

CRYPTOGRAPHIC

RSA
L A B O R A T O R I E S

RESEARCH AND
CONSULTATION

Dr. Robert W. Baldwin

RSA Data Security, Inc.

Abstract
This bulletin will help you avoid a particularly poor
way of initializing the random number generators in
the BSAFE 1.x or BSAFE 2.x toolkit. If you have
followed the advice in the BSAFE 2.1 User’s Manual,
which is to initialize the generators with large blocks
of seed bytes, then you do not have this security
weakness. However, random number generators are
often used to produce encryption keys, so the impact
of poor initialization could be substantial.

We first explain how you can recognize whether your
product has this problem. If it does, we have in-
cluded a simple fix that can be added to your
product’s source code. Alternatively, you can up-
grade to the BSAFE 3.x toolkit which eliminates the
problem without any need for changes in your
product’s source code.

Recognizing the problem
You need to look at all places that your product calls
B_RandomUpdate. If the number of seed bytes
passed to each invocation of B_RandomUpdate is
small, then you may have the weakness, even if
B_RandomUpdate is called may times.

In the sample code, B_RandomUpdate is called 20
times, but each call only passes a single seed byte.
The algorithm used to update the state of the ran-
dom number generator (in BSAFE 1.x and BSAFE

Proper Initialization for the
BSAFE Random Number Generator

The number of states for the generator does not de-
pend on the order in which the seed blocks are pro-
cessed by B_RandomUpdate. After executing the
sample code, the random number generator will be
in one of (20+10-1)!/(20!(10-1)!) possible states,
which is about 23 bits of randomness. This is not
even enough randomness to generate a good 40 bit
key for an exportable cryptographic product, let
alone provide strong domestic security. The
implementer of this code may have expected that
there would be 10**20 possible states, roughly 66
bits of randomness, which is reasonable for systems
that use the DES cipher.

Fixing the problem
There are several ways to fix the problem. One
would be to gather up all the seed bytes and pass

N U M B E R 3 � J A N U A R Y 2 5 , 1 9 9 6

News and advice from RSA Laboratories

BulletinRSA
Laborator ies’

Bob Baldwin is a senior engineer at RSA Data Security. He can be
contacted via baldwin@rsa.com.

 DisplayMessage

 (“Please enter 20 random keystrokes”);

 for (i = 0 ; i < 20 ; i++)

 {

 c = GetUserKeystroke();

 if (0 != B_RandomUpdate(randomObj,

 &c, 1, NULL_CONTEXT))

 return (ERROR_XXX);

 }

2.x) assumes that each call will pass a substantial
amount of unpredictability in each block of seed
bytes. However, in this case, there is only one byte
in each seed block, and it is likely to be a character
from the home row of the keyboard, of which there
are only 10. That is very little unpredictability per
seed block.

them via a single call to B_RandomUpdate. This
would extract the maximum amount of randomness
from all the seed bytes. For example:

 DisplayMessage

 (“Please enter 20 random keystrokes”);

 for (i = 0 ; i < 20 ; i++)

 {

 seedBuffer[i] = GetUserKeystroke();

 }

 if (0 != B_RandomUpdate(randomObj,

 seedBuffer, 20, NULL_CONTEXT))

 return (ERROR_XXX);

An alternative is to include a counter value with
each byte of seed. Surprisingly, this fixes the prob-
lem with small seeds. For user input, the counter
could be replaced with a sample from a clock that is
updated at least 10 times per second. The code for
this alternative is shown below. This approach ex-
tracts nearly as much randomness from the input as
the previous approach and it is well suited for appli-
cations that periodically update the random object
as they executes.

2

R S A L A B O R A T O R I E S B U L L E T I N # 3 � J A N U A R Y 2 5 , 1 9 9 6

/* Update the random object anytime a key is pressed. */

int AddNewRandomness ()

{

 /* Using a clock (10th of second OK) would be better than */

 /* a counter and would not require static storage. */

 static struct { /* Static, so counter is persistent. */

 long counter;

 char keystroke;

 } seedBlock;

 seedBlock.counter++;

 seedBlock.keystroke = GetLastKeystroke();

 if (0 != B_RandomUpdate(randomObj,

 (char *)&seedBlock,sizeof(seedBlock),

 NULL_CONTEXT))

 return (ERROR_XXX);

 return (0);

}

For more information on this and other recent

developments in cryptography, contact RSA Labo-

ratories at one of the addresses below.

RSA Laboratories

100 Marine Parkway, Suite 500

Redwood City, CA 94065 USA

415/595-7703

415/595-4126 (fax)

rsa-labs@rsa.com

http://www.rsa.com/rsalabs/

Copyright © 1996 RSA Laboratories, a division of RSA Data Security, Inc. All rights reserved.

For further information contact technical support by
calling (415)595-7705 between 9 A.M. and 5 P.M.
Pacific time, or fax at (415)595-1873, or email at
tech-support@rsa.com.

