping as a rigid unit. (This works in Lisp modes and C and related modes.) with a numeric argument reindents the current line as usual, then reindents by the same amount all the lines in the parenthetical grouping starting on the current line. It is clever, though, and does not alter lines that start inside strings, or C preprocessor lines when in C mode. You can also perform this operation on the region, using the command `M-x indent-code-rigidly'. It rigidly shifts all the lines in the region sideways, like `indent-rigidly' does (*note Indentation Commands::). It doesn't alter the indentation of lines that start inside a comment or a string, unless the region starts inside that comment or string. Customizing Lisp Indentation ---------------------------- The indentation pattern for a Lisp expression can depend on the function called by the expression. For each Lisp function, you can choose among several predefined patterns of indentation, or define an arbitrary one with a Lisp program. The standard pattern of indentation is as follows: the second line of the expression is indented under the first argument, if that is on the same line as the beginning of the expression; otherwise, the second line is indented underneath the function name. Each following line is indented under the previous line whose nesting depth is the same. If the variable `lisp-indent-offset' is non-`nil', it overrides the usual indentation pattern for the second line of an expression, so that such lines are always indented `lisp-indent-offset' more columns than the containing list. Certain functions override the standard pattern. Functions whose names start with `def' treat the the second lines as the start of a "body", by indenting the second line `lisp-body-indent' additional columns beyond the open-parenthesis that starts the expression. You can override the standard pattern in various ways for individual functions, according to the `lisp-indent-function' property of the function name. There are four possibilities for this property: `nil' This is the same as no property--use the standard indentation pattern. `defun' Handle this function like a `def' construct: treat the second line as the start of a "body". a number, NUMBER The first NUMBER arguments of the function are "distinguished" arguments; the rest are considered the body of the expression. A line in the expression is indented according to whether the first argument on it is distinguished or not. If the argument is part of the body, the line is indented `lisp-body-indent' more columns than the open-parenthesis starting the containing expression. If the argument is distinguished and is either the first or second argument, it is indented _twice_ that many extra columns. If the argument is distinguished and not the first or second argument, the line uses the standard pattern. a symbol, SYMBOL SYMBOL should be a function name; that function is called to calculate the indentation of a line within this expression. The function receives two arguments: STATE The value returned by `parse-partial-sexp' (a Lisp primitive for indentation and nesting computation) when it parses up to the beginning of this line. POS The position at which the line being indented begins. It should return either a number, which is the number of columns of indentation for that line, or a list whose car is such a number. The difference between returning a number and returning a list is that a number says that all following lines at the same nesting level should be indented just like this one; a list says that following lines might call for different indentations. This makes a difference when the indentation is being computed by `C-M-q'; if the value is a number, `C-M-q' need not recalculate indentation for the following lines until the end of the list. Commands for C Indentation -------------------------- Here are special features for indentation in C mode and related modes: `C-c C-q' Reindent the current top-level function definition or aggregate type declaration (`c-indent-defun'). `C-M-q' Reindent each line in the balanced expression that follows point (`c-indent-exp'). A prefix argument inhibits error checking and warning messages about invalid syntax. `' Reindent the current line, and/or in some cases insert a tab character (`c-indent-command'). If `c-tab-always-indent' is `t', this command always reindents the current line and does nothing else. This is the default. If that variable is `nil', this command reindents the current line only if point is at the left margin or in the line's indentation; otherwise, it inserts a tab (or the equivalent number of spaces, if `indent-tabs-mode' is `nil'). Any other value (not `nil' or `t') means always reindent the line, and also insert a tab if within a comment, a string, or a preprocessor directive. To reindent the whole current buffer, type `C-x h C-M-\'. This first selects the whole buffer as the region, then reindents that region. To reindent the current block, use `C-M-u C-M-q'. This moves to the front of the block and then reindents it all. Customizing C Indentation ------------------------- C mode and related modes use a simple yet flexible mechanism for customizing indentation. The mechanism works in two steps: first it classifies the line syntactically according to its contents and context; second, it associates each kind of syntactic construct with an indentation offset based on your selected "style". `M-x c-set-style STYLE ' Select predefined indentation style STYLE. A style is a named collection of indentation customizations that can be used in C mode and the related modes. Emacs comes with several predefined styles, including `gnu', `k&r', `bsd', `stroustrup', `linux', `python', `java', `whitesmith', `ellemtel', `cc-mode', and `user'. Some of these styles are primarily intended for one language, but any of them can be used with any of the languages supported by these modes. To find out what a style looks like, select it and reindent some code, e.g., by typing at the start of a function definition. To choose a style for the current buffer, use the command `M-x c-set-style'. Specify a style name as an argument (case is not significant). This command affects the current buffer only, and it affects only future invocations of the indentation commands; it does not reindent the code in the buffer. To reindent the whole buffer in the new style, you can type `C-x h C-M-\'. You can also set the variable `c-default-style' to specify the default style for various major modes. Its value should be an alist, in which each element specifies one major mode and which indentation style to use for it. For example, (setq c-default-style '((java-mode . "java") (other . "gnu"))) specifies an explicit choice for Java mode, and the default `gnu' style for the other C-like modes. This variable takes effect when you select one of the C-like major modes; thus, if you specify a new default style for Java mode, you can make it take effect in an existing Java mode buffer by typing `M-x java-mode' there. The `gnu' style specifies the formatting recommended by the GNU Project for C; it is the default, so as to encourage use of our recommended style. *Note Customizing Indentation: (ccmode)Customizing Indentation, for more information on customizing indentation for C and related modes, including how to override parts of an existing style and how to define your own styles. Commands for Editing with Parentheses ===================================== This section describes the commands and features that take advantage of the parenthesis structure in a program, or help you keep it balanced. When talking about these facilities, the term "parenthesis" also includes braces, brackets, or whatever delimiters are defined to match in pairs. The major mode controls which delimiters are significant, through the syntax table (*note Syntax::). In Lisp, only parentheses count; in C, these commands apply to braces and brackets too. You can use `M-x check-parens' to find any unbalanced parentheses and unbalanced string quotes in the buffer. Expressions with Balanced Parentheses ------------------------------------- These commands deal with balanced expressions, also called "sexps"(1). `C-M-f' Move forward over a balanced expression (`forward-sexp'). `C-M-b' Move backward over a balanced expression(`backward-sexp'). `C-M-k' Kill balanced expression forward (`kill-sexp'). `C-M-' Kill balanced expression backward (`backward-kill-sexp'). `C-M-t' Transpose expressions (`transpose-sexps'). `C-M-@' Put mark after following expression (`mark-sexp'). Each programming language major mode customizes the definition of balanced expressions to suit that language. Balanced expressions typically include symbols, numbers, and string constants, as well as any pair of matching delimiters and their contents. Some languages have obscure forms of expression syntax that nobody has bothered to implement in Emacs. By convention, the keys for these commands are all Control-Meta characters. They usually act on expressions just as the corresponding Meta characters act on words. For instance, the command `C-M-b' moves backward over a balanced expression, just as `M-b' moves back over a word. To move forward over a balanced expression, use `C-M-f' (`forward-sexp'). If the first significant character after point is an opening delimiter (`(' in Lisp; `(', `[' or `{' in C), `C-M-f' moves past the matching closing delimiter. If the character begins a symbol, string, or number, `C-M-f' moves over that. The command `C-M-b' (`backward-sexp') moves backward over a balanced expression. The detailed rules are like those above for `C-M-f', but with directions reversed. If there are prefix characters (single-quote, backquote and comma, in Lisp) preceding the expression, `C-M-b' moves back over them as well. The balanced expression commands move across comments as if they were whitespace, in most modes. `C-M-f' or `C-M-b' with an argument repeats that operation the specified number of times; with a negative argument, it moves in the opposite direction. Killing a whole balanced expression can be done with `C-M-k' (`kill-sexp') or `C-M-' (`backward-kill-sexp'). `C-M-k' kills the characters that `C-M-f' would move over, and `C-M-' kills the characters that `C-M-b' would move over. On some machines, `C-M-' typed on the console is a command to reboot; when that is so, you cannot use it as an Emacs command. This conflict is rare, though: usually the key for Emacs is really , and the reboot command is `C-M-', so there is no conflict. A somewhat random-sounding command which is nevertheless handy is `C-M-t' (`transpose-sexps'), which drags the previous balanced expression across the next one. An argument serves as a repeat count, and a negative argument drags the previous balanced expression backwards across those before it (thus canceling out the effect of `C-M-t' with a positive argument). An argument of zero, rather than doing nothing, transposes the balanced expressions ending at or after point and the mark. To set the region around the next balanced expression in the buffer, use `C-M-@' (`mark-sexp'), which sets mark at the same place that `C-M-f' would move to. `C-M-@' takes arguments like `C-M-f'. In particular, a negative argument is useful for putting the mark at the beginning of the previous balanced expression. In languages that use infix operators, such as C, it is not possible to recognize all balanced expressions as such because there can be multiple possibilities at a given position. For example, C mode does not treat `foo + bar' as a single expression, even though it _is_ one C expression; instead, it recognizes `foo' as one expression and `bar' as another, with the `+' as punctuation between them. Both `foo + bar' and `foo' are legitimate choices for "the expression following point" when point is at the `f', so the expression commands must perforce choose one or the other to operate on. Note that `(foo + bar)' is recognized as a single expression in C mode, because of the parentheses. ---------- Footnotes ---------- (1) The word "sexp" is used to refer to an expression in Lisp. Moving in the Parenthesis Structure ----------------------------------- The Emacs commands for handling parenthetical groupings see nothing except parentheses (or whatever characters must balance in the language you are working with), and the escape characters that might be used to quote those. They are mainly intended for editing programs, but can be useful for editing any text that has parentheses. They are sometimes called "list" commands because in Lisp these groupings are lists. `C-M-n' Move forward over a parenthetical group (`forward-list'). `C-M-p' Move backward over a parenthetical group(`backward-list'). `C-M-u' Move up in parenthesis structure (`backward-up-list'). `C-M-d' Move down in parenthesis structure (`down-list'). The "list" commands `C-M-n' (`forward-list') and `C-M-p' (`backward-list') move over one (or N) parenthetical groupings, skipping blithely over any amount of text that doesn't include meaningful parentheses (symbols, strings, etc.). `C-M-n' and `C-M-p' try to stay at the same level in the parenthesis structure. To move _up_ one (or N) levels, use `C-M-u' (`backward-up-list'). `C-M-u' moves backward up past one unmatched opening delimiter. A positive argument serves as a repeat count; a negative argument reverses the direction of motion, so that the command moves forward and up one or more levels. To move _down_ in the parenthesis structure, use `C-M-d' (`down-list'). In Lisp mode, where `(' is the only opening delimiter, this is nearly the same as searching for a `('. An argument specifies the number of levels to go down. Automatic Display Of Matching Parentheses ----------------------------------------- The Emacs parenthesis-matching feature is designed to show automatically how parentheses (and other matching delimiters) match in the text. Whenever you type a self-inserting character that is a closing delimiter, the cursor moves momentarily to the location of the matching opening delimiter, provided that is on the screen. If it is not on the screen, Emacs displays some of the text near it in the echo area. Either way, you can tell which grouping you are closing off. If the opening delimiter and closing delimiter are mismatched--such as in `[x)'--a warning message is displayed in the echo area. Three variables control parenthesis match display. `blink-matching-paren' turns the feature on or off: `nil' disables it, but the default is `t' to enable match display. `blink-matching-delay' says how many seconds to leave the cursor on the matching opening delimiter, before bringing it back to the real location of point; the default is 1, but on some systems it is useful to specify a fraction of a second. `blink-matching-paren-distance' specifies how many characters back to search to find the matching opening delimiter. If the match is not found in that distance, scanning stops, and nothing is displayed. This is to prevent the scan for the matching delimiter from wasting lots of time when there is no match. The default is 25600. Show Paren mode provides a more powerful kind of automatic matching. Whenever point is after a closing delimiter, that delimiter and its matching opening delimiter are both highlighted; otherwise, if point is before an opening delimiter, the matching closing delimiter is highlighted. (There is no need to highlight the opening delimiter in that case, because the cursor appears on top of that character.) Use the command `M-x show-paren-mode' to enable or disable this mode. By default, `show-paren-mode' uses colors to highlight the parentheses. However, if your display doesn't support colors, you can customize the faces `show-paren-match-face' and `show-paren-mismatch-face' to use other attributes, such as bold or underline. *Note Face Customization::. Manipulating Comments ===================== Because comments are such an important part of programming, Emacs provides special commands for editing and inserting comments. Comment Commands ---------------- The comment commands in this table insert, kill and align comments. They are described in this section and following sections. `M-;' Insert or realign comment on current line; alternatively, comment or uncomment the region (`comment-dwim'). `C-u M-;' Kill comment on current line (`comment-kill'). `C-x ;' Set comment column (`comment-set-column'). `C-M-j' Like followed by inserting and aligning a comment (`comment-indent-new-line'). `M-x comment-region' Add or remove comment delimiters on all the lines in the region. The command to create or align a comment is `M-;' (`comment-dwim'). The word "dwim" is an acronym for "Do What I Mean"; it indicates that this command can be used for many different jobs relating to comments, depending on the situation where you use it. If there is no comment already on the line, `M-;' inserts a new comment, aligned at a specific column called the "comment column". The new comment begins with the string Emacs thinks comments should start with (the value of `comment-start'; see below). Point is after that string, so you can insert the text of the comment right away. If the major mode has specified a string to terminate comments, `M-;' inserts that too, to keep the syntax valid. If the text of the line extends past the comment column, then the comment start string is indented to a suitable boundary (usually, at least one space is inserted). You can also use `M-;' to align an existing comment. If a line already contains the comment-start string, `M-;' reindents it to the conventional alignment and moves point after it. (Exception: comments starting in column 0 are not moved.) Even when an existing comment is properly aligned, `M-;' is still useful for moving directly to the start of the text inside the comment. `C-u M-;' kills any comment on the current line, along with the whitespace before it. To reinsert the comment on another line, move to the end of that line, do `C-y', and then do `M-;' to realign it. Note that `C-u M-;' is not a distinct key; it is `M-;' (`comment-dwim') with a prefix argument. That command is programmed so that when it receives a prefix argument it calls `comment-kill'. However, `comment-kill' is a valid command in its own right, and you can bind it directly to a key if you wish. `M-;' does two other jobs when used with an active region in Transient Mark mode (*note Transient Mark::). Then it either adds or removes comment delimiters on each line of the region. (If every line is a comment, it removes comment delimiters from each; otherwise, it adds comment delimiters to each.) If you are not using Transient Mark mode, then you should use the commands `comment-region' and `uncomment-region' to do these jobs (*note Multi-Line Comments::). A prefix argument used in these circumstances specifies how many comment delimiters to add or how many to delete. Some major modes have special rules for indenting certain kinds of comments in certain contexts. For example, in Lisp code, comments which start with two semicolons are indented as if they were lines of code, instead of at the comment column. Comments which start with three semicolons are supposed to start at the left margin. Emacs understands these conventions by indenting a double-semicolon comment using , and by not changing the indentation of a triple-semicolon comment at all. ;; This function is just an example ;;; Here either two or three semicolons are appropriate. (defun foo (x) ;;; And now, the first part of the function: ;; The following line adds one. (1+ x)) ; This line adds one. In C code, a comment preceded on its line by nothing but whitespace is indented like a line of code. Multiple Lines of Comments -------------------------- If you are typing a comment and wish to continue it on another line, you can use the command `C-M-j' (`comment-indent-new-line'). This terminates the comment you are typing, creates a new blank line afterward, and begins a new comment indented under the old one. When Auto Fill mode is on, going past the fill column while typing a comment causes the comment to be continued in just this fashion. If point is not at the end of the line when `C-M-j' is typed, the text on the rest of the line becomes part of the new comment line. To turn existing lines into comment lines, use the `M-x comment-region' command. It adds comment delimiters to the lines that start in the region, thus commenting them out. With a negative argument, it does the opposite--it deletes comment delimiters from the lines in the region. With a positive argument, `comment-region' duplicates the last character of the comment start sequence it adds; the argument specifies how many copies of the character to insert. Thus, in Lisp mode, `C-u 2 M-x comment-region' adds `;;' to each line. Duplicating the comment delimiter is a way of calling attention to the comment. It can also affect how the comment is indented. In Lisp, for proper indentation, you should use an argument of two or three, if between defuns; if within a defun, it must be three. Options Controlling Comments ---------------------------- The comment column is stored in the variable `comment-column'. You can set it to a number explicitly. Alternatively, the command `C-x ;' (`comment-set-column') sets the comment column to the column point is at. `C-u C-x ;' sets the comment column to match the last comment before point in the buffer, and then does a `M-;' to align the current line's comment under the previous one. The variable `comment-column' is per-buffer: setting the variable in the normal fashion affects only the current buffer, but there is a default value which you can change with `setq-default'. *Note Locals::. Many major modes initialize this variable for the current buffer. The comment commands recognize comments based on the regular expression that is the value of the variable `comment-start-skip'. Make sure this regexp does not match the null string. It may match more than the comment starting delimiter in the strictest sense of the word; for example, in C mode the value of the variable is `"/\\*+ *\\|//+ *""', which matches extra stars and spaces after the `/*' itself, and accepts C++ style comments also. (Note that `\\' is needed in Lisp syntax to include a `\' in the string, which is needed to deny the first star its special meaning in regexp syntax. *Note Regexps::.) When a comment command makes a new comment, it inserts the value of `comment-start' to begin it. The value of `comment-end' is inserted after point, so that it will follow the text that you will insert into the comment. In C mode, `comment-start' has the value `"/* "' and `comment-end' has the value `" */"'. The variable `comment-padding' specifies how many spaces `comment-region' should insert on each line between the comment delimiter and the line's original text. The default is 1, to insert one space. The variable `comment-multi-line' controls how `C-M-j' (`indent-new-comment-line') behaves when used inside a comment. If `comment-multi-line' is `nil', as it normally is, then the comment on the starting line is terminated and a new comment is started on the new following line. If `comment-multi-line' is not `nil', then the new following line is set up as part of the same comment that was found on the starting line. This is done by not inserting a terminator on the old line, and not inserting a starter on the new line. In languages where multi-line comments work, the choice of value for this variable is a matter of taste. The variable `comment-indent-function' should contain a function that will be called to compute the indentation for a newly inserted comment or for aligning an existing comment. It is set differently by various major modes. The function is called with no arguments, but with point at the beginning of the comment, or at the end of a line if a new comment is to be inserted. It should return the column in which the comment ought to start. For example, in Lisp mode, the indent hook function bases its decision on how many semicolons begin an existing comment, and on the code in the preceding lines. Documentation Lookup ==================== Emacs provides several features you can use to look up the documentation of functions, variables and commands that you plan to use in your program. Info Documentation Lookup ------------------------- For C, Lisp, and other languages that have documentation in Info, you can use `C-h C-i' (`info-lookup-symbol') to view the Info documentation for a symbol. You specify the symbol with the minibuffer; the default is the symbol appearing in the buffer at point. The major mode determines where to look for documentation for the symbol--which Info files to look in, and which indices to search. You can also use `M-x info-lookup-file' to look for documentation for a file name. This feature currently supports the modes Awk, Autoconf, Bison, C, Emacs Lisp, LaTeX, M4, Makefile, Octave, Perl, Scheme, and Texinfo, provided you have installed the relevant Info files, which are typically available with the appropriate GNU package. Man Page Lookup --------------- On Unix, the main form of on-line documentation was the "manual page" or "man page". In the GNU operating system, we hope to replace man pages with better-organized manuals that you can browse with Info (*note Misc Help::). This process is not finished, so it is still useful to read manual pages. You can read the man page for an operating system command, library function, or system call, with the `M-x manual-entry' command. It runs the `man' program to format the man page; if the system permits, it runs `man' asynchronously, so that you can keep on editing while the page is being formatted. (On MS-DOS and MS-Windows 3, you cannot edit while Emacs waits for `man' to finish.) The result goes in a buffer named `*Man TOPIC*'. These buffers use a special major mode, Man mode, that facilitates scrolling and jumping to other manual pages. For details, type `C-h m' while in a man page buffer. Each man page belongs to one of ten or more "sections", each named by a digit or by a digit and a letter. Sometimes there are multiple man pages with the same name in different sections. To read a man page from a specific section, type `TOPIC(SECTION)' or `SECTION TOPIC' when `M-x manual-entry' prompts for the topic. For example, to read the man page for the C library function `chmod' (as opposed to a command of the same name), type `M-x manual-entry chmod(2) ' (`chmod' is a system call, so it is in section `2'). If you do not specify a section, the results depend on how the `man' program works on your system. Some of them display only the first man page they find. Others display all man pages that have the specified name, so you can move between them with the `M-n' and `M-p' keys(1). The mode line shows how many manual pages are present in the Man buffer. By default, Emacs highlights the text in man pages. For a long man page, highlighting can take substantial time. You can turn off highlighting of man pages by setting the variable `Man-fontify-manpage-flag' to `nil'. If you insert the text of a man page into an Emacs buffer in some other fashion, you can use the command `M-x Man-fontify-manpage' to perform the same conversions that `M-x manual-entry' does. An alternative way of reading manual pages is the `M-x woman' command(2). Unlike `M-x man', it does not run any external programs to format and display the man pages; instead it does the job in Emacs Lisp, so it works on systems such as MS-Windows, where the `man' program (and the other programs it uses) are not generally available. `M-x woman' prompts for a name of a manual page, and provides completion based on the list of manual pages that are installed on your machine; the list of available manual pages is computed automatically the first time you invoke `woman'. The word at point in the current buffer is used to suggest the default for the name the manual page. With a numeric argument, `M-x woman' recomputes the list of the manual pages used for completion. This is useful if you add or delete manual pages. If you type a name of a manual page and `M-x woman' finds that several manual pages by the same name exist in different sections, it pops up a window with possible candidates asking you to choose one of them. By default, `M-x woman' looks for manual pages in the directories specified in the `MANPATH' environment variable. (If `MANPATH' is not set, `woman' uses a suitable default value, which can be customized.) More precisely, `woman' looks for subdirectories that match the shell wildcard pattern `man*' in each one of these directories, and tries to find the manual pages in those subdirectories. When first invoked, `M-x woman' converts the value of `MANPATH' to a list of directory names and stores that list in the `woman-manpath' variable. Changing the value of this variable is another way to control the list of directories used. You can also augment the list of directories searched by `woman' by setting the value of the `woman-path' variable. This variable should hold a list of specific directories which `woman' should search, in addition to those in `woman-manpath'. Unlike `woman-manpath', the directories in `woman-path' are searched for the manual pages, not for `man*' subdirectories. Occasionally, you might need to display manual pages that are not in any of the directories listed by `woman-manpath' and `woman-path'. The `M-x woman-find-file' command prompts for a name of a manual page file, with completion, and then formats and displays that file like `M-x woman' does. The first time you invoke `M-x woman', it defines the Dired `W' key to run the `woman-find-file' command on the current line's file. You can disable this by setting the variable `woman-dired-keys' to `nil'. *Note Dired::. In addition, the Tar-mode `w' key is define to invoke `woman-find-file' on the current line's archive member. For more information about setting up and using `M-x woman', see *Note WoMan: (woman)Top. ---------- Footnotes ---------- (1) On some systems, the `man' program accepts a `-a' command-line option which tells it to display all the man pages for the specified topic. If you want this behavior, you can add this option to the value of the variable `Man-switches'. (2) The name of the command, `woman', is an acronym for "w/o (without) man," since it doesn't use the `man' program. Emacs Lisp Documentation Lookup ------------------------------- As you edit Lisp code to be run in Emacs, you can use the commands `C-h f' (`describe-function') and `C-h v' (`describe-variable') to view documentation of functions and variables that you want to use. These commands use the minibuffer to read the name of a function or variable to document, and display the documentation in a window. Their default arguments are based on the code in the neighborhood of point. For `C-h f', the default is the function called in the innermost list containing point. `C-h v' uses the symbol name around or adjacent to point as its default. A more automatic but less powerful method is Eldoc mode. This minor mode constantly displays in the echo area the argument list for the function being called at point. (In other words, it finds the function call that point is contained in, and displays the argument list of that function.) Eldoc mode applies in Emacs Lisp and Lisp Interaction modes only. Use the command `M-x eldoc-mode' to enable or disable this feature. Hideshow minor mode =================== Hideshow minor mode provides selective display of portions of a program, known as "blocks". You can use `M-x hs-minor-mode' to enable or disable this mode, or add `hs-minor-mode' to the mode hook for certain major modes in order to enable it automatically for those modes. Just what constitutes a block depends on the major mode. In C mode or C++ mode, they are delimited by braces, while in Lisp mode and similar modes they are delimited by parentheses. Multi-line comments also count as blocks. `C-c @ C-h' Hide the current block (`hs-hide-block'). `C-c @ C-s' Show the current block (`hs-show-block'). `C-c @ C-c' Either hide or show the current block (`hs-toggle-hiding') `S-Mouse-2' Either hide or show the block you click on (`hs-mouse-toggle-hiding') `C-c @ C-M-h' Hide all top-level blocks (`hs-hide-all'). `C-c @ C-M-s' Show everything in the buffer (`hs-show-all'). `C-c @ C-l' Hide all blocks N levels below this block (`hs-hide-level'). These user options exist for customizing Hideshow mode. `hs-hide-comments-when-hiding-all' Non-`nil' says that `hs-hide-all' should hide comments too. `hs-isearch-open' Specifies what kind of hidden blocks to open in Isearch mode. The value should be one of these four symbols. `code' Open only code blocks. `comment' Open only comments. `t' Open both code blocks and comments. `nil' Open neither code blocks nor comments. `hs-special-modes-alist' A list of elements, each specifying how to initialize Hideshow variables for one major mode. See the variable's documentation string for more information. Completion for Symbol Names =========================== In Emacs, completion is something you normally do in the minibuffer. But one kind of completion is available in all buffers: completion for symbol names. The character `M-' runs a command to complete the partial symbol before point against the set of meaningful symbol names. This command inserts at point any additional characters that it can determine from the partial name. If the partial name in the buffer has multiple possible completions that differ in the very next character, so that it is impossible to complete even one more character, `M-' displays a list of all possible completions in another window. In most programming language major modes, `M-' runs the command `complete-symbol', which provides two kinds of completion. Normally it does completion based on a tags table (*note Tags::); with a numeric argument (regardless of the value), it does completion based on the names listed in the Info file indexes for your language. Thus, to complete the name of a symbol defined in your own program, use `M-' with no argument; to complete the name of a standard library function, use `C-u M-'. Of course, Info-based completion works only if there is an Info file for the standard library functions of your language, and only if it is installed at your site. In Emacs-Lisp mode, the name space for completion normally consists of nontrivial symbols present in Emacs--those that have function definitions, values or properties. However, if there is an open-parenthesis immediately before the beginning of the partial symbol, only symbols with function definitions are considered as completions. The command which implements this is `lisp-complete-symbol'. In Text mode and related modes, `M-' completes words based on the spell-checker's dictionary. *Note Spelling::. Glasses minor mode ================== Glasses minor mode makes `unreadableIdentifiersLikeThis' readable by altering the way they display. It knows two different ways to do this: by displaying underscores between a lower-case letter and the following capital letter, and by emboldening the capital letters. It does not alter the buffer text, only the way they display, so you can use it even on read-only buffers. You can use the command `M-x glasses-mode' to enable or disable the mode in the current buffer; you can also add `glasses-mode' to the mode hook of the programming language major modes in which you normally want to use Glasses mode. Other Features Useful for Editing Programs ========================================== A number of Emacs commands that aren't designed specifically for editing programs are useful for that nonetheless. The Emacs commands that operate on words, sentences and paragraphs are useful for editing code. Most symbols names contain words (*note Words::); sentences can be found in strings and comments (*note Sentences::). Paragraphs in the strict sense can be found in program code (in long comments), but the paragraph commands are useful in other places too, because programming language major modes define paragraphs to begin and end at blank lines (*note Paragraphs::). Judicious use of blank lines to make the program clearer will also provide useful chunks of text for the paragraph commands to work on. Auto Fill mode, if enabled in a programming language major mode, indents the new lines which it creates. The selective display feature is useful for looking at the overall structure of a function (*note Selective Display::). This feature hides the lines that are indented more than a specified amount. Programming modes often support Outline minor mode (*note Outline Mode::). The Foldout package provides folding-editor features (*note Foldout::). The "automatic typing" features may be useful for writing programs. *Note Autotyping: (autotype)Top. C and Related Modes =================== This section gives a brief description of the special features available in C, C++, Objective-C, Java, CORBA IDL, and Pike modes. (These are called "C mode and related modes.") *Note CC Mode: ()Top, for a more extensive description of these modes and their special features. C Mode Motion Commands ---------------------- This section describes commands for moving point, in C mode and related modes. `C-c C-u' Move point back to the containing preprocessor conditional, leaving the mark behind. A prefix argument acts as a repeat count. With a negative argument, move point forward to the end of the containing preprocessor conditional. When going backwards, `#elif' is treated like `#else' followed by `#if'. When going forwards, `#elif' is ignored. `C-c C-p' Move point back over a preprocessor conditional, leaving the mark behind. A prefix argument acts as a repeat count. With a negative argument, move forward. `C-c C-n' Move point forward across a preprocessor conditional, leaving the mark behind. A prefix argument acts as a repeat count. With a negative argument, move backward. `M-a' Move point to the beginning of the innermost C statement (`c-beginning-of-statement'). If point is already at the beginning of a statement, move to the beginning of the preceding statement. With prefix argument N, move back N - 1 statements. If point is within a string or comment, or next to a comment (only whitespace between them), this command moves by sentences instead of statements. When called from a program, this function takes three optional arguments: the numeric prefix argument, a buffer position limit (don't move back before that place), and a flag that controls whether to do sentence motion when inside of a comment. `M-e' Move point to the end of the innermost C statement; like `M-a' except that it moves in the other direction (`c-end-of-statement'). `M-x c-backward-into-nomenclature' Move point backward to beginning of a C++ nomenclature section or word. With prefix argument N, move N times. If N is negative, move forward. C++ nomenclature means a symbol name in the style of NamingSymbolsWithMixedCaseAndNoUnderlines; each capital letter begins a section or word. In the GNU project, we recommend using underscores to separate words within an identifier in C or C++, rather than using case distinctions. `M-x c-forward-into-nomenclature' Move point forward to end of a C++ nomenclature section or word. With prefix argument N, move N times. Electric C Characters --------------------- In C mode and related modes, certain printing characters are "electric"--in addition to inserting themselves, they also reindent the current line and may insert newlines. This feature is controlled by the variable `c-auto-newline'. The "electric" characters are `{', `}', `:', `#', `;', `,', `<', `>', `/', `*', `(', and `)'. Electric characters insert newlines only when the "auto-newline" feature is enabled (indicated by `/a' in the mode line after the mode name). This feature is controlled by the variable `c-auto-newline'. You can turn this feature on or off with the command `C-c C-a': `C-c C-a' Toggle the auto-newline feature (`c-toggle-auto-state'). With a prefix argument, this command turns the auto-newline feature on if the argument is positive, and off if it is negative. The colon character is electric because that is appropriate for a single colon. But when you want to insert a double colon in C++, the electric behavior of colon is inconvenient. You can insert a double colon with no reindentation or newlines by typing `C-c :': `C-c :' Insert a double colon scope operator at point, without reindenting the line or adding any newlines (`c-scope-operator'). The electric `#' key reindents the line if it appears to be the beginning of a preprocessor directive. This happens when the value of `c-electric-pound-behavior' is `(alignleft)'. You can turn this feature off by setting `c-electric-pound-behavior' to `nil'. The variable `c-hanging-braces-alist' controls the insertion of newlines before and after inserted braces. It is an association list with elements of the following form: `(SYNTACTIC-SYMBOL . NL-LIST)'. Most of the syntactic symbols that appear in `c-offsets-alist' are meaningful here as well. The list NL-LIST may contain either of the symbols `before' or `after', or both; or it may be `nil'. When a brace is inserted, the syntactic context it defines is looked up in `c-hanging-braces-alist'; if it is found, the NL-LIST is used to determine where newlines are inserted: either before the brace, after, or both. If not found, the default is to insert a newline both before and after braces. The variable `c-hanging-colons-alist' controls the insertion of newlines before and after inserted colons. It is an association list with elements of the following form: `(SYNTACTIC-SYMBOL . NL-LIST)'. The list NL-LIST may contain either of the symbols `before' or `after', or both; or it may be `nil'. When a colon is inserted, the syntactic symbol it defines is looked up in this list, and if found, the NL-LIST is used to determine where newlines are inserted: either before the brace, after, or both. If the syntactic symbol is not found in this list, no newlines are inserted. Electric characters can also delete newlines automatically when the auto-newline feature is enabled. This feature makes auto-newline more acceptable, by deleting the newlines in the most common cases where you do not want them. Emacs can recognize several cases in which deleting a newline might be desirable; by setting the variable `c-cleanup-list', you can specify _which_ of these cases that should happen. The variable's value is a list of symbols, each describing one case for possible deletion of a newline. Here are the meaningful symbols, and their meanings: `brace-catch-brace' Clean up `} catch (CONDITION) {' constructs by placing the entire construct on a single line. The clean-up occurs when you type the `{', if there is nothing between the braces aside from `catch' and CONDITION. `brace-else-brace' Clean up `} else {' constructs by placing the entire construct on a single line. The clean-up occurs when you type the `{' after the `else', but only if there is nothing but white space between the braces and the `else'. `brace-elseif-brace' Clean up `} else if (...) {' constructs by placing the entire construct on a single line. The clean-up occurs when you type the `{', if there is nothing but white space between the `}' and `{' aside from the keywords and the `if'-condition. `empty-defun-braces' Clean up empty defun braces by placing the braces on the same line. Clean-up occurs when you type the closing brace. `defun-close-semi' Clean up the semicolon after a `struct' or similar type declaration, by placing the semicolon on the same line as the closing brace. Clean-up occurs when you type the semicolon. `list-close-comma' Clean up commas following braces in array and aggregate initializers. Clean-up occurs when you type the comma. `scope-operator' Clean up double colons which may designate a C++ scope operator, by placing the colons together. Clean-up occurs when you type the second colon, but only when the two colons are separated by nothing but whitespace. Hungry Delete Feature in C -------------------------- When the "hungry-delete" feature is enabled (indicated by `/h' or `/ah' in the mode line after the mode name), a single command deletes all preceding whitespace, not just one space. To turn this feature on or off, use `C-c C-d': `C-c C-d' Toggle the hungry-delete feature (`c-toggle-hungry-state'). With a prefix argument, this command turns the hungry-delete feature on if the argument is positive, and off if it is negative. `C-c C-t' Toggle the auto-newline and hungry-delete features, both at once (`c-toggle-auto-hungry-state'). The variable `c-hungry-delete-key' controls whether the hungry-delete feature is enabled. Other Commands for C Mode ------------------------- `C-M-h' Put mark at the end of a function definition, and put point at the beginning (`c-mark-function'). `M-q' Fill a paragraph, handling C and C++ comments (`c-fill-paragraph'). If any part of the current line is a comment or within a comment, this command fills the comment or the paragraph of it that point is in, preserving the comment indentation and comment delimiters. `C-c C-e' Run the C preprocessor on the text in the region, and show the result, which includes the expansion of all the macro calls (`c-macro-expand'). The buffer text before the region is also included in preprocessing, for the sake of macros defined there, but the output from this part isn't shown. When you are debugging C code that uses macros, sometimes it is hard to figure out precisely how the macros expand. With this command, you don't have to figure it out; you can see the expansions. `C-c C-\' Insert or align `\' characters at the ends of the lines of the region (`c-backslash-region'). This is useful after writing or editing a C macro definition. If a line already ends in `\', this command adjusts the amount of whitespace before it. Otherwise, it inserts a new `\'. However, the last line in the region is treated specially; no `\' is inserted on that line, and any `\' there is deleted. `M-x cpp-highlight-buffer' Highlight parts of the text according to its preprocessor conditionals. This command displays another buffer named `*CPP Edit*', which serves as a graphic menu for selecting how to display particular kinds of conditionals and their contents. After changing various settings, click on `[A]pply these settings' (or go to that buffer and type `a') to rehighlight the C mode buffer accordingly. `C-c C-s' Display the syntactic information about the current source line (`c-show-syntactic-information'). This is the information that directs how the line is indented. `M-x cwarn-mode' `M-x global-cwarn-mode' CWarn minor mode highlights certain suspicious C and C++ constructions: * Assignments inside expressions. * Semicolon following immediately after `if', `for', and `while' (except after a `do ... while' statement); * C++ functions with reference parameters. You can enable the mode for one buffer with the command `M-x cwarn-mode', or for all suitable buffers with the command `M-x global-cwarn-mode' or by customizing the variable `global-cwarn-mode'. You must also enable Font Lock mode to make it work. `M-x hide-ifdef-mode' Hide-ifdef minor mode hides selected code within `#if' and `#ifdef' preprocessor blocks. See the documentation string of `hide-ifdef-mode' for more information. `M-x ff-find-related-file' Find a file "related" in a special way to the file visited by the current buffer. Typically this will be the header file corresponding to a C/C++ source file, or vice versa. The variable `ff-related-file-alist' specifies how to compute related file names. Comments in C Modes ------------------- C mode and related modes use a number of variables for controlling comment format. `c-comment-only-line-offset' Extra offset for line which contains only the start of a comment. It can be either an integer or a cons cell of the form `(NON-ANCHORED-OFFSET . ANCHORED-OFFSET)', where NON-ANCHORED-OFFSET is the amount of offset given to non-column-zero anchored comment-only lines, and ANCHORED-OFFSET is the amount of offset to give column-zero anchored comment-only lines. Just an integer as value is equivalent to `(VAL . 0)'. `c-comment-start-regexp' This buffer-local variable specifies how to recognize the start of a comment. `c-hanging-comment-ender-p' If this variable is `nil', `c-fill-paragraph' leaves the comment terminator of a block comment on a line by itself. The default value is `t', which puts the comment-end delimiter `*/' at the end of the last line of the comment text. `c-hanging-comment-starter-p' If this variable is `nil', `c-fill-paragraph' leaves the starting delimiter of a block comment on a line by itself. The default value is `t', which puts the comment-start delimiter `/*' at the beginning of the first line of the comment text. Fortran Mode ============ Fortran mode provides special motion commands for Fortran statements and subprograms, and indentation commands that understand Fortran conventions of nesting, line numbers and continuation statements. Fortran mode has its own Auto Fill mode that breaks long lines into proper Fortran continuation lines. Special commands for comments are provided because Fortran comments are unlike those of other languages. Built-in abbrevs optionally save typing when you insert Fortran keywords. Use `M-x fortran-mode' to switch to this major mode. This command runs the hook `fortran-mode-hook' (*note Hooks::). Fortan mode is meant for editing Fortran77 "fixed format" source code. For editing the modern Fortran90 "free format" source code, use F90 mode (`f90-mode'). Emacs normally uses Fortran mode for files with extension `.f', `.F' or `.for', and F90 mode for the extension `.f90'. GNU Fortran supports both kinds of format. Motion Commands --------------- In addition to the normal commands for moving by and operating on "defuns" (Fortran subprograms--functions and subroutines), Fortran mode provides special commands to move by statements. `C-c C-n' Move to beginning of current or next statement (`fortran-next-statement'). `C-c C-p' Move to beginning of current or previous statement (`fortran-previous-statement'). Fortran Indentation ------------------- Special commands and features are needed for indenting Fortran code in order to make sure various syntactic entities (line numbers, comment line indicators and continuation line flags) appear in the columns that are required for standard Fortran. Fortran Indentation and Filling Commands ........................................ `C-M-j' Break the current line and set up a continuation line (`fortran-split-line'). `M-^' Join this line to the previous line (`fortran-join-line'). `C-M-q' Indent all the lines of the subprogram point is in (`fortran-indent-subprogram'). `M-q' Fill a comment block or statement. The key `C-M-q' runs `fortran-indent-subprogram', a command to reindent all the lines of the Fortran subprogram (function or subroutine) containing point. The key `C-M-j' runs `fortran-split-line', which splits a line in the appropriate fashion for Fortran. In a non-comment line, the second half becomes a continuation line and is indented accordingly. In a comment line, both halves become separate comment lines. `M-^' or `C-c C-d' runs the command `fortran-join-line', which joins a continuation line back to the previous line, roughly as the inverse of `fortran-split-line'. The point must be on a continuation line when this command is invoked. `M-q' in Fortran mode fills the comment block or statement that point is in. This removes any excess statement continuations. Continuation Lines .................. Most modern Fortran compilers allow two ways of writing continuation lines. If the first non-space character on a line is in column 5, then that line is a continuation of the previous line. We call this "fixed format". (In GNU Emacs we always count columns from 0.) The variable `fortran-continuation-string' specifies what character to put on column 5. A line that starts with a tab character followed by any digit except `0' is also a continuation line. We call this style of continuation "tab format". Fortran mode can make either style of continuation line, but you must specify which one you prefer. The value of the variable `indent-tabs-mode' controls the choice: `nil' for fixed format, and non-`nil' for tab format. You can tell which style is presently in effect by the presence or absence of the string `Tab' in the mode line. If the text on a line starts with the conventional Fortran continuation marker `$', or if it begins with any non-whitespace character in column 5, Fortran mode treats it as a continuation line. When you indent a continuation line with , it converts the line to the current continuation style. When you split a Fortran statement with `C-M-j', the continuation marker on the newline is created according to the continuation style. The setting of continuation style affects several other aspects of editing in Fortran mode. In fixed format mode, the minimum column number for the body of a statement is 6. Lines inside of Fortran blocks that are indented to larger column numbers always use only the space character for whitespace. In tab format mode, the minimum column number for the statement body is 8, and the whitespace before column 8 must always consist of one tab character. When you enter Fortran mode for an existing file, it tries to deduce the proper continuation style automatically from the file contents. The first line that begins with either a tab character or six spaces determines the choice. The variable `fortran-analyze-depth' specifies how many lines to consider (at the beginning of the file); if none of those lines indicates a style, then the variable `fortran-tab-mode-default' specifies the style. If it is `nil', that specifies fixed format, and non-`nil' specifies tab format. Line Numbers ............ If a number is the first non-whitespace in the line, Fortran indentation assumes it is a line number and moves it to columns 0 through 4. (Columns always count from 0 in GNU Emacs.) Line numbers of four digits or less are normally indented one space. The variable `fortran-line-number-indent' controls this; it specifies the maximum indentation a line number can have. Line numbers are indented to right-justify them to end in column 4 unless that would require more than this maximum indentation. The default value of the variable is 1. Simply inserting a line number is enough to indent it according to these rules. As each digit is inserted, the indentation is recomputed. To turn off this feature, set the variable `fortran-electric-line-number' to `nil'. Then inserting line numbers is like inserting anything else. Syntactic Conventions ..................... Fortran mode assumes that you follow certain conventions that simplify the task of understanding a Fortran program well enough to indent it properly: * Two nested `do' loops never share a `continue' statement. * Fortran keywords such as `if', `else', `then', `do' and others are written without embedded whitespace or line breaks. Fortran compilers generally ignore whitespace outside of string constants, but Fortran mode does not recognize these keywords if they are not contiguous. Constructs such as `else if' or `end do' are acceptable, but the second word should be on the same line as the first and not on a continuation line. If you fail to follow these conventions, the indentation commands may indent some lines unaesthetically. However, a correct Fortran program retains its meaning when reindented even if the conventions are not followed. Variables for Fortran Indentation ................................. Several additional variables control how Fortran indentation works: `fortran-do-indent' Extra indentation within each level of `do' statement (default 3). `fortran-if-indent' Extra indentation within each level of `if' statement (default 3). This value is also used for extra indentation within each level of the Fortran 90 `where' statement. `fortran-structure-indent' Extra indentation within each level of `structure', `union', or `map' statements (default 3). `fortran-continuation-indent' Extra indentation for bodies of continuation lines (default 5). `fortran-check-all-num-for-matching-do' If this is `nil', indentation assumes that each `do' statement ends on a `continue' statement. Therefore, when computing indentation for a statement other than `continue', it can save time by not checking for a `do' statement ending there. If this is non-`nil', indenting any numbered statement must check for a `do' that ends there. The default is `nil'. `fortran-blink-matching-if' If this is `t', indenting an `endif' statement moves the cursor momentarily to the matching `if' statement to show where it is. The default is `nil'. `fortran-minimum-statement-indent-fixed' Minimum indentation for fortran statements when using fixed format continuation line style. Statement bodies are never indented less than this much. The default is 6. `fortran-minimum-statement-indent-tab' Minimum indentation for fortran statements for tab format continuation line style. Statement bodies are never indented less than this much. The default is 8. Fortran Comments ---------------- The usual Emacs comment commands assume that a comment can follow a line of code. In Fortran, the standard comment syntax requires an entire line to be just a comment. Therefore, Fortran mode replaces the standard Emacs comment commands and defines some new variables. Fortran mode can also handle the Fortran90 comment syntax where comments start with `!' and can follow other text. Because only some Fortran77 compilers accept this syntax, Fortran mode will not insert such comments unless you have said in advance to do so. To do this, set the variable `comment-start' to `"!"' (*note Variables::). `M-;' Align comment or insert new comment (`fortran-comment-indent'). `C-x ;' Applies to nonstandard `!' comments only. `C-c ;' Turn all lines of the region into comments, or (with argument) turn them back into real code (`fortran-comment-region'). `M-;' in Fortran mode is redefined as the command `fortran-comment-indent'. Like the usual `M-;' command, this recognizes any kind of existing comment and aligns its text appropriately; if there is no existing comment, a comment is inserted and aligned. But inserting and aligning comments are not the same in Fortran mode as in other modes. When a new comment must be inserted, if the current line is blank, a full-line comment is inserted. On a non-blank line, a nonstandard `!' comment is inserted if you have said you want to use them. Otherwise a full-line comment is inserted on a new line before the current line. Nonstandard `!' comments are aligned like comments in other languages, but full-line comments are different. In a standard full-line comment, the comment delimiter itself must always appear in column zero. What can be aligned is the text within the comment. You can choose from three styles of alignment by setting the variable `fortran-comment-indent-style' to one of these values: `fixed' Align the text at a fixed column, which is the sum of `fortran-comment-line-extra-indent' and the minimum statement indentation. This is the default. The minimum statement indentation is `fortran-minimum-statement-indent-fixed' for fixed format continuation line style and `fortran-minimum-statement-indent-tab' for tab format style. `relative' Align the text as if it were a line of code, but with an additional `fortran-comment-line-extra-indent' columns of indentation. `nil' Don't move text in full-line comments automatically at all. In addition, you can specify the character to be used to indent within full-line comments by setting the variable `fortran-comment-indent-char' to the single-character string you want to use. Fortran mode introduces two variables `comment-line-start' and `comment-line-start-skip', which play for full-line comments the same roles played by `comment-start' and `comment-start-skip' for ordinary text-following comments. Normally these are set properly by Fortran mode, so you do not need to change them. The normal Emacs comment command `C-x ;' has not been redefined. If you use `!' comments, this command can be used with them. Otherwise it is useless in Fortran mode. The command `C-c ;' (`fortran-comment-region') turns all the lines of the region into comments by inserting the string `C$$$' at the front of each one. With a numeric argument, it turns the region back into live code by deleting `C$$$' from the front of each line in it. The string used for these comments can be controlled by setting the variable `fortran-comment-region'. Note that here we have an example of a command and a variable with the same name; these two uses of the name never conflict because in Lisp and in Emacs it is always clear from the context which one is meant. Fortran Auto Fill Mode ---------------------- Fortran Auto Fill mode is a minor mode which automatically splits Fortran statements as you insert them when they become too wide. Splitting a statement involves making continuation lines using `fortran-continuation-string' (*note ForIndent Cont::). This splitting happens when you type , , or , and also in the Fortran indentation commands. `M-x fortran-auto-fill-mode' turns Fortran Auto Fill mode on if it was off, or off if it was on. This command works the same as `M-x auto-fill-mode' does for normal Auto Fill mode (*note Filling::). A positive numeric argument turns Fortran Auto Fill mode on, and a negative argument turns it off. You can see when Fortran Auto Fill mode is in effect by the presence of the word `Fill' in the mode line, inside the parentheses. Fortran Auto Fill mode is a minor mode, turned on or off for each buffer individually. *Note Minor Modes::. Fortran Auto Fill mode breaks lines at spaces or delimiters when the lines get longer than the desired width (the value of `fill-column'). The delimiters that Fortran Auto Fill mode may break at are `,', `'', `+', `-', `/', `*', `=', and `)'. The line break comes after the delimiter if the variable `fortran-break-before-delimiters' is `nil'. Otherwise (and by default), the break comes before the delimiter. By default, Fortran Auto Fill mode is not enabled. If you want this feature turned on permanently, add a hook function to `fortran-mode-hook' to execute `(fortran-auto-fill-mode 1)'. *Note Hooks::. Checking Columns in Fortran --------------------------- `C-c C-r' Display a "column ruler" momentarily above the current line (`fortran-column-ruler'). `C-c C-w' Split the current window horizontally temporarily so that it is 72 columns wide (`fortran-window-create-momentarily'). This may help you avoid making lines longer than the 72-character limit that some Fortran compilers impose. `C-u C-c C-w' Split the current window horizontally so that it is 72 columns wide (`fortran-window-create'). You can then continue editing. `M-x fortran-strip-sequence-nos' Delete all text in column 72 and beyond. The command `C-c C-r' (`fortran-column-ruler') shows a column ruler momentarily above the current line. The comment ruler is two lines of text that show you the locations of columns with special significance in Fortran programs. Square brackets show the limits of the columns for line numbers, and curly brackets show the limits of the columns for the statement body. Column numbers appear above them. Note that the column numbers count from zero, as always in GNU Emacs. As a result, the numbers may be one less than those you are familiar with; but the positions they indicate in the line are standard for Fortran. The text used to display the column ruler depends on the value of the variable `indent-tabs-mode'. If `indent-tabs-mode' is `nil', then the value of the variable `fortran-column-ruler-fixed' is used as the column ruler. Otherwise, the variable `fortran-column-ruler-tab' is displayed. By changing these variables, you can change the column ruler display. `C-c C-w' (`fortran-window-create-momentarily') temporarily splits the current window horizontally, making a window 72 columns wide, so you can see which lines that is too long. Type a space to restore the normal width. You can also split the window horizontally and continue editing with the split in place. To do this, use `C-u C-c C-w' (`M-x fortran-window-create'). By editing in this window you can immediately see when you make a line too wide to be correct Fortran. The command `M-x fortran-strip-sequence-nos' deletes all text in column 72 and beyond, on all lines in the current buffer. This is the easiest way to get rid of old sequence numbers. Fortran Keyword Abbrevs ----------------------- Fortran mode provides many built-in abbrevs for common keywords and declarations. These are the same sort of abbrev that you can define yourself. To use them, you must turn on Abbrev mode. *Note Abbrevs::. The built-in abbrevs are unusual in one way: they all start with a semicolon. You cannot normally use semicolon in an abbrev, but Fortran mode makes this possible by changing the syntax of semicolon to "word constituent." For example, one built-in Fortran abbrev is `;c' for `continue'. If you insert `;c' and then insert a punctuation character such as a space or a newline, the `;c' expands automatically to `continue', provided Abbrev mode is enabled. Type `;?' or `;C-h' to display a list of all the built-in Fortran abbrevs and what they stand for. Asm Mode ======== Asm mode is a major mode for editing files of assembler code. It defines these commands: `' `tab-to-tab-stop'. `C-j' Insert a newline and then indent using `tab-to-tab-stop'. `:' Insert a colon and then remove the indentation from before the label preceding colon. Then do `tab-to-tab-stop'. `;' Insert or align a comment. The variable `asm-comment-char' specifies which character starts comments in assembler syntax. Compiling and Testing Programs ****************************** The previous chapter discusses the Emacs commands that are useful for making changes in programs. This chapter deals with commands that assist in the larger process of developing and maintaining programs. Running Compilations under Emacs ================================ Emacs can run compilers for noninteractive languages such as C and Fortran as inferior processes, feeding the error log into an Emacs buffer. It can also parse the error messages and show you the source lines where compilation errors occurred. `M-x compile' Run a compiler asynchronously under Emacs, with error messages going to the `*compilation*' buffer. `M-x recompile' Invoke a compiler with the same command as in the last invocation of `M-x compile'. `M-x grep' Run `grep' asynchronously under Emacs, with matching lines listed in the buffer named `*grep*'. `M-x grep-find' Run `grep' via `find', with user-specified arguments, and collect output in the buffer named `*grep*'. `M-x kill-compilation' `M-x kill-grep' Kill the running compilation or `grep' subprocess. To run `make' or another compilation command, do `M-x compile'. This command reads a shell command line using the minibuffer, and then executes the command in an inferior shell, putting output in the buffer named `*compilation*'. The current buffer's default directory is used as the working directory for the execution of the command; normally, therefore, the compilation happens in this directory. When the shell command line is read, the minibuffer appears containing a default command line, which is the command you used the last time you did `M-x compile'. If you type just , the same command line is used again. For the first `M-x compile', the default is `make -k'. The default compilation command comes from the variable `compile-command'; if the appropriate compilation command for a file is something other than `make -k', it can be useful for the file to specify a local value for `compile-command' (*note File Variables::). Starting a compilation displays the buffer `*compilation*' in another window but does not select it. The buffer's mode line tells you whether compilation is finished, with the word `run' or `exit' inside the parentheses. You do not have to keep this buffer visible; compilation continues in any case. While a compilation is going on, the string `Compiling' appears in the mode lines of all windows. When this string disappears, the compilation is finished. If you want to watch the compilation transcript as it appears, switch to the `*compilation*' buffer and move point to the end of the buffer. When point is at the end, new compilation output is inserted above point, which remains at the end. If point is not at the end of the buffer, it remains fixed while more compilation output is added at the end of the buffer. If you set the variable `compilation-scroll-output' to a non-`nil' value, then the compilation buffer always scrolls to follow output as it comes in. To kill the compilation process, do `M-x kill-compilation'. When the compiler process terminates, the mode line of the `*compilation*' buffer changes to say `signal' instead of `run'. Starting a new compilation also kills any running compilation, as only one can exist at any time. However, `M-x compile' asks for confirmation before actually killing a compilation that is running. To rerun the last compilation with the same command, type `M-x recompile'. This automatically reuses the compilation command from the last invocation of `M-x compile'. Searching with Grep under Emacs =============================== Just as you can run a compiler from Emacs and then visit the lines where there were compilation errors, you can also run `grep' and then visit the lines on which matches were found. This works by treating the matches reported by `grep' as if they were "errors." To do this, type `M-x grep', then enter a command line that specifies how to run `grep'. Use the same arguments you would give `grep' when running it normally: a `grep'-style regexp (usually in single-quotes to quote the shell's special characters) followed by file names, which may use wildcards. The output from `grep' goes in the `*grep*' buffer. You can find the corresponding lines in the original files using `C-x `' and , as with compilation errors. If you specify a prefix argument for `M-x grep', it figures out the tag (*note Tags::) around point, and puts that into the default `grep' command. The command `M-x grep-find' is similar to `M-x grep', but it supplies a different initial default for the command--one that runs both `find' and `grep', so as to search every file in a directory tree. See also the `find-grep-dired' command, in *Note Dired and Find::. Compilation Mode ================ The `*compilation*' buffer uses a special major mode, Compilation mode, whose main feature is to provide a convenient way to look at the source line where the error happened. If you set the variable `compilation-scroll-output' to a non-`nil' value, then the compilation buffer always scrolls to follow output as it comes in. `C-x `' Visit the locus of the next compiler error message or `grep' match. `' Visit the locus of the error message that point is on. This command is used in the compilation buffer. `Mouse-2' Visit the locus of the error message that you click on. You can visit the source for any particular error message by moving point in the `*compilation*' buffer to that error message and typing (`compile-goto-error'). Alternatively, you can click `Mouse-2' on the error message; you need not switch to the `*compilation*' buffer first. To parse the compiler error messages sequentially, type `C-x `' (`next-error'). The character following the `C-x' is the backquote or "grave accent," not the single-quote. This command is available in all buffers, not just in `*compilation*'; it displays the next error message at the top of one window and source location of the error in another window. The first time `C-x `' is used after the start of a compilation, it moves to the first error's location. Subsequent uses of `C-x `' advance down to subsequent errors. If you visit a specific error message with or `Mouse-2', subsequent `C-x `' commands advance from there. When `C-x `' gets to the end of the buffer and finds no more error messages to visit, it fails and signals an Emacs error. `C-u C-x `' starts scanning from the beginning of the compilation buffer. This is one way to process the same set of errors again. To parse messages from the compiler, Compilation mode uses the variable `compilation-error-regexp-alist' which lists various formats of error messages and tells Emacs how to extract the source file and the line number from the text of a message. If your compiler isn't supported, you can tailor Compilation mode to it by adding elements to that list. A similar variable `grep-regexp-alist' tells Emacs how to parse output of a `grep' command. Compilation mode also redefines the keys and to scroll by screenfuls, and `M-n' and `M-p' to move to the next or previous error message. You can also use `M-{' and `M-}' to move up or down to an error message for a different source file. The features of Compilation mode are also available in a minor mode called Compilation Minor mode. This lets you parse error messages in any buffer, not just a normal compilation output buffer. Type `M-x compilation-minor-mode' to enable the minor mode. This defines the keys and `Mouse-2', as in the Compilation major mode. Compilation minor mode works in any buffer, as long as the contents are in a format that it understands. In an Rlogin buffer (*note Remote Host::), Compilation minor mode automatically accesses remote source files by FTP (*note File Names::). Subshells for Compilation ========================= Emacs uses a shell to run the compilation command, but specifies the option for a noninteractive shell. This means, in particular, that the shell should start with no prompt. If you find your usual shell prompt making an unsightly appearance in the `*compilation*' buffer, it means you have made a mistake in your shell's init file by setting the prompt unconditionally. (This init file's name may be `.bashrc', `.profile', `.cshrc', `.shrc', or various other things, depending on the shell you use.) The shell init file should set the prompt only if there already is a prompt. In csh, here is how to do it: if ($?prompt) set prompt = ... And here's how to do it in bash: if [ "${PS1+set}" = set ] then PS1=... fi There may well be other things that your shell's init file ought to do only for an interactive shell. You can use the same method to conditionalize them. The MS-DOS "operating system" does not support asynchronous subprocesses; to work around this lack, `M-x compile' runs the compilation command synchronously on MS-DOS. As a consequence, you must wait until the command finishes before you can do anything else in Emacs. *Note MS-DOS::. Running Debuggers Under Emacs ============================= The GUD (Grand Unified Debugger) library provides an interface to various symbolic debuggers from within Emacs. We recommend the debugger GDB, which is free software, but you can also run DBX, SDB or XDB if you have them. GUD can also serve as an interface to the Perl's debugging mode, the Python debugger PDB, and to JDB, the Java Debugger. *Note The Lisp Debugger: (elisp)Debugger, for information on debugging Emacs Lisp programs. Starting GUD ------------ There are several commands for starting a debugger, each corresponding to a particular debugger program. `M-x gdb FILE ' Run GDB as a subprocess of Emacs. This command creates a buffer for input and output to GDB, and switches to it. If a GDB buffer already exists, it just switches to that buffer. `M-x dbx FILE ' Similar, but run DBX instead of GDB. `M-x xdb FILE ' Similar, but run XDB instead of GDB. Use the variable `gud-xdb-directories' to specify directories to search for source files. `M-x sdb FILE ' Similar, but run SDB instead of GDB. Some versions of SDB do not mention source file names in their messages. When you use them, you need to have a valid tags table (*note Tags::) in order for GUD to find functions in the source code. If you have not visited a tags table or the tags table doesn't list one of the functions, you get a message saying `The sdb support requires a valid tags table to work'. If this happens, generate a valid tags table in the working directory and try again. `M-x perldb FILE ' Run the Perl interpreter in debug mode to debug FILE, a Perl program. `M-x jdb FILE ' Run the Java debugger to debug FILE. `M-x pdb FILE ' Run the Python debugger to debug FILE. Each of these commands takes one argument: a command line to invoke the debugger. In the simplest case, specify just the name of the executable file you want to debug. You may also use options that the debugger supports. However, shell wildcards and variables are not allowed. GUD assumes that the first argument not starting with a `-' is the executable file name. Emacs can only run one debugger process at a time. Debugger Operation ------------------ When you run a debugger with GUD, the debugger uses an Emacs buffer for its ordinary input and output. This is called the GUD buffer. The debugger displays the source files of the program by visiting them in Emacs buffers. An arrow (`=>') in one of these buffers indicates the current execution line.(1) Moving point in this buffer does not move the arrow. You can start editing these source files at any time in the buffers that display them. The arrow is not part of the file's text; it appears only on the screen. If you do modify a source file, keep in mind that inserting or deleting lines will throw off the arrow's positioning; GUD has no way of figuring out which line corresponded before your changes to the line number in a debugger message. Also, you'll typically have to recompile and restart the program for your changes to be reflected in the debugger's tables. If you wish, you can control your debugger process entirely through the debugger buffer, which uses a variant of Shell mode. All the usual commands for your debugger are available, and you can use the Shell mode history commands to repeat them. *Note Shell Mode::. ---------- Footnotes ---------- (1) Under a window system the arrow is displayed in the marginal area of the Emacs window. Commands of GUD --------------- The GUD interaction buffer uses a variant of Shell mode, so the commands of Shell mode are available (*note Shell Mode::). GUD mode also provides commands for setting and clearing breakpoints, for selecting stack frames, and for stepping through the program. These commands are available both in the GUD buffer and globally, but with different key bindings. The breakpoint commands are normally used in source file buffers, because that is the easiest way to specify where to set or clear the breakpoint. Here's the global command to set a breakpoint: `C-x ' Set a breakpoint on the source line that point is on. Here are the other special commands provided by GUD. The keys starting with `C-c' are available only in the GUD interaction buffer. The key bindings that start with `C-x C-a' are available in the GUD interaction buffer and also in source files. `C-c C-l' `C-x C-a C-l' Display in another window the last line referred to in the GUD buffer (that is, the line indicated in the last location message). This runs the command `gud-refresh'. `C-c C-s' `C-x C-a C-s' Execute a single line of code (`gud-step'). If the line contains a function call, execution stops after entering the called function. `C-c C-n' `C-x C-a C-n' Execute a single line of code, stepping across entire function calls at full speed (`gud-next'). `C-c C-i' `C-x C-a C-i' Execute a single machine instruction (`gud-stepi'). `C-c C-r' `C-x C-a C-r' Continue execution without specifying any stopping point. The program will run until it hits a breakpoint, terminates, or gets a signal that the debugger is checking for (`gud-cont'). `C-c C-d' `C-x C-a C-d' Delete the breakpoint(s) on the current source line, if any (`gud-remove'). If you use this command in the GUD interaction buffer, it applies to the line where the program last stopped. `C-c C-t' `C-x C-a C-t' Set a temporary breakpoint on the current source line, if any. If you use this command in the GUD interaction buffer, it applies to the line where the program last stopped. The above commands are common to all supported debuggers. If you are using GDB or (some versions of) DBX, these additional commands are available: `C-c <' `C-x C-a <' Select the next enclosing stack frame (`gud-up'). This is equivalent to the `up' command. `C-c >' `C-x C-a >' Select the next inner stack frame (`gud-down'). This is equivalent to the `down' command. If you are using GDB, these additional key bindings are available: `' With GDB, complete a symbol name (`gud-gdb-complete-command'). This key is available only in the GUD interaction buffer, and requires GDB versions 4.13 and later. `C-c C-f' `C-x C-a C-f' Run the program until the selected stack frame returns (or until it stops for some other reason). These commands interpret a numeric argument as a repeat count, when that makes sense. Because serves as a completion command, you can't use it to enter a tab as input to the program you are debugging with GDB. Instead, type `C-q ' to enter a tab. GUD Customization ----------------- On startup, GUD runs one of the following hooks: `gdb-mode-hook', if you are using GDB; `dbx-mode-hook', if you are using DBX; `sdb-mode-hook', if you are using SDB; `xdb-mode-hook', if you are using XDB; `perldb-mode-hook', for Perl debugging mode; `pdb-mode-hook', for PDB; `jdb-mode-hook', for JDB. You can use these hooks to define custom key bindings for the debugger interaction buffer. *Note Hooks::. Here is a convenient way to define a command that sends a particular command string to the debugger, and set up a key binding for it in the debugger interaction buffer: (gud-def FUNCTION CMDSTRING BINDING DOCSTRING) This defines a command named FUNCTION which sends CMDSTRING to the debugger process, and gives it the documentation string DOCSTRING. You can then use the command FUNCTION in any buffer. If BINDING is non-`nil', `gud-def' also binds the command to `C-c BINDING' in the GUD buffer's mode and to `C-x C-a BINDING' generally. The command string CMDSTRING may contain certain `%'-sequences that stand for data to be filled in at the time FUNCTION is called: `%f' The name of the current source file. If the current buffer is the GUD buffer, then the "current source file" is the file that the program stopped in. `%l' The number of the current source line. If the current buffer is the GUD buffer, then the "current source line" is the line that the program stopped in. `%e' The text of the C lvalue or function-call expression at or adjacent to point. `%a' The text of the hexadecimal address at or adjacent to point. `%p' The numeric argument of the called function, as a decimal number. If the command is used without a numeric argument, `%p' stands for the empty string. If you don't use `%p' in the command string, the command you define ignores any numeric argument. GUD Tooltips ------------ The Tooltip facility (*note Tooltips::) provides support for GUD. If GUD support is activated by customizing the `tooltip' group, variable values can be displayed in tooltips by pointing at them with the mouse in the GUD buffer or in source buffers with major modes in the customizable list `tooltip-gud-modes'. Executing Lisp Expressions ========================== Emacs has several different major modes for Lisp and Scheme. They are the same in terms of editing commands, but differ in the commands for executing Lisp expressions. Each mode has its own purpose. Emacs-Lisp mode The mode for editing source files of programs to run in Emacs Lisp. This mode defines `C-M-x' to evaluate the current defun. *Note Lisp Libraries::. Lisp Interaction mode The mode for an interactive session with Emacs Lisp. It defines `C-j' to evaluate the sexp before point and insert its value in the buffer. *Note Lisp Interaction::. Lisp mode The mode for editing source files of programs that run in Lisps other than Emacs Lisp. This mode defines `C-M-x' to send the current defun to an inferior Lisp process. *Note External Lisp::. Inferior Lisp mode The mode for an interactive session with an inferior Lisp process. This mode combines the special features of Lisp mode and Shell mode (*note Shell Mode::). Scheme mode Like Lisp mode but for Scheme programs. Inferior Scheme mode The mode for an interactive session with an inferior Scheme process. Most editing commands for working with Lisp programs are in fact available globally. *Note Programs::. Libraries of Lisp Code for Emacs ================================ Lisp code for Emacs editing commands is stored in files whose names conventionally end in `.el'. This ending tells Emacs to edit them in Emacs-Lisp mode (*note Executing Lisp::). To execute a file of Emacs Lisp code, use `M-x load-file'. This command reads a file name using the minibuffer and then executes the contents of that file as Lisp code. It is not necessary to visit the file first; in any case, this command reads the file as found on disk, not text in an Emacs buffer. Once a file of Lisp code is installed in the Emacs Lisp library directories, users can load it using `M-x load-library'. Programs can load it by calling `load-library', or with `load', a more primitive function that is similar but accepts some additional arguments. `M-x load-library' differs from `M-x load-file' in that it searches a sequence of directories and tries three file names in each directory. Suppose your argument is LIB; the three names are `LIB.elc', `LIB.el', and lastly just `LIB'. If `LIB.elc' exists, it is by convention the result of compiling `LIB.el'; it is better to load the compiled file, since it will load and run faster. If `load-library' finds that `LIB.el' is newer than `LIB.elc' file, it issues a warning, because it's likely that somebody made changes to the `.el' file and forgot to recompile it. Because the argument to `load-library' is usually not in itself a valid file name, file name completion is not available. Indeed, when using this command, you usually do not know exactly what file name will be used. The sequence of directories searched by `M-x load-library' is specified by the variable `load-path', a list of strings that are directory names. The default value of the list contains the directory where the Lisp code for Emacs itself is stored. If you have libraries of your own, put them in a single directory and add that directory to `load-path'. `nil' in this list stands for the current default directory, but it is probably not a good idea to put `nil' in the list. If you find yourself wishing that `nil' were in the list, most likely what you really want to do is use `M-x load-file' this once. Often you do not have to give any command to load a library, because the commands defined in the library are set up to "autoload" that library. Trying to run any of those commands calls `load' to load the library; this replaces the autoload definitions with the real ones from the library. Emacs Lisp code can be compiled into byte-code which loads faster, takes up less space when loaded, and executes faster. *Note Byte Compilation: (elisp)Byte Compilation. By convention, the compiled code for a library goes in a separate file whose name consists of the library source file with `c' appended. Thus, the compiled code for `foo.el' goes in `foo.elc'. That's why `load-library' searches for `.elc' files first. By default, Emacs refuses to load compiled Lisp files which were compiled with XEmacs, a modified versions of Emacs--they can cause Emacs to crash. Set the variable `load-dangerous-libraries' to `t' if you want to try loading them. Evaluating Emacs-Lisp Expressions ================================= Lisp programs intended to be run in Emacs should be edited in Emacs-Lisp mode; this happens automatically for file names ending in `.el'. By contrast, Lisp mode itself is used for editing Lisp programs intended for other Lisp systems. To switch to Emacs-Lisp mode explicitly, use the command `M-x emacs-lisp-mode'. For testing of Lisp programs to run in Emacs, it is often useful to evaluate part of the program as it is found in the Emacs buffer. For example, after changing the text of a Lisp function definition, evaluating the definition installs the change for future calls to the function. Evaluation of Lisp expressions is also useful in any kind of editing, for invoking noninteractive functions (functions that are not commands). `M-:' Read a single Lisp expression in the minibuffer, evaluate it, and print the value in the echo area (`eval-expression'). `C-x C-e' Evaluate the Lisp expression before point, and print the value in the echo area (`eval-last-sexp'). `C-M-x' Evaluate the defun containing or after point, and print the value in the echo area (`eval-defun'). `M-x eval-region' Evaluate all the Lisp expressions in the region. `M-x eval-current-buffer' Evaluate all the Lisp expressions in the buffer. `M-:' (`eval-expression') is the most basic command for evaluating a Lisp expression interactively. It reads the expression using the minibuffer, so you can execute any expression on a buffer regardless of what the buffer contains. When the expression is evaluated, the current buffer is once again the buffer that was current when `M-:' was typed. In Emacs-Lisp mode, the key `C-M-x' is bound to the command `eval-defun', which parses the defun containing or following point as a Lisp expression and evaluates it. The value is printed in the echo area. This command is convenient for installing in the Lisp environment changes that you have just made in the text of a function definition. `C-M-x' treats `defvar' expressions specially. Normally, evaluating a `defvar' expression does nothing if the variable it defines already has a value. But `C-M-x' unconditionally resets the variable to the initial value specified in the `defvar' expression. `defcustom' expressions are treated similarly. This special feature is convenient for debugging Lisp programs. The command `C-x C-e' (`eval-last-sexp') evaluates the Lisp expression preceding point in the buffer, and displays the value in the echo area. It is available in all major modes, not just Emacs-Lisp mode. It does not treat `defvar' specially. If `C-M-x', `C-x C-e', or `M-:' is given a numeric argument, it inserts the value into the current buffer at point, rather than displaying it in the echo area. The argument's value does not matter. The most general command for evaluating Lisp expressions from a buffer is `eval-region'. `M-x eval-region' parses the text of the region as one or more Lisp expressions, evaluating them one by one. `M-x eval-current-buffer' is similar but evaluates the entire buffer. This is a reasonable way to install the contents of a file of Lisp code that you are ready to test. Later, as you find bugs and change individual functions, use `C-M-x' on each function that you change. This keeps the Lisp world in step with the source file. The customizable variables `eval-expression-print-level' and `eval-expression-print-length' control the maximum depth and length of lists to print in the result of the evaluation commands before abbreviating them. `eval-expression-debug-on-error' controls whether evaluation errors invoke the debugger when these commands are used. Lisp Interaction Buffers ======================== The buffer `*scratch*' which is selected when Emacs starts up is provided for evaluating Lisp expressions interactively inside Emacs. The simplest way to use the `*scratch*' buffer is to insert Lisp expressions and type `C-j' after each expression. This command reads the Lisp expression before point, evaluates it, and inserts the value in printed representation before point. The result is a complete typescript of the expressions you have evaluated and their values. The `*scratch*' buffer's major mode is Lisp Interaction mode, which is the same as Emacs-Lisp mode except for the binding of `C-j'. The rationale for this feature is that Emacs must have a buffer when it starts up, but that buffer is not useful for editing files since a new buffer is made for every file that you visit. The Lisp interpreter typescript is the most useful thing I can think of for the initial buffer to do. Type `M-x lisp-interaction-mode' to put the current buffer in Lisp Interaction mode. An alternative way of evaluating Emacs Lisp expressions interactively is to use Inferior Emacs-Lisp mode, which provides an interface rather like Shell mode (*note Shell Mode::) for evaluating Emacs Lisp expressions. Type `M-x ielm' to create an `*ielm*' buffer which uses this mode. Running an External Lisp ======================== Emacs has facilities for running programs in other Lisp systems. You can run a Lisp process as an inferior of Emacs, and pass expressions to it to be evaluated. You can also pass changed function definitions directly from the Emacs buffers in which you edit the Lisp programs to the inferior Lisp process. To run an inferior Lisp process, type `M-x run-lisp'. This runs the program named `lisp', the same program you would run by typing `lisp' as a shell command, with both input and output going through an Emacs buffer named `*lisp*'. That is to say, any "terminal output" from Lisp will go into the buffer, advancing point, and any "terminal input" for Lisp comes from text in the buffer. (You can change the name of the Lisp executable file by setting the variable `inferior-lisp-program'.) To give input to Lisp, go to the end of the buffer and type the input, terminated by . The `*lisp*' buffer is in Inferior Lisp mode, which combines the special characteristics of Lisp mode with most of the features of Shell mode (*note Shell Mode::). The definition of to send a line to a subprocess is one of the features of Shell mode. For the source files of programs to run in external Lisps, use Lisp mode. This mode can be selected with `M-x lisp-mode', and is used automatically for files whose names end in `.l', `.lsp', or `.lisp', as most Lisp systems usually expect. When you edit a function in a Lisp program you are running, the easiest way to send the changed definition to the inferior Lisp process is the key `C-M-x'. In Lisp mode, this runs the function `lisp-eval-defun', which finds the defun around or following point and sends it as input to the Lisp process. (Emacs can send input to any inferior process regardless of what buffer is current.) Contrast the meanings of `C-M-x' in Lisp mode (for editing programs to be run in another Lisp system) and Emacs-Lisp mode (for editing Lisp programs to be run in Emacs): in both modes it has the effect of installing the function definition that point is in, but the way of doing so is different according to where the relevant Lisp environment is found. *Note Executing Lisp::. Maintaining Programs ******************** This chapter describes Emacs features for maintaining programs. The version control features (*note Version Control::) are also particularly useful for this purpose. Change Logs =========== The Emacs command `C-x 4 a' adds a new entry to the change log file for the file you are editing (`add-change-log-entry-other-window'). If that file is actually a backup file, it makes an entry appropriate for the file's parent--that is useful for making log entries for functions that have been deleted in the current version. A change log file contains a chronological record of when and why you have changed a program, consisting of a sequence of entries describing individual changes. Normally it is kept in a file called `ChangeLog' in the same directory as the file you are editing, or one of its parent directories. A single `ChangeLog' file can record changes for all the files in its directory and all its subdirectories. You should put a copyright notice and permission notice at the end of the change log file. Here is an example: Copyright 1997, 1998 Free Software Foundation, Inc. Copying and distribution of this file, with or without modification, are permitted provided the copyright notice and this notice are preserved. Of course, you should substitute the proper years and copyright holder. A change log entry starts with a header line that contains the current date, your name, and your email address (taken from the variable `user-mail-address'). Aside from these header lines, every line in the change log starts with a space or a tab. The bulk of the entry consists of "items", each of which starts with a line starting with whitespace and a star. Here are two entries, both dated in May 1993, each with two items: 1993-05-25 Richard Stallman * man.el: Rename symbols `man-*' to `Man-*'. (manual-entry): Make prompt string clearer. * simple.el (blink-matching-paren-distance): Change default to 12,000. 1993-05-24 Richard Stallman * vc.el (minor-mode-map-alist): Don't use it if it's void. (vc-cancel-version): Doc fix. One entry can describe several changes; each change should have its own item. Normally there should be a blank line between items. When items are related (parts of the same change, in different places), group them by leaving no blank line between them. The second entry above contains two items grouped in this way. `C-x 4 a' visits the change log file and creates a new entry unless the most recent entry is for today's date and your name. It also creates a new item for the current file. For many languages, it can even guess the name of the function or other object that was changed. When the option `add-log-keep-changes-together' is non-`nil', `C-x 4 a' adds to any existing entry for the file rather than starting a new entry. If the value of the variable `change-log-version-info-enabled' is non-`nil', `C-x 4 a' adds the file's version number to the change log entry. It finds the version number by searching the first ten percent of the file, using regular expressions from the variable `change-log-version-number-regexp-list'. The change log file is visited in Change Log mode. In this major mode, each bunch of grouped items counts as one paragraph, and each entry is considered a page. This facilitates editing the entries. `C-j' and auto-fill indent each new line like the previous line; this is convenient for entering the contents of an entry. You can use the command `M-x change-log-merge' to merge other log files into a buffer in Change Log Mode, preserving the date ordering of entries. Versions of Emacs before 20.1 used a different format for the time of the change log entry: Fri May 25 11:23:23 1993 Richard Stallman The `M-x change-log-redate' command converts all the old-style date entries in the change log file visited in the current buffer to the new format, to make the file uniform in style. This is handy when entries are contributed by many different people, some of whom use old versions of Emacs. Version control systems are another way to keep track of changes in your program and keep a change log. *Note Log Buffer::. Tags Tables =========== A "tags table" is a description of how a multi-file program is broken up into files. It lists the names of the component files and the names and positions of the functions (or other named subunits) in each file. Grouping the related files makes it possible to search or replace through all the files with one command. Recording the function names and positions makes possible the `M-.' command which finds the definition of a function by looking up which of the files it is in. Tags tables are stored in files called "tags table files". The conventional name for a tags table file is `TAGS'. Each entry in the tags table records the name of one tag, the name of the file that the tag is defined in (implicitly), and the position in that file of the tag's definition. Just what names from the described files are recorded in the tags table depends on the programming language of the described file. They normally include all file names, functions and subroutines, and may also include global variables, data types, and anything else convenient. Each name recorded is called a "tag". See also the Ebrowse facility, which is tailored for C++. *Note Ebrowse: (ebrowse)Top. Source File Tag Syntax ---------------------- Here is how tag syntax is defined for the most popular languages: * In C code, any C function or typedef is a tag, and so are definitions of `struct', `union' and `enum'. `#define' macro definitions and `enum' constants are also tags, unless you specify `--no-defines' when making the tags table. Similarly, global variables are tags, unless you specify `--no-globals'. Use of `--no-globals' and `--no-defines' can make the tags table file much smaller. You can tag function declarations and external variables in addition to function definitions by giving the `--declarations' option to `etags'. * In C++ code, in addition to all the tag constructs of C code, member functions are also recognized, and optionally member variables if you use the `--members' option. Tags for variables and functions in classes are named `CLASS::VARIABLE' and `CLASS::FUNCTION'. `operator' definitions have tag names like `operator+'. * In Java code, tags include all the constructs recognized in C++, plus the `interface', `extends' and `implements' constructs. Tags for variables and functions in classes are named `CLASS.VARIABLE' and `CLASS.FUNCTION'. * In LaTeX text, the argument of any of the commands `\chapter', `\section', `\subsection', `\subsubsection', `\eqno', `\label', `\ref', `\cite', `\bibitem', `\part', `\appendix', `\entry', or `\index', is a tag. Other commands can make tags as well, if you specify them in the environment variable `TEXTAGS' before invoking `etags'. The value of this environment variable should be a colon-separated list of command names. For example, TEXTAGS="def:newcommand:newenvironment" export TEXTAGS specifies (using Bourne shell syntax) that the commands `\def', `\newcommand' and `\newenvironment' also define tags. * In Lisp code, any function defined with `defun', any variable defined with `defvar' or `defconst', and in general the first argument of any expression that starts with `(def' in column zero, is a tag. * In Scheme code, tags include anything defined with `def' or with a construct whose name starts with `def'. They also include variables set with `set!' at top level in the file. Several other languages are also supported: * In Ada code, functions, procedures, packages, tasks, and types are tags. Use the `--packages-only' option to create tags for packages only. In Ada, the same name can be used for different kinds of entity (e.g., for a procedure and for a function). Also, for things like packages, procedures and functions, there is the spec (i.e. the interface) and the body (i.e. the implementation). To make it easier to pick the definition you want, Ada tag name have suffixes indicating the type of entity: `/b' package body. `/f' function. `/k' task. `/p' procedure. `/s' package spec. `/t' type. Thus, `M-x find-tag bidule/b ' will go directly to the body of the package `bidule', while `M-x find-tag bidule ' will just search for any tag `bidule'. * In assembler code, labels appearing at the beginning of a line, followed by a colon, are tags. * In Bison or Yacc input files, each rule defines as a tag the nonterminal it constructs. The portions of the file that contain C code are parsed as C code. * In Cobol code, tags are paragraph names; that is, any word starting in column 8 and followed by a period. * In Erlang code, the tags are the functions, records, and macros defined in the file. * In Fortran code, functions, subroutines and block data are tags. * In makefiles, targets are tags. * In Objective C code, tags include Objective C definitions for classes, class categories, methods, and protocols. * In Pascal code, the tags are the functions and procedures defined in the file. * In Perl code, the tags are the procedures defined by the `sub', `my' and `local' keywords. Use `--globals' if you want to tag global variables. * In PostScript code, the tags are the functions. * In Prolog code, a tag name appears at the left margin. * In Python code, `def' or `class' at the beginning of a line generate a tag. You can also generate tags based on regexp matching (*note Etags Regexps::) to handle other formats and languages. Creating Tags Tables -------------------- The `etags' program is used to create a tags table file. It knows the syntax of several languages, as described in *Note Tag Syntax::. Here is how to run `etags': etags INPUTFILES... The `etags' program reads the specified files, and writes a tags table named `TAGS' in the current working directory. If the specified files don't exist, `etags' looks for compressed versions of them and uncompresses them to read them. Under MS-DOS, `etags' also looks for file names like `mycode.cgz' if it is given `mycode.c' on the command line and `mycode.c' does not exist. `etags' recognizes the language used in an input file based on its file name and contents. You can specify the language with the `--language=NAME' option, described below. If the tags table data become outdated due to changes in the files described in the table, the way to update the tags table is the same way it was made in the first place. If the tags table fails to record a tag, or records it for the wrong file, then Emacs cannot possibly find its definition until you update the tags table. However, if the position recorded in the tags table becomes a little bit wrong (due to other editing), the only consequence is a slight delay in finding the tag. Even if the stored position is very far wrong, Emacs will still find the tag, after searching most of the file for it. Even that delay is hardly noticeable with today's computers. So you should update a tags table when you define new tags that you want to have listed, or when you move tag definitions from one file to another, or when changes become substantial. Normally there is no need to update the tags table after each edit, or even every day. One tags table can virtually include another. Specify the included tags file name with the `--include=FILE' option when creating the file that is to include it. The latter file then acts as if it covered all the source files specified in the included file, as well as the files it directly contains. If you specify the source files with relative file names when you run `etags', the tags file will contain file names relative to the directory where the tags file was initially written. This way, you can move an entire directory tree containing both the tags file and the source files, and the tags file will still refer correctly to the source files. If you specify absolute file names as arguments to `etags', then the tags file will contain absolute file names. This way, the tags file will still refer to the same files even if you move it, as long as the source files remain in the same place. Absolute file names start with `/', or with `DEVICE:/' on MS-DOS and MS-Windows. When you want to make a tags table from a great number of files, you may have problems listing them on the command line, because some systems have a limit on its length. The simplest way to circumvent this limit is to tell `etags' to read the file names from its standard input, by typing a dash in place of the file names, like this: find . -name "*.[chCH]" -print | etags - Use the option `--language=NAME' to specify the language explicitly. You can intermix these options with file names; each one applies to the file names that follow it. Specify `--language=auto' to tell `etags' to resume guessing the language from the file names and file contents. Specify `--language=none' to turn off language-specific processing entirely; then `etags' recognizes tags by regexp matching alone (*note Etags Regexps::). `etags --help' prints the list of the languages `etags' knows, and the file name rules for guessing the language. It also prints a list of all the available `etags' options, together with a short explanation. Etags Regexps ------------- The `--regex' option provides a general way of recognizing tags based on regexp matching. You can freely intermix it with file names. Each `--regex' option adds to the preceding ones, and applies only to the following files. The syntax is: --regex=/TAGREGEXP[/NAMEREGEXP]/ where TAGREGEXP is used to match the lines to tag. It is always anchored, that is, it behaves as if preceded by `^'. If you want to account for indentation, just match any initial number of blanks by beginning your regular expression with `[ \t]*'. In the regular expressions, `\' quotes the next character, and `\t' stands for the tab character. Note that `etags' does not handle the other C escape sequences for special characters. The syntax of regular expressions in `etags' is the same as in Emacs, augmented with the "interval operator", which works as in `grep' and `ed'. The syntax of an interval operator is `\{M,N\}', and its meaning is to match the preceding expression at least M times and up to N times. You should not match more characters with TAGREGEXP than that needed to recognize what you want to tag. If the match is such that more characters than needed are unavoidably matched by TAGREGEXP (as will usually be the case), you should add a NAMEREGEXP, to pick out just the tag. This will enable Emacs to find tags more accurately and to do completion on tag names more reliably. You can find some examples below. The option `--ignore-case-regex' (or `-c') works like `--regex', except that matching ignores case. This is appropriate for certain programming languages. The `-R' option deletes all the regexps defined with `--regex' options. It applies to the file names following it, as you can see from the following example: etags --regex=/REG1/ voo.doo --regex=/REG2/ \ bar.ber -R --lang=lisp los.er Here `etags' chooses the parsing language for `voo.doo' and `bar.ber' according to their contents. `etags' also uses REG1 to recognize additional tags in `voo.doo', and both REG1 and REG2 to recognize additional tags in `bar.ber'. `etags' uses the Lisp tags rules, and no regexp matching, to recognize tags in `los.er'. You can specify a regular expression for a particular language, by writing `{lang}' in front of it. Then `etags' will use the regular expression only for files of that language. (`etags --help' prints the list of languages recognized by `etags'.) The following example tags the `DEFVAR' macros in the Emacs source files, for the C language only: --regex='{c}/[ \t]*DEFVAR_[A-Z_ \t(]+"\([^"]+\)"/' This feature is particularly useful when you store a list of regular expressions in a file. The following option syntax instructs `etags' to read two files of regular expressions. The regular expressions contained in the second file are matched without regard to case. --regex=@first-file --ignore-case-regex=@second-file A regex file contains one regular expressions per line. Empty lines, and lines beginning with space or tab are ignored. When the first character in a line is `@', `etags' assumes that the rest of the line is the name of a file of regular expressions; thus, one such file can include another file. All the other lines are taken to be regular expressions. If the first non-whitespace text on the line is `--', that line is a comment. For example, one can create a file called `emacs.tags' with the following contents: -- This is for GNU Emacs C source files {c}/[ \t]*DEFVAR_[A-Z_ \t(]+"\([^"]+\)"/\1/ and then use it like this: etags --regex=@emacs.tags *.[ch] */*.[ch] Here are some more examples. The regexps are quoted to protect them from shell interpretation. * Tag Octave files: etags --language=none \ --regex='/[ \t]*function.*=[ \t]*\([^ \t]*\)[ \t]*(/\1/' \ --regex='/###key \(.*\)/\1/' \ --regex='/[ \t]*global[ \t].*/' \ *.m Note that tags are not generated for scripts, so that you have to add a line by yourself of the form `###key SCRIPTNAME' if you want to jump to it. * Tag Tcl files: etags --language=none --regex='/proc[ \t]+\([^ \t]+\)/\1/' *.tcl * Tag VHDL files: etags --language=none \ --regex='/[ \t]*\(ARCHITECTURE\|CONFIGURATION\) +[^ ]* +OF/' \ --regex='/[ \t]*\(ATTRIBUTE\|ENTITY\|FUNCTION\|PACKAGE\ \( BODY\)?\|PROCEDURE\|PROCESS\|TYPE\)[ \t]+\([^ \t(]+\)/\3/' Selecting a Tags Table ---------------------- Emacs has at any time one "selected" tags table, and all the commands for working with tags tables use the selected one. To select a tags table, type `M-x visit-tags-table', which reads the tags table file name as an argument. The name `TAGS' in the default directory is used as the default file name. All this command does is store the file name in the variable `tags-file-name'. Emacs does not actually read in the tags table contents until you try to use them. Setting this variable yourself is just as good as using `visit-tags-table'. The variable's initial value is `nil'; that value tells all the commands for working with tags tables that they must ask for a tags table file name to use. Using `visit-tags-table' when a tags table is already loaded gives you a choice: you can add the new tags table to the current list of tags tables, or start a new list. The tags commands use all the tags tables in the current list. If you start a new list, the new tags table is used _instead_ of others. If you add the new table to the current list, it is used _as well as_ the others. When the tags commands scan the list of tags tables, they don't always start at the beginning of the list; they start with the first tags table (if any) that describes the current file, proceed from there to the end of the list, and then scan from the beginning of the list until they have covered all the tables in the list. You can specify a precise list of tags tables by setting the variable `tags-table-list' to a list of strings, like this: (setq tags-table-list '("~/emacs" "/usr/local/lib/emacs/src")) This tells the tags commands to look at the `TAGS' files in your `~/emacs' directory and in the `/usr/local/lib/emacs/src' directory. The order depends on which file you are in and which tags table mentions that file, as explained above. Do not set both `tags-file-name' and `tags-table-list'. Finding a Tag ------------- The most important thing that a tags table enables you to do is to find the definition of a specific tag. `M-. TAG ' Find first definition of TAG (`find-tag'). `C-u M-.' Find next alternate definition of last tag specified. `C-u - M-.' Go back to previous tag found. `C-M-. PATTERN ' Find a tag whose name matches PATTERN (`find-tag-regexp'). `C-u C-M-.' Find the next tag whose name matches the last pattern used. `C-x 4 . TAG ' Find first definition of TAG, but display it in another window (`find-tag-other-window'). `C-x 5 . TAG ' Find first definition of TAG, and create a new frame to select the buffer (`find-tag-other-frame'). `M-*' Pop back to where you previously invoked `M-.' and friends. `M-.' (`find-tag') is the command to find the definition of a specified tag. It searches through the tags table for that tag, as a string, and then uses the tags table info to determine the file that the definition is in and the approximate character position in the file of the definition. Then `find-tag' visits that file, moves point to the approximate character position, and searches ever-increasing distances away to find the tag definition. If an empty argument is given (just type ), the balanced expression in the buffer before or around point is used as the TAG argument. *Note Expressions::. You don't need to give `M-.' the full name of the tag; a part will do. This is because `M-.' finds tags in the table which contain TAG as a substring. However, it prefers an exact match to a substring match. To find other tags that match the same substring, give `find-tag' a numeric argument, as in `C-u M-.'; this does not read a tag name, but continues searching the tags table's text for another tag containing the same substring last used. If you have a real key, `M-0 M-.' is an easier alternative to `C-u M-.'. Like most commands that can switch buffers, `find-tag' has a variant that displays the new buffer in another window, and one that makes a new frame for it. The former is `C-x 4 .', which invokes the command `find-tag-other-window'. The latter is `C-x 5 .', which invokes `find-tag-other-frame'. To move back to places you've found tags recently, use `C-u - M-.'; more generally, `M-.' with a negative numeric argument. This command can take you to another buffer. `C-x 4 .' with a negative argument finds the previous tag location in another window. As well as going back to places you've found tags recently, you can go back to places _from where_ you found them. Use `M-*', which invokes the command `pop-tag-mark', for this. Typically you would find and study the definition of something with `M-.' and then return to where you were with `M-*'. Both `C-u - M-.' and `M-*' allow you to retrace your steps to a depth determined by the variable `find-tag-marker-ring-length'. The command `C-M-.' (`find-tag-regexp') visits the tags that match a specified regular expression. It is just like `M-.' except that it does regexp matching instead of substring matching. Searching and Replacing with Tags Tables ---------------------------------------- The commands in this section visit and search all the files listed in the selected tags table, one by one. For these commands, the tags table serves only to specify a sequence of files to search. `M-x tags-search REGEXP ' Search for REGEXP through the files in the selected tags table. `M-x tags-query-replace REGEXP REPLACEMENT ' Perform a `query-replace-regexp' on each file in the selected tags table. `M-,' Restart one of the commands above, from the current location of point (`tags-loop-continue'). `M-x tags-search' reads a regexp using the minibuffer, then searches for matches in all the files in the selected tags table, one file at a time. It displays the name of the file being searched so you can follow its progress. As soon as it finds an occurrence, `tags-search' returns. Having found one match, you probably want to find all the rest. To find one more match, type `M-,' (`tags-loop-continue') to resume the `tags-search'. This searches the rest of the current buffer, followed by the remaining files of the tags table. `M-x tags-query-replace' performs a single `query-replace-regexp' through all the files in the tags table. It reads a regexp to search for and a string to replace with, just like ordinary `M-x query-replace-regexp'. It searches much like `M-x tags-search', but repeatedly, processing matches according to your input. *Note Replace::, for more information on query replace. You can control the case-sensitivity of tags search commands by customizing the value of the variable `tags-case-fold-search'. The default is to use the same setting as the value of `case-fold-search' (*note Search Case::). It is possible to get through all the files in the tags table with a single invocation of `M-x tags-query-replace'. But often it is useful to exit temporarily, which you can do with any input event that has no special query replace meaning. You can resume the query replace subsequently by typing `M-,'; this command resumes the last tags search or replace command that you did. The commands in this section carry out much broader searches than the `find-tag' family. The `find-tag' commands search only for definitions of tags that match your substring or regexp. The commands `tags-search' and `tags-query-replace' find every occurrence of the regexp, as ordinary search commands and replace commands do in the current buffer. These commands create buffers only temporarily for the files that they have to search (those which are not already visited in Emacs buffers). Buffers in which no match is found are quickly killed; the others continue to exist. It may have struck you that `tags-search' is a lot like `grep'. You can also run `grep' itself as an inferior of Emacs and have Emacs show you the matching lines one by one. This works much like running a compilation; finding the source locations of the `grep' matches works like finding the compilation errors. *Note Compilation::. Tags Table Inquiries -------------------- `M-x list-tags FILE ' Display a list of the tags defined in the program file FILE. `M-x tags-apropos REGEXP ' Display a list of all tags matching REGEXP. `M-x list-tags' reads the name of one of the files described by the selected tags table, and displays a list of all the tags defined in that file. The "file name" argument is really just a string to compare against the file names recorded in the tags table; it is read as a string rather than as a file name. Therefore, completion and defaulting are not available, and you must enter the file name the same way it appears in the tags table. Do not include a directory as part of the file name unless the file name recorded in the tags table includes a directory. `M-x tags-apropos' is like `apropos' for tags (*note Apropos::). It finds all the tags in the selected tags table whose entries match REGEXP, and displays them. If the variable `tags-apropos-verbose' is non-`nil', it displays the names of the tags files together with the tag names. You can customize the appearance of the output with the face `tags-tag-face'. You can display additional output with `M-x tags-apropos' by customizing the variable `tags-apropos-additional-actions'--see its documentation for details. You can also use the collection of tag names to complete a symbol name in the buffer. *Note Symbol Completion::. Merging Files with Emerge ========================= It's not unusual for programmers to get their signals crossed and modify the same program in two different directions. To recover from this confusion, you need to merge the two versions. Emerge makes this easier. See also *Note Comparing Files::, for commands to compare in a more manual fashion, and *Note Ediff: (ediff)Top. Overview of Emerge ------------------ To start Emerge, run one of these four commands: `M-x emerge-files' Merge two specified files. `M-x emerge-files-with-ancestor' Merge two specified files, with reference to a common ancestor. `M-x emerge-buffers' Merge two buffers. `M-x emerge-buffers-with-ancestor' Merge two buffers with reference to a common ancestor in a third buffer. The Emerge commands compare two files or buffers, and display the comparison in three buffers: one for each input text (the "A buffer" and the "B buffer"), and one (the "merge buffer") where merging takes place. The merge buffer shows the full merged text, not just the differences. Wherever the two input texts differ, you can choose which one of them to include in the merge buffer. The Emerge commands that take input from existing buffers use only the accessible portions of those buffers, if they are narrowed (*note Narrowing::). If a common ancestor version is available, from which the two texts to be merged were both derived, Emerge can use it to guess which alternative is right. Wherever one current version agrees with the ancestor, Emerge presumes that the other current version is a deliberate change which should be kept in the merged version. Use the `with-ancestor' commands if you want to specify a common ancestor text. These commands read three file or buffer names--variant A, variant B, and the common ancestor. After the comparison is done and the buffers are prepared, the interactive merging starts. You control the merging by typing special "merge commands" in the merge buffer. The merge buffer shows you a full merged text, not just differences. For each run of differences between the input texts, you can choose which one of them to keep, or edit them both together. The merge buffer uses a special major mode, Emerge mode, with commands for making these choices. But you can also edit the buffer with ordinary Emacs commands. At any given time, the attention of Emerge is focused on one particular difference, called the "selected" difference. This difference is marked off in the three buffers like this: vvvvvvvvvvvvvvvvvvvv TEXT THAT DIFFERS ^^^^^^^^^^^^^^^^^^^^ Emerge numbers all the differences sequentially and the mode line always shows the number of the selected difference. Normally, the merge buffer starts out with the A version of the text. But when the A version of a difference agrees with the common ancestor, then the B version is initially preferred for that difference. Emerge leaves the merged text in the merge buffer when you exit. At that point, you can save it in a file with `C-x C-w'. If you give a numeric argument to `emerge-files' or `emerge-files-with-ancestor', it reads the name of the output file using the minibuffer. (This is the last file name those commands read.) Then exiting from Emerge saves the merged text in the output file. Normally, Emerge commands save the output buffer in its file when you exit. If you abort Emerge with `C-]', the Emerge command does not save the output buffer, but you can save it yourself if you wish. Submodes of Emerge ------------------ You can choose between two modes for giving merge commands: Fast mode and Edit mode. In Fast mode, basic merge commands are single characters, but ordinary Emacs commands are disabled. This is convenient if you use only merge commands. In Edit mode, all merge commands start with the prefix key `C-c C-c', and the normal Emacs commands are also available. This allows editing the merge buffer, but slows down Emerge operations. Use `e' to switch to Edit mode, and `C-c C-c f' to switch to Fast mode. The mode line indicates Edit and Fast modes with `E' and `F'. Emerge has two additional submodes that affect how particular merge commands work: Auto Advance mode and Skip Prefers mode. If Auto Advance mode is in effect, the `a' and `b' commands advance to the next difference. This lets you go through the merge faster as long as you simply choose one of the alternatives from the input. The mode line indicates Auto Advance mode with `A'. If Skip Prefers mode is in effect, the `n' and `p' commands skip over differences in states prefer-A and prefer-B (*note State of Difference::). Thus you see only differences for which neither version is presumed "correct." The mode line indicates Skip Prefers mode with `S'. Use the command `s a' (`emerge-auto-advance-mode') to set or clear Auto Advance mode. Use `s s' (`emerge-skip-prefers-mode') to set or clear Skip Prefers mode. These commands turn on the mode with a positive argument, turns it off with a negative or zero argument, and toggle the mode with no argument. State of a Difference --------------------- In the merge buffer, a difference is marked with lines of `v' and `^' characters. Each difference has one of these seven states: A The difference is showing the A version. The `a' command always produces this state; the mode line indicates it with `A'. B The difference is showing the B version. The `b' command always produces this state; the mode line indicates it with `B'. default-A default-B The difference is showing the A or the B state by default, because you haven't made a choice. All differences start in the default-A state (and thus the merge buffer is a copy of the A buffer), except those for which one alternative is "preferred" (see below). When you select a difference, its state changes from default-A or default-B to plain A or B. Thus, the selected difference never has state default-A or default-B, and these states are never displayed in the mode line. The command `d a' chooses default-A as the default state, and `d b' chooses default-B. This chosen default applies to all differences which you haven't ever selected and for which no alternative is preferred. If you are moving through the merge sequentially, the differences you haven't selected are those following the selected one. Thus, while moving sequentially, you can effectively make the A version the default for some sections of the merge buffer and the B version the default for others by using `d a' and `d b' between sections. prefer-A prefer-B The difference is showing the A or B state because it is "preferred". This means that you haven't made an explicit choice, but one alternative seems likely to be right because the other alternative agrees with the common ancestor. Thus, where the A buffer agrees with the common ancestor, the B version is preferred, because chances are it is the one that was actually changed. These two states are displayed in the mode line as `A*' and `B*'. combined The difference is showing a combination of the A and B states, as a result of the `x c' or `x C' commands. Once a difference is in this state, the `a' and `b' commands don't do anything to it unless you give them a numeric argument. The mode line displays this state as `comb'. Merge Commands -------------- Here are the Merge commands for Fast mode; in Edit mode, precede them with `C-c C-c': `p' Select the previous difference. `n' Select the next difference. `a' Choose the A version of this difference. `b' Choose the B version of this difference. `C-u N j' Select difference number N. `.' Select the difference containing point. You can use this command in the merge buffer or in the A or B buffer. `q' Quit--finish the merge. `C-]' Abort--exit merging and do not save the output. `f' Go into Fast mode. (In Edit mode, this is actually `C-c C-c f'.) `e' Go into Edit mode. `l' Recenter (like `C-l') all three windows. `-' Specify part of a prefix numeric argument. `DIGIT' Also specify part of a prefix numeric argument. `d a' Choose the A version as the default from here down in the merge buffer. `d b' Choose the B version as the default from here down in the merge buffer. `c a' Copy the A version of this difference into the kill ring. `c b' Copy the B version of this difference into the kill ring. `i a' Insert the A version of this difference at point. `i b' Insert the B version of this difference at point. `m' Put point and mark around the difference. `^' Scroll all three windows down (like `M-v'). `v' Scroll all three windows up (like `C-v'). `<' Scroll all three windows left (like `C-x <'). `>' Scroll all three windows right (like `C-x >'). `|' Reset horizontal scroll on all three windows. `x 1' Shrink the merge window to one line. (Use `C-u l' to restore it to full size.) `x c' Combine the two versions of this difference (*note Combining in Emerge::). `x f' Show the names of the files/buffers Emerge is operating on, in a Help window. (Use `C-u l' to restore windows.) `x j' Join this difference with the following one. (`C-u x j' joins this difference with the previous one.) `x s' Split this difference into two differences. Before you use this command, position point in each of the three buffers at the place where you want to split the difference. `x t' Trim identical lines off the top and bottom of the difference. Such lines occur when the A and B versions are identical but differ from the ancestor version. Exiting Emerge -------------- The `q' command (`emerge-quit') finishes the merge, storing the results into the output file if you specified one. It restores the A and B buffers to their proper contents, or kills them if they were created by Emerge and you haven't changed them. It also disables the Emerge commands in the merge buffer, since executing them later could damage the contents of the various buffers. `C-]' aborts the merge. This means exiting without writing the output file. If you didn't specify an output file, then there is no real difference between aborting and finishing the merge. If the Emerge command was called from another Lisp program, then its return value is `t' for successful completion, or `nil' if you abort. Combining the Two Versions -------------------------- Sometimes you want to keep _both_ alternatives for a particular difference. To do this, use `x c', which edits the merge buffer like this: #ifdef NEW VERSION FROM A BUFFER #else /* not NEW */ VERSION FROM B BUFFER #endif /* not NEW */ While this example shows C preprocessor conditionals delimiting the two alternative versions, you can specify the strings to use by setting the variable `emerge-combine-versions-template' to a string of your choice. In the string, `%a' says where to put version A, and `%b' says where to put version B. The default setting, which produces the results shown above, looks like this: "#ifdef NEW\n%a#else /* not NEW */\n%b#endif /* not NEW */\n" Fine Points of Emerge --------------------- During the merge, you mustn't try to edit the A and B buffers yourself. Emerge modifies them temporarily, but ultimately puts them back the way they were. You can have any number of merges going at once--just don't use any one buffer as input to more than one merge at once, since the temporary changes made in these buffers would get in each other's way. Starting Emerge can take a long time because it needs to compare the files fully. Emacs can't do anything else until `diff' finishes. Perhaps in the future someone will change Emerge to do the comparison in the background when the input files are large--then you could keep on doing other things with Emacs until Emerge is ready to accept commands. After setting up the merge, Emerge runs the hook `emerge-startup-hook' (*note Hooks::). Abbrevs ******* A defined "abbrev" is a word which "expands", if you insert it, into some different text. Abbrevs are defined by the user to expand in specific ways. For example, you might define `foo' as an abbrev expanding to `find outer otter'. Then you would be able to insert `find outer otter ' into the buffer by typing `f o o '. A second kind of abbreviation facility is called "dynamic abbrev expansion". You use dynamic abbrev expansion with an explicit command to expand the letters in the buffer before point by looking for other words in the buffer that start with those letters. *Note Dynamic Abbrevs::. "Hippie" expansion generalizes abbreviation expansion. *Note Hippie Expansion: (autotype)Hippie Expand. Abbrev Concepts =============== An "abbrev" is a word which has been defined to "expand" into a specified "expansion". When you insert a word-separator character following the abbrev, that expands the abbrev--replacing the abbrev with its expansion. For example, if `foo' is defined as an abbrev expanding to `find outer otter', then you can insert `find outer otter.' into the buffer by typing `f o o .'. Abbrevs expand only when Abbrev mode (a minor mode) is enabled. Disabling Abbrev mode does not cause abbrev definitions to be forgotten, but they do not expand until Abbrev mode is enabled again. The command `M-x abbrev-mode' toggles Abbrev mode; with a numeric argument, it turns Abbrev mode on if the argument is positive, off otherwise. *Note Minor Modes::. `abbrev-mode' is also a variable; Abbrev mode is on when the variable is non-`nil'. The variable `abbrev-mode' automatically becomes local to the current buffer when it is set. Abbrev definitions can be "mode-specific"--active only in one major mode. Abbrevs can also have "global" definitions that are active in all major modes. The same abbrev can have a global definition and various mode-specific definitions for different major modes. A mode-specific definition for the current major mode overrides a global definition. Abbrevs can be defined interactively during the editing session. Lists of abbrev definitions can also be saved in files and reloaded in later sessions. Some users keep extensive lists of abbrevs that they load in every session. Defining Abbrevs ================ `C-x a g' Define an abbrev, using one or more words before point as its expansion (`add-global-abbrev'). `C-x a l' Similar, but define an abbrev specific to the current major mode (`add-mode-abbrev'). `C-x a i g' Define a word in the buffer as an abbrev (`inverse-add-global-abbrev'). `C-x a i l' Define a word in the buffer as a mode-specific abbrev (`inverse-add-mode-abbrev'). `M-x kill-all-abbrevs' This command discards all abbrev definitions currently in effect, leaving a blank slate. The usual way to define an abbrev is to enter the text you want the abbrev to expand to, position point after it, and type `C-x a g' (`add-global-abbrev'). This reads the abbrev itself using the minibuffer, and then defines it as an abbrev for one or more words before point. Use a numeric argument to say how many words before point should be taken as the expansion. For example, to define the abbrev `foo' as mentioned above, insert the text `find outer otter' and then type `C-u 3 C-x a g f o o '. An argument of zero to `C-x a g' means to use the contents of the region as the expansion of the abbrev being defined. The command `C-x a l' (`add-mode-abbrev') is similar, but defines a mode-specific abbrev. Mode-specific abbrevs are active only in a particular major mode. `C-x a l' defines an abbrev for the major mode in effect at the time `C-x a l' is typed. The arguments work the same as for `C-x a g'. If the text already in the buffer is the abbrev, rather than its expansion, use command `C-x a i g' (`inverse-add-global-abbrev') instead of `C-x a g', or use `C-x a i l' (`inverse-add-mode-abbrev') instead of `C-x a l'. These commands are called "inverse" because they invert the meaning of the two text strings they use (one from the buffer and one read with the minibuffer). To change the definition of an abbrev, just define a new definition. When the abbrev has a prior definition, the abbrev definition commands ask for confirmation before replacing it. To remove an abbrev definition, give a negative argument to the abbrev definition command: `C-u - C-x a g' or `C-u - C-x a l'. The former removes a global definition, while the latter removes a mode-specific definition. `M-x kill-all-abbrevs' removes all the abbrev definitions there are, both global and local. Controlling Abbrev Expansion ============================ An abbrev expands whenever it is present in the buffer just before point and you type a self-inserting whitespace or punctuation character (, comma, etc.). More precisely, any character that is not a word constituent expands an abbrev, and any word-constituent character can be part of an abbrev. The most common way to use an abbrev is to insert it and then insert a punctuation character to expand it. Abbrev expansion preserves case; thus, `foo' expands into `find outer otter'; `Foo' into `Find outer otter', and `FOO' into `FIND OUTER OTTER' or `Find Outer Otter' according to the variable `abbrev-all-caps' (a non-`nil' value chooses the first of the two expansions). These commands are used to control abbrev expansion: `M-'' Separate a prefix from a following abbrev to be expanded (`abbrev-prefix-mark'). `C-x a e' Expand the abbrev before point (`expand-abbrev'). This is effective even when Abbrev mode is not enabled. `M-x expand-region-abbrevs' Expand some or all abbrevs found in the region. You may wish to expand an abbrev with a prefix attached; for example, if `cnst' expands into `construction', you might want to use it to enter `reconstruction'. It does not work to type `recnst', because that is not necessarily a defined abbrev. What you can do is use the command `M-'' (`abbrev-prefix-mark') in between the prefix `re' and the abbrev `cnst'. First, insert `re'. Then type `M-''; this inserts a hyphen in the buffer to indicate that it has done its work. Then insert the abbrev `cnst'; the buffer now contains `re-cnst'. Now insert a non-word character to expand the abbrev `cnst' into `construction'. This expansion step also deletes the hyphen that indicated `M-'' had been used. The result is the desired `reconstruction'. If you actually want the text of the abbrev in the buffer, rather than its expansion, you can accomplish this by inserting the following punctuation with `C-q'. Thus, `foo C-q ,' leaves `foo,' in the buffer. If you expand an abbrev by mistake, you can undo the expansion and bring back the abbrev itself by typing `C-_' to undo (*note Undo::). This also undoes the insertion of the non-word character that expanded the abbrev. If the result you want is the terminating non-word character plus the unexpanded abbrev, you must reinsert the terminating character, quoting it with `C-q'. You can also use the command `M-x unexpand-abbrev' to cancel the last expansion without deleting the terminating character. `M-x expand-region-abbrevs' searches through the region for defined abbrevs, and for each one found offers to replace it with its expansion. This command is useful if you have typed in text using abbrevs but forgot to turn on Abbrev mode first. It may also be useful together with a special set of abbrev definitions for making several global replacements at once. This command is effective even if Abbrev mode is not enabled. Expanding an abbrev runs the hook `pre-abbrev-expand-hook' (*note Hooks::). Examining and Editing Abbrevs ============================= `M-x list-abbrevs' Display a list of all abbrev definitions. With a numeric argument, list only local abbrevs. `M-x edit-abbrevs' Edit a list of abbrevs; you can add, alter or remove definitions. The output from `M-x list-abbrevs' looks like this: (lisp-mode-abbrev-table) "dk" 0 "define-key" (global-abbrev-table) "dfn" 0 "definition" (Some blank lines of no semantic significance, and some other abbrev tables, have been omitted.) A line containing a name in parentheses is the header for abbrevs in a particular abbrev table; `global-abbrev-table' contains all the global abbrevs, and the other abbrev tables that are named after major modes contain the mode-specific abbrevs. Within each abbrev table, each nonblank line defines one abbrev. The word at the beginning of the line is the abbrev. The number that follows is the number of times the abbrev has been expanded. Emacs keeps track of this to help you see which abbrevs you actually use, so that you can eliminate those that you don't use often. The string at the end of the line is the expansion. `M-x edit-abbrevs' allows you to add, change or kill abbrev definitions by editing a list of them in an Emacs buffer. The list has the same format described above. The buffer of abbrevs is called `*Abbrevs*', and is in Edit-Abbrevs mode. Type `C-c C-c' in this buffer to install the abbrev definitions as specified in the buffer--and delete any abbrev definitions not listed. The command `edit-abbrevs' is actually the same as `list-abbrevs' except that it selects the buffer `*Abbrevs*' whereas `list-abbrevs' merely displays it in another window. Saving Abbrevs ============== These commands allow you to keep abbrev definitions between editing sessions. `M-x write-abbrev-file FILE ' Write a file FILE describing all defined abbrevs. `M-x read-abbrev-file FILE ' Read the file FILE and define abbrevs as specified therein. `M-x quietly-read-abbrev-file FILE ' Similar but do not display a message about what is going on. `M-x define-abbrevs' Define abbrevs from definitions in current buffer. `M-x insert-abbrevs' Insert all abbrevs and their expansions into current buffer. `M-x write-abbrev-file' reads a file name using the minibuffer and then writes a description of all current abbrev definitions into that file. This is used to save abbrev definitions for use in a later session. The text stored in the file is a series of Lisp expressions that, when executed, define the same abbrevs that you currently have. `M-x read-abbrev-file' reads a file name using the minibuffer and then reads the file, defining abbrevs according to the contents of the file. `M-x quietly-read-abbrev-file' is the same except that it does not display a message in the echo area saying that it is doing its work; it is actually useful primarily in the `.emacs' file. If an empty argument is given to either of these functions, they use the file name specified in the variable `abbrev-file-name', which is by default `"~/.abbrev_defs"'. Emacs will offer to save abbrevs automatically if you have changed any of them, whenever it offers to save all files (for `C-x s' or `C-x C-c'). This feature can be inhibited by setting the variable `save-abbrevs' to `nil'. The commands `M-x insert-abbrevs' and `M-x define-abbrevs' are similar to the previous commands but work on text in an Emacs buffer. `M-x insert-abbrevs' inserts text into the current buffer before point, describing all current abbrev definitions; `M-x define-abbrevs' parses the entire current buffer and defines abbrevs accordingly. Dynamic Abbrev Expansion ======================== The abbrev facility described above operates automatically as you insert text, but all abbrevs must be defined explicitly. By contrast, "dynamic abbrevs" allow the meanings of abbrevs to be determined automatically from the contents of the buffer, but dynamic abbrev expansion happens only when you request it explicitly. `M-/' Expand the word in the buffer before point as a "dynamic abbrev", by searching in the buffer for words starting with that abbreviation (`dabbrev-expand'). `C-M-/' Complete the word before point as a dynamic abbrev (`dabbrev-completion'). For example, if the buffer contains `does this follow ' and you type `f o M-/', the effect is to insert `follow' because that is the last word in the buffer that starts with `fo'. A numeric argument to `M-/' says to take the second, third, etc. distinct expansion found looking backward from point. Repeating `M-/' searches for an alternative expansion by looking farther back. After scanning all the text before point, it searches the text after point. The variable `dabbrev-limit', if non-`nil', specifies how far in the buffer to search for an expansion. After scanning the current buffer, `M-/' normally searches other buffers, unless you have set `dabbrev-check-all-buffers' to `nil'. For finer control over which buffers to scan, customize the variable `dabbrev-ignored-buffer-regexps'. Its value is a list of regular expressions. If a buffer's name matches any of these regular expressions, dynamic abbrev expansion skips that buffer. A negative argument to `M-/', as in `C-u - M-/', says to search first for expansions after point, and second for expansions before point. If you repeat the `M-/' to look for another expansion, do not specify an argument. This tries all the expansions after point and then the expansions before point. After you have expanded a dynamic abbrev, you can copy additional words that follow the expansion in its original context. Simply type ` M-/' for each word you want to copy. The spacing and punctuation between words is copied along with the words. The command `C-M-/' (`dabbrev-completion') performs completion of a dynamic abbreviation. Instead of trying the possible expansions one by one, it finds all of them, then inserts the text that they have in common. If they have nothing in common, `C-M-/' displays a list of completions, from which you can select a choice in the usual manner. *Note Completion::. Dynamic abbrev expansion is completely independent of Abbrev mode; the expansion of a word with `M-/' is completely independent of whether it has a definition as an ordinary abbrev. Customizing Dynamic Abbreviation ================================ Normally, dynamic abbrev expansion ignores case when searching for expansions. That is, the expansion need not agree in case with the word you are expanding. This feature is controlled by the variable `dabbrev-case-fold-search'. If it is `t', case is ignored in this search; if it is `nil', the word and the expansion must match in case. If the value of `dabbrev-case-fold-search' is `case-fold-search', which is true by default, then the variable `case-fold-search' controls whether to ignore case while searching for expansions. Normally, dynamic abbrev expansion preserves the case pattern _of the abbrev you have typed_, by converting the expansion to that case pattern. The variable `dabbrev-case-replace' controls whether to preserve the case pattern of the abbrev. If it is `t', the abbrev's case pattern is preserved in most cases; if it is `nil', the expansion is always copied verbatim. If the value of `dabbrev-case-replace' is `case-replace', which is true by default, then the variable `case-replace' controls whether to copy the expansion verbatim. However, if the expansion contains a complex mixed case pattern, and the abbrev matches this pattern as far as it goes, then the expansion is always copied verbatim, regardless of those variables. Thus, for example, if the buffer contains `variableWithSillyCasePattern', and you type `v a M-/', it copies the expansion verbatim including its case pattern. The variable `dabbrev-abbrev-char-regexp', if non-`nil', controls which characters are considered part of a word, for dynamic expansion purposes. The regular expression must match just one character, never two or more. The same regular expression also determines which characters are part of an expansion. The value `nil' has a special meaning: abbreviations are made of word characters, but expansions are made of word and symbol characters. In shell scripts and makefiles, a variable name is sometimes prefixed with `$' and sometimes not. Major modes for this kind of text can customize dynamic abbreviation to handle optional prefixes by setting the variable `dabbrev-abbrev-skip-leading-regexp'. Its value should be a regular expression that matches the optional prefix that dynamic abbreviation should ignore. Editing Pictures **************** To edit a picture made out of text characters (for example, a picture of the division of a register into fields, as a comment in a program), use the command `M-x edit-picture' to enter Picture mode. In Picture mode, editing is based on the "quarter-plane" model of text, according to which the text characters lie studded on an area that stretches infinitely far to the right and downward. The concept of the end of a line does not exist in this model; the most you can say is where the last nonblank character on the line is found. Of course, Emacs really always considers text as a sequence of characters, and lines really do have ends. But Picture mode replaces the most frequently-used commands with variants that simulate the quarter-plane model of text. They do this by inserting spaces or by converting tabs to spaces. Most of the basic editing commands of Emacs are redefined by Picture mode to do essentially the same thing but in a quarter-plane way. In addition, Picture mode defines various keys starting with the `C-c' prefix to run special picture editing commands. One of these keys, `C-c C-c', is pretty important. Often a picture is part of a larger file that is usually edited in some other major mode. `M-x edit-picture' records the name of the previous major mode so you can use the `C-c C-c' command (`picture-mode-exit') later to go back to that mode. `C-c C-c' also deletes spaces from the ends of lines, unless given a numeric argument. The special commands of Picture mode all work in other modes (provided the `picture' library is loaded), but are not bound to keys except in Picture mode. The descriptions below talk of moving "one column" and so on, but all the picture mode commands handle numeric arguments as their normal equivalents do. Turning on Picture mode runs the hook `picture-mode-hook' (*note Hooks::). Basic Editing in Picture Mode ============================= Most keys do the same thing in Picture mode that they usually do, but do it in a quarter-plane style. For example, `C-f' is rebound to run `picture-forward-column', a command which moves point one column to the right, inserting a space if necessary so that the actual end of the line makes no difference. `C-b' is rebound to run `picture-backward-column', which always moves point left one column, converting a tab to multiple spaces if necessary. `C-n' and `C-p' are rebound to run `picture-move-down' and `picture-move-up', which can either insert spaces or convert tabs as necessary to make sure that point stays in exactly the same column. `C-e' runs `picture-end-of-line', which moves to after the last nonblank character on the line. There is no need to change `C-a', as the choice of screen model does not affect beginnings of lines. Insertion of text is adapted to the quarter-plane screen model through the use of Overwrite mode (*note Minor Modes::). Self-inserting characters replace existing text, column by column, rather than pushing existing text to the right. runs `picture-newline', which just moves to the beginning of the following line so that new text will replace that line. Picture mode provides erasure instead of deletion and killing of text. (`picture-backward-clear-column') replaces the preceding character with a space rather than removing it; this moves point backwards. `C-d' (`picture-clear-column') replaces the next character or characters with spaces, but does not move point. (If you want to clear characters to spaces and move forward over them, use .) `C-k' (`picture-clear-line') really kills the contents of lines, but does not delete the newlines from the buffer. To do actual insertion, you must use special commands. `C-o' (`picture-open-line') creates a blank line after the current line; it never splits a line. `C-M-o' (`split-line') makes sense in Picture mode, so it is not changed. `C-j' (`picture-duplicate-line') inserts below the current line another line with the same contents. To do actual deletion in Picture mode, use `C-w', `C-c C-d' (which is defined as `delete-char', as `C-d' is in other modes), or one of the picture rectangle commands (*note Rectangles in Picture::). Controlling Motion after Insert =============================== Since "self-inserting" characters in Picture mode overwrite and move point, there is no essential restriction on how point should be moved. Normally point moves right, but you can specify any of the eight orthogonal or diagonal directions for motion after a "self-inserting" character. This is useful for drawing lines in the buffer. `C-c <' Move left after insertion (`picture-movement-left'). `C-c >' Move right after insertion (`picture-movement-right'). `C-c ^' Move up after insertion (`picture-movement-up'). `C-c .' Move down after insertion (`picture-movement-down'). `C-c `' Move up and left ("northwest") after insertion (`picture-movement-nw'). `C-c '' Move up and right ("northeast") after insertion (`picture-movement-ne'). `C-c /' Move down and left ("southwest") after insertion (`picture-movement-sw'). `C-c \' Move down and right ("southeast") after insertion (`picture-movement-se'). Two motion commands move based on the current Picture insertion direction. The command `C-c C-f' (`picture-motion') moves in the same direction as motion after "insertion" currently does, while `C-c C-b' (`picture-motion-reverse') moves in the opposite direction. Picture Mode Tabs ================= Two kinds of tab-like action are provided in Picture mode. Use `M-' (`picture-tab-search') for context-based tabbing. With no argument, it moves to a point underneath the next "interesting" character that follows whitespace in the previous nonblank line. "Next" here means "appearing at a horizontal position greater than the one point starts out at." With an argument, as in `C-u M-', this command moves to the next such interesting character in the current line. `M-' does not change the text; it only moves point. "Interesting" characters are defined by the variable `picture-tab-chars', which should define a set of characters. The syntax for this variable is like the syntax used inside of `[...]' in a regular expression--but without the `[' and the `]'. Its default value is `"!-~"'. itself runs `picture-tab', which operates based on the current tab stop settings; it is the Picture mode equivalent of `tab-to-tab-stop'. Normally it just moves point, but with a numeric argument it clears the text that it moves over. The context-based and tab-stop-based forms of tabbing are brought together by the command `C-c ' (`picture-set-tab-stops'). This command sets the tab stops to the positions which `M-' would consider significant in the current line. The use of this command, together with , can get the effect of context-based tabbing. But `M-' is more convenient in the cases where it is sufficient. It may be convenient to prevent use of actual tab characters in pictures. For example, this prevents `C-x ' from messing up the picture. You can do this by setting the variable `indent-tabs-mode' to `nil'. *Note Just Spaces::. Picture Mode Rectangle Commands =============================== Picture mode defines commands for working on rectangular pieces of the text in ways that fit with the quarter-plane model. The standard rectangle commands may also be useful (*note Rectangles::). `C-c C-k' Clear out the region-rectangle with spaces (`picture-clear-rectangle'). With argument, delete the text. `C-c C-w R' Similar, but save rectangle contents in register R first (`picture-clear-rectangle-to-register'). `C-c C-y' Copy last killed rectangle into the buffer by overwriting, with upper left corner at point (`picture-yank-rectangle'). With argument, insert instead. `C-c C-x R' Similar, but use the rectangle in register R (`picture-yank-rectangle-from-register'). The picture rectangle commands `C-c C-k' (`picture-clear-rectangle') and `C-c C-w' (`picture-clear-rectangle-to-register') differ from the standard rectangle commands in that they normally clear the rectangle instead of deleting it; this is analogous with the way `C-d' is changed in Picture mode. However, deletion of rectangles can be useful in Picture mode, so these commands delete the rectangle if given a numeric argument. `C-c C-k' either with or without a numeric argument saves the rectangle for `C-c C-y'. The Picture mode commands for yanking rectangles differ from the standard ones in that they overwrite instead of inserting. This is the same way that Picture mode insertion of other text differs from other modes. `C-c C-y' (`picture-yank-rectangle') inserts (by overwriting) the rectangle that was most recently killed, while `C-c C-x' (`picture-yank-rectangle-from-register') does likewise for the rectangle found in a specified register. Sending Mail ************ To send a message in Emacs, you start by typing a command (`C-x m') to select and initialize the `*mail*' buffer. Then you edit the text and headers of the message in this buffer, and type another command (`C-c C-s' or `C-c C-c') to send the message. `C-x m' Begin composing a message to send (`compose-mail'). `C-x 4 m' Likewise, but display the message in another window (`compose-mail-other-window'). `C-x 5 m' Likewise, but make a new frame (`compose-mail-other-frame'). `C-c C-s' In Mail mode, send the message (`mail-send'). `C-c C-c' Send the message and bury the mail buffer (`mail-send-and-exit'). The command `C-x m' (`compose-mail') selects a buffer named `*mail*' and initializes it with the skeleton of an outgoing message. `C-x 4 m' (`compose-mail-other-window') selects the `*mail*' buffer in a different window, leaving the previous current buffer visible. `C-x 5 m' (`compose-mail-other-frame') creates a new frame to select the `*mail*' buffer. Because the mail-composition buffer is an ordinary Emacs buffer, you can switch to other buffers while in the middle of composing mail, and switch back later (or never). If you use the `C-x m' command again when you have been composing another message but have not sent it, you are asked to confirm before the old message is erased. If you answer `n', the `*mail*' buffer is left selected with its old contents, so you can finish the old message and send it. `C-u C-x m' is another way to do this. Sending the message marks the `*mail*' buffer "unmodified," which avoids the need for confirmation when `C-x m' is next used. If you are composing a message in the `*mail*' buffer and want to send another message before finishing the first, rename the `*mail*' buffer using `M-x rename-uniquely' (*note Misc Buffer::). Then you can use `C-x m' or its variants described above to make a new `*mail*' buffer. Once you've done that, you can work with each mail buffer independently. The Format of the Mail Buffer ============================= In addition to the "text" or "body", a message has "header fields" which say who sent it, when, to whom, why, and so on. Some header fields, such as `Date' and `Sender', are created automatically when you send the message. Others, such as the recipient names, must be specified by you in order to send the message properly. Mail mode provides a few commands to help you edit some header fields, and some are preinitialized in the buffer automatically at times. You can insert and edit header fields using ordinary editing commands. The line in the buffer that says --text follows this line-- is a special delimiter that separates the headers you have specified from the text. Whatever follows this line is the text of the message; the headers precede it. The delimiter line itself does not appear in the message actually sent. The text used for the delimiter line is controlled by the variable `mail-header-separator'. Here is an example of what the headers and text in the mail buffer might look like. To: gnu@gnu.org CC: lungfish@spam.org, byob@spam.org Subject: The Emacs Manual --Text follows this line-- Please ignore this message. Mail Header Fields ================== A header field in the mail buffer starts with a field name at the beginning of a line, terminated by a colon. Upper and lower case are equivalent in field names (and in mailing addresses also). After the colon and optional whitespace comes the contents of the field. You can use any name you like for a header field, but normally people use only standard field names with accepted meanings. Here is a table of fields commonly used in outgoing messages. `To' This field contains the mailing addresses to which the message is addressed. If you list more than one address, use commas, not spaces, to separate them. `Subject' The contents of the `Subject' field should be a piece of text that says what the message is about. The reason `Subject' fields are useful is that most mail-reading programs can provide a summary of messages, listing the subject of each message but not its text. `CC' This field contains additional mailing addresses to send the message to, like `To' except that these readers should not regard the message as directed at them. `BCC' This field contains additional mailing addresses to send the message to, which should not appear in the header of the message actually sent. Copies sent this way are called "blind carbon copies". To send a blind carbon copy of every outgoing message to yourself, set the variable `mail-self-blind' to `t'. To send a blind carbon copy of every message to some other ADDRESS, set the variable `mail-default-headers' to `"Bcc: ADDRESS\n"'. `FCC' This field contains the name of one file and directs Emacs to append a copy of the message to that file when you send the message. If the file is in Rmail format, Emacs writes the message in Rmail format; otherwise, Emacs writes the message in system mail file format. To specify more than one file, use several `FCC' fields, with one file name in each field. To put a fixed file name in the `FCC' field each time you start editing an outgoing message, set the variable `mail-archive-file-name' to that file name. Unless you remove the `FCC' field before sending, the message will be written into that file when it is sent. `From' Use the `From' field to say who you are, when the account you are using to send the mail is not your own. The contents of the `From' field should be a valid mailing address, since replies will normally go there. If you don't specify the `From' field yourself, Emacs uses the value of `user-mail-address' as the default. `Reply-to' Use this field to direct replies to a different address. Most mail-reading programs (including Rmail) automatically send replies to the `Reply-to' address in preference to the `From' address. By adding a `Reply-to' field to your header, you can work around any problems your `From' address may cause for replies. To put a fixed `Reply-to' address into every outgoing message, set the variable `mail-default-reply-to' to that address (as a string). Then `mail' initializes the message with a `Reply-to' field as specified. You can delete or alter that header field before you send the message, if you wish. When Emacs starts up, if the environment variable `REPLYTO' is set, `mail-default-reply-to' is initialized from that environment variable. `In-reply-to' This field contains a piece of text describing the message you are replying to. Some mail systems can use this information to correlate related pieces of mail. Normally this field is filled in by Rmail when you reply to a message in Rmail, and you never need to think about it (*note Rmail::). `References' This field lists the message IDs of related previous messages. Rmail sets up this field automatically when you reply to a message. The `To', `CC', and `BCC' header fields can appear any number of times, and each such header field can contain multiple addresses, separated by commas. This way, you can specify any number of places to send the message. These fields can also have continuation lines: one or more lines starting with whitespace, following the starting line of the field, are considered part of the field. Here's an example of a `To' field with a continuation line: To: foo@here.net, this@there.net, me@gnu.cambridge.mass.usa.earth.spiral3281 When you send the message, if you didn't write a `From' field yourself, Emacs puts in one for you. The variable `mail-from-style' controls the format: `nil' Use just the email address, as in `king@grassland.com'. `parens' Use both email address and full name, as in `king@grassland.com (Elvis Parsley)'. `angles' Use both email address and full name, as in `Elvis Parsley '. `system-default' Allow the system to insert the `From' field. You can direct Emacs to insert certain default headers into the outgoing message by setting the variable `mail-default-headers' to a string. Then `C-x m' inserts this string into the message headers. If the default header fields are not appropriate for a particular message, edit them as appropriate before sending the message. Mail Aliases ============ You can define "mail aliases" in a file named `~/.mailrc'. These are short mnemonic names which stand for mail addresses or groups of mail addresses. Like many other mail programs, Emacs expands aliases when they occur in the `To', `From', `CC', `BCC', and `Reply-to' fields, plus their `Resent-' variants. To define an alias in `~/.mailrc', write a line in the following format: alias SHORTADDRESS FULLADDRESSES Here FULLADDRESSES stands for one or more mail addresses for SHORTADDRESS to expand into. Separate multiple addresses with spaces; if an address contains a space, quote the whole address with a pair of double-quotes. For instance, to make `maingnu' stand for `gnu@gnu.org' plus a local address of your own, put in this line: alias maingnu gnu@gnu.org local-gnu Emacs also recognizes include commands in `.mailrc' files. They look like this: source FILENAME The file `~/.mailrc' is used primarily by other mail-reading programs; it can contain various other commands. Emacs ignores everything in it except for alias definitions and include commands. Another way to define a mail alias, within Emacs alone, is with the `define-mail-alias' command. It prompts for the alias and then the full address. You can use it to define aliases in your `.emacs' file, like this: (define-mail-alias "maingnu" "gnu@gnu.org") `define-mail-alias' records aliases by adding them to a variable named `mail-aliases'. If you are comfortable with manipulating Lisp lists, you can set `mail-aliases' directly. The initial value of `mail-aliases' is `t', which means that Emacs should read `.mailrc' to get the proper value. You can specify a different file name to use instead of `~/.mailrc' by setting the variable `mail-personal-alias-file'. Normally, Emacs expands aliases when you send the message. You do not need to expand mail aliases before sending the message, but you can expand them if you want to see where the mail will actually go. To do this, use the command `M-x expand-mail-aliases'; it expands all mail aliases currently present in the mail headers that hold addresses. If you like, you can have mail aliases expand as abbrevs, as soon as you type them in (*note Abbrevs::). To enable this feature, execute the following: (add-hook 'mail-mode-hook 'mail-abbrevs-setup) This can go in your `.emacs' file. *Note Hooks::. If you use this feature, you must use `define-mail-abbrev' instead of `define-mail-alias'; the latter does not work with this package. Note that the mail abbreviation package uses the variable `mail-abbrevs' instead of `mail-aliases', and that all alias names are converted to lower case. The mail abbreviation package also provides the `C-c C-a' (`mail-interactive-insert-alias') command, which reads an alias name (with completion) and inserts its definition at point. This is useful when editing the message text itself or a header field such as `Subject' in which Emacs does not normally expand aliases. Note that abbrevs expand only if you insert a word-separator character afterward. However, you can rebind `C-n' and `M->' to cause expansion as well. Here's how to do that: (add-hook 'mail-mode-hook (lambda () (substitute-key-definition 'next-line 'mail-abbrev-next-line mail-mode-map global-map) (substitute-key-definition 'end-of-buffer 'mail-abbrev-end-of-buffer mail-mode-map global-map))) Mail Mode ========= The major mode used in the mail buffer is Mail mode, which is much like Text mode except that various special commands are provided on the `C-c' prefix. These commands all have to do specifically with editing or sending the message. In addition, Mail mode defines the character `%' as a word separator; this is helpful for using the word commands to edit mail addresses. Mail mode is normally used in buffers set up automatically by the `mail' command and related commands. However, you can also switch to Mail mode in a file-visiting buffer. This is a useful thing to do if you have saved the text of a draft message in a file. Mail Sending ------------ Mail mode has two commands for sending the message you have been editing: `C-c C-s' Send the message, and leave the mail buffer selected (`mail-send'). `C-c C-c' Send the message, and select some other buffer (`mail-send-and-exit'). `C-c C-s' (`mail-send') sends the message and marks the mail buffer unmodified, but leaves that buffer selected so that you can modify the message (perhaps with new recipients) and send it again. `C-c C-c' (`mail-send-and-exit') sends and then deletes the window or switches to another buffer. It puts the mail buffer at the lowest priority for reselection by default, since you are finished with using it. This is the usual way to send the message. In a file-visiting buffer, sending the message does not clear the modified flag, because only saving the file should do that. As a result, you don't get a warning if you try to send the same message twice. When you send a message that contains non-ASCII characters, they need to be encoded with a coding system (*note Coding Systems::). Usually the coding system is specified automatically by your chosen language environment (*note Language Environments::). You can explicitly specify the coding system for outgoing mail by setting the variable `sendmail-coding-system' (*note Recognize Coding::). If the coding system thus determined does not handle the characters in a particular message, Emacs asks you to select the coding system to use, showing a list of possible coding systems. Mail Header Editing ------------------- Mail mode provides special commands to move to particular header fields and to complete addresses in headers. `C-c C-f C-t' Move to the `To' header field, creating one if there is none (`mail-to'). `C-c C-f C-s' Move to the `Subject' header field, creating one if there is none (`mail-subject'). `C-c C-f C-c' Move to the `CC' header field, creating one if there is none (`mail-cc'). `C-c C-f C-b' Move to the `BCC' header field, creating one if there is none (`mail-bcc'). `C-c C-f C-f' Move to the `FCC' header field, creating one if there is none (`mail-fcc'). `M-' Complete a mailing address (`mail-complete'). There are five commands to move point to particular header fields, all based on the prefix `C-c C-f' (`C-f' is for "field"). They are listed in the table above. If the field in question does not exist, these commands create one. We provide special motion commands for these particular fields because they are the fields users most often want to edit. While editing a header field that contains mailing addresses, such as `To:', `CC:' and `BCC:', you can complete a mailing address by typing `M-' (`mail-complete'). It inserts the full name corresponding to the address, if it can determine the full name. The variable `mail-complete-style' controls whether to insert the full name, and what style to use, as in `mail-from-style' (*note Mail Headers::). For completion purposes, the valid mailing addresses are taken to be the local users' names plus your personal mail aliases. You can specify additional sources of valid addresses; look at the customization group `mailalias' to see the options for this (*note Customization Groups::). If you type `M-' in the body of the message, `mail-complete' invokes `ispell-complete-word', as in Text mode. Citing Mail ----------- Mail mode also has commands for yanking or "citing" all or part of a message that you are replying to. These commands are active only when you started sending a message using an Rmail command. `C-c C-y' Yank the selected message from Rmail (`mail-yank-original'). `C-c C-r' Yank the region from the Rmail buffer (`mail-yank-region'). `C-c C-q' Fill each paragraph cited from another message (`mail-fill-yanked-message'). When mail sending is invoked from the Rmail mail reader using an Rmail command, `C-c C-y' can be used inside the mail buffer to insert the text of the message you are replying to. Normally it indents each line of that message three spaces and eliminates most header fields. A numeric argument specifies the number of spaces to indent. An argument of just `C-u' says not to indent at all and not to eliminate anything. `C-c C-y' always uses the current message from the Rmail buffer, so you can insert several old messages by selecting one in Rmail, switching to `*mail*' and yanking it, then switching back to Rmail to select another. You can specify the text for `C-c C-y' to insert at the beginning of each line: set `mail-yank-prefix' to the desired string. (A value of `nil' means to use indentation; this is the default.) However, `C-u C-c C-y' never adds anything at the beginning of the inserted lines, regardless of the value of `mail-yank-prefix'. To yank just a part of an incoming message, set the region in Rmail to the part you want; then go to the `*Mail*' message and type `C-c C-r' (`mail-yank-region'). Each line that is copied is indented or prefixed according to `mail-yank-prefix'. After using `C-c C-y' or `C-c C-r', you can type `C-c C-q' (`mail-fill-yanked-message') to fill the paragraphs of the yanked old message or messages. One use of `C-c C-q' fills all such paragraphs, each one individually. To fill a single paragraph of the quoted message, use `M-q'. If filling does not automatically handle the type of citation prefix you use, try setting the fill prefix explicitly. *Note Filling::. Mail Mode Miscellany -------------------- `C-c C-t' Move to the beginning of the message body text (`mail-text'). `C-c C-w' Insert the file `~/.signature' at the end of the message text (`mail-signature'). `C-c C-i FILE ' Insert the contents of FILE at the end of the outgoing message (`mail-attach-file'). `M-x ispell-message' Perform spelling correction on the message text, but not on citations from other messages. `C-c C-t' (`mail-text') moves point to just after the header separator line--that is, to the beginning of the message body text. `C-c C-w' (`mail-signature') adds a standard piece of text at the end of the message to say more about who you are. The text comes from the file `~/.signature' in your home directory. To insert your signature automatically, set the variable `mail-signature' to `t'; after that, starting a mail message automatically inserts the contents of your `~/.signature' file. If you want to omit your signature from a particular message, delete it from the buffer before you send the message. You can also set `mail-signature' to a string; then that string is inserted automatically as your signature when you start editing a message to send. If you set it to some other Lisp expression, the expression is evaluated each time, and its value (which should be a string) specifies the signature. You can do spelling correction on the message text you have written with the command `M-x ispell-message'. If you have yanked an incoming message into the outgoing draft, this command skips what was yanked, but it checks the text that you yourself inserted. (It looks for indentation or `mail-yank-prefix' to distinguish the cited lines from your input.) *Note Spelling::. To include a file in the outgoing message, you can use `C-x i', the usual command to insert a file in the current buffer. But it is often more convenient to use a special command, `C-c C-i' (`mail-attach-file'). This command inserts the file contents at the end of the buffer, after your signature if any, with a delimiter line that includes the file name. Turning on Mail mode (which `C-x m' does automatically) runs the normal hooks `text-mode-hook' and `mail-mode-hook'. Initializing a new outgoing message runs the normal hook `mail-setup-hook'; if you want to add special fields to your mail header or make other changes to the appearance of the mail buffer, use that hook. *Note Hooks::. The main difference between these hooks is just when they are invoked. Whenever you type `M-x mail', `mail-mode-hook' runs as soon as the `*mail*' buffer is created. Then the `mail-setup' function inserts the default contents of the buffer. After these default contents are inserted, `mail-setup-hook' runs. Mail Amusements =============== `M-x spook' adds a line of randomly chosen keywords to an outgoing mail message. The keywords are chosen from a list of words that suggest you are discussing something subversive. The idea behind this feature is the suspicion that the NSA(1) snoops on all electronic mail messages that contain keywords suggesting they might find them interesting. (The NSA says they don't, but that's what they _would_ say.) The idea is that if lots of people add suspicious words to their messages, the NSA will get so busy with spurious input that they will have to give up reading it all. Here's how to insert spook keywords automatically whenever you start entering an outgoing message: (add-hook 'mail-setup-hook 'spook) Whether or not this confuses the NSA, it at least amuses people. You can use the `fortune' program to put a "fortune cookie" message into outgoing mail. To do this, add `fortune-to-signature' to `mail-setup-hook': (add-hook 'mail-setup-hook 'fortune-to-signature) ---------- Footnotes ---------- (1) The US National Security Agency. Mail-Composition Methods ======================== In this chapter we have described the usual Emacs mode for editing and sending mail--Mail mode. Emacs has alternative facilities for editing and sending mail, including MH-E and Message mode, not documented in this manual. *Note MH-E: (mh-e)MH-E. *Note Message: (message)Message. You can choose any of them as your preferred method. The commands `C-x m', `C-x 4 m' and `C-x 5 m' use whichever agent you have specified, as do various other Emacs commands and facilities that send mail. To specify your mail-composition method, customize the variable `mail-user-agent'. Currently legitimate values include `sendmail-user-agent' (Mail mode), `mh-e-user-agent', `message-user-agent' and `gnus-user-agent'. If you select a different mail-composition method, the information in this chapter about the `*mail*' buffer and Mail mode does not apply; the other methods use a different format of text in a different buffer, and their commands are different as well. Reading Mail with Rmail *********************** Rmail is an Emacs subsystem for reading and disposing of mail that you receive. Rmail stores mail messages in files called Rmail files. Reading the message in an Rmail file is done in a special major mode, Rmail mode, which redefines most letters to run commands for managing mail. The command `rmail-mode' is used to switch into Rmail mode, and it runs the hook `rmail-mode-hook' as usual, but don't run this command by hand; it can't do a reasonable job unless the buffer is visiting a proper Rmail file. Basic Concepts of Rmail ======================= Using Rmail in the simplest fashion, you have one Rmail file `~/RMAIL' in which all of your mail is saved. It is called your "primary Rmail file". The command `M-x rmail' reads your primary Rmail file, merges new mail in from your inboxes, displays the first message you haven't read yet, and lets you begin reading. The variable `rmail-file-name' specifies the name of the primary Rmail file. Rmail uses narrowing to hide all but one message in the Rmail file. The message that is shown is called the "current message". Rmail mode's special commands can do such things as delete the current message, copy it into another file, send a reply, or move to another message. You can also create multiple Rmail files and use Rmail to move messages between them. Within the Rmail file, messages are normally arranged sequentially in order of receipt; you can specify other ways to sort them. Messages are assigned consecutive integers as their "message numbers". The number of the current message is displayed in Rmail's mode line, followed by the total number of messages in the file. You can move to a message by specifying its message number with the `j' key (*note Rmail Motion::). Following the usual conventions of Emacs, changes in an Rmail file become permanent only when the file is saved. You can save it with `s' (`rmail-expunge-and-save'), which also expunges deleted messages from the file first (*note Rmail Deletion::). To save the file without expunging, use `C-x C-s'. Rmail also saves the Rmail file after merging new mail from an inbox file (*note Rmail Inbox::). You can exit Rmail with `q' (`rmail-quit'); this expunges and saves the Rmail file and then switches to another buffer. But there is no need to "exit" formally. If you switch from Rmail to editing in other buffers, and never happen to switch back, you have exited. (The Rmail command `b', `rmail-bury', does this for you.) Just make sure to save the Rmail file eventually (like any other file you have changed). `C-x s' is a good enough way to do this (*note Saving::). Scrolling Within a Message ========================== When Rmail displays a message that does not fit on the screen, you must scroll through it to read the rest. You could do this with `C-v', `M-v' and `M-<', but in Rmail scrolling is so frequent that it deserves to be easier to type. `' Scroll forward (`scroll-up'). `' Scroll backward (`scroll-down'). `.' Scroll to start of message (`rmail-beginning-of-message'). Since the most common thing to do while reading a message is to scroll through it by screenfuls, Rmail makes and synonyms of `C-v' (`scroll-up') and `M-v' (`scroll-down') The command `.' (`rmail-beginning-of-message') scrolls back to the beginning of the selected message. This is not quite the same as `M-<': for one thing, it does not set the mark; for another, it resets the buffer boundaries to the current message if you have changed them. Moving Among Messages ===================== The most basic thing to do with a message is to read it. The way to do this in Rmail is to make the message current. The usual practice is to move sequentially through the file, since this is the order of receipt of messages. When you enter Rmail, you are positioned at the first message that you have not yet made current (that is, the first one that has the `unseen' attribute; *note Rmail Attributes::). Move forward to see the other new messages; move backward to re-examine old messages. `n' Move to the next nondeleted message, skipping any intervening deleted messages (`rmail-next-undeleted-message'). `p' Move to the previous nondeleted message (`rmail-previous-undeleted-message'). `M-n' Move to the next message, including deleted messages (`rmail-next-message'). `M-p' Move to the previous message, including deleted messages (`rmail-previous-message'). `j' Move to the first message. With argument N, move to message number N (`rmail-show-message'). `>' Move to the last message (`rmail-last-message'). `<' Move to the first message (`rmail-first-message'). `M-s REGEXP ' Move to the next message containing a match for REGEXP (`rmail-search'). `- M-s REGEXP ' Move to the previous message containing a match for REGEXP. `n' and `p' are the usual way of moving among messages in Rmail. They move through the messages sequentially, but skip over deleted messages, which is usually what you want to do. Their command definitions are named `rmail-next-undeleted-message' and `rmail-previous-undeleted-message'. If you do not want to skip deleted messages--for example, if you want to move to a message to undelete it--use the variants `M-n' and `M-p' (`rmail-next-message' and `rmail-previous-message'). A numeric argument to any of these commands serves as a repeat count. In Rmail, you can specify a numeric argument by typing just the digits. You don't need to type `C-u' first. The `M-s' (`rmail-search') command is Rmail's version of search. The usual incremental search command `C-s' works in Rmail, but it searches only within the current message. The purpose of `M-s' is to search for another message. It reads a regular expression (*note Regexps::) nonincrementally, then searches starting at the beginning of the following message for a match. It then selects that message. If REGEXP is empty, `M-s' reuses the regexp used the previous time. To search backward in the file for another message, give `M-s' a negative argument. In Rmail you can do this with `- M-s'. It is also possible to search for a message based on labels. *Note Rmail Labels::. To move to a message specified by absolute message number, use `j' (`rmail-show-message') with the message number as argument. With no argument, `j' selects the first message. `<' (`rmail-first-message') also selects the first message. `>' (`rmail-last-message') selects the last message. Deleting Messages ================= When you no longer need to keep a message, you can "delete" it. This flags it as ignorable, and some Rmail commands pretend it is no longer present; but it still has its place in the Rmail file, and still has its message number. "Expunging" the Rmail file actually removes the deleted messages. The remaining messages are renumbered consecutively. Expunging is the only action that changes the message number of any message, except for undigestifying (*note Rmail Digest::). `d' Delete the current message, and move to the next nondeleted message (`rmail-delete-forward'). `C-d' Delete the current message, and move to the previous nondeleted message (`rmail-delete-backward'). `u' Undelete the current message, or move back to a deleted message and undelete it (`rmail-undelete-previous-message'). `x' Expunge the Rmail file (`rmail-expunge'). There are two Rmail commands for deleting messages. Both delete the current message and select another message. `d' (`rmail-delete-forward') moves to the following message, skipping messages already deleted, while `C-d' (`rmail-delete-backward') moves to the previous nondeleted message. If there is no nondeleted message to move to in the specified direction, the message that was just deleted remains current. A numeric argument to either command reverses the direction of motion after deletion. Whenever Rmail deletes a message, it runs the hook `rmail-delete-message-hook'. When the hook functions are invoked, the message has been marked deleted, but it is still the current message in the Rmail buffer. To make all the deleted messages finally vanish from the Rmail file, type `x' (`rmail-expunge'). Until you do this, you can still "undelete" the deleted messages. The undeletion command, `u' (`rmail-undelete-previous-message'), is designed to cancel the effect of a `d' command in most cases. It undeletes the current message if the current message is deleted. Otherwise it moves backward to previous messages until a deleted message is found, and undeletes that message. You can usually undo a `d' with a `u' because the `u' moves back to and undeletes the message that the `d' deleted. But this does not work when the `d' skips a few already-deleted messages that follow the message being deleted; then the `u' command undeletes the last of the messages that were skipped. There is no clean way to avoid this problem. However, by repeating the `u' command, you can eventually get back to the message that you intend to undelete. You can also select a particular deleted message with the `M-p' command, then type `u' to undelete it. A deleted message has the `deleted' attribute, and as a result `deleted' appears in the mode line when the current message is deleted. In fact, deleting or undeleting a message is nothing more than adding or removing this attribute. *Note Rmail Attributes::. Rmail Files and Inboxes ======================= The operating system places incoming mail for you in a file that we call your "inbox". When you start up Rmail, it runs a C program called `movemail' to copy the new messages from your inbox into your primary Rmail file, which also contains other messages saved from previous Rmail sessions. It is in this file that you actually read the mail with Rmail. This operation is called "getting new mail". You can get new mail at any time in Rmail by typing `g'. The variable `rmail-primary-inbox-list' contains a list of the files which are inboxes for your primary Rmail file. If you don't set this variable explicitly, it is initialized from the `MAIL' environment variable, or, as a last resort, set to `nil', which means to use the default inbox. The default inbox is `/var/mail/USERNAME', `/usr/spool/mail/USERNAME', or `/usr/mail/USERNAME', depending on your operating system. To see what the default is on your system, use `C-h v rmail-primary-inbox '. You can specify the inbox file(s) for any Rmail file with the command `set-rmail-inbox-list'; see *Note Rmail Files::. There are two reasons for having separate Rmail files and inboxes. 1. The inbox file format varies between operating systems and according to the other mail software in use. Only one part of Rmail needs to know about the alternatives, and it need only understand how to convert all of them to Rmail's own format. 2. It is very cumbersome to access an inbox file without danger of losing mail, because it is necessary to interlock with mail delivery. Moreover, different operating systems use different interlocking techniques. The strategy of moving mail out of the inbox once and for all into a separate Rmail file avoids the need for interlocking in all the rest of Rmail, since only Rmail operates on the Rmail file. Rmail was written to use Babyl format as its internal format. Since then, we have recognized that the usual inbox format on Unix and GNU systems is adequate for the job, and we plan to change Rmail to use that as its internal format. However, the Rmail file will still be separate from the inbox file, even on systems where their format is the same. Multiple Rmail Files ==================== Rmail operates by default on your "primary Rmail file", which is named `~/RMAIL' and receives your incoming mail from your system inbox file. But you can also have other Rmail files and edit them with Rmail. These files can receive mail through their own inboxes, or you can move messages into them with explicit Rmail commands (*note Rmail Output::). `i FILE ' Read FILE into Emacs and run Rmail on it (`rmail-input'). `M-x set-rmail-inbox-list FILES ' Specify inbox file names for current Rmail file to get mail from. `g' Merge new mail from current Rmail file's inboxes (`rmail-get-new-mail'). `C-u g FILE ' Merge new mail from inbox file FILE. To run Rmail on a file other than your primary Rmail file, you may use the `i' (`rmail-input') command in Rmail. This visits the file in Rmail mode. You can use `M-x rmail-input' even when not in Rmail. The file you read with `i' should normally be a valid Rmail file. If it is not, Rmail tries to decompose it into a stream of messages in various known formats. If it succeeds, it converts the whole file to an Rmail file. If you specify a file name that doesn't exist, `i' initializes a new buffer for creating a new Rmail file. You can also select an Rmail file from a menu. Choose first the menu bar Classify item, then from the Classify menu choose the Input Rmail File item; then choose the Rmail file you want. The variables `rmail-secondary-file-directory' and `rmail-secondary-file-regexp' specify which files to offer in the menu: the first variable says which directory to find them in; the second says which files in that directory to offer (all those that match the regular expression). These variables also apply to choosing a file for output (*note Rmail Output::). Each Rmail file can contain a list of inbox file names; you can specify this list with `M-x set-rmail-inbox-list FILES '. The argument can contain any number of file names, separated by commas. It can also be empty, which specifies that this file should have no inboxes. Once a list of inboxes is specified, the Rmail file remembers it permanently until you specify a different list. As a special exception, if your primary Rmail file does not specify any inbox files, it uses your standard system inbox. The `g' command (`rmail-get-new-mail') merges mail into the current Rmail file from its specified inboxes. If the Rmail file has no inboxes, `g' does nothing. The command `M-x rmail' also merges new mail into your primary Rmail file. To merge mail from a file that is not the usual inbox, give the `g' key a numeric argument, as in `C-u g'. Then it reads a file name and merges mail from that file. The inbox file is not deleted or changed in any way when `g' with an argument is used. This is, therefore, a general way of merging one file of messages into another. Copying Messages Out to Files ============================= These commands copy messages from an Rmail file into another file. `o FILE ' Append a copy of the current message to the file FILE, using Rmail file format by default (`rmail-output-to-rmail-file'). `C-o FILE ' Append a copy of the current message to the file FILE, using system inbox file format by default (`rmail-output'). `w FILE ' Output just the message body to the file FILE, taking the default file name from the message `Subject' header. The commands `o' and `C-o' copy the current message into a specified file. This file may be an Rmail file or it may be in system inbox format; the output commands ascertain the file's format and write the copied message in that format. The `o' and `C-o' commands differ in two ways: each has its own separate default file name, and each specifies a choice of format to use when the file does not already exist. The `o' command uses Rmail format when it creates a new file, while `C-o' uses system inbox format for a new file. The default file name for `o' is the file name used last with `o', and the default file name for `C-o' is the file name used last with `C-o'. If the output file is an Rmail file currently visited in an Emacs buffer, the output commands copy the message into that buffer. It is up to you to save the buffer eventually in its file. Sometimes you may receive a message whose body holds the contents of a file. You can save the body to a file (excluding the message header) with the `w' command (`rmail-output-body-to-file'). Often these messages contain the intended file name in the `Subject' field, so the `w' command uses the `Subject' field as the default for the output file name. However, the file name is read using the minibuffer, so you can specify a different name if you wish. You can also output a message to an Rmail file chosen with a menu. Choose first the menu bar Classify item, then from the Classify menu choose the Output Rmail File menu item; then choose the Rmail file you want. This outputs the current message to that file, like the `o' command. The variables `rmail-secondary-file-directory' and `rmail-secondary-file-regexp' specify which files to offer in the menu: the first variable says which directory to find them in; the second says which files in that directory to offer (all those that match the regular expression). Copying a message gives the original copy of the message the `filed' attribute, so that `filed' appears in the mode line when such a message is current. If you like to keep just a single copy of every mail message, set the variable `rmail-delete-after-output' to `t'; then the `o' and `C-o' commands delete the original message after copying it. (You can undelete the original afterward if you wish.) Copying messages into files in system inbox format uses the header fields that are displayed in Rmail at the time. Thus, if you use the `t' command to view the entire header and then copy the message, the entire header is copied. *Note Rmail Display::. The variable `rmail-output-file-alist' lets you specify intelligent defaults for the output file, based on the contents of the current message. The value should be a list whose elements have this form: (REGEXP . NAME-EXP) If there's a match for REGEXP in the current message, then the default file name for output is NAME-EXP. If multiple elements match the message, the first matching element decides the default file name. The subexpression NAME-EXP may be a string constant giving the file name to use, or more generally it may be any Lisp expression that returns a file name as a string. `rmail-output-file-alist' applies to both `o' and `C-o'. Labels ====== Each message can have various "labels" assigned to it as a means of classification. Each label has a name; different names are different labels. Any given label is either present or absent on a particular message. A few label names have standard meanings and are given to messages automatically by Rmail when appropriate; these special labels are called "attributes". (*Note Rmail Attributes::.) All other labels are assigned only by users. `a LABEL ' Assign the label LABEL to the current message (`rmail-add-label'). `k LABEL ' Remove the label LABEL from the current message (`rmail-kill-label'). `C-M-n LABELS ' Move to the next message that has one of the labels LABELS (`rmail-next-labeled-message'). `C-M-p LABELS ' Move to the previous message that has one of the labels LABELS (`rmail-previous-labeled-message'). `C-M-l LABELS ' Make a summary of all messages containing any of the labels LABELS (`rmail-summary-by-labels'). The `a' (`rmail-add-label') and `k' (`rmail-kill-label') commands allow you to assign or remove any label on the current message. If the LABEL argument is empty, it means to assign or remove the same label most recently assigned or removed. Once you have given messages labels to classify them as you wish, there are two ways to use the labels: in moving and in summaries. The command `C-M-n LABELS ' (`rmail-next-labeled-message') moves to the next message that has one of the labels LABELS. The argument LABELS specifies one or more label names, separated by commas. `C-M-p' (`rmail-previous-labeled-message') is similar, but moves backwards to previous messages. A numeric argument to either command serves as a repeat count. The command `C-M-l LABELS ' (`rmail-summary-by-labels') displays a summary containing only the messages that have at least one of a specified set of labels. The argument LABELS is one or more label names, separated by commas. *Note Rmail Summary::, for information on summaries. If the LABELS argument to `C-M-n', `C-M-p' or `C-M-l' is empty, it means to use the last set of labels specified for any of these commands. Rmail Attributes ================ Some labels such as `deleted' and `filed' have built-in meanings and are assigned to or removed from messages automatically at appropriate times; these labels are called "attributes". Here is a list of Rmail attributes: `unseen' Means the message has never been current. Assigned to messages when they come from an inbox file, and removed when a message is made current. When you start Rmail, it initially shows the first message that has this attribute. `deleted' Means the message is deleted. Assigned by deletion commands and removed by undeletion commands (*note Rmail Deletion::). `filed' Means the message has been copied to some other file. Assigned by the file output commands (*note Rmail Files::). `answered' Means you have mailed an answer to the message. Assigned by the `r' command (`rmail-reply'). *Note Rmail Reply::. `forwarded' Means you have forwarded the message. Assigned by the `f' command (`rmail-forward'). *Note Rmail Reply::. `edited' Means you have edited the text of the message within Rmail. *Note Rmail Editing::. `resent' Means you have resent the message. Assigned by the command `M-x rmail-resend'. *Note Rmail Reply::. All other labels are assigned or removed only by the user, and have no standard meaning. Sending Replies =============== Rmail has several commands that use Mail mode to send outgoing mail. *Note Sending Mail::, for information on using Mail mode, including certain features meant to work with Rmail. What this section documents are the special commands of Rmail for entering Mail mode. Note that the usual keys for sending mail--`C-x m', `C-x 4 m', and `C-x 5 m'--are available in Rmail mode and work just as they usually do. `m' Send a message (`rmail-mail'). `c' Continue editing the already started outgoing message (`rmail-continue'). `r' Send a reply to the current Rmail message (`rmail-reply'). `f' Forward the current message to other users (`rmail-forward'). `C-u f' Resend the current message to other users (`rmail-resend'). `M-m' Try sending a bounced message a second time (`rmail-retry-failure'). The most common reason to send a message while in Rmail is to reply to the message you are reading. To do this, type `r' (`rmail-reply'). This displays the `*mail*' buffer in another window, much like `C-x 4 m', but preinitializes the `Subject', `To', `CC' and `In-reply-to' header fields based on the message you are replying to. The `To' field starts out as the address of the person who sent the message you received, and the `CC' field starts out with all the other recipients of that message. You can exclude certain recipients from being placed automatically in the `CC', using the variable `rmail-dont-reply-to-names'. Its value should be a regular expression (as a string); any recipient that the regular expression matches, is excluded from the `CC' field. The default value matches your own name, and any name starting with `info-'. (Those names are excluded because there is a convention of using them for large mailing lists to broadcast announcements.) To omit the `CC' field completely for a particular reply, enter the reply command with a numeric argument: `C-u r' or `1 r'. Once the `*mail*' buffer has been initialized, editing and sending the mail goes as usual (*note Sending Mail::). You can edit the presupplied header fields if they are not right for you. You can also use the commands of Mail mode (*note Mail Mode::), including `C-c C-y' which yanks in the message that you are replying to. You can switch to the Rmail buffer, select a different message there, switch back, and yank the new current message. Sometimes a message does not reach its destination. Mailers usually send the failed message back to you, enclosed in a "failure message". The Rmail command `M-m' (`rmail-retry-failure') prepares to send the same message a second time: it sets up a `*mail*' buffer with the same text and header fields as before. If you type `C-c C-c' right away, you send the message again exactly the same as the first time. Alternatively, you can edit the text or headers and then send it. The variable `rmail-retry-ignored-headers', in the same format as `rmail-ignored-headers' (*note Rmail Display::), controls which headers are stripped from the failed message when retrying it. Another frequent reason to send mail in Rmail is to "forward" the current message to other users. `f' (`rmail-forward') makes this easy by preinitializing the `*mail*' buffer with the current message as the text, and a subject designating a forwarded message. All you have to do is fill in the recipients and send. When you forward a message, recipients get a message which is "from" you, and which has the original message in its contents. Forwarding a message encloses it between two delimiter lines. It also modifies every line that starts with a dash, by inserting `- ' at the start of the line. When you receive a forwarded message, if it contains something besides ordinary text--for example, program source code--you might find it useful to undo that transformation. You can do this by selecting the forwarded message and typing `M-x unforward-rmail-message'. This command extracts the original forwarded message, deleting the inserted `- ' strings, and inserts it into the Rmail file as a separate message immediately following the current one. "Resending" is an alternative similar to forwarding; the difference is that resending sends a message that is "from" the original sender, just as it reached you--with a few added header fields `Resent-From' and `Resent-To' to indicate that it came via you. To resend a message in Rmail, use `C-u f'. (`f' runs `rmail-forward', which is programmed to invoke `rmail-resend' if you provide a numeric argument.) The `m' (`rmail-mail') command is used to start editing an outgoing message that is not a reply. It leaves the header fields empty. Its only difference from `C-x 4 m' is that it makes the Rmail buffer accessible for `C-c C-y', just as `r' does. Thus, `m' can be used to reply to or forward a message; it can do anything `r' or `f' can do. The `c' (`rmail-continue') command resumes editing the `*mail*' buffer, to finish editing an outgoing message you were already composing, or to alter a message you have sent. If you set the variable `rmail-mail-new-frame' to a non-`nil' value, then all the Rmail commands to start sending a message create a new frame to edit it in. This frame is deleted when you send the message, or when you use the `Cancel' item in the `Mail' menu. All the Rmail commands to send a message use the mail-composition method that you have chosen (*note Mail Methods::). Summaries ========= A "summary" is a buffer containing one line per message to give you an overview of the mail in an Rmail file. Each line shows the message number and date, the sender, the line count, the labels, and the subject. Moving point in the summary buffer selects messages as you move to their summary lines. Almost all Rmail commands are valid in the summary buffer also; when used there, they apply to the message described by the current line of the summary. A summary buffer applies to a single Rmail file only; if you are editing multiple Rmail files, each one can have its own summary buffer. The summary buffer name is made by appending `-summary' to the Rmail buffer's name. Normally only one summary buffer is displayed at a time. Making Summaries ---------------- Here are the commands to create a summary for the current Rmail file. Once the Rmail file has a summary buffer, changes in the Rmail file (such as deleting or expunging messages, and getting new mail) automatically update the summary. `h' `C-M-h' Summarize all messages (`rmail-summary'). `l LABELS ' `C-M-l LABELS ' Summarize messages that have one or more of the specified labels (`rmail-summary-by-labels'). `C-M-r RCPTS ' Summarize messages that have one or more of the specified recipients (`rmail-summary-by-recipients'). `C-M-t TOPIC ' Summarize messages that have a match for the specified regexp TOPIC in their subjects (`rmail-summary-by-topic'). `C-M-s REGEXP' Summarize messages whose headers and the subject line match the specified regular expression REGEXP (`rmail-summary-by-regexp'). The `h' or `C-M-h' (`rmail-summary') command fills the summary buffer for the current Rmail file with a summary of all the messages in the file. It then displays and selects the summary buffer in another window. `C-M-l LABELS ' (`rmail-summary-by-labels') makes a partial summary mentioning only the messages that have one or more of the labels LABELS. LABELS should contain label names separated by commas. `C-M-r RCPTS ' (`rmail-summary-by-recipients') makes a partial summary mentioning only the messages that have one or more of the recipients RCPTS. RCPTS should contain mailing addresses separated by commas. `C-M-t TOPIC ' (`rmail-summary-by-topic') makes a partial summary mentioning only the messages whose subjects have a match for the regular expression TOPIC. `C-M-s REGEXP ' (`rmail-summary-by-regexp') makes a partial summary which mentions only the messages whose headers (including the date and the subject lines) match the regular expression REGEXP. Note that there is only one summary buffer for any Rmail file; making one kind of summary discards any previously made summary. The variable `rmail-summary-window-size' says how many lines to use for the summary window. The variable `rmail-summary-line-count-flag' controls whether the summary line for a message should include the line count of the message. Editing in Summaries -------------------- You can use the Rmail summary buffer to do almost anything you can do in the Rmail buffer itself. In fact, once you have a summary buffer, there's no need to switch back to the Rmail buffer. You can select and display various messages in the Rmail buffer, from the summary buffer, just by moving point in the summary buffer to different lines. It doesn't matter what Emacs command you use to move point; whichever line point is on at the end of the command, that message is selected in the Rmail buffer. Almost all Rmail commands work in the summary buffer as well as in the Rmail buffer. Thus, `d' in the summary buffer deletes the current message, `u' undeletes, and `x' expunges. `o' and `C-o' output the current message to a file; `r' starts a reply to it. You can scroll the current message while remaining in the summary buffer using and . The Rmail commands to move between messages also work in the summary buffer, but with a twist: they move through the set of messages included in the summary. They also ensure the Rmail buffer appears on the screen (unlike cursor motion commands, which update the contents of the Rmail buffer but don't display it in a window unless it already appears). Here is a list of these commands: `n' Move to next line, skipping lines saying `deleted', and select its message. `p' Move to previous line, skipping lines saying `deleted', and select its message. `M-n' Move to next line and select its message. `M-p' Move to previous line and select its message. `>' Move to the last line, and select its message. `<' Move to the first line, and select its message. `M-s PATTERN ' Search through messages for PATTERN starting with the current message; select the message found, and move point in the summary buffer to that message's line. Deletion, undeletion, and getting new mail, and even selection of a different message all update the summary buffer when you do them in the Rmail buffer. If the variable `rmail-redisplay-summary' is non-`nil', these actions also bring the summary buffer back onto the screen. When you are finished using the summary, type `Q' (`rmail-summary-wipe') to delete the summary buffer's window. You can also exit Rmail while in the summary: `q' (`rmail-summary-quit') deletes the summary window, then exits from Rmail by saving the Rmail file and switching to another buffer. Sorting the Rmail File ====================== `M-x rmail-sort-by-date' Sort messages of current Rmail file by date. `M-x rmail-sort-by-subject' Sort messages of current Rmail file by subject. `M-x rmail-sort-by-author' Sort messages of current Rmail file by author's name. `M-x rmail-sort-by-recipient' Sort messages of current Rmail file by recipient's names. `M-x rmail-sort-by-correspondent' Sort messages of current Rmail file by the name of the other correspondent. `M-x rmail-sort-by-lines' Sort messages of current Rmail file by size (number of lines). `M-x rmail-sort-by-keywords LABELS ' Sort messages of current Rmail file by labels. The argument LABELS should be a comma-separated list of labels. The order of these labels specifies the order of messages; messages with the first label come first, messages with the second label come second, and so on. Messages which have none of these labels come last. The Rmail sort commands perform a _stable sort_: if there is no reason to prefer either one of two messages, their order remains unchanged. You can use this to sort by more than one criterion. For example, if you use `rmail-sort-by-date' and then `rmail-sort-by-author', messages from the same author appear in order by date. With a numeric argument, all these commands reverse the order of comparison. This means they sort messages from newest to oldest, from biggest to smallest, or in reverse alphabetical order. Display of Messages =================== Rmail reformats the header of each message before displaying it for the first time. Reformatting hides uninteresting header fields to reduce clutter. You can use the `t' command to show the entire header or to repeat the header reformatting operation. `t' Toggle display of complete header (`rmail-toggle-header'). Reformatting the header involves deleting most header fields, on the grounds that they are not interesting. The variable `rmail-ignored-headers' holds a regular expression that specifies which header fields to hide in this way--if it matches the beginning of a header field, that whole field is hidden. Rmail saves the complete original header before reformatting; to see it, use the `t' command (`rmail-toggle-header'). This discards the reformatted headers of the current message and displays it with the original header. Repeating `t' reformats the message again. Selecting the message again also reformats. One consequence of this is that if you edit the reformatted header (using `e'; *note Rmail Editing::), subsequent use of `t' will discard your edits. On the other hand, if you use `e' after `t', to edit the original (unreformatted) header, those changes are permanent. When the `t' command has a prefix argument, a positive argument means to show the reformatted header, and a zero or negative argument means to show the full header. When the terminal supports multiple fonts or colors, Rmail highlights certain header fields that are especially interesting--by default, the `From' and `Subject' fields. The variable `rmail-highlighted-headers' holds a regular expression that specifies the header fields to highlight; if it matches the beginning of a header field, that whole field is highlighted. If you specify unusual colors for your text foreground and background, the colors used for highlighting may not go well with them. If so, specify different colors for the face `rmail-highlight-face'. *Note Faces::, for how to do this. To turn off highlighting entirely in Rmail, set `rmail-highlighted-headers' to `nil'. You can highlight and activate URLs in incoming messages by adding the function `goto-address' to the hook `rmail-show-message-hook'. Then you can browse these URLs by clicking on them with `Mouse-2' or by moving to one and typing `C-c '. *Note Activating URLs: Goto-address. Rmail and Coding Systems ======================== Rmail automatically decodes messages which contain non-ASCII characters, just as Emacs does with files you visit and with subprocess output. Rmail uses the standard `charset=CHARSET' header in the message, if any, to determine how the message was encoded by the sender. It maps CHARSET into the corresponding Emacs coding system (*note Coding Systems::), and uses that coding system to decode message text. If the message header doesn't have the `charset' specification, or if CHARSET is not recognized, Rmail chooses the coding system with the usual Emacs heuristics and defaults (*note Recognize Coding::). Occasionally, a message is decoded incorrectly, either because Emacs guessed the wrong coding system in the absence of the `charset' specification, or because the specification was inaccurate. For example, a misconfigured mailer could send a message with a `charset=iso-8859-1' header when the message is actually encoded in `koi8-r'. When you see the message text garbled, or some of its characters displayed as empty boxes, this may have happened. You can correct the problem by decoding the message again using the right coding system, if you can figure out or guess which one is right. To do this, invoke the `M-x rmail-redecode-body' command. It reads the name of a coding system, encodes the message body using whichever coding system was used to decode it before, then redecodes it using the coding system you specified. If you specified the right coding system, the result should be readable. Decoding and encoding using the wrong coding system is lossless for most encodings, in particular with 8-bit encodings such as iso-8859 or koi8. So, if the initial attempt to redecode the message didn't result in a legible text, you can try other coding systems until you succeed. With some coding systems, notably those from the iso-2022 family, information can be lost in decoding, so that encoding the message again won't bring back the original incoming text. In such a case, `rmail-redecode-body' cannot work. However, the problems that call for use of `rmail-redecode-body' rarely occur with those coding systems. So in practice the command works when you need it. Editing Within a Message ======================== Most of the usual Emacs commands are available in Rmail mode, though a few, such as `C-M-n' and `C-M-h', are redefined by Rmail for other purposes. However, the Rmail buffer is normally read only, and most of the letters are redefined as Rmail commands. If you want to edit the text of a message, you must use the Rmail command `e'. `e' Edit the current message as ordinary text. The `e' command (`rmail-edit-current-message') switches from Rmail mode into Rmail Edit mode, another major mode which is nearly the same as Text mode. The mode line indicates this change. In Rmail Edit mode, letters insert themselves as usual and the Rmail commands are not available. When you are finished editing the message and are ready to go back to Rmail, type `C-c C-c', which switches back to Rmail mode. Alternatively, you can return to Rmail mode but cancel all the editing that you have done, by typing `C-c C-]'. Entering Rmail Edit mode runs the hook `text-mode-hook'; then it runs the hook `rmail-edit-mode-hook' (*note Hooks::). It adds the attribute `edited' to the message. It also displays the full headers of the message, so that you can edit the headers as well as the body of the message, and your changes in the headers will be permanent. Digest Messages =============== A "digest message" is a message which exists to contain and carry several other messages. Digests are used on some moderated mailing lists; all the messages that arrive for the list during a period of time such as one day are put inside a single digest which is then sent to the subscribers. Transmitting the single digest uses much less computer time than transmitting the individual messages even though the total size is the same, because the per-message overhead in network mail transmission is considerable. When you receive a digest message, the most convenient way to read it is to "undigestify" it: to turn it back into many individual messages. Then you can read and delete the individual messages as it suits you. To do this, select the digest message and type the command `M-x undigestify-rmail-message'. This extracts the submessages as separate Rmail messages, and inserts them following the digest. The digest message itself is flagged as deleted. Converting an Rmail File to Inbox Format ======================================== The command `M-x unrmail' converts a file in Rmail format to inbox format (also known as the system mailbox, or mbox, format), so that you can use it with other mail-editing tools. You must specify two arguments, the name of the Rmail file and the name to use for the converted file. `M-x unrmail' does not alter the Rmail file itself. `M-x unrmail' is useful if you can run Emacs on the machine where the Rmail file resides, or can access the Rmail file remotely (*note Remote Files::) from a machine where Emacs is installed. If accessing Rmail files from Emacs is impossible, you can use the `b2m' program instead. `b2m' is part of the Emacs distribution, it is installed into the same directory where all the other auxiliary programs (`etags' etc.) are installed, and its source is available in the Emacs source distribution, so that you could copy the source to the target machine and compile it there. To convert a file `BABYL-FILE' into `MBOX-FILE', invoke `b2m' like this: b2m < BABYL-FILE > MBOX-FILE Reading Rot13 Messages ====================== Mailing list messages that might offend some readers are sometimes encoded in a simple code called "rot13"--so named because it rotates the alphabet by 13 letters. This code is not for secrecy, as it provides none; rather, it enables those who might be offended to avoid ever seeing the real text of the message. To view a buffer using the rot13 code, use the command `M-x rot13-other-window'. This displays the current buffer in another window which applies the code when displaying the text. `movemail' and POP ================== When getting new mail, Rmail first copies the new mail from the inbox file to the Rmail file; then it saves the Rmail file; then it truncates the inbox file. This way, a system crash may cause duplication of mail between the inbox and the Rmail file, but cannot lose mail. If `rmail-preserve-inbox' is non-`nil', then Rmail will copy new mail from the inbox file to the Rmail file without truncating the inbox file. You may wish to set this, for example, on a portable computer you use to check your mail via POP while traveling, so that your mail will remain on the server and you can save it later on your workstation. In some cases, Rmail copies the new mail from the inbox file indirectly. First it runs the `movemail' program to move the mail from the inbox to an intermediate file called `~/.newmail-INBOXNAME'. Then Rmail merges the new mail from that file, saves the Rmail file, and only then deletes the intermediate file. If there is a crash at the wrong time, this file continues to exist, and Rmail will use it again the next time it gets new mail from that inbox. If Rmail is unable to convert the data in `~/.newmail-INBOXNAME' into Babyl format, it renames the file to `~/RMAILOSE.N' (N is an integer chosen to make the name unique) so that Rmail will not have trouble with the data again. You should look at the file, find whatever message confuses Rmail (probably one that includes the control-underscore character, octal code 037), and delete it. Then you can use `1 g' to get new mail from the corrected file. Some sites use a method called POP for accessing users' inbox data instead of storing the data in inbox files. `movemail' can work with POP if you compile it with the macro `MAIL_USE_POP' defined. (You can achieve that by specifying `--with-pop' when you run `configure' during the installation of Emacs.) `movemail' only works with POP3, not with older versions of POP. Assuming you have compiled and installed `movemail' appropriately, you can specify a POP inbox by using a "file name" of the form `po:USERNAME', in the inbox list of an Rmail file. `movemail' handles such a name by opening a connection to the POP server. The `MAILHOST' environment variable specifies the machine to look for the server on; alternatively, you can specify the POP server host name as part of the mailbox name using the syntax `po:USERNAME:HOSTNAME'. Accessing mail via POP may require a password. If the variable `rmail-pop-password' is non-`nil', it specifies the password to use for POP. Alternatively, if `rmail-pop-password-required' is non-`nil', then Rmail asks you for the password to use. If you need to pass additional command-line flags to `movemail', set the variable `rmail-movemail-flags' a list of the flags you wish to use. Do not use this variable to pass the `-p' flag to preserve your inbox contents; use `rmail-preserve-inbox' instead. The `movemail' program installed at your site may support Kerberos authentication. If it is supported, it is used by default whenever you attempt to retrieve POP mail when `rmail-pop-password' and `rmail-pop-password-required' are unset. Some POP servers store messages in reverse order. If your server does this, and you would rather read your mail in the order in which it was received, you can tell `movemail' to reverse the order of downloaded messages by adding the `-r' flag to `rmail-movemail-flags'. Dired, the Directory Editor *************************** Dired makes an Emacs buffer containing a listing of a directory, and optionally some of its subdirectories as well. You can use the normal Emacs commands to move around in this buffer, and special Dired commands to operate on the files listed. The Dired buffer is "read-only," and inserting text in it is not useful, so ordinary printing characters such as `d' and `x' are used for special Dired commands. Some Dired commands "mark" or "flag" the "current file" (that is, the file on the current line); other commands operate on the marked files or on the flagged files. The Dired-X package provides various extra features for Dired mode. *Note Dired-X: (dired-x)Top. Entering Dired ============== To invoke Dired, do `C-x d' or `M-x dired'. The command reads a directory name or wildcard file name pattern as a minibuffer argument to specify which files to list. Where `dired' differs from `list-directory' is in putting the buffer into Dired mode so that the special commands of Dired are available. The variable `dired-listing-switches' specifies the options to give to `ls' for listing directory; this string _must_ contain `-l'. If you use a numeric prefix argument with the `dired' command, you can specify the `ls' switches with the minibuffer before you enter the directory specification. To display the Dired buffer in another window rather than in the selected window, use `C-x 4 d' (`dired-other-window') instead of `C-x d'. `C-x 5 d' (`dired-other-frame') uses a separate frame to display the Dired buffer. Navigation in the Dired Buffer ============================== All the usual Emacs cursor motion commands are available in Dired buffers. Some special-purpose cursor motion commands are also provided. The keys `C-n' and `C-p' are redefined to put the cursor at the beginning of the file name on the line, rather than at the beginning of the line. For extra convenience, and `n' in Dired are equivalent to `C-n'. `p' is equivalent to `C-p'. (Moving by lines is so common in Dired that it deserves to be easy to type.) (move up and unflag) is often useful simply for moving up. Some additional navigation commands are available when the Dired buffer includes several directories. *Note Subdirectory Motion::. Deleting Files with Dired ========================= One of the most frequent uses of Dired is to first "flag" files for deletion, then delete the files that were flagged. `d' Flag this file for deletion. `u' Remove deletion flag on this line. `' Move point to previous line and remove the deletion flag on that line. `x' Delete the files that are flagged for deletion. You can flag a file for deletion by moving to the line describing the file and typing `d' (`dired-flag-file-deletion'). The deletion flag is visible as a `D' at the beginning of the line. This command moves point to the next line, so that repeated `d' commands flag successive files. A numeric argument serves as a repeat count. The variable `dired-recursive-deletes' controls whether the delete command will delete non-empty directories (including their contents). The default is to delete only empty directories. The files are flagged for deletion rather than deleted immediately to reduce the danger of deleting a file accidentally. Until you direct Dired to delete the flagged files, you can remove deletion flags using the commands `u' and . `u' (`dired-unmark') works just like `d', but removes flags rather than making flags. (`dired-unmark-backward') moves upward, removing flags; it is like `u' with argument -1. To delete the flagged files, type `x' (`dired-do-flagged-delete'). (This is also known as "expunging".) This command first displays a list of all the file names flagged for deletion, and requests confirmation with `yes'. If you confirm, Dired deletes the flagged files, then deletes their lines from the text of the Dired buffer. The shortened Dired buffer remains selected. If you answer `no' or quit with `C-g' when asked to confirm, you return immediately to Dired, with the deletion flags still present in the buffer, and no files actually deleted. Flagging Many Files at Once =========================== `#' Flag all auto-save files (files whose names start and end with `#') for deletion (*note Auto Save::). `~' Flag all backup files (files whose names end with `~') for deletion (*note Backup::). `&' Flag for deletion all files with certain kinds of names, names that suggest you could easily create the files again. `. (Period)' Flag excess numeric backup files for deletion. The oldest and newest few backup files of any one file are exempt; the middle ones are flagged. `% d REGEXP ' Flag for deletion all files whose names match the regular expression REGEXP. The `#', `~', `&', and `.' commands flag many files for deletion, based on their file names. These commands are useful precisely because they do not themselves delete any files; you can remove the deletion flags from any flagged files that you really wish to keep. `&' (`dired-flag-garbage-files') flags files whose names match the regular expression specified by the variable `dired-garbage-files-regexp'. By default, this matches certain files produced by TeX, `.bak' files, and the `.orig' and `.rej' files produced by `patch'. `#' (`dired-flag-auto-save-files') flags for deletion all files whose names look like auto-save files (*note Auto Save::)--that is, files whose names begin and end with `#'. `~' (`dired-flag-backup-files') flags for deletion all files whose names say they are backup files (*note Backup::)--that is, files whose names end in `~'. `.' (period, `dired-clean-directory') flags just some of the backup files for deletion: all but the oldest few and newest few backups of any one file. Normally `dired-kept-versions' (*not* `kept-new-versions'; that applies only when saving) specifies the number of newest versions of each file to keep, and `kept-old-versions' specifies the number of oldest versions to keep. Period with a positive numeric argument, as in `C-u 3 .', specifies the number of newest versions to keep, overriding `dired-kept-versions'. A negative numeric argument overrides `kept-old-versions', using minus the value of the argument to specify the number of oldest versions of each file to keep. The `% d' command flags all files whose names match a specified regular expression (`dired-flag-files-regexp'). Only the non-directory part of the file name is used in matching. You can use `^' and `$' to anchor matches. You can exclude subdirectories by hiding them (*note Hiding Subdirectories::). Visiting Files in Dired ======================= There are several Dired commands for visiting or examining the files listed in the Dired buffer. All of them apply to the current line's file; if that file is really a directory, these commands invoke Dired on that subdirectory (making a separate Dired buffer). `f' Visit the file described on the current line, like typing `C-x C-f' and supplying that file name (`dired-find-file'). *Note Visiting::. `' `e' Equivalent to `f'. `a' Like `f', but replaces the contents of the Dired buffer with that of an alternate file or directory (`dired-find-alternate-file'). `o' Like `f', but uses another window to display the file's buffer (`dired-find-file-other-window'). The Dired buffer remains visible in the first window. This is like using `C-x 4 C-f' to visit the file. *Note Windows::. `C-o' Visit the file described on the current line, and display the buffer in another window, but do not select that window (`dired-display-file'). `Mouse-2' Visit the file named by the line you click on (`dired-mouse-find-file-other-window'). This uses another window to display the file, like the `o' command. `v' View the file described on the current line, using `M-x view-file' (`dired-view-file'). Viewing a file is like visiting it, but is slanted toward moving around in the file conveniently and does not allow changing the file. *Note View File: Misc File Ops. `^' Visit the parent directory of the current directory (`dired-up-directory'). This is more convenient than moving to the parent directory's line and typing `f' there. Dired Marks vs. Flags ===================== Instead of flagging a file with `D', you can "mark" the file with some other character (usually `*'). Most Dired commands to operate on files use the files marked with `*', the exception being `x' which deletes the flagged files. Here are some commands for marking with `*', or for unmarking or operating on marks. (*Note Dired Deletion::, for commands to flag and unflag files.) `m' `* m' Mark the current file with `*' (`dired-mark'). With a numeric argument N, mark the next N files starting with the current file. (If N is negative, mark the previous -N files.) `* *' Mark all executable files with `*' (`dired-mark-executables'). With a numeric argument, unmark all those files. `* @' Mark all symbolic links with `*' (`dired-mark-symlinks'). With a numeric argument, unmark all those files. `* /' Mark with `*' all files which are actually directories, except for `.' and `..' (`dired-mark-directories'). With a numeric argument, unmark all those files. `* s' Mark all the files in the current subdirectory, aside from `.' and `..' (`dired-mark-subdir-files'). `u' `* u' Remove any mark on this line (`dired-unmark'). `' `* ' Move point to previous line and remove any mark on that line (`dired-unmark-backward'). `* !' Remove all marks from all the files in this Dired buffer (`dired-unmark-all-marks'). `* ? MARKCHAR' Remove all marks that use the character MARKCHAR (`dired-unmark-all-files'). The argument is a single character--do not use to terminate it. See the description of the `* c' command below, which lets you replace one mark character with another. With a numeric argument, this command queries about each marked file, asking whether to remove its mark. You can answer `y' meaning yes, `n' meaning no, or `!' to remove the marks from the remaining files without asking about them. `* C-n' Move down to the next marked file (`dired-next-marked-file') A file is "marked" if it has any kind of mark. `* C-p' Move up to the previous marked file (`dired-prev-marked-file') `* t' Toggle all marks (`dired-do-toggle'): files marked with `*' become unmarked, and unmarked files are marked with `*'. Files marked in any other way are not affected. `* c OLD-MARKCHAR NEW-MARKCHAR' Replace all marks that use the character OLD-MARKCHAR with marks that use the character NEW-MARKCHAR (`dired-change-marks'). This command is the primary way to create or use marks other than `*' or `D'. The arguments are single characters--do not use to terminate them. You can use almost any character as a mark character by means of this command, to distinguish various classes of files. If OLD-MARKCHAR is a space (` '), then the command operates on all unmarked files; if NEW-MARKCHAR is a space, then the command unmarks the files it acts on. To illustrate the power of this command, here is how to put `D' flags on all the files that have no marks, while unflagging all those that already have `D' flags: * c D t * c SPC D * c t SPC This assumes that no files were already marked with `t'. `% m REGEXP ' `* % REGEXP ' Mark (with `*') all files whose names match the regular expression REGEXP (`dired-mark-files-regexp'). This command is like `% d', except that it marks files with `*' instead of flagging with `D'. *Note Flagging Many Files::. Only the non-directory part of the file name is used in matching. Use `^' and `$' to anchor matches. Exclude subdirectories by hiding them (*note Hiding Subdirectories::). `% g REGEXP ' Mark (with `*') all files whose _contents_ contain a match for the regular expression REGEXP (`dired-mark-files-containing-regexp'). This command is like `% m', except that it searches the file contents instead of the file name. `C-_' Undo changes in the Dired buffer, such as adding or removing marks (`dired-undo'). _This command does not revert the actual file operations, nor recover lost files!_ It just undoes changes in the buffer itself. For example, if used after renaming one or more files, `dired-undo' restores the original names, which will get the Dired buffer out of sync with the actual contents of the directory. Operating on Files ================== This section describes the basic Dired commands to operate on one file or several files. All of these commands are capital letters; all of them use the minibuffer, either to read an argument or to ask for confirmation, before they act. All of them give you several ways to specify which files to manipulate: * If you give the command a numeric prefix argument N, it operates on the next N files, starting with the current file. (If N is negative, the command operates on the -N files preceding the current line.) * Otherwise, if some files are marked with `*', the command operates on all those files. * Otherwise, the command operates on the current file only. Commands which ask for a destination directory, such as those which copy and rename files or create links for them, try to guess the default target directory for the operation. Normally, they suggest the Dired buffer's default directory, but if the variable `dired-dwim-target' is non-`nil', and if there is another Dired buffer displayed in the next window, that other buffer's directory is suggested instead. Here are the file-manipulating commands that operate on files in this way. (Some other Dired commands, such as `!' and the `%' commands, also use these conventions to decide which files to work on.) `C NEW ' Copy the specified files (`dired-do-copy'). The argument NEW is the directory to copy into, or (if copying a single file) the new name. If `dired-copy-preserve-time' is non-`nil', then copying with this command sets the modification time of the new file to be the same as that of the old file. The variable `dired-recursive-copies' controls whether directories are copied recursively. The default is to not copy recursively, which means that directories cannot be copied. `D' Delete the specified files (`dired-do-delete'). Like the other commands in this section, this command operates on the _marked_ files, or the next N files. By contrast, `x' (`dired-do-flagged-delete') deletes all "flagged" files. `R NEW ' Rename the specified files (`dired-do-rename'). The argument NEW is the directory to rename into, or (if renaming a single file) the new name. Dired automatically changes the visited file name of buffers associated with renamed files so that they refer to the new names. `H NEW ' Make hard links to the specified files (`dired-do-hardlink'). The argument NEW is the directory to make the links in, or (if making just one link) the name to give the link. `S NEW ' Make symbolic links to the specified files (`dired-do-symlink'). The argument NEW is the directory to make the links in, or (if making just one link) the name to give the link. `M MODESPEC ' Change the mode (also called "permission bits") of the specified files (`dired-do-chmod'). This uses the `chmod' program, so MODESPEC can be any argument that `chmod' can handle. `G NEWGROUP ' Change the group of the specified files to NEWGROUP (`dired-do-chgrp'). `O NEWOWNER ' Change the owner of the specified files to NEWOWNER (`dired-do-chown'). (On most systems, only the superuser can do this.) The variable `dired-chown-program' specifies the name of the program to use to do the work (different systems put `chown' in different places). `P COMMAND ' Print the specified files (`dired-do-print'). You must specify the command to print them with, but the minibuffer starts out with a suitable guess made using the variables `lpr-command' and `lpr-switches' (the same variables that `lpr-buffer' uses; *note Hardcopy::). `Z' Compress the specified files (`dired-do-compress'). If the file appears to be a compressed file already, it is uncompressed instead. `L' Load the specified Emacs Lisp files (`dired-do-load'). *Note Lisp Libraries::. `B' Byte compile the specified Emacs Lisp files (`dired-do-byte-compile'). *Note Byte Compilation: (elisp)Byte Compilation. `A REGEXP ' Search all the specified files for the regular expression REGEXP (`dired-do-search'). This command is a variant of `tags-search'. The search stops at the first match it finds; use `M-,' to resume the search and find the next match. *Note Tags Search::. `Q REGEXP TO ' Perform `query-replace-regexp' on each of the specified files, replacing matches for REGEXP with the string TO (`dired-do-query-replace-regexp'). This command is a variant of `tags-query-replace'. If you exit the query replace loop, you can use `M-,' to resume the scan and replace more matches. *Note Tags Search::. One special file-operation command is `+' (`dired-create-directory'). This command reads a directory name and creates the directory if it does not already exist. Shell Commands in Dired ======================= The Dired command `!' (`dired-do-shell-command') reads a shell command string in the minibuffer and runs that shell command on all the specified files. `X' is a synonym for `!'. You can specify the files to operate on in the usual ways for Dired commands (*note Operating on Files::). There are two ways of applying a shell command to multiple files: * If you use `*' in the shell command, then it runs just once, with the list of file names substituted for the `*'. The order of file names is the order of appearance in the Dired buffer. Thus, `! tar cf foo.tar * ' runs `tar' on the entire list of file names, putting them into one tar file `foo.tar'. * If the command string doesn't contain `*', then it runs once _for each file_, with the file name added at the end. For example, `! uudecode ' runs `uudecode' on each file. What if you want to run the shell command once for each file, with the file name inserted in the middle? You can use `?' in the command instead of `*'. The current file name is substituted for `?'. You can use `?' more than once. For instance, here is how to uuencode each file, making the output file name by appending `.uu' to the input file name: uuencode ? ? > ?.uu To use the file names in a more complicated fashion, you can use a shell loop. For example, this shell command is another way to uuencode each file: for file in *; do uuencode "$file" "$file" >"$file".uu; done The working directory for the shell command is the top-level directory of the Dired buffer. The `!' command does not attempt to update the Dired buffer to show new or modified files, because it doesn't really understand shell commands, and does not know what files the shell command changed. Use the `g' command to update the Dired buffer (*note Dired Updating::). Transforming File Names in Dired ================================ This section describes Dired commands which alter file names in a systematic way. Like the basic Dired file-manipulation commands (*note Operating on Files::), the commands described here operate either on the next N files, or on all files marked with `*', or on the current file. (To mark files, use the commands described in *Note Marks vs Flags::.) All of the commands described in this section work _interactively_: they ask you to confirm the operation for each candidate file. Thus, you can select more files than you actually need to operate on (e.g., with a regexp that matches many files), and then refine the selection by typing `y' or `n' when the command prompts for confirmation. `% u' Rename each of the selected files to an upper-case name (`dired-upcase'). If the old file names are `Foo' and `bar', the new names are `FOO' and `BAR'. `% l' Rename each of the selected files to a lower-case name (`dired-downcase'). If the old file names are `Foo' and `bar', the new names are `foo' and `bar'. `% R FROM TO ' `% C FROM TO ' `% H FROM TO ' `% S FROM TO ' These four commands rename, copy, make hard links and make soft links, in each case computing the new name by regular-expression substitution from the name of the old file. The four regular-expression substitution commands effectively perform a search-and-replace on the selected file names in the Dired buffer. They read two arguments: a regular expression FROM, and a substitution pattern TO. The commands match each "old" file name against the regular expression FROM, and then replace the matching part with TO. You can use `\&' and `\DIGIT' in TO to refer to all or part of what the pattern matched in the old file name, as in `replace-regexp' (*note Regexp Replace::). If the regular expression matches more than once in a file name, only the first match is replaced. For example, `% R ^.*$ x-\& ' renames each selected file by prepending `x-' to its name. The inverse of this, removing `x-' from the front of each file name, is also possible: one method is `% R ^x-\(.*\)$ \1 '; another is `% R ^x- '. (Use `^' and `$' to anchor matches that should span the whole filename.) Normally, the replacement process does not consider the files' directory names; it operates on the file name within the directory. If you specify a numeric argument of zero, then replacement affects the entire absolute file name including directory name. (Non-zero argument specifies the number of files to operate on.) Often you will want to select the set of files to operate on using the same REGEXP that you will use to operate on them. To do this, mark those files with `% m REGEXP ', then use the same regular expression in the command to operate on the files. To make this easier, the `%' commands to operate on files use the last regular expression specified in any `%' command as a default. File Comparison with Dired ========================== Here are two Dired commands that compare specified files using `diff'. `=' Compare the current file (the file at point) with another file (the file at the mark) using the `diff' program (`dired-diff'). The file at the mark is the first argument of `diff', and the file at point is the second argument. Use `C-' (`set-mark-command') to set the mark at the first file's line (*note Setting Mark::), since `dired-diff' ignores the files marked with the Dired's `m' command. `M-=' Compare the current file with its latest backup file (`dired-backup-diff'). If the current file is itself a backup, compare it with the file it is a backup of; this way, you can compare a file with any backup version of your choice. The backup file is the first file given to `diff'. Subdirectories in Dired ======================= A Dired buffer displays just one directory in the normal case; but you can optionally include its subdirectories as well. The simplest way to include multiple directories in one Dired buffer is to specify the options `-lR' for running `ls'. (If you give a numeric argument when you run Dired, then you can specify these options in the minibuffer.) That produces a recursive directory listing showing all subdirectories at all levels. But usually all the subdirectories are too many; usually you will prefer to include specific subdirectories only. You can do this with the `i' command: `i' Insert the contents of a subdirectory later in the buffer. Use the `i' (`dired-maybe-insert-subdir') command on a line that describes a file which is a directory. It inserts the contents of that directory into the same Dired buffer, and moves there. Inserted subdirectory contents follow the top-level directory of the Dired buffer, just as they do in `ls -lR' output. If the subdirectory's contents are already present in the buffer, the `i' command just moves to it. In either case, `i' sets the Emacs mark before moving, so `C-u C-' takes you back to the old position in the buffer (the line describing that subdirectory). Use the `l' command (`dired-do-redisplay') to update the subdirectory's contents. Use `C-u k' on the subdirectory header line to delete the subdirectory. *Note Dired Updating::. Moving Over Subdirectories ========================== When a Dired buffer lists subdirectories, you can use the page motion commands `C-x [' and `C-x ]' to move by entire directories (*note Pages::). The following commands move across, up and down in the tree of directories within one Dired buffer. They move to "directory header lines", which are the lines that give a directory's name, at the beginning of the directory's contents. `C-M-n' Go to next subdirectory header line, regardless of level (`dired-next-subdir'). `C-M-p' Go to previous subdirectory header line, regardless of level (`dired-prev-subdir'). `C-M-u' Go up to the parent directory's header line (`dired-tree-up'). `C-M-d' Go down in the directory tree, to the first subdirectory's header line (`dired-tree-down'). `<' Move up to the previous directory-file line (`dired-prev-dirline'). These lines are the ones that describe a directory as a file in its parent directory. `>' Move down to the next directory-file line (`dired-prev-dirline'). Hiding Subdirectories ===================== "Hiding" a subdirectory means to make it invisible, except for its header line, via selective display (*note Selective Display::). `$' Hide or reveal the subdirectory that point is in, and move point to the next subdirectory (`dired-hide-subdir'). A numeric argument serves as a repeat count. `M-$' Hide all subdirectories in this Dired buffer, leaving only their header lines (`dired-hide-all'). Or, if any subdirectory is currently hidden, make all subdirectories visible again. You can use this command to get an overview in very deep directory trees or to move quickly to subdirectories far away. Ordinary Dired commands never consider files inside a hidden subdirectory. For example, the commands to operate on marked files ignore files in hidden directories even if they are marked. Thus you can use hiding to temporarily exclude subdirectories from operations without having to remove the markers. The subdirectory hiding commands toggle; that is, they hide what was visible, and show what was hidden. Updating the Dired Buffer ========================= This section describes commands to update the Dired buffer to reflect outside (non-Dired) changes in the directories and files, and to delete part of the Dired buffer. `g' Update the entire contents of the Dired buffer (`revert-buffer'). `l' Update the specified files (`dired-do-redisplay'). `k' Delete the specified _file lines_--not the files, just the lines (`dired-do-kill-lines'). `s' Toggle between alphabetical order and date/time order (`dired-sort-toggle-or-edit'). `C-u s SWITCHES ' Refresh the Dired buffer using SWITCHES as `dired-listing-switches'. Type `g' (`revert-buffer') to update the contents of the Dired buffer, based on changes in the files and directories listed. This preserves all marks except for those on files that have vanished. Hidden subdirectories are updated but remain hidden. To update only some of the files, type `l' (`dired-do-redisplay'). Like the Dired file-operating commands, this command operates on the next N files (or previous -N files), or on the marked files if any, or on the current file. Updating the files means reading their current status, then updating their lines in the buffer to indicate that status. If you use `l' on a subdirectory header line, it updates the contents of the corresponding subdirectory. To delete the specified _file lines_ from the buffer--not delete the files--type `k' (`dired-do-kill-lines'). Like the file-operating commands, this command operates on the next N files, or on the marked files if any; but it does not operate on the current file as a last resort. If you kill the line for a file that is a directory, the directory's contents are also deleted from the buffer. Typing `C-u k' on the header line for a subdirectory is another way to delete a subdirectory from the Dired buffer. The `g' command brings back any individual lines that you have killed in this way, but not subdirectories--you must use `i' to reinsert a subdirectory. The files in a Dired buffers are normally listed in alphabetical order by file names. Alternatively Dired can sort them by date/time. The Dired command `s' (`dired-sort-toggle-or-edit') switches between these two sorting modes. The mode line in a Dired buffer indicates which way it is currently sorted--by name, or by date. `C-u s SWITCHES ' lets you specify a new value for `dired-listing-switches'. Dired and `find' ================ You can select a set of files for display in a Dired buffer more flexibly by using the `find' utility to choose the files. To search for files with names matching a wildcard pattern use `M-x find-name-dired'. It reads arguments DIRECTORY and PATTERN, and chooses all the files in DIRECTORY or its subdirectories whose individual names match PATTERN. The files thus chosen are displayed in a Dired buffer in which the ordinary Dired commands are available. If you want to test the contents of files, rather than their names, use `M-x find-grep-dired'. This command reads two minibuffer arguments, DIRECTORY and REGEXP; it chooses all the files in DIRECTORY or its subdirectories that contain a match for REGEXP. It works by running the programs `find' and `grep'. See also `M-x grep-find', in *Note Compilation::. Remember to write the regular expression for `grep', not for Emacs. (An alternative method of showing files whose contents match a given regexp is the `% g REGEXP' command, see *Note Marks vs Flags::.) The most general command in this series is `M-x find-dired', which lets you specify any condition that `find' can test. It takes two minibuffer arguments, DIRECTORY and FIND-ARGS; it runs `find' in DIRECTORY, passing FIND-ARGS to tell `find' what condition to test. To use this command, you need to know how to use `find'. `M-x locate' provides a similar interface to the `locate' program. `M-x locate-with-filter' is similar, but keeps only lines matching a given regular expression. The format of listing produced by these commands is controlled by the variable `find-ls-option', whose default value specifies using options `-ld' for `ls'. If your listings are corrupted, you may need to change the value of this variable. The Calendar and the Diary ************************** Emacs provides the functions of a desk calendar, with a diary of planned or past events. It also has facilities for managing your appointments, and keeping track of how much time you spend working on certain projects. To enter the calendar, type `M-x calendar'; this displays a three-month calendar centered on the current month, with point on the current date. With a numeric argument, as in `C-u M-x calendar', it prompts you for the month and year to be the center of the three-month calendar. The calendar uses its own buffer, whose major mode is Calendar mode. `Mouse-2' in the calendar brings up a menu of operations on a particular date; `C-Mouse-3' brings up a menu of commonly used calendar features that are independent of any particular date. To exit the calendar, type `q'. *Note Customizing the Calendar and Diary: (elisp)Calendar, for customization information about the calendar and diary. Movement in the Calendar ======================== Calendar mode lets you move through the calendar in logical units of time such as days, weeks, months, and years. If you move outside the three months originally displayed, the calendar display "scrolls" automatically through time to make the selected date visible. Moving to a date lets you view its holidays or diary entries, or convert it to other calendars; moving longer time periods is also useful simply to scroll the calendar. Motion by Standard Lengths of Time ---------------------------------- The commands for movement in the calendar buffer parallel the commands for movement in text. You can move forward and backward by days, weeks, months, and years. `C-f' Move point one day forward (`calendar-forward-day'). `C-b' Move point one day backward (`calendar-backward-day'). `C-n' Move point one week forward (`calendar-forward-week'). `C-p' Move point one week backward (`calendar-backward-week'). `M-}' Move point one month forward (`calendar-forward-month'). `M-{' Move point one month backward (`calendar-backward-month'). `C-x ]' Move point one year forward (`calendar-forward-year'). `C-x [' Move point one year backward (`calendar-backward-year'). The day and week commands are natural analogues of the usual Emacs commands for moving by characters and by lines. Just as `C-n' usually moves to the same column in the following line, in Calendar mode it moves to the same day in the following week. And `C-p' moves to the same day in the previous week. The arrow keys are equivalent to `C-f', `C-b', `C-n' and `C-p', just as they normally are in other modes. The commands for motion by months and years work like those for weeks, but move a larger distance. The month commands `M-}' and `M-{' move forward or backward by an entire month's time. The year commands `C-x ]' and `C-x [' move forward or backward a whole year. The easiest way to remember these commands is to consider months and years analogous to paragraphs and pages of text, respectively. But the commands themselves are not quite analogous. The ordinary Emacs paragraph commands move to the beginning or end of a paragraph, whereas these month and year commands move by an entire month or an entire year, which usually involves skipping across the end of a month or year. All these commands accept a numeric argument as a repeat count. For convenience, the digit keys and the minus sign specify numeric arguments in Calendar mode even without the Meta modifier. For example, `100 C-f' moves point 100 days forward from its present location. Beginning or End of Week, Month or Year --------------------------------------- A week (or month, or year) is not just a quantity of days; we think of weeks (months, years) as starting on particular dates. So Calendar mode provides commands to move to the beginning or end of a week, month or year: `C-a' Move point to start of week (`calendar-beginning-of-week'). `C-e' Move point to end of week (`calendar-end-of-week'). `M-a' Move point to start of month (`calendar-beginning-of-month'). `M-e' Move point to end of month (`calendar-end-of-month'). `M-<' Move point to start of year (`calendar-beginning-of-year'). `M->' Move point to end of year (`calendar-end-of-year'). These commands also take numeric arguments as repeat counts, with the repeat count indicating how many weeks, months, or years to move backward or forward. By default, weeks begin on Sunday. To make them begin on Monday instead, set the variable `calendar-week-start-day' to 1. Specified Dates --------------- Calendar mode provides commands for moving to a particular date specified in various ways. `g d' Move point to specified date (`calendar-goto-date'). `o' Center calendar around specified month (`calendar-other-month'). `.' Move point to today's date (`calendar-goto-today'). `g d' (`calendar-goto-date') prompts for a year, a month, and a day of the month, and then moves to that date. Because the calendar includes all dates from the beginning of the current era, you must type the year in its entirety; that is, type `1990', not `90'. `o' (`calendar-other-month') prompts for a month and year, then centers the three-month calendar around that month. You can return to today's date with `.' (`calendar-goto-today'). Scrolling in the Calendar ========================= The calendar display scrolls automatically through time when you move out of the visible portion. You can also scroll it manually. Imagine that the calendar window contains a long strip of paper with the months on it. Scrolling the calendar means moving the strip horizontally, so that new months become visible in the window. `C-x <' Scroll calendar one month forward (`scroll-calendar-left'). `C-x >' Scroll calendar one month backward (`scroll-calendar-right'). `C-v' `' Scroll calendar three months forward (`scroll-calendar-left-three-months'). `M-v' `' Scroll calendar three months backward (`scroll-calendar-right-three-months'). The most basic calendar scroll commands scroll by one month at a time. This means that there are two months of overlap between the display before the command and the display after. `C-x <' scrolls the calendar contents one month to the left; that is, it moves the display forward in time. `C-x >' scrolls the contents to the right, which moves backwards in time. The commands `C-v' and `M-v' scroll the calendar by an entire "screenful"--three months--in analogy with the usual meaning of these commands. `C-v' makes later dates visible and `M-v' makes earlier dates visible. These commands take a numeric argument as a repeat count; in particular, since `C-u' multiplies the next command by four, typing `C-u C-v' scrolls the calendar forward by a year and typing `C-u M-v' scrolls the calendar backward by a year. The function keys and are equivalent to `C-v' and `M-v', just as they are in other modes. Counting Days ============= `M-=' Display the number of days in the current region (`calendar-count-days-region'). To determine the number of days in the region, type `M-=' (`calendar-count-days-region'). The numbers of days shown is _inclusive_; that is, it includes the days specified by mark and point. Miscellaneous Calendar Commands =============================== `p d' Display day-in-year (`calendar-print-day-of-year'). `C-c C-l' Regenerate the calendar window (`redraw-calendar'). `SPC' Scroll the next window (`scroll-other-window'). `q' Exit from calendar (`exit-calendar'). To display the number of days elapsed since the start of the year, or the number of days remaining in the year, type the `p d' command (`calendar-print-day-of-year'). This displays both of those numbers in the echo area. The number of days elapsed includes the selected date. The number of days remaining does not include that date. If the calendar window text gets corrupted, type `C-c C-l' (`redraw-calendar') to redraw it. (This can only happen if you use non-Calendar-mode editing commands.) In Calendar mode, you can use `SPC' (`scroll-other-window') to scroll the other window. This is handy when you display a list of holidays or diary entries in another window. To exit from the calendar, type `q' (`exit-calendar'). This buries all buffers related to the calendar, selecting other buffers. (If a frame contains a dedicated calendar window, exiting from the calendar iconifies that frame.) LaTeX Calendar ============== The Calendar LaTeX commands produce a buffer of LaTeX code that prints as a calendar. Depending on the command you use, the printed calendar covers the day, week, month or year that point is in. `t m' Generate a one-month calendar (`cal-tex-cursor-month'). `t M' Generate a sideways-printing one-month calendar (`cal-tex-cursor-month-landscape'). `t d' Generate a one-day calendar (`cal-tex-cursor-day'). `t w 1' Generate a one-page calendar for one week (`cal-tex-cursor-week'). `t w 2' Generate a two-page calendar for one week (`cal-tex-cursor-week2'). `t w 3' Generate an ISO-style calendar for one week (`cal-tex-cursor-week-iso'). `t w 4' Generate a calendar for one Monday-starting week (`cal-tex-cursor-week-monday'). `t f w' Generate a Filofax-style two-weeks-at-a-glance calendar (`cal-tex-cursor-filofax-2week'). `t f W' Generate a Filofax-style one-week-at-a-glance calendar (`cal-tex-cursor-filofax-week'). `t y' Generate a calendar for one year (`cal-tex-cursor-year'). `t Y' Generate a sideways-printing calendar for one year (`cal-tex-cursor-year-landscape'). `t f y' Generate a Filofax-style calendar for one year (`cal-tex-cursor-filofax-year'). Some of these commands print the calendar sideways (in "landscape mode"), so it can be wider than it is long. Some of them use Filofax paper size (3.75in x 6.75in). All of these commands accept a prefix argument which specifies how many days, weeks, months or years to print (starting always with the selected one). If the variable `cal-tex-holidays' is non-`nil' (the default), then the printed calendars show the holidays in `calendar-holidays'. If the variable `cal-tex-diary' is non-`nil' (the default is `nil'), diary entries are included also (in weekly and monthly calendars only). If the variable `cal-tex-rules' is non-`nil' (the default is `nil'), the calendar displays ruled pages in styles that have sufficient room. Holidays ======== The Emacs calendar knows about all major and many minor holidays, and can display them. `h' Display holidays for the selected date (`calendar-cursor-holidays'). `Mouse-2 Holidays' Display any holidays for the date you click on. `x' Mark holidays in the calendar window (`mark-calendar-holidays'). `u' Unmark calendar window (`calendar-unmark'). `a' List all holidays for the displayed three months in another window (`list-calendar-holidays'). `M-x holidays' List all holidays for three months around today's date in another window. `M-x list-holidays' List holidays in another window for a specified range of years. To see if any holidays fall on a given date, position point on that date in the calendar window and use the `h' command. Alternatively, click on that date with `Mouse-2' and then choose `Holidays' from the menu that appears. Either way, this displays the holidays for that date, in the echo area if they fit there, otherwise in a separate window. To view the distribution of holidays for all the dates shown in the calendar, use the `x' command. This displays the dates that are holidays in a different face (or places a `*' after these dates, if display with multiple faces is not available). The command applies both to the currently visible months and to other months that subsequently become visible by scrolling. To turn marking off and erase the current marks, type `u', which also erases any diary marks (*note Diary::). To get even more detailed information, use the `a' command, which displays a separate buffer containing a list of all holidays in the current three-month range. You can use in the calendar window to scroll that list. The command `M-x holidays' displays the list of holidays for the current month and the preceding and succeeding months; this works even if you don't have a calendar window. If you want the list of holidays centered around a different month, use `C-u M-x holidays', which prompts for the month and year. The holidays known to Emacs include United States holidays and the major Christian, Jewish, and Islamic holidays; also the solstices and equinoxes. The command `M-x list-holidays' displays the list of holidays for a range of years. This function asks you for the starting and stopping years, and allows you to choose all the holidays or one of several categories of holidays. You can use this command even if you don't have a calendar window. The dates used by Emacs for holidays are based on _current practice_, not historical fact. Historically, for instance, the start of daylight savings time and even its existence have varied from year to year, but present United States law mandates that daylight savings time begins on the first Sunday in April. When the daylight savings rules are set up for the United States, Emacs always uses the present definition, even though it is wrong for some prior years. Times of Sunrise and Sunset =========================== Special calendar commands can tell you, to within a minute or two, the times of sunrise and sunset for any date. `S' Display times of sunrise and sunset for the selected date (`calendar-sunrise-sunset'). `Mouse-2 Sunrise/sunset' Display times of sunrise and sunset for the date you click on. `M-x sunrise-sunset' Display times of sunrise and sunset for today's date. `C-u M-x sunrise-sunset' Display times of sunrise and sunset for a specified date. Within the calendar, to display the _local times_ of sunrise and sunset in the echo area, move point to the date you want, and type `S'. Alternatively, click `Mouse-2' on the date, then choose `Sunrise/sunset' from the menu that appears. The command `M-x sunrise-sunset' is available outside the calendar to display this information for today's date or a specified date. To specify a date other than today, use `C-u M-x sunrise-sunset', which prompts for the year, month, and day. You can display the times of sunrise and sunset for any location and any date with `C-u C-u M-x sunrise-sunset'. This asks you for a longitude, latitude, number of minutes difference from Coordinated Universal Time, and date, and then tells you the times of sunrise and sunset for that location on that date. Because the times of sunrise and sunset depend on the location on earth, you need to tell Emacs your latitude, longitude, and location name before using these commands. Here is an example of what to set: (setq calendar-latitude 40.1) (setq calendar-longitude -88.2) (setq calendar-location-name "Urbana, IL") Use one decimal place in the values of `calendar-latitude' and `calendar-longitude'. Your time zone also affects the local time of sunrise and sunset. Emacs usually gets time zone information from the operating system, but if these values are not what you want (or if the operating system does not supply them), you must set them yourself. Here is an example: (setq calendar-time-zone -360) (setq calendar-standard-time-zone-name "CST") (setq calendar-daylight-time-zone-name "CDT") The value of `calendar-time-zone' is the number of minutes difference between your local standard time and Coordinated Universal Time (Greenwich time). The values of `calendar-standard-time-zone-name' and `calendar-daylight-time-zone-name' are the abbreviations used in your time zone. Emacs displays the times of sunrise and sunset _corrected for daylight savings time_. *Note Daylight Savings::, for how daylight savings time is determined. As a user, you might find it convenient to set the calendar location variables for your usual physical location in your `.emacs' file. And when you install Emacs on a machine, you can create a `default.el' file which sets them properly for the typical location of most users of that machine. *Note Init File::. Phases of the Moon ================== These calendar commands display the dates and times of the phases of the moon (new moon, first quarter, full moon, last quarter). This feature is useful for debugging problems that "depend on the phase of the moon." `M' Display the dates and times for all the quarters of the moon for the three-month period shown (`calendar-phases-of-moon'). `M-x phases-of-moon' Display dates and times of the quarters of the moon for three months around today's date. Within the calendar, use the `M' command to display a separate buffer of the phases of the moon for the current three-month range. The dates and times listed are accurate to within a few minutes. Outside the calendar, use the command `M-x phases-of-moon' to display the list of the phases of the moon for the current month and the preceding and succeeding months. For information about a different month, use `C-u M-x phases-of-moon', which prompts for the month and year. The dates and times given for the phases of the moon are given in local time (corrected for daylight savings, when appropriate); but if the variable `calendar-time-zone' is void, Coordinated Universal Time (the Greenwich time zone) is used. *Note Daylight Savings::. Conversion To and From Other Calendars ====================================== The Emacs calendar displayed is _always_ the Gregorian calendar, sometimes called the "new style" calendar, which is used in most of the world today. However, this calendar did not exist before the sixteenth century and was not widely used before the eighteenth century; it did not fully displace the Julian calendar and gain universal acceptance until the early twentieth century. The Emacs calendar can display any month since January, year 1 of the current era, but the calendar displayed is the Gregorian, even for a date at which the Gregorian calendar did not exist. While Emacs cannot display other calendars, it can convert dates to and from several other calendars. Supported Calendar Systems -------------------------- The ISO commercial calendar is used largely in Europe. The Julian calendar, named after Julius Caesar, was the one used in Europe throughout medieval times, and in many countries up until the nineteenth century. Astronomers use a simple counting of days elapsed since noon, Monday, January 1, 4713 B.C. on the Julian calendar. The number of days elapsed is called the "Julian day number" or the "Astronomical day number". The Hebrew calendar is used by tradition in the Jewish religion. The Emacs calendar program uses the Hebrew calendar to determine the dates of Jewish holidays. Hebrew calendar dates begin and end at sunset. The Islamic calendar is used in many predominantly Islamic countries. Emacs uses it to determine the dates of Islamic holidays. There is no universal agreement in the Islamic world about the calendar; Emacs uses a widely accepted version, but the precise dates of Islamic holidays often depend on proclamation by religious authorities, not on calculations. As a consequence, the actual dates of observance can vary slightly from the dates computed by Emacs. Islamic calendar dates begin and end at sunset. The French Revolutionary calendar was created by the Jacobins after the 1789 revolution, to represent a more secular and nature-based view of the annual cycle, and to install a 10-day week in a rationalization measure similar to the metric system. The French government officially abandoned this calendar at the end of 1805. The Maya of Central America used three separate, overlapping calendar systems, the _long count_, the _tzolkin_, and the _haab_. Emacs knows about all three of these calendars. Experts dispute the exact correlation between the Mayan calendar and our calendar; Emacs uses the Goodman-Martinez-Thompson correlation in its calculations. The Copts use a calendar based on the ancient Egyptian solar calendar. Their calendar consists of twelve 30-day months followed by an extra five-day period. Once every fourth year they add a leap day to this extra period to make it six days. The Ethiopic calendar is identical in structure, but has different year numbers and month names. The Persians use a solar calendar based on a design of Omar Khayyam. Their calendar consists of twelve months of which the first six have 31 days, the next five have 30 days, and the last has 29 in ordinary years and 30 in leap years. Leap years occur in a complicated pattern every four or five years. The Chinese calendar is a complicated system of lunar months arranged into solar years. The years go in cycles of sixty, each year containing either twelve months in an ordinary year or thirteen months in a leap year; each month has either 29 or 30 days. Years, ordinary months, and days are named by combining one of ten "celestial stems" with one of twelve "terrestrial branches" for a total of sixty names that are repeated in a cycle of sixty. Converting To Other Calendars ----------------------------- The following commands describe the selected date (the date at point) in various other calendar systems: `Mouse-2 Other calendars' Display the date that you click on, expressed in various other calendars. `p c' Display ISO commercial calendar equivalent for selected day (`calendar-print-iso-date'). `p j' Display Julian date for selected day (`calendar-print-julian-date'). `p a' Display astronomical (Julian) day number for selected day (`calendar-print-astro-day-number'). `p h' Display Hebrew date for selected day (`calendar-print-hebrew-date'). `p i' Display Islamic date for selected day (`calendar-print-islamic-date'). `p f' Display French Revolutionary date for selected day (`calendar-print-french-date'). `p C' Display Chinese date for selected day (`calendar-print-chinese-date'). `p k' Display Coptic date for selected day (`calendar-print-coptic-date'). `p e' Display Ethiopic date for selected day (`calendar-print-ethiopic-date'). `p p' Display Persian date for selected day (`calendar-print-persian-date'). `p m' Display Mayan date for selected day (`calendar-print-mayan-date'). If you are using X, the easiest way to translate a date into other calendars is to click on it with `Mouse-2', then choose `Other calendars' from the menu that appears. This displays the equivalent forms of the date in all the calendars Emacs understands, in the form of a menu. (Choosing an alternative from this menu doesn't actually do anything--the menu is used only for display.) Otherwise, move point to the date you want to convert, then type the appropriate command starting with `p' from the table above. The prefix `p' is a mnemonic for "print," since Emacs "prints" the equivalent date in the echo area. Converting From Other Calendars ------------------------------- You can use the other supported calendars to specify a date to move to. This section describes the commands for doing this using calendars other than Mayan; for the Mayan calendar, see the following section. `g c' Move to a date specified in the ISO commercial calendar (`calendar-goto-iso-date'). `g j' Move to a date specified in the Julian calendar (`calendar-goto-julian-date'). `g a' Move to a date specified with an astronomical (Julian) day number (`calendar-goto-astro-day-number'). `g h' Move to a date specified in the Hebrew calendar (`calendar-goto-hebrew-date'). `g i' Move to a date specified in the Islamic calendar (`calendar-goto-islamic-date'). `g f' Move to a date specified in the French Revolutionary calendar (`calendar-goto-french-date'). `g C' Move to a date specified in the Chinese calendar (`calendar-goto-chinese-date'). `g p' Move to a date specified in the Persian calendar (`calendar-goto-persian-date'). `g k' Move to a date specified in the Coptic calendar (`calendar-goto-coptic-date'). `g e' Move to a date specified in the Ethiopic calendar (`calendar-goto-ethiopic-date'). These commands ask you for a date on the other calendar, move point to the Gregorian calendar date equivalent to that date, and display the other calendar's date in the echo area. Emacs uses strict completion (*note Completion::) whenever it asks you to type a month name, so you don't have to worry about the spelling of Hebrew, Islamic, or French names. One common question concerning the Hebrew calendar is the computation of the anniversary of a date of death, called a "yahrzeit." The Emacs calendar includes a facility for such calculations. If you are in the calendar, the command `M-x list-yahrzeit-dates' asks you for a range of years and then displays a list of the yahrzeit dates for those years for the date given by point. If you are not in the calendar, this command first asks you for the date of death and the range of years, and then displays the list of yahrzeit dates. Converting from the Mayan Calendar ---------------------------------- Here are the commands to select dates based on the Mayan calendar: `g m l' Move to a date specified by the long count calendar (`calendar-goto-mayan-long-count-date'). `g m n t' Move to the next occurrence of a place in the tzolkin calendar (`calendar-next-tzolkin-date'). `g m p t' Move to the previous occurrence of a place in the tzolkin calendar (`calendar-previous-tzolkin-date'). `g m n h' Move to the next occurrence of a place in the haab calendar (`calendar-next-haab-date'). `g m p h' Move to the previous occurrence of a place in the haab calendar (`calendar-previous-haab-date'). `g m n c' Move to the next occurrence of a place in the calendar round (`calendar-next-calendar-round-date'). `g m p c' Move to the previous occurrence of a place in the calendar round (`calendar-previous-calendar-round-date'). To understand these commands, you need to understand the Mayan calendars. The "long count" is a counting of days with these units: 1 kin = 1 day 1 uinal = 20 kin 1 tun = 18 uinal 1 katun = 20 tun 1 baktun = 20 katun Thus, the long count date 12.16.11.16.6 means 12 baktun, 16 katun, 11 tun, 16 uinal, and 6 kin. The Emacs calendar can handle Mayan long count dates as early as 7.17.18.13.1, but no earlier. When you use the `g m l' command, type the Mayan long count date with the baktun, katun, tun, uinal, and kin separated by periods. The Mayan tzolkin calendar is a cycle of 260 days formed by a pair of independent cycles of 13 and 20 days. Since this cycle repeats endlessly, Emacs provides commands to move backward and forward to the previous or next point in the cycle. Type `g m p t' to go to the previous tzolkin date; Emacs asks you for a tzolkin date and moves point to the previous occurrence of that date. Similarly, type `g m n t' to go to the next occurrence of a tzolkin date. The Mayan haab calendar is a cycle of 365 days arranged as 18 months of 20 days each, followed a 5-day monthless period. Like the tzolkin cycle, this cycle repeats endlessly, and there are commands to move backward and forward to the previous or next point in the cycle. Type `g m p h' to go to the previous haab date; Emacs asks you for a haab date and moves point to the previous occurrence of that date. Similarly, type `g m n h' to go to the next occurrence of a haab date. The Maya also used the combination of the tzolkin date and the haab date. This combination is a cycle of about 52 years called a _calendar round_. If you type `g m p c', Emacs asks you for both a haab and a tzolkin date and then moves point to the previous occurrence of that combination. Use `g m n c' to move point to the next occurrence of a combination. These commands signal an error if the haab/tzolkin date combination you have typed is impossible. Emacs uses strict completion (*note Strict Completion::) whenever it asks you to type a Mayan name, so you don't have to worry about spelling. The Diary ========= The Emacs diary keeps track of appointments or other events on a daily basis, in conjunction with the calendar. To use the diary feature, you must first create a "diary file" containing a list of events and their dates. Then Emacs can automatically pick out and display the events for today, for the immediate future, or for any specified date. By default, Emacs uses `~/diary' as the diary file. This is the same file that the `calendar' utility uses. A sample `~/diary' file is: 12/22/1988 Twentieth wedding anniversary!! &1/1. Happy New Year! 10/22 Ruth's birthday. * 21, *: Payday Tuesday--weekly meeting with grad students at 10am Supowit, Shen, Bitner, and Kapoor to attend. 1/13/89 Friday the thirteenth!! &thu 4pm squash game with Lloyd. mar 16 Dad's birthday April 15, 1989 Income tax due. &* 15 time cards due. This example uses extra spaces to align the event descriptions of most of the entries. Such formatting is purely a matter of taste. Although you probably will start by creating a diary manually, Emacs provides a number of commands to let you view, add, and change diary entries. Commands Displaying Diary Entries --------------------------------- Once you have created a `~/diary' file, you can use the calendar to view it. You can also view today's events outside of Calendar mode. `d' Display all diary entries for the selected date (`view-diary-entries'). `Mouse-2 Diary' Display all diary entries for the date you click on. `s' Display the entire diary file (`show-all-diary-entries'). `m' Mark all visible dates that have diary entries (`mark-diary-entries'). `u' Unmark the calendar window (`calendar-unmark'). `M-x print-diary-entries' Print hard copy of the diary display as it appears. `M-x diary' Display all diary entries for today's date. `M-x diary-mail-entries' Mail yourself email reminders about upcoming diary entries. Displaying the diary entries with `d' shows in a separate window the diary entries for the selected date in the calendar. The mode line of the new window shows the date of the diary entries and any holidays that fall on that date. If you specify a numeric argument with `d', it shows all the diary entries for that many successive days. Thus, `2 d' displays all the entries for the selected date and for the following day. Another way to display the diary entries for a date is to click `Mouse-2' on the date, and then choose `Diary entries' from the menu that appears. To get a broader view of which days are mentioned in the diary, use the `m' command. This displays the dates that have diary entries in a different face (or places a `+' after these dates, if display with multiple faces is not available). The command applies both to the currently visible months and to other months that subsequently become visible by scrolling. To turn marking off and erase the current marks, type `u', which also turns off holiday marks (*note Holidays::). To see the full diary file, rather than just some of the entries, use the `s' command. Display of selected diary entries uses the selective display feature to hide entries that don't apply. The diary buffer as you see it is an illusion, so simply printing the buffer does not print what you see on your screen. There is a special command to print hard copy of the diary buffer _as it appears_; this command is `M-x print-diary-entries'. It sends the data directly to the printer. You can customize it like `lpr-region' (*note Hardcopy::). The command `M-x diary' displays the diary entries for the current date, independently of the calendar display, and optionally for the next few days as well; the variable `number-of-diary-entries' specifies how many days to include. *Note Customizing the Calendar and Diary: (elisp)Calendar. If you put `(diary)' in your `.emacs' file, this automatically displays a window with the day's diary entries, when you enter Emacs. The mode line of the displayed window shows the date and any holidays that fall on that date. Many users like to receive notice of events in their diary as email. To send such mail to yourself, use the command `M-x diary-mail-entries'. A prefix argument specifies how many days (starting with today) to check; otherwise, the variable `diary-mail-days' says how many days. The Diary File -------------- Your "diary file" is a file that records events associated with particular dates. The name of the diary file is specified by the variable `diary-file'; `~/diary' is the default. The `calendar' utility program supports a subset of the format allowed by the Emacs diary facilities, so you can use that utility to view the diary file, with reasonable results aside from the entries it cannot understand. Each entry in the diary file describes one event and consists of one or more lines. An entry always begins with a date specification at the left margin. The rest of the entry is simply text to describe the event. If the entry has more than one line, then the lines after the first must begin with whitespace to indicate they continue a previous entry. Lines that do not begin with valid dates and do not continue a preceding entry are ignored. You can inhibit the marking of certain diary entries in the calendar window; to do this, insert an ampersand (`&') at the beginning of the entry, before the date. This has no effect on display of the entry in the diary window; it affects only marks on dates in the calendar window. Nonmarking entries are especially useful for generic entries that would otherwise mark many different dates. If the first line of a diary entry consists only of the date or day name with no following blanks or punctuation, then the diary window display doesn't include that line; only the continuation lines appear. For example, this entry: 02/11/1989 Bill B. visits Princeton today 2pm Cognitive Studies Committee meeting 2:30-5:30 Liz at Lawrenceville 4:00pm Dentist appt 7:30pm Dinner at George's 8:00-10:00pm concert appears in the diary window without the date line at the beginning. This style of entry looks neater when you display just a single day's entries, but can cause confusion if you ask for more than one day's entries. You can edit the diary entries as they appear in the window, but it is important to remember that the buffer displayed contains the _entire_ diary file, with portions of it concealed from view. This means, for instance, that the `C-f' (`forward-char') command can put point at what appears to be the end of the line, but what is in reality the middle of some concealed line. _Be careful when editing the diary entries!_ Inserting additional lines or adding/deleting characters in the middle of a visible line cannot cause problems, but editing at the end of a line may not do what you expect. Deleting a line may delete other invisible entries that follow it. Before editing the diary, it is best to display the entire file with `s' (`show-all-diary-entries'). Date Formats ------------ Here are some sample diary entries, illustrating different ways of formatting a date. The examples all show dates in American order (month, day, year), but Calendar mode supports European order (day, month, year) as an option. 4/20/93 Switch-over to new tabulation system apr. 25 Start tabulating annual results 4/30 Results for April are due */25 Monthly cycle finishes Friday Don't leave without backing up files The first entry appears only once, on April 20, 1993. The second and third appear every year on the specified dates, and the fourth uses a wildcard (asterisk) for the month, so it appears on the 25th of every month. The final entry appears every week on Friday. You can use just numbers to express a date, as in `MONTH/DAY' or `MONTH/DAY/YEAR'. This must be followed by a nondigit. In the date itself, MONTH and DAY are numbers of one or two digits. The optional YEAR is also a number, and may be abbreviated to the last two digits; that is, you can use `11/12/1989' or `11/12/89'. Dates can also have the form `MONTHNAME DAY' or `MONTHNAME DAY, YEAR', where the month's name can be spelled in full or abbreviated to three characters (with or without a period). Case is not significant. A date may be "generic"; that is, partially unspecified. Then the entry applies to all dates that match the specification. If the date does not contain a year, it is generic and applies to any year. Alternatively, MONTH, DAY, or YEAR can be a `*'; this matches any month, day, or year, respectively. Thus, a diary entry `3/*/*' matches any day in March of any year; so does `march *'. If you prefer the European style of writing dates--in which the day comes before the month--type `M-x european-calendar' while in the calendar, or set the variable `european-calendar-style' to `t' _before_ using any calendar or diary command. This mode interprets all dates in the diary in the European manner, and also uses European style for displaying diary dates. (Note that there is no comma after the MONTHNAME in the European style.) To go back to the (default) American style of writing dates, type `M-x american-calendar'. You can use the name of a day of the week as a generic date which applies to any date falling on that day of the week. You can abbreviate the day of the week to three letters (with or without a period) or spell it in full; case is not significant. Commands to Add to the Diary ---------------------------- While in the calendar, there are several commands to create diary entries: `i d' Add a diary entry for the selected date (`insert-diary-entry'). `i w' Add a diary entry for the selected day of the week (`insert-weekly-diary-entry'). `i m' Add a diary entry for the selected day of the month (`insert-monthly-diary-entry'). `i y' Add a diary entry for the selected day of the year (`insert-yearly-diary-entry'). You can make a diary entry for a specific date by selecting that date in the calendar window and typing the `i d' command. This command displays the end of your diary file in another window and inserts the date; you can then type the rest of the diary entry. If you want to make a diary entry that applies to a specific day of the week, select that day of the week (any occurrence will do) and type `i w'. This inserts the day-of-week as a generic date; you can then type the rest of the diary entry. You can make a monthly diary entry in the same fashion: select the day of the month, use the `i m' command, and type the rest of the entry. Similarly, you can insert a yearly diary entry with the `i y' command. All of the above commands make marking diary entries by default. To make a nonmarking diary entry, give a numeric argument to the command. For example, `C-u i w' makes a nonmarking weekly diary entry. When you modify the diary file, be sure to save the file before exiting Emacs. Special Diary Entries --------------------- In addition to entries based on calendar dates, the diary file can contain "sexp entries" for regular events such as anniversaries. These entries are based on Lisp expressions (sexps) that Emacs evaluates as it scans the diary file. Instead of a date, a sexp entry contains `%%' followed by a Lisp expression which must begin and end with parentheses. The Lisp expression determines which dates the entry applies to. Calendar mode provides commands to insert certain commonly used sexp entries: `i a' Add an anniversary diary entry for the selected date (`insert-anniversary-diary-entry'). `i b' Add a block diary entry for the current region (`insert-block-diary-entry'). `i c' Add a cyclic diary entry starting at the date (`insert-cyclic-diary-entry'). If you want to make a diary entry that applies to the anniversary of a specific date, move point to that date and use the `i a' command. This displays the end of your diary file in another window and inserts the anniversary description; you can then type the rest of the diary entry. The entry looks like this: %%(diary-anniversary 10 31 1948) Arthur's birthday This entry applies to October 31 in any year after 1948; `10 31 1948' specifies the date. (If you are using the European calendar style, the month and day are interchanged.) The reason this expression requires a beginning year is that advanced diary functions can use it to calculate the number of elapsed years. A "block" diary entry applies to a specified range of consecutive dates. Here is a block diary entry that applies to all dates from June 24, 1990 through July 10, 1990: %%(diary-block 6 24 1990 7 10 1990) Vacation The `6 24 1990' indicates the starting date and the `7 10 1990' indicates the stopping date. (Again, if you are using the European calendar style, the month and day are interchanged.) To insert a block entry, place point and the mark on the two dates that begin and end the range, and type `i b'. This command displays the end of your diary file in another window and inserts the block description; you can then type the diary entry. "Cyclic" diary entries repeat after a fixed interval of days. To create one, select the starting date and use the `i c' command. The command prompts for the length of interval, then inserts the entry, which looks like this: %%(diary-cyclic 50 3 1 1990) Renew medication This entry applies to March 1, 1990 and every 50th day following; `3 1 1990' specifies the starting date. (If you are using the European calendar style, the month and day are interchanged.) All three of these commands make marking diary entries. To insert a nonmarking entry, give a numeric argument to the command. For example, `C-u i a' makes a nonmarking anniversary diary entry. Marking sexp diary entries in the calendar is _extremely_ time-consuming, since every date visible in the calendar window must be individually checked. So it's a good idea to make sexp diary entries nonmarking (with `&') when possible. Another sophisticated kind of sexp entry, a "floating" diary entry, specifies a regularly occurring event by offsets specified in days, weeks, and months. It is comparable to a crontab entry interpreted by the `cron' utility. Here is a nonmarking, floating diary entry that applies to the last Thursday in November: &%%(diary-float 11 4 -1) American Thanksgiving The 11 specifies November (the eleventh month), the 4 specifies Thursday (the fourth day of the week, where Sunday is numbered zero), and the -1 specifies "last" (1 would mean "first," 2 would mean "second," -2 would mean "second-to-last," and so on). The month can be a single month or a list of months. Thus you could change the 11 above to `'(1 2 3)' and have the entry apply to the last Thursday of January, February, and March. If the month is `t', the entry applies to all months of the year. Most generally, sexp diary entries can perform arbitrary computations to determine when they apply. *Note Sexp Diary Entries: (elisp)Sexp Diary Entries. Appointments ============ If you have a diary entry for an appointment, and that diary entry begins with a recognizable time of day, Emacs can warn you several minutes beforehand that that appointment is pending. Emacs alerts you to the appointment by displaying a message in the mode line. To enable appointment notification, you must enable the time display feature of Emacs, `M-x display-time' (*note Mode Line::). You must also add the function `appt-make-list' to the `diary-hook', like this: (add-hook 'diary-hook 'appt-make-list) Adding this text to your `.emacs' file does the whole job: (display-time) (add-hook 'diary-hook 'appt-make-list) (diary 0) With these preparations done, when you display the diary (either with the `d' command in the calendar window or with the `M-x diary' command), it sets up an appointment list of all the diary entries found with recognizable times of day, and reminds you just before each of them. For example, suppose the diary file contains these lines: Monday 9:30am Coffee break 12:00pm Lunch Then on Mondays, after you have displayed the diary, you will be reminded at 9:20am about your coffee break and at 11:50am about lunch. You can write times in am/pm style (with `12:00am' standing for midnight and `12:00pm' standing for noon), or 24-hour European/military style. You need not be consistent; your diary file can have a mixture of the two styles. Emacs updates the appointments list automatically just after midnight. This also displays the next day's diary entries in the diary buffer, unless you set `appt-display-diary' to `nil'. You can also use the appointment notification facility like an alarm clock. The command `M-x appt-add' adds entries to the appointment list without affecting your diary file. You delete entries from the appointment list with `M-x appt-delete'. You can turn off the appointment notification feature at any time by setting `appt-issue-message' to `nil'. Daylight Savings Time ===================== Emacs understands the difference between standard time and daylight savings time--the times given for sunrise, sunset, solstices, equinoxes, and the phases of the moon take that into account. The rules for daylight savings time vary from place to place and have also varied historically from year to year. To do the job properly, Emacs needs to know which rules to use. Some operating systems keep track of the rules that apply to the place where you are; on these systems, Emacs gets the information it needs from the system automatically. If some or all of this information is missing, Emacs fills in the gaps with the rules currently used in Cambridge, Massachusetts. If the resulting rules are not what you want, you can tell Emacs the rules to use by setting certain variables: `calendar-daylight-savings-starts' and `calendar-daylight-savings-ends'. These values should be Lisp expressions that refer to the variable `year', and evaluate to the Gregorian date on which daylight savings time starts or (respectively) ends, in the form of a list `(MONTH DAY YEAR)'. The values should be `nil' if your area does not use daylight savings time. Emacs uses these expressions to determine the starting date of daylight savings time for the holiday list and for correcting times of day in the solar and lunar calculations. The values for Cambridge, Massachusetts are as follows: (calendar-nth-named-day 1 0 4 year) (calendar-nth-named-day -1 0 10 year) That is, the first 0th day (Sunday) of the fourth month (April) in the year specified by `year', and the last Sunday of the tenth month (October) of that year. If daylight savings time were changed to start on October 1, you would set `calendar-daylight-savings-starts' to this: (list 10 1 year) If there is no daylight savings time at your location, or if you want all times in standard time, set `calendar-daylight-savings-starts' and `calendar-daylight-savings-ends' to `nil'. The variable `calendar-daylight-time-offset' specifies the difference between daylight savings time and standard time, measured in minutes. The value for Cambridge, Massachusetts is 60. The two variables `calendar-daylight-savings-starts-time' and `calendar-daylight-savings-ends-time' specify the number of minutes after midnight local time when the transition to and from daylight savings time should occur. For Cambridge, Massachusetts both variables' values are 120. Summing Time Intervals ====================== The timeclock feature adds up time intervals, so you can (for instance) keep track of how much time you spend working. Use the `M-x timeclock-in' command when you start working on a project, and `M-x timeclock-out' command when you're done. Each time you do this, it adds one time interval to the record of the project. Once you've collected data from a number of time intervals, you can use `M-x timeclock-workday-remaining' to see how much time is left to work today (assuming a typical average of 8 hours a day), and `M-x timeclock-when-to-leave' which will calculate when you're "done." If you want Emacs to display the amount of time "left" of your workday in the mode line, either customize the `timeclock-modeline-display' variable and set its value to `t', or invoke the `M-x timeclock-modeline-display' command. Terminating the current Emacs session might or might not mean that you have stopped working on the project. If you'd like Emacs to ask you about this, set the value of the variable `timeclock-ask-before-exiting' to `t' (via `M-x customize'). By default, only an explicit `M-x timeclock-out' tells Emacs that the current interval is over. The timeclock functions work by accumulating the data in a file called `.timelog' in your home directory. (On MS-DOS, this file is called `_timelog', since an initial period is not allowed in file names on MS-DOS.) You can specify a different name for this file by customizing the variable `timeclock-file'. If you edit the timeclock file manually, or if you change the value of any of timeclock's customizable variables, you should run the command `M-x timeclock-reread-log' to update the data in Emacs from the file. Gnus ==== Gnus is an Emacs package primarily designed for reading and posting Usenet news. It can also be used to read and respond to messages from a number of other sources--mail, remote directories, digests, and so on. Here we introduce Gnus and describe several basic features. For full details, see *Note Gnus: (gnus)Top. To start Gnus, type `M-x gnus '. Gnus Buffers ------------ As opposed to most normal Emacs packages, Gnus uses a number of different buffers to display information and to receive commands. The three buffers users spend most of their time in are the "group buffer", the "summary buffer" and the "article buffer". The "group buffer" contains a list of groups. This is the first buffer Gnus displays when it starts up. It normally displays only the groups to which you subscribe and that contain unread articles. Use this buffer to select a specific group. The "summary buffer" lists one line for each article in a single group. By default, the author, the subject and the line number are displayed for each article, but this is customizable, like most aspects of Gnus display. The summary buffer is created when you select a group in the group buffer, and is killed when you exit the group. Use this buffer to select an article. The "article buffer" displays the article. In normal Gnus usage, you don't select this buffer--all useful article-oriented commands work in the summary buffer. But you can select the article buffer, and execute all Gnus commands from that buffer, if you want to. When Gnus Starts Up ------------------- At startup, Gnus reads your `.newsrc' news initialization file and attempts to communicate with the local news server, which is a repository of news articles. The news server need not be the same computer you are logged in on. If you start Gnus and connect to the server, but do not see any newsgroups listed in the group buffer, type `L' or `A k' to get a listing of all the groups. Then type `u' to toggle subscription to groups. The first time you start Gnus, Gnus subscribes you to a few selected groups. All other groups start out as "killed groups" for you; you can list them with `A k'. All new groups that subsequently come to exist at the news server become "zombie groups" for you; type `A z' to list them. You can subscribe to a group shown in these lists using the `u' command. When you quit Gnus with `q', it automatically records in your `.newsrc' and `.newsrc.eld' initialization files the subscribed or unsubscribed status of all groups. You should normally not edit these files manually, but you may if you know how. Summary of Gnus Commands ------------------------ Reading news is a two-step process: 1. Choose a group in the group buffer. 2. Select articles from the summary buffer. Each article selected is displayed in the article buffer in a large window, below the summary buffer in its small window. Each Gnus buffer has its own special commands; however, the meanings of any given key in the various Gnus buffers are usually analogous, even if not identical. Here are commands for the group and summary buffers: `q' In the group buffer, update your `.newsrc' initialization file and quit Gnus. In the summary buffer, exit the current group and return to the group buffer. Thus, typing `q' twice quits Gnus. `L' In the group buffer, list all the groups available on your news server (except those you have killed). This may be a long list! `l' In the group buffer, list only the groups to which you subscribe and which contain unread articles. `u' In the group buffer, unsubscribe from (or subscribe to) the group listed in the line that point is on. When you quit Gnus by typing `q', Gnus lists in your `.newsrc' file which groups you have subscribed to. The next time you start Gnus, you won't see this group, because Gnus normally displays only subscribed-to groups. `C-k' In the group buffer, "kill" the current line's group--don't even list it in `.newsrc' from now on. This affects future Gnus sessions as well as the present session. When you quit Gnus by typing `q', Gnus writes information in the file `.newsrc' describing all newsgroups except those you have "killed." `' In the group buffer, select the group on the line under the cursor and display the first unread article in that group. In the summary buffer, * Select the article on the line under the cursor if none is selected. * Scroll the text of the selected article (if there is one). * Select the next unread article if at the end of the current article. Thus, you can move through all the articles by repeatedly typing . `' In the group buffer, move point to the previous group containing unread articles. In the summary buffer, scroll the text of the article backwards. `n' Move point to the next unread group, or select the next unread article. `p' Move point to the previous unread group, or select the previous unread article. `C-n' `C-p' Move point to the next or previous item, even if it is marked as read. This does not select the article or group on that line. `s' In the summary buffer, do an incremental search of the current text in the article buffer, just as if you switched to the article buffer and typed `C-s'. `M-s REGEXP ' In the summary buffer, search forward for articles containing a match for REGEXP. Running Shell Commands from Emacs ================================= Emacs has commands for passing single command lines to inferior shell processes; it can also run a shell interactively with input and output to an Emacs buffer named `*shell*' or run a shell inside a terminal emulator window. There is a shell implemented entirely in Emacs, documented in a separate manual. *Note Eshell: (eshell)Top. `M-! CMD ' Run the shell command line CMD and display the output (`shell-command'). `M-| CMD ' Run the shell command line CMD with region contents as input; optionally replace the region with the output (`shell-command-on-region'). `M-x shell' Run a subshell with input and output through an Emacs buffer. You can then give commands interactively. `M-x term' Run a subshell with input and output through an Emacs buffer. You can then give commands interactively. Full terminal emulation is available. `M-x eshell' Start the Emacs shell. Single Shell Commands --------------------- `M-!' (`shell-command') reads a line of text using the minibuffer and executes it as a shell command in a subshell made just for that command. Standard input for the command comes from the null device. If the shell command produces any output, the output appears either in the echo area (if it is short), or in an Emacs buffer named `*Shell Command Output*', which is displayed in another window but not selected (if the output is long). For instance, one way to decompress a file `foo.gz' from Emacs is to type `M-! gunzip foo.gz '. That shell command normally creates the file `foo' and produces no terminal output. A numeric argument, as in `M-1 M-!', says to insert terminal output into the current buffer instead of a separate buffer. It puts point before the output, and sets the mark after the output. For instance, `M-1 M-! gunzip < foo.gz ' would insert the uncompressed equivalent of `foo.gz' into the current buffer. If the shell command line ends in `&', it runs asynchronously. For a synchronous shell command, `shell-command' returns the command's exit status (0 means success), when it is called from a Lisp program. You do not get any status information for an asynchronous command, since it hasn't finished yet. `M-|' (`shell-command-on-region') is like `M-!' but passes the contents of the region as the standard input to the shell command, instead of no input. If a numeric argument is used, meaning insert the output in the current buffer, then the old region is deleted first and the output replaces it as the contents of the region. It returns the command's exit status when it is called from a Lisp program. One use for `M-|' is to run `uudecode'. For instance, if the buffer contains uuencoded text, type `C-x h M-| uudecode ' to feed the entire buffer contents to the `uudecode' program. That program will ignore everything except the encoded text, and will store the decoded output into the file whose name is specified in the encoded text. Both `M-!' and `M-|' use `shell-file-name' to specify the shell to use. This variable is initialized based on your `SHELL' environment variable when Emacs is started. If the file name does not specify a directory, the directories in the list `exec-path' are searched; this list is initialized based on the environment variable `PATH' when Emacs is started. Your `.emacs' file can override either or both of these default initializations. Both `M-!' and `M-|' wait for the shell command to complete. To stop waiting, type `C-g' to quit; that terminates the shell command with the signal `SIGINT'--the same signal that `C-c' normally generates in the shell. Emacs waits until the command actually terminates. If the shell command doesn't stop (because it ignores the `SIGINT' signal), type `C-g' again; this sends the command a `SIGKILL' signal which is impossible to ignore. To specify a coding system for `M-!' or `M-|', use the command `C-x c' immediately beforehand. *Note Specify Coding::. Error output from the command is normally intermixed with the regular output. If you set the variable `shell-command-default-error-buffer' to a string, which is a buffer name, error output is inserted before point in the buffer of that name. Interactive Inferior Shell -------------------------- To run a subshell interactively, putting its typescript in an Emacs buffer, use `M-x shell'. This creates (or reuses) a buffer named `*shell*' and runs a subshell with input coming from and output going to that buffer. That is to say, any "terminal output" from the subshell goes into the buffer, advancing point, and any "terminal input" for the subshell comes from text in the buffer. To give input to the subshell, go to the end of the buffer and type the input, terminated by . Emacs does not wait for the subshell to do anything. You can switch windows or buffers and edit them while the shell is waiting, or while it is running a command. Output from the subshell waits until Emacs has time to process it; this happens whenever Emacs is waiting for keyboard input or for time to elapse. Input lines, once you submit them, are displayed using the face `comint-highlight-input', and prompts are displayed using the face `comint-highlight-prompt'. This makes it easier to see previous input lines in the buffer. *Note Faces::. To make multiple subshells, you can invoke `M-x shell' with a prefix argument (e.g. `C-u M-x shell'), which will read a buffer name and create (or reuse) a subshell in that buffer. You can also rename the `*shell*' buffer using `M-x rename-uniquely', then create a new `*shell*' buffer using plain `M-x shell'. All the subshells in different buffers run independently and in parallel. The file name used to load the subshell is the value of the variable `explicit-shell-file-name', if that is non-`nil'. Otherwise, the environment variable `ESHELL' is used, or the environment variable `SHELL' if there is no `ESHELL'. If the file name specified is relative, the directories in the list `exec-path' are searched; this list is initialized based on the environment variable `PATH' when Emacs is started. Your `.emacs' file can override either or both of these default initializations. Emacs sends the new shell the contents of the file `~/.emacs_SHELLNAME' as input, if it exists, where SHELLNAME is the name of the file that the shell was loaded from. For example, if you use bash, the file sent to it is `~/.emacs_bash'. To specify a coding system for the shell, you can use the command `C-x c' immediately before `M-x shell'. You can also specify a coding system after starting the shell by using `C-x p' in the shell buffer. *Note Specify Coding::. Unless the environment variable `EMACS' is already defined, Emacs defines it in the subshell, with value `t'. A shell script can check this variable to determine whether it has been run from an Emacs subshell. Shell Mode ---------- Shell buffers use Shell mode, which defines several special keys attached to the `C-c' prefix. They are chosen to resemble the usual editing and job control characters present in shells that are not under Emacs, except that you must type `C-c' first. Here is a complete list of the special key bindings of Shell mode: `' At end of buffer send line as input; otherwise, copy current line to end of buffer and send it (`comint-send-input'). When a line is copied, any prompt at the beginning of the line (text output by programs preceding your input) is omitted. (See also the variable `comint-use-prompt-regexp-instead-of-fields'.) `' Complete the command name or file name before point in the shell buffer (`comint-dynamic-complete'). also completes history references (*note History References::) and environment variable names. The variable `shell-completion-fignore' specifies a list of file name extensions to ignore in Shell mode completion. The default setting is `nil', but some users prefer `("~" "#" "%")' to ignore file names ending in `~', `#' or `%'. Other related Comint modes use the variable `comint-completion-fignore' instead. `M-?' Display temporarily a list of the possible completions of the file name before point in the shell buffer (`comint-dynamic-list-filename-completions'). `C-d' Either delete a character or send EOF (`comint-delchar-or-maybe-eof'). Typed at the end of the shell buffer, `C-d' sends EOF to the subshell. Typed at any other position in the buffer, `C-d' deletes a character as usual. `C-c C-a' Move to the beginning of the line, but after the prompt if any (`comint-bol-or-process-mark'). If you repeat this command twice in a row, the second time it moves back to the process mark, which is the beginning of the input that you have not yet sent to the subshell. (Normally that is the same place--the end of the prompt on this line--but after `C-c ' the process mark may be in a previous line.) `C-c ' Accumulate multiple lines of input, then send them together. This command inserts a newline before point, but does not send the preceding text as input to the subshell--at least, not yet. Both lines, the one before this newline and the one after, will be sent together (along with the newline that separates them), when you type . `C-c C-u' Kill all text pending at end of buffer to be sent as input (`comint-kill-input'). `C-c C-w' Kill a word before point (`backward-kill-word'). `C-c C-c' Interrupt the shell or its current subjob if any (`comint-interrupt-subjob'). This command also kills any shell input pending in the shell buffer and not yet sent. `C-c C-z' Stop the shell or its current subjob if any (`comint-stop-subjob'). This command also kills any shell input pending in the shell buffer and not yet sent. `C-c C-\' Send quit signal to the shell or its current subjob if any (`comint-quit-subjob'). This command also kills any shell input pending in the shell buffer and not yet sent. `C-c C-o' Delete the last batch of output from a shell command (`comint-delete-output'). This is useful if a shell command spews out lots of output that just gets in the way. This command used to be called `comint-kill-output'. `C-c C-s' Write the last batch of output from a shell command to a file (`comint-write-output'). With a prefix argument, the file is appended to instead. Any prompt at the end of the output is not written. `C-c C-r' `C-M-l' Scroll to display the beginning of the last batch of output at the top of the window; also move the cursor there (`comint-show-output'). `C-c C-e' Scroll to put the end of the buffer at the bottom of the window (`comint-show-maximum-output'). `C-c C-f' Move forward across one shell command, but not beyond the current line (`shell-forward-command'). The variable `shell-command-regexp' specifies how to recognize the end of a command. `C-c C-b' Move backward across one shell command, but not beyond the current line (`shell-backward-command'). `C-c C-l' Display the buffer's history of shell commands in another window (`comint-dynamic-list-input-ring'). `M-x dirs' Ask the shell what its current directory is, so that Emacs can agree with the shell. `M-x send-invisible TEXT ' Send TEXT as input to the shell, after reading it without echoing. This is useful when a shell command runs a program that asks for a password. Alternatively, you can arrange for Emacs to notice password prompts and turn off echoing for them, as follows: (add-hook 'comint-output-filter-functions 'comint-watch-for-password-prompt) `M-x comint-continue-subjob' Continue the shell process. This is useful if you accidentally suspend the shell process.(1) `M-x comint-strip-ctrl-m' Discard all control-M characters from the current group of shell output. The most convenient way to use this command is to make it run automatically when you get output from the subshell. To do that, evaluate this Lisp expression: (add-hook 'comint-output-filter-functions 'comint-strip-ctrl-m) `M-x comint-truncate-buffer' This command truncates the shell buffer to a certain maximum number of lines, specified by the variable `comint-buffer-maximum-size'. Here's how to do this automatically each time you get output from the subshell: (add-hook 'comint-output-filter-functions 'comint-truncate-buffer) Shell mode also customizes the paragraph commands so that only shell prompts start new paragraphs. Thus, a paragraph consists of an input command plus the output that follows it in the buffer. Shell mode is a derivative of Comint mode, a general-purpose mode for communicating with interactive subprocesses. Most of the features of Shell mode actually come from Comint mode, as you can see from the command names listed above. The special features of Shell mode include the directory tracking feature, and a few user commands. Other Emacs features that use variants of Comint mode include GUD (*note Debuggers::) and `M-x run-lisp' (*note External Lisp::). You can use `M-x comint-run' to execute any program of your choice in a subprocess using unmodified Comint mode--without the specializations of Shell mode. ---------- Footnotes ---------- (1) You should not suspend the shell process. Suspending a subjob of the shell is a completely different matter--that is normal practice, but you must use the shell to continue the subjob; this command won't do it. Shell Command History --------------------- Shell buffers support three ways of repeating earlier commands. You can use the same keys used in the minibuffer; these work much as they do in the minibuffer, inserting text from prior commands while point remains always at the end of the buffer. You can move through the buffer to previous inputs in their original place, then resubmit them or copy them to the end. Or you can use a `!'-style history reference. Shell History Ring .................. `M-p' Fetch the next earlier old shell command. `M-n' Fetch the next later old shell command. `M-r REGEXP ' `M-s REGEXP ' Search backwards or forwards for old shell commands that match REGEXP. `C-c C-x (Shell mode)' Fetch the next subsequent command from the history. Shell buffers provide a history of previously entered shell commands. To reuse shell commands from the history, use the editing commands `M-p', `M-n', `M-r' and `M-s'. These work just like the minibuffer history commands except that they operate on the text at the end of the shell buffer, where you would normally insert text to send to the shell. `M-p' fetches an earlier shell command to the end of the shell buffer. Successive use of `M-p' fetches successively earlier shell commands, each replacing any text that was already present as potential shell input. `M-n' does likewise except that it finds successively more recent shell commands from the buffer. The history search commands `M-r' and `M-s' read a regular expression and search through the history for a matching command. Aside from the choice of which command to fetch, they work just like `M-p' and `M-n'. If you enter an empty regexp, these commands reuse the same regexp used last time. When you find the previous input you want, you can resubmit it by typing , or you can edit it first and then resubmit it if you wish. Often it is useful to reexecute several successive shell commands that were previously executed in sequence. To do this, first find and reexecute the first command of the sequence. Then type `C-c C-x'; that will fetch the following command--the one that follows the command you just repeated. Then type to reexecute this command. You can reexecute several successive commands by typing `C-c C-x ' over and over. These commands get the text of previous shell commands from a special history list, not from the shell buffer itself. Thus, editing the shell buffer, or even killing large parts of it, does not affect the history that these commands access. Some shells store their command histories in files so that you can refer to previous commands from previous shell sessions. Emacs reads the command history file for your chosen shell, to initialize its own command history. The file name is `~/.bash_history' for bash, `~/.sh_history' for ksh, and `~/.history' for other shells. Shell History Copying ..................... `C-c C-p' Move point to the previous prompt (`comint-previous-prompt'). `C-c C-n' Move point to the following prompt (`comint-next-prompt'). `C-c ' Copy the input command which point is in, inserting the copy at the end of the buffer (`comint-copy-old-input'). This is useful if you move point back to a previous command. After you copy the command, you can submit the copy as input with . If you wish, you can edit the copy before resubmitting it. Moving to a previous input and then copying it with `C-c ' produces the same results--the same buffer contents--that you would get by using `M-p' enough times to fetch that previous input from the history list. However, `C-c ' copies the text from the buffer, which can be different from what is in the history list if you edit the input text in the buffer after it has been sent. Shell History References ........................ Various shells including csh and bash support "history references" that begin with `!' and `^'. Shell mode recognizes these constructs, and can perform the history substitution for you. If you insert a history reference and type , this searches the input history for a matching command, performs substitution if necessary, and places the result in the buffer in place of the history reference. For example, you can fetch the most recent command beginning with `mv' with `! m v '. You can edit the command if you wish, and then resubmit the command to the shell by typing . Shell mode can optionally expand history references in the buffer when you send them to the shell. To request this, set the variable `comint-input-autoexpand' to `input'. You can make perform history expansion by binding to the command `comint-magic-space'. Shell mode recognizes history references when they follow a prompt. Normally, any text output by a program at the beginning of an input line is considered a prompt. However, if the variable `comint-use-prompt-regexp-instead-of-fields' is non-`nil', then Comint mode uses a regular expression to recognize prompts. In general, the variable `comint-prompt-regexp' specifies the regular expression; Shell mode uses the variable `shell-prompt-pattern' to set up `comint-prompt-regexp' in the shell buffer. Directory Tracking ------------------ Shell mode keeps track of `cd', `pushd' and `popd' commands given to the inferior shell, so it can keep the `*shell*' buffer's default directory the same as the shell's working directory. It recognizes these commands syntactically, by examining lines of input that are sent. If you use aliases for these commands, you can tell Emacs to recognize them also. For example, if the value of the variable `shell-pushd-regexp' matches the beginning of a shell command line, that line is regarded as a `pushd' command. Change this variable when you add aliases for `pushd'. Likewise, `shell-popd-regexp' and `shell-cd-regexp' are used to recognize commands with the meaning of `popd' and `cd'. These commands are recognized only at the beginning of a shell command line. If Emacs gets confused about changes in the current directory of the subshell, use the command `M-x dirs' to ask the shell what its current directory is. This command works for shells that support the most common command syntax; it may not work for unusual shells. You can also use `M-x dirtrack-mode' to enable (or disable) an alternative and more aggressive method of tracking changes in the current directory. Shell Mode Options ------------------ If the variable `comint-scroll-to-bottom-on-input' is non-`nil', insertion and yank commands scroll the selected window to the bottom before inserting. If `comint-scroll-show-maximum-output' is non-`nil', then scrolling due to the arrival of output tries to place the last line of text at the bottom line of the window, so as to show as much useful text as possible. (This mimics the scrolling behavior of many terminals.) The default is `nil'. By setting `comint-scroll-to-bottom-on-output', you can opt for having point jump to the end of the buffer whenever output arrives--no matter where in the buffer point was before. If the value is `this', point jumps in the selected window. If the value is `all', point jumps in each window that shows the Comint buffer. If the value is `other', point jumps in all nonselected windows that show the current buffer. The default value is `nil', which means point does not jump to the end. The variable `comint-input-ignoredups' controls whether successive identical inputs are stored in the input history. A non-`nil' value means to omit an input that is the same as the previous input. The default is `nil', which means to store each input even if it is equal to the previous input. Three variables customize file name completion. The variable `comint-completion-addsuffix' controls whether completion inserts a space or a slash to indicate a fully completed file or directory name (non-`nil' means do insert a space or slash). `comint-completion-recexact', if non-`nil', directs to choose the shortest possible completion if the usual Emacs completion algorithm cannot add even a single character. `comint-completion-autolist', if non-`nil', says to list all the possible completions whenever completion is not exact. Command completion normally considers only executable files. If you set `shell-completion-execonly' to `nil', it considers nonexecutable files as well. You can configure the behavior of `pushd'. Variables control whether `pushd' behaves like `cd' if no argument is given (`shell-pushd-tohome'), pop rather than rotate with a numeric argument (`shell-pushd-dextract'), and only add directories to the directory stack if they are not already on it (`shell-pushd-dunique'). The values you choose should match the underlying shell, of course. Emacs Terminal Emulator ----------------------- To run a subshell in a terminal emulator, putting its typescript in an Emacs buffer, use `M-x term'. This creates (or reuses) a buffer named `*terminal*', and runs a subshell with input coming from your keyboard, and output going to that buffer. The terminal emulator uses Term mode, which has two input modes. In line mode, Term basically acts like Shell mode; see *Note Shell Mode::. In char mode, each character is sent directly to the inferior subshell, as "terminal input." Any "echoing" of your input is the responsibility of the subshell. The sole exception is the terminal escape character, which by default is `C-c' (*note Term Mode::). Any "terminal output" from the subshell goes into the buffer, advancing point. Some programs (such as Emacs itself) need to control the appearance on the terminal screen in detail. They do this by sending special control codes. The exact control codes needed vary from terminal to terminal, but nowadays most terminals and terminal emulators (including `xterm') understand the ANSI-standard (VT100-style) escape sequences. Term mode recognizes these escape sequences, and handles each one appropriately, changing the buffer so that the appearance of the window matches what it would be on a real terminal. You can actually run Emacs inside an Emacs Term window. The file name used to load the subshell is determined the same way as for Shell mode. To make multiple terminal emulators, rename the buffer `*terminal*' to something different using `M-x rename-uniquely', just as with Shell mode. Unlike Shell mode, Term mode does not track the current directory by examining your input. But some shells can tell Term what the current directory is. This is done automatically by `bash' version 1.15 and later. Term Mode --------- The terminal emulator uses Term mode, which has two input modes. In line mode, Term basically acts like Shell mode; see *Note Shell Mode::. In char mode, each character is sent directly to the inferior subshell, except for the Term escape character, normally `C-c'. To switch between line and char mode, use these commands: `C-c C-k' Switch to line mode. Do nothing if already in line mode. `C-c C-j' Switch to char mode. Do nothing if already in char mode. The following commands are only available in char mode: `C-c C-c' Send a literal to the sub-shell. `C-c C-x' A prefix command to access the global commands conveniently. For example, `C-c C-x o' invokes the global binding of `C-x o', which is normally `other-window'. Page-At-A-Time Output --------------------- Term mode has a page-at-a-time feature. When enabled it makes output pause at the end of each screenful. `C-c C-q' Toggle the page-at-a-time feature. This command works in both line and char modes. When page-at-a-time is enabled, the mode-line displays the word `page'. With page-at-a-time enabled, whenever Term receives more than a screenful of output since your last input, it pauses, displaying `**MORE**' in the mode-line. Type to display the next screenful of output. Type `?' to see your other options. The interface is similar to the `more' program. Remote Host Shell ----------------- You can login to a remote computer, using whatever commands you would from a regular terminal (e.g. using the `telnet' or `rlogin' commands), from a Term window. A program that asks you for a password will normally suppress echoing of the password, so the password will not show up in the buffer. This will happen just as if you were using a real terminal, if the buffer is in char mode. If it is in line mode, the password is temporarily visible, but will be erased when you hit return. (This happens automatically; there is no special password processing.) When you log in to a different machine, you need to specify the type of terminal you're using. Terminal types `ansi' or `vt100' will work on most systems. Using Emacs as a Server ======================= Various programs such as `mail' can invoke your choice of editor to edit a particular piece of text, such as a message that you are sending. By convention, most of these programs use the environment variable `EDITOR' to specify which editor to run. If you set `EDITOR' to `emacs', they invoke Emacs--but in an inconvenient fashion, by starting a new, separate Emacs process. This is inconvenient because it takes time and because the new Emacs process doesn't share the buffers in any existing Emacs process. You can arrange to use your existing Emacs process as the editor for programs like `mail' by using the Emacs client and Emacs server programs. Here is how. First, the preparation. Within Emacs, call the function `server-start'. (Your `.emacs' file can do this automatically if you add the expression `(server-start)' to it.) Then, outside Emacs, set the `EDITOR' environment variable to `emacsclient'. (Note that some programs use a different environment variable; for example, to make TeX use `emacsclient', you should set the `TEXEDIT' environment variable to `emacsclient +%d %s'.) Then, whenever any program invokes your specified `EDITOR' program, the effect is to send a message to your principal Emacs telling it to visit a file. (That's what the program `emacsclient' does.) Emacs displays the buffer immediately and you can immediately begin editing it. When you've finished editing that buffer, type `C-x #' (`server-edit'). This saves the file and sends a message back to the `emacsclient' program telling it to exit. The programs that use `EDITOR' wait for the "editor" (actually, `emacsclient') to exit. `C-x #' also checks for other pending external requests to edit various files, and selects the next such file. You can switch to a server buffer manually if you wish; you don't have to arrive at it with `C-x #'. But `C-x #' is the way to say that you are finished with one. Finishing with a server buffer also kills the buffer, unless it already existed in the Emacs session before the server asked to create it. However, if you set `server-kill-new-buffers' to `nil', then a different criterion is used: finishing with a server buffer kills it if the file name matches the regular expression `server-temp-file-regexp'. This is set up to distinguish certain "temporary" files. If you set the variable `server-window' to a window or a frame, `C-x #' displays the server buffer in that window or in that frame. While `mail' or another application is waiting for `emacsclient' to finish, `emacsclient' does not read terminal input. So the terminal that `mail' was using is effectively blocked for the duration. In order to edit with your principal Emacs, you need to be able to use it without using that terminal. There are three ways to do this: * Using a window system, run `mail' and the principal Emacs in two separate windows. While `mail' is waiting for `emacsclient', the window where it was running is blocked, but you can use Emacs by switching windows. * Using virtual terminals, run `mail' in one virtual terminal and run Emacs in another. * Use Shell mode or Term mode in Emacs to run the other program such as `mail'; then, `emacsclient' blocks only the subshell under Emacs, and you can still use Emacs to edit the file. If you run `emacsclient' with the option `--no-wait', it returns immediately without waiting for you to "finish" the buffer in Emacs. Note that server buffers created in this way are not killed automatically when you finish with them. Invoking `emacsclient' ====================== To run the `emacsclient' program, specify file names as arguments, and optionally line numbers as well. Do it like this: emacsclient {[+LINE[COLUMN]] FILENAME}... This tells Emacs to visit each of the specified files; if you specify a line number for a certain file, Emacs moves to that line in the file. If you specify a column number as well, Emacs puts point on that column in the line. Ordinarily, `emacsclient' does not return until you use the `C-x #' command on each of these buffers. When that happens, Emacs sends a message to the `emacsclient' program telling it to return. But if you use the option `-n' or `--no-wait' when running `emacsclient', then it returns immediately. (You can take as long as you like to edit the files in Emacs.) The option `--alternate-editor=COMMAND' is useful when running `emacsclient' in a script. It specifies a command to run if `emacsclient' fails to contact Emacs. For example, the following setting for the EDITOR environment variable will always give an editor, even if Emacs is not running: EDITOR="emacsclient --alternate-editor vi +%d %s" The environment variable ALTERNATE_EDITOR has the same effect, but the value of the `--alternate-editor' takes precedence. Alternatively, the file `etc/emacs.bash' defines a bash function which will communicate with a running Emacs server, or start one if none exists. Hardcopy Output =============== The Emacs commands for making hardcopy let you print either an entire buffer or just part of one, either with or without page headers. See also the hardcopy commands of Dired (*note Misc File Ops::) and the diary (*note Diary Commands::). `M-x print-buffer' Print hardcopy of current buffer with page headings containing the file name and page number. `M-x lpr-buffer' Print hardcopy of current buffer without page headings. `M-x print-region' Like `print-buffer' but print only the current region. `M-x lpr-region' Like `lpr-buffer' but print only the current region. The hardcopy commands (aside from the Postscript commands) pass extra switches to the `lpr' program based on the value of the variable `lpr-switches'. Its value should be a list of strings, each string an option starting with `-'. For example, to specify a line width of 80 columns for all the printing you do in Emacs, set `lpr-switches' like this: (setq lpr-switches '("-w80")) You can specify the printer to use by setting the variable `printer-name'. The variable `lpr-command' specifies the name of the printer program to run; the default value depends on your operating system type. On most systems, the default is `"lpr"'. The variable `lpr-headers-switches' similarly specifies the extra switches to use to make page headers. The variable `lpr-add-switches' controls whether to supply `-T' and `-J' options (suitable for `lpr') to the printer program: `nil' means don't add them. `lpr-add-switches' should be `nil' if your printer program is not compatible with `lpr'. PostScript Hardcopy =================== These commands convert buffer contents to PostScript, either printing it or leaving it in another Emacs buffer. `M-x ps-print-buffer' Print hardcopy of the current buffer in PostScript form. `M-x ps-print-region' Print hardcopy of the current region in PostScript form. `M-x ps-print-buffer-with-faces' Print hardcopy of the current buffer in PostScript form, showing the faces used in the text by means of PostScript features. `M-x ps-print-region-with-faces' Print hardcopy of the current region in PostScript form, showing the faces used in the text. `M-x ps-spool-buffer' Generate PostScript for the current buffer text. `M-x ps-spool-region' Generate PostScript for the current region. `M-x ps-spool-buffer-with-faces' Generate PostScript for the current buffer, showing the faces used. `M-x ps-spool-region-with-faces' Generate PostScript for the current region, showing the faces used. `M-x handwrite' Generates/prints PostScript for the current buffer as if handwritten. The PostScript commands, `ps-print-buffer' and `ps-print-region', print buffer contents in PostScript form. One command prints the entire buffer; the other, just the region. The corresponding `-with-faces' commands, `ps-print-buffer-with-faces' and `ps-print-region-with-faces', use PostScript features to show the faces (fonts and colors) in the text properties of the text being printed. If you are using a color display, you can print a buffer of program code with color highlighting by turning on Font-Lock mode in that buffer, and using `ps-print-buffer-with-faces'. The commands whose names have `spool' instead of `print' generate the PostScript output in an Emacs buffer instead of sending it to the printer. `M-x handwrite' is more frivolous. It generates a PostScript rendition of the current buffer as a cursive handwritten document. It can be customized in group `handwrite'. This function only supports ISO 8859-1 characters. The following section describes variables for customizing these commands. Variables for PostScript Hardcopy ================================= All the PostScript hardcopy commands use the variables `ps-lpr-command' and `ps-lpr-switches' to specify how to print the output. `ps-lpr-command' specifies the command name to run, `ps-lpr-switches' specifies command line options to use, and `ps-printer-name' specifies the printer. If you don't set the first two variables yourself, they take their initial values from `lpr-command' and `lpr-switches'. If `ps-printer-name' is `nil', `printer-name' is used. The variable `ps-print-header' controls whether these commands add header lines to each page--set it to `nil' to turn headers off. If your printer doesn't support colors, you should turn off color processing by setting `ps-print-color-p' to `nil'. By default, if the display supports colors, Emacs produces hardcopy output with color information; on black-and-white printers, colors are emulated with shades of gray. This might produce illegible output, even if your screen colors only use shades of gray. By default, PostScript printing ignores the background colors of the faces, unless the variable `ps-use-face-background' is non-`nil'. This is to avoid unwanted interference with the zebra stripes and background image/text. The variable `ps-paper-type' specifies which size of paper to format for; legitimate values include `a4', `a3', `a4small', `b4', `b5', `executive', `ledger', `legal', `letter', `letter-small', `statement', `tabloid'. The default is `letter'. You can define additional paper sizes by changing the variable `ps-page-dimensions-database'. The variable `ps-landscape-mode' specifies the orientation of printing on the page. The default is `nil', which stands for "portrait" mode. Any non-`nil' value specifies "landscape" mode. The variable `ps-number-of-columns' specifies the number of columns; it takes effect in both landscape and portrait mode. The default is 1. The variable `ps-font-family' specifies which font family to use for printing ordinary text. Legitimate values include `Courier', `Helvetica', `NewCenturySchlbk', `Palatino' and `Times'. The variable `ps-font-size' specifies the size of the font for ordinary text. It defaults to 8.5 points. Emacs supports more scripts and characters than a typical PostScript printer. Thus, some of the characters in your buffer might not be printable using the fonts built into your printer. You can augment the fonts supplied with the printer with those from the GNU Intlfonts package, or you can instruct Emacs to use Intlfonts exclusively. The variable `ps-multibyte-buffer' controls this: the default value, `nil', is appropriate for printing ASCII and Latin-1 characters; a value of `non-latin-printer' is for printers which have the fonts for ASCII, Latin-1, Japanese, and Korean characters built into them. A value of `bdf-font' arranges for the BDF fonts from the Intlfonts package to be used for _all_ characters. Finally, a value of `bdf-font-except-latin' instructs the printer to use built-in fonts for ASCII and Latin-1 characters, and Intlfonts BDF fonts for the rest. To be able to use the BDF fonts, Emacs needs to know where to find them. The variable `bdf-directory-list' holds the list of directories where Emacs should look for the fonts; the default value includes a single directory `/usr/local/share/emacs/fonts/bdf'. Many other customization variables for these commands are defined and described in the Lisp files `ps-print.el' and `ps-mule.el'. Sorting Text ============ Emacs provides several commands for sorting text in the buffer. All operate on the contents of the region (the text between point and the mark). They divide the text of the region into many "sort records", identify a "sort key" for each record, and then reorder the records into the order determined by the sort keys. The records are ordered so that their keys are in alphabetical order, or, for numeric sorting, in numeric order. In alphabetic sorting, all upper-case letters `A' through `Z' come before lower-case `a', in accord with the ASCII character sequence. The various sort commands differ in how they divide the text into sort records and in which part of each record is used as the sort key. Most of the commands make each line a separate sort record, but some commands use paragraphs or pages as sort records. Most of the sort commands use each entire sort record as its own sort key, but some use only a portion of the record as the sort key. `M-x sort-lines' Divide the region into lines, and sort by comparing the entire text of a line. A numeric argument means sort into descending order. `M-x sort-paragraphs' Divide the region into paragraphs, and sort by comparing the entire text of a paragraph (except for leading blank lines). A numeric argument means sort into descending order. `M-x sort-pages' Divide the region into pages, and sort by comparing the entire text of a page (except for leading blank lines). A numeric argument means sort into descending order. `M-x sort-fields' Divide the region into lines, and sort by comparing the contents of one field in each line. Fields are defined as separated by whitespace, so the first run of consecutive non-whitespace characters in a line constitutes field 1, the second such run constitutes field 2, etc. Specify which field to sort by with a numeric argument: 1 to sort by field 1, etc. A negative argument means count fields from the right instead of from the left; thus, minus 1 means sort by the last field. If several lines have identical contents in the field being sorted, they keep the same relative order that they had in the original buffer. `M-x sort-numeric-fields' Like `M-x sort-fields' except the specified field is converted to an integer for each line, and the numbers are compared. `10' comes before `2' when considered as text, but after it when considered as a number. By default, numbers are interpreted according to `sort-numeric-base', but numbers beginning with `0x' or `0' are interpreted as hexadecimal and octal, respectively. `M-x sort-columns' Like `M-x sort-fields' except that the text within each line used for comparison comes from a fixed range of columns. See below for an explanation. `M-x reverse-region' Reverse the order of the lines in the region. This is useful for sorting into descending order by fields or columns, since those sort commands do not have a feature for doing that. For example, if the buffer contains this: On systems where clash detection (locking of files being edited) is implemented, Emacs also checks the first time you modify a buffer whether the file has changed on disk since it was last visited or saved. If it has, you are asked to confirm that you want to change the buffer. applying `M-x sort-lines' to the entire buffer produces this: On systems where clash detection (locking of files being edited) is implemented, Emacs also checks the first time you modify a buffer saved. If it has, you are asked to confirm that you want to change the buffer. whether the file has changed on disk since it was last visited or where the upper-case `O' sorts before all lower-case letters. If you use `C-u 2 M-x sort-fields' instead, you get this: implemented, Emacs also checks the first time you modify a buffer saved. If it has, you are asked to confirm that you want to change the buffer. On systems where clash detection (locking of files being edited) is whether the file has changed on disk since it was last visited or where the sort keys were `Emacs', `If', `buffer', `systems' and `the'. `M-x sort-columns' requires more explanation. You specify the columns by putting point at one of the columns and the mark at the other column. Because this means you cannot put point or the mark at the beginning of the first line of the text you want to sort, this command uses an unusual definition of "region": all of the line point is in is considered part of the region, and so is all of the line the mark is in, as well as all the lines in between. For example, to sort a table by information found in columns 10 to 15, you could put the mark on column 10 in the first line of the table, and point on column 15 in the last line of the table, and then run `sort-columns'. Equivalently, you could run it with the mark on column 15 in the first line and point on column 10 in the last line. This can be thought of as sorting the rectangle specified by point and the mark, except that the text on each line to the left or right of the rectangle moves along with the text inside the rectangle. *Note Rectangles::. Many of the sort commands ignore case differences when comparing, if `sort-fold-case' is non-`nil'. Narrowing ========= "Narrowing" means focusing in on some portion of the buffer, making the rest temporarily inaccessible. The portion which you can still get to is called the "accessible portion". Canceling the narrowing, which makes the entire buffer once again accessible, is called "widening". The amount of narrowing in effect in a buffer at any time is called the buffer's "restriction". Narrowing can make it easier to concentrate on a single subroutine or paragraph by eliminating clutter. It can also be used to restrict the range of operation of a replace command or repeating keyboard macro. `C-x n n' Narrow down to between point and mark (`narrow-to-region'). `C-x n w' Widen to make the entire buffer accessible again (`widen'). `C-x n p' Narrow down to the current page (`narrow-to-page'). `C-x n d' Narrow down to the current defun (`narrow-to-defun'). When you have narrowed down to a part of the buffer, that part appears to be all there is. You can't see the rest, you can't move into it (motion commands won't go outside the accessible part), you can't change it in any way. However, it is not gone, and if you save the file all the inaccessible text will be saved. The word `Narrow' appears in the mode line whenever narrowing is in effect. The primary narrowing command is `C-x n n' (`narrow-to-region'). It sets the current buffer's restrictions so that the text in the current region remains accessible, but all text before the region or after the region is inaccessible. Point and mark do not change. Alternatively, use `C-x n p' (`narrow-to-page') to narrow down to the current page. *Note Pages::, for the definition of a page. `C-x n d' (`narrow-to-defun') narrows down to the defun containing point (*note Defuns::). The way to cancel narrowing is to widen with `C-x n w' (`widen'). This makes all text in the buffer accessible again. You can get information on what part of the buffer you are narrowed down to using the `C-x =' command. *Note Position Info::. Because narrowing can easily confuse users who do not understand it, `narrow-to-region' is normally a disabled command. Attempting to use this command asks for confirmation and gives you the option of enabling it; if you enable the command, confirmation will no longer be required for it. *Note Disabling::. Two-Column Editing ================== Two-column mode lets you conveniently edit two side-by-side columns of text. It uses two side-by-side windows, each showing its own buffer. There are three ways to enter two-column mode: ` 2' or `C-x 6 2' Enter two-column mode with the current buffer on the left, and on the right, a buffer whose name is based on the current buffer's name (`2C-two-columns'). If the right-hand buffer doesn't already exist, it starts out empty; the current buffer's contents are not changed. This command is appropriate when the current buffer is empty or contains just one column and you want to add another column. ` s' or `C-x 6 s' Split the current buffer, which contains two-column text, into two buffers, and display them side by side (`2C-split'). The current buffer becomes the left-hand buffer, but the text in the right-hand column is moved into the right-hand buffer. The current column specifies the split point. Splitting starts with the current line and continues to the end of the buffer. This command is appropriate when you have a buffer that already contains two-column text, and you wish to separate the columns temporarily. ` b BUFFER ' `C-x 6 b BUFFER ' Enter two-column mode using the current buffer as the left-hand buffer, and using buffer BUFFER as the right-hand buffer (`2C-associate-buffer'). ` s' or `C-x 6 s' looks for a column separator, which is a string that appears on each line between the two columns. You can specify the width of the separator with a numeric argument to ` s'; that many characters, before point, constitute the separator string. By default, the width is 1, so the column separator is the character before point. When a line has the separator at the proper place, ` s' puts the text after the separator into the right-hand buffer, and deletes the separator. Lines that don't have the column separator at the proper place remain unsplit; they stay in the left-hand buffer, and the right-hand buffer gets an empty line to correspond. (This is the way to write a line that "spans both columns while in two-column mode": write it in the left-hand buffer, and put an empty line in the right-hand buffer.) The command `C-x 6 ' or ` ' (`2C-newline') inserts a newline in each of the two buffers at corresponding positions. This is the easiest way to add a new line to the two-column text while editing it in split buffers. When you have edited both buffers as you wish, merge them with ` 1' or `C-x 6 1' (`2C-merge'). This copies the text from the right-hand buffer as a second column in the other buffer. To go back to two-column editing, use ` s'. Use ` d' or `C-x 6 d' to dissociate the two buffers, leaving each as it stands (`2C-dissociate'). If the other buffer, the one not current when you type ` d', is empty, ` d' kills it. Editing Binary Files ==================== There is a special major mode for editing binary files: Hexl mode. To use it, use `M-x hexl-find-file' instead of `C-x C-f' to visit the file. This command converts the file's contents to hexadecimal and lets you edit the translation. When you save the file, it is converted automatically back to binary. You can also use `M-x hexl-mode' to translate an existing buffer into hex. This is useful if you visit a file normally and then discover it is a binary file. Ordinary text characters overwrite in Hexl mode. This is to reduce the risk of accidentally spoiling the alignment of data in the file. There are special commands for insertion. Here is a list of the commands of Hexl mode: `C-M-d' Insert a byte with a code typed in decimal. `C-M-o' Insert a byte with a code typed in octal. `C-M-x' Insert a byte with a code typed in hex. `C-x [' Move to the beginning of a 1k-byte "page." `C-x ]' Move to the end of a 1k-byte "page." `M-g' Move to an address specified in hex. `M-j' Move to an address specified in decimal. `C-c C-c' Leave Hexl mode, going back to the major mode this buffer had before you invoked `hexl-mode'. Other Hexl commands let you insert strings (sequences) of binary bytes, move by `short's or `int's, etc.; type `C-h a hexl-' for details. Saving Emacs Sessions ===================== You can use the Desktop library to save the state of Emacs from one session to another. Saving the state means that Emacs starts up with the same set of buffers, major modes, buffer positions, and so on that the previous Emacs session had. To use Desktop, you should use the Customization buffer (*note Easy Customization::) to set `desktop-enable' to a non-`nil' value, or add these lines at the end of your `.emacs' file: (desktop-load-default) (desktop-read) The first time you save the state of the Emacs session, you must do it manually, with the command `M-x desktop-save'. Once you have done that, exiting Emacs will save the state again--not only the present Emacs session, but also subsequent sessions. You can also save the state at any time, without exiting Emacs, by typing `M-x desktop-save' again. In order for Emacs to recover the state from a previous session, you must start it with the same current directory as you used when you started the previous session. This is because `desktop-read' looks in the current directory for the file to read. This means that you can have separate saved sessions in different directories; the directory in which you start Emacs will control which saved session to use. The variable `desktop-files-not-to-save' controls which files are excluded from state saving. Its value is a regular expression that matches the files to exclude. By default, remote (ftp-accessed) files are excluded; this is because visiting them again in the subsequent session would be slow. If you want to include these files in state saving, set `desktop-files-not-to-save' to `"^$"'. *Note Remote Files::. The Saveplace library provides a simpler feature that records your position in each file when you kill its buffer (or kill Emacs), and jumps to the same position when you visit the file again (even in another Emacs session). Use `M-x toggle-save-place' to turn on place-saving in a given file. Customize the option `save-place' to turn it on for all files in each session. Recursive Editing Levels ======================== A "recursive edit" is a situation in which you are using Emacs commands to perform arbitrary editing while in the middle of another Emacs command. For example, when you type `C-r' inside of a `query-replace', you enter a recursive edit in which you can change the current buffer. On exiting from the recursive edit, you go back to the `query-replace'. "Exiting" the recursive edit means returning to the unfinished command, which continues execution. The command to exit is `C-M-c' (`exit-recursive-edit'). You can also "abort" the recursive edit. This is like exiting, but also quits the unfinished command immediately. Use the command `C-]' (`abort-recursive-edit') to do this. *Note Quitting::. The mode line shows you when you are in a recursive edit by displaying square brackets around the parentheses that always surround the major and minor mode names. Every window's mode line shows this in the same way, since being in a recursive edit is true of Emacs as a whole rather than any particular window or buffer. It is possible to be in recursive edits within recursive edits. For example, after typing `C-r' in a `query-replace', you may type a command that enters the debugger. This begins a recursive editing level for the debugger, within the recursive editing level for `C-r'. Mode lines display a pair of square brackets for each recursive editing level currently in progress. Exiting the inner recursive edit (such as, with the debugger `c' command) resumes the command running in the next level up. When that command finishes, you can then use `C-M-c' to exit another recursive editing level, and so on. Exiting applies to the innermost level only. Aborting also gets out of only one level of recursive edit; it returns immediately to the command level of the previous recursive edit. If you wish, you can then abort the next recursive editing level. Alternatively, the command `M-x top-level' aborts all levels of recursive edits, returning immediately to the top-level command reader. The text being edited inside the recursive edit need not be the same text that you were editing at top level. It depends on what the recursive edit is for. If the command that invokes the recursive edit selects a different buffer first, that is the buffer you will edit recursively. In any case, you can switch buffers within the recursive edit in the normal manner (as long as the buffer-switching keys have not been rebound). You could probably do all the rest of your editing inside the recursive edit, visiting files and all. But this could have surprising effects (such as stack overflow) from time to time. So remember to exit or abort the recursive edit when you no longer need it. In general, we try to minimize the use of recursive editing levels in GNU Emacs. This is because they constrain you to "go back" in a particular order--from the innermost level toward the top level. When possible, we present different activities in separate buffers so that you can switch between them as you please. Some commands switch to a new major mode which provides a command to switch back. These approaches give you more flexibility to go back to unfinished tasks in the order you choose. Emulation ========= GNU Emacs can be programmed to emulate (more or less) most other editors. Standard facilities can emulate these: CRiSP/Brief (PC editor) You can turn on key bindings to emulate the CRiSP/Brief editor with `M-x crisp-mode'. Note that this rebinds `M-x' to exit Emacs unless you change the user option `crisp-override-meta-x'. You can also use the command `M-x scroll-all-mode' or set the user option `crisp-load-scroll-all' to emulate CRiSP's scroll-all feature (scrolling all windows together). EDT (DEC VMS editor) Turn on EDT emulation with `M-x edt-emulation-on'. `M-x edt-emulation-off' restores normal Emacs command bindings. Most of the EDT emulation commands are keypad keys, and most standard Emacs key bindings are still available. The EDT emulation rebindings are done in the global keymap, so there is no problem switching buffers or major modes while in EDT emulation. "PC" bindings The command `M-x pc-bindings-mode' sets up certain key bindings for "PC compatibility"--what people are often used to on PCs--as follows: `Delete' and its variants delete forward instead of backward, `C-Backspace' kills backward a word (as `C-Delete' normally would), `M-Backspace' does undo, `Home' and `End' move to beginning and end of line, `C-Home' and `C-End' move to beginning and end of buffer and `C-Escape' does `list-buffers'. PC Selection mode The command `M-x pc-selection-mode' enables a global minor mode that emulates the mark, copy, cut and paste commands of various other systems--an interface known as CUA. It establishes the key bindings of PC mode, and also modifies the bindings of the cursor keys and the `next', `prior', `home' and `end' keys. It does not provide the full set of CUA key bindings--the fundamental Emacs keys `C-c', `C-v' and `C-x' are not changed. The standard keys for moving around (`right', `left', `up', `down', `home', `end', `prior', `next', called "move-keys") deactivate the mark in PC selection mode. However, using `Shift' together with the "move keys" activates the region over which they move. The copy, cut and paste functions are available on `C-insert', `S-delete' and `S-insert' respectively. The `s-region' package provides similar, but less complete, facilities. TPU (DEC VMS editor) `M-x tpu-edt-on' turns on emulation of the TPU editor emulating EDT. vi (Berkeley editor) Viper is the newest emulator for vi. It implements several levels of emulation; level 1 is closest to vi itself, while level 5 departs somewhat from strict emulation to take advantage of the capabilities of Emacs. To invoke Viper, type `M-x viper-mode'; it will guide you the rest of the way and ask for the emulation level. *note Viper: (viper)Top. vi (another emulator) `M-x vi-mode' enters a major mode that replaces the previously established major mode. All of the vi commands that, in real vi, enter "input" mode are programmed instead to return to the previous major mode. Thus, ordinary Emacs serves as vi's "input" mode. Because vi emulation works through major modes, it does not work to switch buffers during emulation. Return to normal Emacs first. If you plan to use vi emulation much, you probably want to bind a key to the `vi-mode' command. vi (alternate emulator) `M-x vip-mode' invokes another vi emulator, said to resemble real vi more thoroughly than `M-x vi-mode'. "Input" mode in this emulator is changed from ordinary Emacs so you can use to go back to emulated vi command mode. To get from emulated vi command mode back to ordinary Emacs, type `C-z'. This emulation does not work through major modes, and it is possible to switch buffers in various ways within the emulator. It is not so necessary to assign a key to the command `vip-mode' as it is with `vi-mode' because terminating insert mode does not use it. *note VIP: (vip)Top, for full information. WordStar (old wordprocessor) `M-x wordstar-mode' provides a major mode with WordStar-like key bindings. Hyperlinking and Navigation Features ==================================== Various modes documented elsewhere have hypertext features so that you can follow links, usually by clicking `Mouse-2' on the link or typing while point is on the link. Info mode, Help mode and the Dired-like modes are examples. The Tags facility links between uses and definitions in source files, see *Note Tags::. Imenu provides navigation amongst items indexed in the current buffer, see *Note Imenu::. Info-lookup provides mode-specific lookup of definitions in Info indexes, see *Note Documentation::. Speedbar maintains a frame in which links to files, and locations in files are displayed, see *Note Speedbar::. Other non-mode-specific facilities described in this section enable following links from the current buffer in a context-sensitive fashion. Following URLs -------------- `M-x browse-url URL ' Load a URL into a Web browser. The Browse-URL package provides facilities for following URLs specifying links on the World Wide Web. Usually this works by invoking a web browser, but you can, for instance, arrange to invoke `compose-mail' from `mailto:' URLs. The general way to use this feature is to type `M-x browse-url', which displays a specified URL. If point is located near a plausible URL, that URL is used as the default. Other commands are available which you might like to bind to keys, such as `browse-url-at-point' and `browse-url-at-mouse'. You can customize Browse-URL's behavior via various options in the `browse-url' Customize group, particularly `browse-url-browser-function'. You can invoke actions dependent on the type of URL by defining `browse-url-browser-function' as an association list. The package's commentary available via `C-h p' provides more information. Packages with facilities for following URLs should always go through Browse-URL, so that the customization options for Browse-URL will affect all browsing in Emacs. Activating URLs --------------- `M-x goto-address' Activate URLs and e-mail addresses in the current buffer. You can make URLs in the current buffer active with `M-x goto-address'. This finds all the URLs in the buffer, and establishes bindings for `Mouse-2' and `C-c ' on them. After activation, if you click on a URL with `Mouse-2', or move to a URL and type `C-c ', that will display the web page that the URL specifies. For a `mailto' URL, it sends mail instead, using your selected mail-composition method (*note Mail Methods::). It can be useful to add `goto-address' to mode hooks and the hooks used to display an incoming message. `rmail-show-message-hook' is the appropriate hook for Rmail, and `mh-show-mode-hook' for MH-E. This is not needed for Gnus, which has a similar feature of its own. Finding Files and URLs at Point ------------------------------- FFAP mode replaces certain key bindings for finding files, including `C-x C-f', with commands that provide more sensitive defaults. These commands behave like the ordinary ones when given a prefix argument. Otherwise, they get the default file name or URL from the text around point. If what is found in the buffer has the form of a URL rather than a file name, the commands use `browse-url' to view it. This feature is useful for following references in mail or news buffers, `README' files, `MANIFEST' files, and so on. The `ffap' package's commentary available via `C-h p' and the `ffap' Custom group provide details. You can turn on FFAP minor mode to make the following key bindings and to install hooks for using `ffap' in Rmail, Gnus and VM article buffers. `C-x C-f FILENAME ' Find FILENAME, guessing a default from text around point (`find-file-at-point'). `C-x 4 f' `ffap-other-window', analogous to `find-file-other-window'. `C-x 5 f' `ffap-other-frame', analogous to `find-file-other-frame'. `M-x ffap-next' Search buffer for next file name or URL, then find that file or URL. `C-x d DIRECTORY ' Start Dired on DIRECTORY, defaulting to the directory name at point (`ffap-dired-at-point'). `S-Mouse-3' `ffap-at-mouse' finds the file guessed from text around the position of a mouse click. `C-S-Mouse-3' Display a menu of files and URLs mentioned in current buffer, then find the one you select (`ffap-menu'). Finding Function and Variable Definitions ----------------------------------------- `M-x find-function FUNCTION ' Find the definition of FUNCTION in its source file. `M-x find-variable VARIABLE ' Find the definition of VARIABLE in its source file. `M-x find-function-on-key KEY' Find the definition of the function that KEY invokes. These commands provide an easy way to find the definitions of Emacs Lisp functions and variables. They are similar in purpose to the Tags facility (*note Tags::), but don't require a tags table; on the other hand, they only work for function and variable definitions that are already loaded in the Emacs session. To find the definition of a function, use `M-x find-function'. `M-x find-variable' finds the definition of a specified variable. `M-x find-function-on-key' finds the definition of the function bound to a specified key. To use these commands, you must have the Lisp source (`.el') files available along with the compiled (`.elc') files, in directories in `load-path'. You can use compressed source files if you enable Auto Compression mode. These commands only handle definitions written in Lisp, not primitive functions or variables defined in the C code of Emacs. Dissociated Press ================= `M-x dissociated-press' is a command for scrambling a file of text either word by word or character by character. Starting from a buffer of straight English, it produces extremely amusing output. The input comes from the current Emacs buffer. Dissociated Press writes its output in a buffer named `*Dissociation*', and redisplays that buffer after every couple of lines (approximately) so you can read the output as it comes out. Dissociated Press asks every so often whether to continue generating output. Answer `n' to stop it. You can also stop at any time by typing `C-g'. The dissociation output remains in the `*Dissociation*' buffer for you to copy elsewhere if you wish. Dissociated Press operates by jumping at random from one point in the buffer to another. In order to produce plausible output rather than gibberish, it insists on a certain amount of overlap between the end of one run of consecutive words or characters and the start of the next. That is, if it has just output `president' and then decides to jump to a different point in the file, it might spot the `ent' in `pentagon' and continue from there, producing `presidentagon'.(1) Long sample texts produce the best results. A positive argument to `M-x dissociated-press' tells it to operate character by character, and specifies the number of overlap characters. A negative argument tells it to operate word by word and specifies the number of overlap words. In this mode, whole words are treated as the elements to be permuted, rather than characters. No argument is equivalent to an argument of two. For your againformation, the output goes only into the buffer `*Dissociation*'. The buffer you start with is not changed. Dissociated Press produces nearly the same results as a Markov chain based on a frequency table constructed from the sample text. It is, however, an independent, ignoriginal invention. Dissociated Press techniquitously copies several consecutive characters from the sample between random choices, whereas a Markov chain would choose randomly for each word or character. This makes for more plausible sounding results, and runs faster. It is a mustatement that too much use of Dissociated Press can be a developediment to your real work. Sometimes to the point of outragedy. And keep dissociwords out of your documentation, if you want it to be well userenced and properbose. Have fun. Your buggestions are welcome. ---------- Footnotes ---------- (1) This dissociword actually appeared during the Vietnam War, when it was very appropriate. Other Amusements ================ If you are a little bit bored, you can try `M-x hanoi'. If you are considerably bored, give it a numeric argument. If you are very, very bored, try an argument of 9. Sit back and watch. If you want a little more personal involvement, try `M-x gomoku', which plays the game Go Moku with you. `M-x blackbox', `M-x mpuz' and `M-x 5x5' are kinds of puzzles. `blackbox' challenges you to determine the location of objects inside a box by tomography. `mpuz' displays a multiplication puzzle with letters standing for digits in a code that you must guess--to guess a value, type a letter and then the digit you think it stands for. The aim of `5x5' is to fill in all the squares. `M-x decipher' helps you to cryptanalyze a buffer which is encrypted in a simple monoalphabetic substitution cipher. `M-x dunnet' runs an adventure-style exploration game, which is a bigger sort of puzzle. `M-x lm' runs a relatively non-participatory game in which a robot attempts to maneuver towards a tree at the center of the window based on unique olfactory cues from each of the four directions. `M-x life' runs Conway's "Life" cellular automaton. `M-x morse-region' converts text in a region to Morse code and `M-x unmorse-region' converts it back. No cause for remorse. `M-x pong' plays a Pong-like game, bouncing the ball off opposing bats. `M-x solitaire' plays a game of solitaire in which you jump pegs across other pegs. `M-x studlify-region' studlify-cases the region, producing text like this: M-x stUdlIfY-RegioN stUdlIfY-CaSeS thE region. `M-x tetris' runs an implementation of the well-known Tetris game. Likewise, `M-x snake' provides an implementation of Snake. When you are frustrated, try the famous Eliza program. Just do `M-x doctor'. End each input by typing twice. When you are feeling strange, type `M-x yow'. The command `M-x zone' plays games with the display when Emacs is idle. Customization ************* This chapter talks about various topics relevant to adapting the behavior of Emacs in minor ways. See `The Emacs Lisp Reference Manual' for how to make more far-reaching changes. Customization that you do within Emacs normally affects only the particular Emacs session that you do it in-it does not persist between sessions unless you save the customization in a file such as `.emacs' or `.Xdefaults' that will affect future sessions. *Note Init File::. In the customization buffer, when you save customizations for future sessions, this actually works by editing `.emacs' for you. Minor Modes =========== Minor modes are optional features which you can turn on or off. For example, Auto Fill mode is a minor mode in which breaks lines between words as you type. All the minor modes are independent of each other and of the selected major mode. Most minor modes say in the mode line when they are on; for example, `Fill' in the mode line means that Auto Fill mode is on. Append `-mode' to the name of a minor mode to get the name of a command function that turns the mode on or off. Thus, the command to enable or disable Auto Fill mode is called `M-x auto-fill-mode'. These commands are usually invoked with `M-x', but you can bind keys to them if you wish. With no argument, the function turns the mode on if it was off and off if it was on. This is known as "toggling". A positive argument always turns the mode on, and an explicit zero argument or a negative argument always turns it off. Some minor modes are global: while enabled, they affect everything you do in the Emacs session, in all buffers. Other minor modes are buffer-local; they apply only to the current buffer, so you can enable the mode in certain buffers and not others. For most minor modes, the command name is also the name of a variable which directly controls the mode. The mode is enabled whenever this variable's value is non-`nil', and the minor-mode command works by setting the variable. For example, the command `outline-minor-mode' works by setting the value of `outline-minor-mode' as a variable; it is this variable that directly turns Outline minor mode on and off. To check whether a given minor mode works this way, use `C-h v' to ask for documentation on the variable name. These minor-mode variables provide a good way for Lisp programs to turn minor modes on and off; they are also useful in a file's local variables list. But please think twice before setting minor modes with a local variables list, because most minor modes are matter of user preference--other users editing the same file might not want the same minor modes you prefer. The buffer-local minor modes include Abbrev mode, Auto Fill mode, Auto Save mode, Font-Lock mode, Glasses mode, ISO Accents mode, Outline minor mode, Overwrite mode, and Binary Overwrite mode. Abbrev mode allows you to define abbreviations that automatically expand as you type them. For example, `amd' might expand to `abbrev mode'. *Note Abbrevs::, for full information. Auto Fill mode allows you to enter filled text without breaking lines explicitly. Emacs inserts newlines as necessary to prevent lines from becoming too long. *Note Filling::. Auto Save mode causes the contents of a buffer to be saved periodically to reduce the amount of work you can lose in case of a system crash. *Note Auto Save::. Enriched mode enables editing and saving of formatted text. *Note Formatted Text::. Flyspell mode automatically highlights misspelled words. *Note Spelling::. Font-Lock mode automatically highlights certain textual units found in programs, such as comments, strings, and function names being defined. This requires a window system that can display multiple fonts. *Note Faces::. ISO Accents mode makes the characters ``', `'', `"', `^', `/' and `~' combine with the following letter, to produce an accented letter in the ISO Latin-1 character set. The newer and more general feature of input methods more or less supersedes ISO Accents mode. *Note Single-Byte Character Support::. Outline minor mode provides the same facilities as the major mode called Outline mode; but since it is a minor mode instead, you can combine it with any major mode. *Note Outline Mode::. Overwrite mode causes ordinary printing characters to replace existing text instead of shoving it to the right. For example, if point is in front of the `B' in `FOOBAR', then in Overwrite mode typing a `G' changes it to `FOOGAR', instead of producing `FOOGBAR' as usual. In Overwrite mode, the command `C-q' inserts the next character whatever it may be, even if it is a digit--this gives you a way to insert a character instead of replacing an existing character. The command `overwrite-mode' is an exception to the rule that commands which toggle minor modes are normally not bound to keys: it is bound to the function key. This is because many other programs bind to similar functions. Binary Overwrite mode is a variant of Overwrite mode for editing binary files; it treats newlines and tabs like other characters, so that they overwrite other characters and can be overwritten by them. In Binary Overwrite mode, digits after `C-q' specify an octal character code, as usual. The following minor modes normally apply to all buffers at once. Since each is enabled or disabled by the value of a variable, you _can_ set them differently for particular buffers, by explicitly making the corresponding variables local in those buffers. *Note Locals::. Icomplete mode displays an indication of available completions when you are in the minibuffer and completion is active. *Note Completion Options::. Line Number mode enables continuous display in the mode line of the line number of point, and Column Number mode enables display of the column number. *Note Mode Line::. Scroll Bar mode gives each window a scroll bar (*note Scroll Bars::). Menu Bar mode gives each frame a menu bar (*note Menu Bars::). Both of these modes are enabled by default when you use the X Window System. In Transient Mark mode, every change in the buffer contents "deactivates" the mark, so that commands that operate on the region will get an error. This means you must either set the mark, or explicitly "reactivate" it, before each command that uses the region. The advantage of Transient Mark mode is that Emacs can display the region highlighted (currently only when using X). *Note Mark::. Variables ========= A "variable" is a Lisp symbol which has a value. The symbol's name is also called the name of the variable. A variable name can contain any characters that can appear in a file, but conventionally variable names consist of words separated by hyphens. A variable can have a documentation string which describes what kind of value it should have and how the value will be used. Lisp allows any variable to have any kind of value, but most variables that Emacs uses require a value of a certain type. Often the value should always be a string, or should always be a number. Sometimes we say that a certain feature is turned on if a variable is "non-`nil'," meaning that if the variable's value is `nil', the feature is off, but the feature is on for _any_ other value. The conventional value to use to turn on the feature--since you have to pick one particular value when you set the variable--is `t'. Emacs uses many Lisp variables for internal record keeping, as any Lisp program must, but the most interesting variables for you are the ones that exist for the sake of customization. Emacs does not (usually) change the values of these variables; instead, you set the values, and thereby alter and control the behavior of certain Emacs commands. These variables are called "user options". Most user options are documented in this manual, and appear in the Variable Index (*note Variable Index::). One example of a variable which is a user option is `fill-column', which specifies the position of the right margin (as a number of characters from the left margin) to be used by the fill commands (*note Filling::). Examining and Setting Variables ------------------------------- `C-h v VAR ' Display the value and documentation of variable VAR (`describe-variable'). `M-x set-variable VAR VALUE ' Change the value of variable VAR to VALUE. To examine the value of a single variable, use `C-h v' (`describe-variable'), which reads a variable name using the minibuffer, with completion. It displays both the value and the documentation of the variable. For example, C-h v fill-column displays something like this: fill-column's value is 70 Documentation: *Column beyond which automatic line-wrapping should happen. Automatically becomes buffer-local when set in any fashion. The star at the beginning of the documentation indicates that this variable is a user option. `C-h v' is not restricted to user options; it allows any variable name. The most convenient way to set a specific user option is with `M-x set-variable'. This reads the variable name with the minibuffer (with completion), and then reads a Lisp expression for the new value using the minibuffer a second time. For example, M-x set-variable fill-column 75 sets `fill-column' to 75. `M-x set-variable' is limited to user option variables, but you can set any variable with a Lisp expression, using the function `setq'. Here is a `setq' expression to set `fill-column': (setq fill-column 75) To execute an expression like this one, go to the `*scratch*' buffer, type in the expression, and then type `C-j'. *Note Lisp Interaction::. Setting variables, like all means of customizing Emacs except where otherwise stated, affects only the current Emacs session. Easy Customization Interface ---------------------------- A convenient way to find the user option variables that you want to change, and then change them, is with `M-x customize'. This command creates a "customization buffer" with which you can browse through the Emacs user options in a logically organized structure, then edit and set their values. You can also use the customization buffer to save settings permanently. (Not all Emacs user options are included in this structure as of yet, but we are adding the rest.) The appearance of the example buffers in the following is typically different under a window system where faces can be used to indicate the active fields and other features. Customization Groups .................... For customization purposes, user options are organized into "groups" to help you find them. Groups are collected into bigger groups, all the way up to a master group called `Emacs'. `M-x customize' creates a customization buffer that shows the top-level `Emacs' group and the second-level groups immediately under it. It looks like this, in part: /- Emacs group: ---------------------------------------------------\ [State]: visible group members are all at standard settings. Customization of the One True Editor. See also [Manual]. Confirm Kill Emacs: [Hide] [Value Menu] Don't confirm [State]: this option is unchanged from its standard setting. How to ask for confirmation when leaving Emacs. [More] Editing group: [Go to Group] Basic text editing facilities. External group: [Go to Group] Interfacing to external utilities. MORE SECOND-LEVEL GROUPS \- Emacs group end ------------------------------------------------/ This says that the buffer displays the contents of the `Emacs' group. The other groups are listed because they are its contents. But they are listed differently, without indentation and dashes, because _their_ contents are not included. Each group has a single-line documentation string; the `Emacs' group also has a `[State]' line. Most of the text in the customization buffer is read-only, but it typically includes some "editable fields" that you can edit. There are also "active fields"; this means a field that does something when you "invoke" it. To invoke an active field, either click on it with `Mouse-1', or move point to it and type . For example, the phrase `[Go to Group]' that appears in a second-level group is an active field. Invoking the `[Go to Group]' field for a group creates a new customization buffer, which shows that group and its contents. This field is a kind of hypertext link to another group. The `Emacs' group includes a few user options itself, but mainly it contains other groups, which contain more groups, which contain the user options. By browsing the hierarchy of groups, you will eventually find the feature you are interested in customizing. Then you can use the customization buffer to set the options and faces pertaining to that feature. You can also go straight to a particular group by name, using the command `M-x customize-group'. You can view the structure of customization groups on a larger scale with `M-x customize-browse'. This command creates a special kind of customization buffer which shows only the names of the groups (and options and faces), and their structure. In this buffer, you can show the contents of a group by invoking `[+]'. When the group contents are visible, this button changes to `[-]'; invoking that hides the group contents. Each group, option or face name in this buffer has an active field which says `[Group]', `[Option]' or `[Face]'. Invoking that active field creates an ordinary customization buffer showing just that group and its contents, just that option, or just that face. This is the way to set values in it. Changing an Option .................. Here is an example of what a user option looks like in the customization buffer: Kill Ring Max: [Hide] 60 [State]: this option is unchanged from its standard setting. Maximum length of kill ring before oldest elements are thrown away. The text following `[Hide]', `60' in this case, indicates the current value of the option. If you see `[Show]' instead of `[Hide]', it means that the value is hidden; the customization buffer initially hides values that take up several lines. Invoke `[Show]' to show the value. The line after the option name indicates the "customization state" of the option: in the example above, it says you have not changed the option yet. The word `[State]' at the beginning of this line is active; you can get a menu of various operations by invoking it with `Mouse-1' or . These operations are essential for customizing the variable. The line after the `[State]' line displays the beginning of the option's documentation string. If there are more lines of documentation, this line ends with `[More]'; invoke this to show the full documentation string. To enter a new value for `Kill Ring Max', move point to the value and edit it textually. For example, you can type `M-d', then insert another number. When you begin to alter the text, you will see the `[State]' line change to say that you have edited the value: [State]: you have edited the value as text, but not set the option. Editing the value does not actually set the option variable. To do that, you must "set" the option. To do this, invoke the word `[State]' and choose `Set for Current Session'. The state of the option changes visibly when you set it: [State]: you have set this option, but not saved it for future sessions. You don't have to worry about specifying a value that is not valid; setting the option checks for validity and will not really install an unacceptable value. While editing a value or field that is a file name, directory name, command name, or anything else for which completion is defined, you can type `M-' (`widget-complete') to do completion. Some options have a small fixed set of possible legitimate values. These options don't let you edit the value textually. Instead, an active field `[Value Menu]' appears before the value; invoke this field to edit the value. For a boolean "on or off" value, the active field says `[Toggle]', and it changes to the other value. `[Value Menu]' and `[Toggle]' edit the buffer; the changes take effect when you use the `Set for Current Session' operation. Some options have values with complex structure. For example, the value of `file-coding-system-alist' is an association list. Here is how it appears in the customization buffer: File Coding System Alist: [Hide] [INS] [DEL] File regexp: \.elc\' Choice: [Value Menu] Encoding/decoding pair: Decoding: emacs-mule Encoding: emacs-mule [INS] [DEL] File regexp: \(\`\|/\)loaddefs.el\' Choice: [Value Menu] Encoding/decoding pair: Decoding: raw-text Encoding: raw-text-unix [INS] [DEL] File regexp: \.tar\' Choice: [Value Menu] Encoding/decoding pair: Decoding: no-conversion Encoding: no-conversion [INS] [DEL] File regexp: Choice: [Value Menu] Encoding/decoding pair: Decoding: undecided Encoding: nil [INS] [State]: this option is unchanged from its standard setting. Alist to decide a coding system to use for a file I/O operation. [Hide] The format is ((PATTERN . VAL) ...), where PATTERN is a regular expression matching a file name, [...more lines of documentation...] Each association in the list appears on four lines, with several editable or "active" fields. You can edit the regexps and coding systems using ordinary editing commands. You can also invoke `[Value Menu]' to switch to a kind of value--for instance, to specify a function instead of a pair of coding systems. To delete an association from the list, invoke the `[DEL]' button for that item. To add an association, invoke `[INS]' at the position where you want to add it. There is an `[INS]' button between each pair of association, another at the beginning and another at the end, so you can add the new association at any position in the list. Two special commands, and `S-', are useful for moving through the customization buffer. (`widget-forward') moves forward to the next active or editable field; `S-' (`widget-backward') moves backward to the previous active or editable field. Typing on an editable field also moves forward, just like . We set it up this way because people often type when they are finished editing a field. To insert a newline within an editable field, use `C-o' or `C-q C-j'. Setting the option changes its value in the current Emacs session; "saving" the value changes it for future sessions as well. This works by writing code into your `~/.emacs' file so as to set the option variable again each time you start Emacs. To save the option, invoke `[State]' and select the `Save for Future Sessions' operation. If Emacs was invoked with the `-q' or `--no-init-file' options (*note Initial Options::), it will not let you save your customizations in your `~/.emacs' init file. This is because saving customizations from such a session would wipe out all the other customizations you might have on your init file. You can also restore the option to its standard value by invoking `[State]' and selecting the `Erase Customization' operation. There are actually three reset operations: `Reset' If you have made some modifications and not yet set the option, this restores the text in the customization buffer to match the actual value. `Reset to Saved' This restores the value of the option to the last saved value, and updates the text accordingly. `Erase Customization' This sets the option to its standard value, and updates the text accordingly. This also eliminates any saved value for the option, so that you will get the standard value in future Emacs sessions. Sometimes it is useful to record a comment about a specific customization. Use the `Add Comment' item from the `[State]' menu to create a field for entering the comment. The comment you enter will be saved, and displayed again if you again view the same option in a customization buffer, even in another session. The state of a group indicates whether anything in that group has been edited, set or saved. You can select `Set for Current Session', `Save for Future Sessions' and the various kinds of `Reset' operation for the group; these operations on the group apply to all options in the group and its subgroups. Near the top of the customization buffer there are two lines containing several active fields: [Set for Current Session] [Save for Future Sessions] [Reset] [Reset to Saved] [Erase Customization] [Finish] Invoking `[Finish]' either buries or kills this customization buffer according to the setting of the option `custom-buffer-done-function'; the default is to bury the buffer. Each of the other fields performs an operation--set, save or reset--on each of the items in the buffer that could meaningfully be set, saved or reset. Customizing Faces ................. In addition to user options, some customization groups also include faces. When you show the contents of a group, both the user options and the faces in the group appear in the customization buffer. Here is an example of how a face looks: Custom Changed Face: (sample) [Hide] [State]: this face is unchanged from its standard setting. Parent groups: [Custom Magic Faces] Attributes: [ ] Font family: [Value Menu] * [ ] Width: [Value Menu] * [ ] Height: [Value Menu] * [ ] Weight: [Value Menu] * [ ] Slant: [Value Menu] * [ ] Underline: [Value Menu] * [ ] Overline: [Value Menu] * [ ] Strike-through: [Value Menu] * [ ] Box around text: [Value Menu] * [ ] Inverse-video: [Value Menu] * [X] Foreground: [Value Menu] Color: white (sample) [X] Background: [Value Menu] Color: blue (sample) [ ] Stipple: [Value Menu] * [ ] Inherit: Each face attribute has its own line. The `[X]' field before the attribute name indicates whether the attribute is "enabled"; `X' means that it is. You can enable or disable the attribute by invoking that field. When the attribute is enabled, you can change the attribute value in the usual ways. On a black-and-white display, the colors you can use for the background are `black', `white', `gray', `gray1', and `gray3'. Emacs supports these shades of gray by using background stipple patterns instead of a color. Setting, saving and resetting a face work like the same operations for options (*note Changing an Option::). A face can specify different appearances for different types of display. For example, a face can make text red on a color display, but use a bold font on a monochrome display. To specify multiple appearances for a face, select `Show all display specs' in the menu you get from invoking `[State]'. Another more basic way to set the attributes of a specific face is with `M-x modify-face'. This command reads the name of a face, then reads the attributes one by one. For the color and stipple attributes, the attribute's current value is the default--type just if you don't want to change that attribute. Type `none' if you want to clear out the attribute. Customizing Specific Items .......................... Instead of finding the options you want to change by moving down through the structure of groups, you can specify the particular option, face or group that you want to customize. `M-x customize-option OPTION ' Set up a customization buffer with just one option, OPTION. `M-x customize-face FACE ' Set up a customization buffer with just one face, FACE. `M-x customize-group GROUP ' Set up a customization buffer with just one group, GROUP. `M-x customize-apropos REGEXP ' Set up a customization buffer with all the options, faces and groups that match REGEXP. `M-x customize-changed-options VERSION ' Set up a customization buffer with all the options, faces and groups whose meaning has changed since Emacs version VERSION. `M-x customize-saved' Set up a customization buffer containing all options and faces that you have saved with customization buffers. `M-x customize-customized' Set up a customization buffer containing all options and faces that you have customized but not saved. If you want to alter a particular user option variable with the customization buffer, and you know its name, you can use the command `M-x customize-option' and specify the option name. This sets up the customization buffer with just one option--the one that you asked for. Editing, setting and saving the value work as described above, but only for the specified option. Likewise, you can modify a specific face, chosen by name, using `M-x customize-face'. You can also set up the customization buffer with a specific group, using `M-x customize-group'. The immediate contents of the chosen group, including option variables, faces, and other groups, all appear as well. However, these subgroups' own contents start out hidden. You can show their contents in the usual way, by invoking `[Show]'. To control more precisely what to customize, you can use `M-x customize-apropos'. You specify a regular expression as argument; then all options, faces and groups whose names match this regular expression are set up in the customization buffer. If you specify an empty regular expression, this includes _all_ groups, options and faces in the customization buffer (but that takes a long time). When you upgrade to a new Emacs version, you might want to customize new options and options whose meanings or default values have changed. To do this, use `M-x customize-changed-options' and specify a previous Emacs version number using the minibuffer. It creates a customization buffer which shows all the options (and groups) whose definitions have been changed since the specified version. If you change option values and then decide the change was a mistake, you can use two special commands to revisit your previous changes. Use `M-x customize-saved' to look at the options and faces that you have saved. Use `M-x customize-customized' to look at the options and faces that you have set but not saved. Hooks ----- "Hooks" are an important mechanism for customization of Emacs. A hook is a Lisp variable which holds a list of functions, to be called on some well-defined occasion. (This is called "running the hook".) The individual functions in the list are called the "hook functions" of the hook. With rare exceptions, hooks in Emacs are empty when Emacs starts up, so the only hook functions in any given hook are the ones you explicitly put there as customization. Most major modes run one or more "mode hooks" as the last step of initialization. This makes it easy for you to customize the behavior of the mode, by setting up a hook function to override the local variable assignments already made by the mode. But hooks are also used in other contexts. For example, the hook `suspend-hook' runs just before Emacs suspends itself (*note Exiting::). Most Emacs hooks are "normal hooks". This means that running the hook operates by calling all the hook functions, unconditionally, with no arguments. We have made an effort to keep most hooks normal so that you can use them in a uniform way. Every variable in Emacs whose name ends in `-hook' is a normal hook. There are also a few "abnormal hooks". These variables' names end in `-hooks' or `-functions', instead of `-hook'. What makes these hooks abnormal is that there is something peculiar about the way its functions are called--perhaps they are given arguments, or perhaps the values they return are used in some way. For example, `find-file-not-found-hooks' (*note Visiting::) is abnormal because as soon as one hook function returns a non-`nil' value, the rest are not called at all. The documentation of each abnormal hook variable explains in detail what is peculiar about it. The recommended way to add a hook function to a hook (either normal or abnormal) is by calling `add-hook'. You can use any valid Lisp function as the hook function, provided it can handle the proper number of arguments (zero arguments, in the case of a normal hook). Of course, not every Lisp function is _useful_ in any particular hook. For example, here's how to set up a hook to turn on Auto Fill mode when entering Text mode and other modes based on Text mode: (add-hook 'text-mode-hook 'turn-on-auto-fill) The next example shows how to use a hook to customize the indentation of C code. (People often have strong personal preferences for one format compared to another.) Here the hook function is an anonymous lambda expression. (setq my-c-style '((c-comment-only-line-offset . 4) (c-cleanup-list . (scope-operator empty-defun-braces defun-close-semi)) (c-offsets-alist . ((arglist-close . c-lineup-arglist) (substatement-open . 0))))) (add-hook 'c-mode-common-hook '(lambda () (c-add-style "my-style" my-c-style t))) It is best to design your hook functions so that the order in which they are executed does not matter. Any dependence on the order is "asking for trouble." However, the order is predictable: the most recently added hook functions are executed first. Local Variables --------------- `M-x make-local-variable VAR ' Make variable VAR have a local value in the current buffer. `M-x kill-local-variable VAR ' Make variable VAR use its global value in the current buffer. `M-x make-variable-buffer-local VAR ' Mark variable VAR so that setting it will make it local to the buffer that is current at that time. Almost any variable can be made "local" to a specific Emacs buffer. This means that its value in that buffer is independent of its value in other buffers. A few variables are always local in every buffer. Every other Emacs variable has a "global" value which is in effect in all buffers that have not made the variable local. `M-x make-local-variable' reads the name of a variable and makes it local to the current buffer. Further changes in this buffer will not affect others, and further changes in the global value will not affect this buffer. `M-x make-variable-buffer-local' reads the name of a variable and changes the future behavior of the variable so that it will become local automatically when it is set. More precisely, once a variable has been marked in this way, the usual ways of setting the variable automatically do `make-local-variable' first. We call such variables "per-buffer" variables. Major modes (*note Major Modes::) always make variables local to the buffer before setting the variables. This is why changing major modes in one buffer has no effect on other buffers. Minor modes also work by setting variables--normally, each minor mode has one controlling variable which is non-`nil' when the mode is enabled (*note Minor Modes::). For most minor modes, the controlling variable is per buffer. Emacs contains a number of variables that are always per-buffer. These include `abbrev-mode', `auto-fill-function', `case-fold-search', `comment-column', `ctl-arrow', `fill-column', `fill-prefix', `indent-tabs-mode', `left-margin', `mode-line-format', `overwrite-mode', `selective-display-ellipses', `selective-display', `tab-width', and `truncate-lines'. Some other variables are always local in every buffer, but they are used for internal purposes. A few variables cannot be local to a buffer because they are always local to each display instead (*note Multiple Displays::). If you try to make one of these variables buffer-local, you'll get an error message. `M-x kill-local-variable' reads the name of a variable and makes it cease to be local to the current buffer. The global value of the variable henceforth is in effect in this buffer. Setting the major mode kills all the local variables of the buffer except for a few variables specially marked as "permanent locals". To set the global value of a variable, regardless of whether the variable has a local value in the current buffer, you can use the Lisp construct `setq-default'. This construct is used just like `setq', but it sets variables' global values instead of their local values (if any). When the current buffer does have a local value, the new global value may not be visible until you switch to another buffer. Here is an example: (setq-default fill-column 75) `setq-default' is the only way to set the global value of a variable that has been marked with `make-variable-buffer-local'. Lisp programs can use `default-value' to look at a variable's default value. This function takes a symbol as argument and returns its default value. The argument is evaluated; usually you must quote it explicitly. For example, here's how to obtain the default value of `fill-column': (default-value 'fill-column) Local Variables in Files ------------------------ A file can specify local variable values for use when you edit the file with Emacs. Visiting the file checks for local variable specifications; it automatically makes these variables local to the buffer, and sets them to the values specified in the file. There are two ways to specify local variable values: in the first line, or with a local variables list. Here's how to specify them in the first line: -*- mode: MODENAME; VAR: VALUE; ... -*- You can specify any number of variables/value pairs in this way, each pair with a colon and semicolon as shown above. `mode: MODENAME;' specifies the major mode; this should come first in the line. The VALUEs are not evaluated; they are used literally. Here is an example that specifies Lisp mode and sets two variables with numeric values: ;; -*- mode: Lisp; fill-column: 75; comment-column: 50; -*- You can also specify the coding system for a file in this way: just specify a value for the "variable" named `coding'. The "value" must be a coding system name that Emacs recognizes. *Note Coding Systems::. The `eval' pseudo-variable, described below, can be specified in the first line as well. In shell scripts, the first line is used to identify the script interpreter, so you cannot put any local variables there. To accommodate for this, when Emacs visits a shell script, it looks for local variable specifications in the _second_ line. A "local variables list" goes near the end of the file, in the last page. (It is often best to put it on a page by itself.) The local variables list starts with a line containing the string `Local Variables:', and ends with a line containing the string `End:'. In between come the variable names and values, one set per line, as `VARIABLE: VALUE'. The VALUEs are not evaluated; they are used literally. If a file has both a local variables list and a `-*-' line, Emacs processes _everything_ in the `-*-' line first, and _everything_ in the local variables list afterward. Here is an example of a local variables list: ;;; Local Variables: *** ;;; mode:lisp *** ;;; comment-column:0 *** ;;; comment-start: ";;; " *** ;;; comment-end:"***" *** ;;; End: *** As you see, each line starts with the prefix `;;; ' and each line ends with the suffix ` ***'. Emacs recognizes these as the prefix and suffix based on the first line of the list, by finding them surrounding the magic string `Local Variables:'; then it automatically discards them from the other lines of the list. The usual reason for using a prefix and/or suffix is to embed the local variables list in a comment, so it won't confuse other programs that the file is intended as input for. The example above is for a language where comment lines start with `;;; ' and end with `***'; the local values for `comment-start' and `comment-end' customize the rest of Emacs for this unusual syntax. Don't use a prefix (or a suffix) if you don't need one. Two "variable names" have special meanings in a local variables list: a value for the variable `mode' really sets the major mode, and a value for the variable `eval' is simply evaluated as an expression and the value is ignored. `mode' and `eval' are not real variables; setting variables named `mode' and `eval' in any other context has no special meaning. _If `mode' is used to set a major mode, it should be the first "variable" in the list._ Otherwise, the entries that precede it in the list of the local variables are likely to be ignored, since most modes kill all local variables as part of their initialization. You can use the `mode' "variable" to set minor modes as well as major modes; in fact, you can use it more than once, first to set the major mode and then to set minor modes which are specific to particular buffers. But most minor modes should not be specified in the file in any fashion, because they represent user preferences. For example, you may be tempted to try to turn on Auto Fill mode with a local variable list. That is a mistake. The choice of Auto Fill mode or not is a matter of individual taste, not a matter of the contents of particular files. If you want to use Auto Fill, set up major mode hooks with your `.emacs' file to turn it on (when appropriate) for you alone (*note Init File::). Don't use a local variable list to impose your taste on everyone. The start of the local variables list must be no more than 3000 characters from the end of the file, and must be in the last page if the file is divided into pages. Otherwise, Emacs will not notice it is there. The purpose of this rule is so that a stray `Local Variables:' not in the last page does not confuse Emacs, and so that visiting a long file that is all one page and has no local variables list need not take the time to search the whole file. Use the command `normal-mode' to reset the local variables and major mode of a buffer according to the file name and contents, including the local variables list if any. *Note Choosing Modes::. The variable `enable-local-variables' controls whether to process local variables in files, and thus gives you a chance to override them. Its default value is `t', which means do process local variables in files. If you set the value to `nil', Emacs simply ignores local variables in files. Any other value says to query you about each file that has local variables, showing you the local variable specifications so you can judge. The `eval' "variable," and certain actual variables, create a special risk; when you visit someone else's file, local variable specifications for these could affect your Emacs in arbitrary ways. Therefore, the option `enable-local-eval' controls whether Emacs processes `eval' variables, as well variables with names that end in `-hook', `-hooks', `-function' or `-functions', and certain other variables. The three possibilities for the option's value are `t', `nil', and anything else, just as for `enable-local-variables'. The default is `maybe', which is neither `t' nor `nil', so normally Emacs does ask for confirmation about file settings for these variables. Keyboard Macros =============== A "keyboard macro" is a command defined by the user to stand for another sequence of keys. For example, if you discover that you are about to type `C-n C-d' forty times, you can speed your work by defining a keyboard macro to do `C-n C-d' and calling it with a repeat count of forty. `C-x (' Start defining a keyboard macro (`start-kbd-macro'). `C-x )' End the definition of a keyboard macro (`end-kbd-macro'). `C-x e' Execute the most recent keyboard macro (`call-last-kbd-macro'). `C-u C-x (' Re-execute last keyboard macro, then add more keys to its definition. `C-x q' When this point is reached during macro execution, ask for confirmation (`kbd-macro-query'). `M-x name-last-kbd-macro' Give a command name (for the duration of the session) to the most recently defined keyboard macro. `M-x insert-kbd-macro' Insert in the buffer a keyboard macro's definition, as Lisp code. `C-x C-k' Edit a previously defined keyboard macro (`edit-kbd-macro'). `M-x apply-macro-to-region-lines' Run the last keyboard macro on each complete line in the region. Keyboard macros differ from ordinary Emacs commands in that they are written in the Emacs command language rather than in Lisp. This makes it easier for the novice to write them, and makes them more convenient as temporary hacks. However, the Emacs command language is not powerful enough as a programming language to be useful for writing anything intelligent or general. For such things, Lisp must be used. You define a keyboard macro while executing the commands which are the definition. Put differently, as you define a keyboard macro, the definition is being executed for the first time. This way, you can see what the effects of your commands are, so that you don't have to figure them out in your head. When you are finished, the keyboard macro is defined and also has been, in effect, executed once. You can then do the whole thing over again by invoking the macro. Basic Use --------- To start defining a keyboard macro, type the `C-x (' command (`start-kbd-macro'). From then on, your keys continue to be executed, but also become part of the definition of the macro. `Def' appears in the mode line to remind you of what is going on. When you are finished, the `C-x )' command (`end-kbd-macro') terminates the definition (without becoming part of it!). For example, C-x ( M-f foo C-x ) defines a macro to move forward a word and then insert `foo'. The macro thus defined can be invoked again with the `C-x e' command (`call-last-kbd-macro'), which may be given a repeat count as a numeric argument to execute the macro many times. `C-x )' can also be given a repeat count as an argument, in which case it repeats the macro that many times right after defining it, but defining the macro counts as the first repetition (since it is executed as you define it). Therefore, giving `C-x )' an argument of 4 executes the macro immediately 3 additional times. An argument of zero to `C-x e' or `C-x )' means repeat the macro indefinitely (until it gets an error or you type `C-g' or, on MS-DOS, `C-'). If you wish to repeat an operation at regularly spaced places in the text, define a macro and include as part of the macro the commands to move to the next place you want to use it. For example, if you want to change each line, you should position point at the start of a line, and define a macro to change that line and leave point at the start of the next line. Then repeating the macro will operate on successive lines. When a command reads an argument with the minibuffer, your minibuffer input becomes part of the macro along with the command. So when you replay the macro, the command gets the same argument as when you entered the macro. For example, C-x ( C-a C- C-n M-w C-x b f o o C-y C-x b C-x ) defines a macro that copies the current line into the buffer `foo', then returns to the original buffer. You can use function keys in a keyboard macro, just like keyboard keys. You can even use mouse events, but be careful about that: when the macro replays the mouse event, it uses the original mouse position of that event, the position that the mouse had while you were defining the macro. The effect of this may be hard to predict. (Using the current mouse position would be even less predictable.) One thing that doesn't always work well in a keyboard macro is the command `C-M-c' (`exit-recursive-edit'). When this command exits a recursive edit that started within the macro, it works as you'd expect. But if it exits a recursive edit that started before you invoked the keyboard macro, it also necessarily exits the keyboard macro as part of the process. After you have terminated the definition of a keyboard macro, you can add to the end of its definition by typing `C-u C-x ('. This is equivalent to plain `C-x (' followed by retyping the whole definition so far. As a consequence it re-executes the macro as previously defined. You can edit a keyboard macro already defined by typing `C-x C-k' (`edit-kbd-macro'). Follow that with the keyboard input that you would use to invoke the macro--`C-x e' or `M-x NAME' or some other key sequence. This formats the macro definition in a buffer and enters a specialized major mode for editing it. Type `C-h m' once in that buffer to display details of how to edit the macro. When you are finished editing, type `C-c C-c'. The command `M-x apply-macro-to-region-lines' repeats the last defined keyboard macro on each complete line within the current region. It does this line by line, by moving point to the beginning of the line and then executing the macro. Naming and Saving Keyboard Macros --------------------------------- If you wish to save a keyboard macro for longer than until you define the next one, you must give it a name using `M-x name-last-kbd-macro'. This reads a name as an argument using the minibuffer and defines that name to execute the macro. The macro name is a Lisp symbol, and defining it in this way makes it a valid command name for calling with `M-x' or for binding a key to with `global-set-key' (*note Keymaps::). If you specify a name that has a prior definition other than another keyboard macro, an error message is shown and nothing is changed. Once a macro has a command name, you can save its definition in a file. Then it can be used in another editing session. First, visit the file you want to save the definition in. Then use this command: M-x insert-kbd-macro MACRONAME This inserts some Lisp code that, when executed later, will define the same macro with the same definition it has now. (You need not understand Lisp code to do this, because `insert-kbd-macro' writes the Lisp code for you.) Then save the file. You can load the file later with `load-file' (*note Lisp Libraries::). If the file you save in is your init file `~/.emacs' (*note Init File::) then the macro will be defined each time you run Emacs. If you give `insert-kbd-macro' a numeric argument, it makes additional Lisp code to record the keys (if any) that you have bound to the keyboard macro, so that the macro will be reassigned the same keys when you load the file. Executing Macros with Variations -------------------------------- Using `C-x q' (`kbd-macro-query'), you can get an effect similar to that of `query-replace', where the macro asks you each time around whether to make a change. While defining the macro, type `C-x q' at the point where you want the query to occur. During macro definition, the `C-x q' does nothing, but when you run the macro later, `C-x q' asks you interactively whether to continue. The valid responses when `C-x q' asks are (or `y'), (or `n'), (or `q'), `C-l' and `C-r'. The answers are the same as in `query-replace', though not all of the `query-replace' options are meaningful. These responses include to continue, and to skip the remainder of this repetition of the macro and start right away with the next repetition. means to skip the remainder of this repetition and cancel further repetitions. `C-l' redraws the screen and asks you again for a character to say what to do. `C-r' enters a recursive editing level, in which you can perform editing which is not part of the macro. When you exit the recursive edit using `C-M-c', you are asked again how to continue with the keyboard macro. If you type a at this time, the rest of the macro definition is executed. It is up to you to leave point and the text in a state such that the rest of the macro will do what you want. `C-u C-x q', which is `C-x q' with a numeric argument, performs a completely different function. It enters a recursive edit reading input from the keyboard, both when you type it during the definition of the macro, and when it is executed from the macro. During definition, the editing you do inside the recursive edit does not become part of the macro. During macro execution, the recursive edit gives you a chance to do some particularized editing on each repetition. *Note Recursive Edit::. Another way to vary the behavior of a keyboard macro is to use a register as a counter, incrementing it on each repetition of the macro. *Note RegNumbers::. Customizing Key Bindings ======================== This section describes "key bindings", which map keys to commands, and "keymaps", which record key bindings. It also explains how to customize key bindings. Recall that a command is a Lisp function whose definition provides for interactive use. Like every Lisp function, a command has a function name which usually consists of lower-case letters and hyphens. Keymaps ------- The bindings between key sequences and command functions are recorded in data structures called "keymaps". Emacs has many of these, each used on particular occasions. Recall that a "key sequence" ("key", for short) is a sequence of "input events" that have a meaning as a unit. Input events include characters, function keys and mouse buttons--all the inputs that you can send to the computer with your terminal. A key sequence gets its meaning from its "binding", which says what command it runs. The function of keymaps is to record these bindings. The "global" keymap is the most important keymap because it is always in effect. The global keymap defines keys for Fundamental mode; most of these definitions are common to most or all major modes. Each major or minor mode can have its own keymap which overrides the global definitions of some keys. For example, a self-inserting character such as `g' is self-inserting because the global keymap binds it to the command `self-insert-command'. The standard Emacs editing characters such as `C-a' also get their standard meanings from the global keymap. Commands to rebind keys, such as `M-x global-set-key', actually work by storing the new binding in the proper place in the global map. *Note Rebinding::. Meta characters work differently; Emacs translates each Meta character into a pair of characters starting with . When you type the character `M-a' in a key sequence, Emacs replaces it with ` a'. A meta key comes in as a single input event, but becomes two events for purposes of key bindings. The reason for this is historical, and we might change it someday. Most modern keyboards have function keys as well as character keys. Function keys send input events just as character keys do, and keymaps can have bindings for them. On many terminals, typing a function key actually sends the computer a sequence of characters; the precise details of the sequence depends on which function key and on the model of terminal you are using. (Often the sequence starts with ` ['.) If Emacs understands your terminal type properly, it recognizes the character sequences forming function keys wherever they occur in a key sequence (not just at the beginning). Thus, for most purposes, you can pretend the function keys reach Emacs directly and ignore their encoding as character sequences. Mouse buttons also produce input events. These events come with other data--the window and position where you pressed or released the button, and a time stamp. But only the choice of button matters for key bindings; the other data matters only if a command looks at it. (Commands designed for mouse invocation usually do look at the other data.) A keymap records definitions for single events. Interpreting a key sequence of multiple events involves a chain of keymaps. The first keymap gives a definition for the first event; this definition is another keymap, which is used to look up the second event in the sequence, and so on. Key sequences can mix function keys and characters. For example, `C-x a prefix key, then `