PKCS #15: Cryptographic Token Information Format Standard (Draft)
22

[image: image1.png]
PKCS #15: Cryptographic Token Information Format Standard

RSA Laboratories

WORKING DRAFT— February, 1999

Editor’s note: This is a working public draft of PKCS #15 v1.0, which is available for a 30-day public review. Please send comments and questions, both editorial and technical, to pkcs-editor@rsa.com or pkcs-tng@rsa.com
Copyright © 1999 RSA Laboratories, a division of RSA Data Security, Inc. License to copy this document is granted provided that it is identified as “RSA Data Security, Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or referencing this document.

000-000000-000-000-000

Table of Contents

51
Introduction

2
References and related documents
7
3
Definitions
9
4
Symbols and Abbreviations
13
5
General Overview
14
5.1
Object Model
14
5.1.1
Object Classes
14
5.1.2
Attribute types
15
6
IC Card File Format
16
6.1
Overview
16
6.2
IC Card requirements
16
6.3
Card File Structure
16
6.4
MF directory contents
17
6.4.1
EF(DIR)
18
6.5
PKCS#15 Application Directory Contents
18
6.5.1
EF(ODF)
18
6.5.2
Private Key Directory Files (PrKDFs)
19
6.5.3
Public Key Directory Files (PuKDFs)
20
6.5.4
Secret Key Directory Files (SKDFs)
20
6.5.5
Certificate Directory Files (CDFs)
21
6.5.6
Data Object Directory Files (DODFs)
21
6.5.7
Authentication Object Directory Files (AODFs)
22
6.5.8
EF(TokenInfo)
23
6.5.9
Other elementary files in the PKCS#15 directory
23
6.6
File Identifiers
23
6.7
PKCS#15 Application Selection
23
6.7.1
AID for the PKCS#15 application
24
6.8
Object Management
24
6.8.1
Adding (Creating) new objects
24
6.8.2
Removing objects
25
6.8.3
Modifying objects
25
7
Untrusted Tokens
27
7.1
Object protection
27
7.2
Key derivation algorithms
27
7.3
Key encryption algorithms
27
7.4
Content encryption algorithms
27
7.5
MAC algorithms
28
7.6
Digest algorithms
28
7.7
Constructing a PKCS#15 token in software
28
7.7.1
Constructing values of type ‘Enveloped Data’
28
7.7.2
Constructing values of type ‘AuthenticatedData’
30
7.8
PKCS #15 software tokens as directory attributes
31
7.9
Using PKCS#15 software tokens
31
8
Information Syntax in ASN.1
33
8.1
Basic ASN.1 defined types
33
8.1.1
PKCS15Identifier
33
8.1.2
PKCS15Reference
33
8.1.3
PKCS15Label
33
8.1.4
PKCS15ReferencedValue and PKCS15Path
33
8.1.5
PKCS15ObjectValue
34
8.1.6
PKCS15PathOrObjects
34
8.1.7
PKCS15CommonObjectAttributes
35
8.1.8
PKCS15CommonKeyAttributes
36
8.1.9
PKCS15CommonPrivateKeyAttributes
38
8.1.10
PKCS15CommonPublicKeyAttributes
39
8.1.11
PKCS15CommonSecretKeyAttributes
39
8.1.12
PKCS15KeyInfo
40
8.1.13
PKCS15CommonCertificateAttributes
40
8.1.14
PKCS15CommonDataObjectAttributes and PKCS15ApplicationIdentifier
40
8.1.15
PKCS15CommonAuthenticationObjectAttributes
41
8.1.16
PKCS15Object
41
8.2
PKCS15Token
41
8.3
The PKCS15Objects type
42
8.4
The PKCS15PrivateKeys type
43
8.4.1
Private RSA key objects
44
8.4.2
Private Elliptic Curve key objects
45
8.4.3
Private Diffie-Hellman key objects
45
8.4.4
Private Digital Signature Algorithm key objects
46
8.4.5
Private KEA key objects
46
8.5
The PKCS15PublicKeys type
47
8.5.1
Public RSA key objects
48
8.5.2
Public Elliptic Curve key objects
48
8.5.3
Public Diffie-Hellman key objects
49
8.5.4
Public Digital Signature Algorithm objects
49
8.5.5
Public KEA key objects
50
8.6
The PKCS15SecretKeys type
50
8.6.1
Generic secret key objects
51
8.6.2
Other secret key objects
52
8.7
The PKCS15Certificates type
52
8.7.1
X.509 certificate objects
53
8.7.2
X.509 attribute certificate Objects
53
8.7.3
ANSI X9.68 lightweight certificate objects
54
8.7.4
WTLS certificate objects
54
8.8
The PKCS15DataObjects type
54
8.8.1
Opaque data objects
55
8.8.2
External data objects
55
8.8.3
Data objects identified by OBJECT IDENTIFIERS
56
8.9
The PKCS15AuthenticationObject type
56
8.9.1
Pin Objects
57
8.10
The PKCS#15 Information File, EF(TokenInfo)
59
9
ASN.1 Module
62
10
Revision History
73
Appendix A:
File Access Conditions (Informative)
74
A.1
Scope
74
A.2
Background
74
A.3
Read-Only and Read-Write cards
74
Appendix B:
An Electronic Identification Profile of PKCS#15 (Normative)
77
B.1
PKCS#15 objects
77
B.2
Considerations for non-IC Card cases
78
B.3
Constraints on ASN.1 types
78
B.4
File relationships in the IC card case
79
B.5
Access Control Rules
80
Appendix C:
Examples (Informative)
81
C.1
Example of EF(DIR)
81
C.2
Example of a whole PKCS15 application
81
C.2.1 EF(TokenInfo)
82
C.2.2 EF(ODF)
82
C.2.3 EF(PrKDF)
83
C.2.4 EF(CDF)
85
C.2.5 EF(AODF)
86
C.2.6 EF(DODF)
87
C.3
Software example
88
About PKCS
92

1 Introduction

Many cryptographic tokens such as Integrated Circuit Cards (IC cards or ‘smart cards’) are intrinsically secure computing platforms ideally suited to providing enhanced security and privacy functionality to applications. They can handle authentication information such as digital certificates and capabilities, authorizations and cryptographic keys. Furthermore, they are capable of providing secure storage and computational facilities for sensitive information such as:

· Private keys and key fragments.

· Account numbers and stored value

· Passwords and shared secrets.

· Authorizations and permissions.

At the same time, many of these tokens provides an isolated processing facility capable of using this information without exposing it within the host environment where it is at potential risk from hostile code (viruses, Trojan horses, and so on). This becomes critically important for certain operations such as:

· Generation of digital signatures, using private keys, for personal identification.

· Network authentication based on shared secrets.

· Maintenance of electronic representations of value.

· Portable permissions for use in off-line situations

Currently, the use of tokens such as IC cards for authentication and authorization is hampered by the lack of interoperability at several levels. First, the industry lacks standards for storing a popular format of digital credentials (keys, certificates, etc) on them. This has made it difficult to create applications that can work with credentials from a variety of technology providers. Attempts to solve this problem in the application domain invariably increase costs for both development and maintenance. It also creates a significant problem for the end-user in that credentials are tied to a particular application running against a particular application programming interface to a particular hardware configuration.

Second, mechanisms to allow multiple applications to effectively share digital credentials have not been created. While this problem is not unique to cryptographic tokens --- it is already apparent in the use of certificates with World Wide Web browsers, for example --- the limited room on many tokens together with the consumer expectation of universal acceptance will force credential sharing on credential providers. Without agreed upon standards for credential sharing, acceptance and use of them both by application developers and by consumers will be muted.

To optimize the benefit to both the industry and end users, it is important that solutions to these issues be developed in a manner that supports a variety of operating environments, application programming interfaces, and a broad base of applications. Only through this approach can the needs of constituencies be supported and the development of credentials-activated applications encouraged, as a cost-effective solution to meeting requirements in a very diverse set of markets.

The objectives of this recommendation is therefore to:

· Maintain consistency with existing, related standards while expanding upon them only where necessary and practical.

· Enable interoperability among components running on various platforms (platform neutral).

· Enable applications to take advantage of products and components from multiple manufacturers (vendor neutral).

· Enable the use of advances in technology without rewriting application-level software (application neutral).

As a practical example, the holder of a token containing a digital certificate should be able to present the token to any application running on any host and successfully use the token to present the contained certificate to the application.

As a first step to achieve these objectives, this recommendation specifies a file and directory format for storing security-related information on these tokens. The format builds on the PKCS#11 standard.

References and related documents

· ISO/IEC 7816-4:1995 Identification Cards - Integrated Circuit(s) cards with contacts - Part 4: Interindustry commands for interchange.

· ISO/IEC 7816-5:1994 Identification Cards - Integrated Circuit(s) cards with contacts - Part 5: Numbering system and registration procedure for application identifiers.

· ISO/IEC 7816-6:1996 Identification Cards - Integrated Circuit(s) cards with contacts - Part 6: Inter-industry data elements

· FCD ISO/IEC 7816-8:1998 Identification Cards – Integrated Circuit(s) cards with contacts – Part 8: Security related interindustry commands

· ISO/IEC 8824-1:1995 Information technology – Abstract Syntax Notation One (ASN.1) - Specification of basic notation

· ISO/IEC 8824-1:1995/Amd.1:1995 Information technology – Abstract Syntax Notation One (ASN.1) – Specification of basic notation – Amendment 1 – Rules of extensibility

· ISO/IEC 8824-2:1995 Information technology – Abstract Syntax Notation One (ASN.1) - Information object specification

· ISO/IEC 8824-2:1995/Amd.1:1995 Information technology – Abstract Syntax Notation One (ASN.1) – Information object specification – Amendment 1 – Rules of extensibility

· ISO/IEC 8824-3:1995 Information technology – Abstract Syntax Notation One (ASN.1) - Constraint specification

· ISO/IEC 8824-4:1995 Information technology – Abstract Syntax Notation One (ASN.1) - Parameterization of ASN.1 specifications

· ISO/IEC 8825-1:1995 Information technology – ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)

· ISO/IEC 8825-2:1995 Information technology – ASN.1 encoding rules – Specification of Packed Encoding Rules (PER)

· ISO/IEC 9594-2:1997 Information technology – Open Systems Interconnection – The Directory: Models

· ISO/IEC 9594-6:1997 Information technology – Open Systems Interconnection – The Directory: Selected attribute types

· ISO/IEC 9594-8:1997 Information technology - Open Systems Interconnection - The Directory: Authentication framework

· RSA Laboratories PKCS #1 v2.0: RSA Encryption Standard

· RSA Laboratories PKCS #3 v1.4: Diffie-Hellman Key-Agreement Standard

· RSA Laboratories PKCS #5 v2.0: Password-Based Encryption Standard

· RSA Laboratories PKCS #8 v1.2: Private Key Information Syntax Standard

· RSA Laboratories PKCS #11 v2.01: Cryptographic Token Interface Standard

· RSA Laboratories PKCS #12 v1.0: Personal Information Exchange Syntax Standard

· Wireless Application Protocol: Wireless Transport Layer Security Protocol Specification, version 30-Apr-1998 (WTLS).

· F. Yergeau, “UTF-8, a transformation format of ISO 10646”, IETF RFC 2279, January 1998.

· T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifiers (URI): Generic Syntax”, IETF RFC 2396, August 1998.
· D. Solo, R. Housley, W. Ford, T. Polk, “Internet X.509 Public Key Infrastructure Certificate and CRL Profile”, IETF RFC 2459, January 1999.

· R. Housley, “Certificate Message Syntax”, IETF RFC 2? February 1999.

· ANSI X3.4-1968: Information Systems - Coded Character Sets - 7-Bit American National Standard Code for Information Interchange (7-Bit ASCII)

· ANSI X9.42-1998: Public Key Cryptography for The Financial Service Industry: Agreement of Symmetric Keys on Using Diffie-Hellman and MQV Algorithms

· ANSI X9.62-1998: Public Key Cryptography For The Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)

2 Definitions

AID: Application Identifier. A data element that identifies an application in a card. An application identifier may contain a registered application provider number in which case it is a unique identification for the application. If it contains no application provider number, then this identification may be ambiguous.

ALW: Always. Access condition indicating a given function is always accessible.
ANSI: American National Standards Institute. An American standards body.

APDU: Application protocol data unit. A message between the card and the host computer.

Application: The implementation of a well-defined and related set of functions that perform useful work on behalf of the user. It may consist of software and or hardware elements and associated user interfaces.

Application provider: An entity that provides an application.

ASN.1 object:
 Abstract Syntax Notation object as defined in ISO/IEC 8824. A formal syntax for describing complex data objects.

ATR: Answer-to-Reset. Stream of data sent from the card to the reader in response to a RESET condition.

AUT: Authenticated. Access condition indicating that a function is only available to entities that have been authenticated (typically through a cryptographic protocol involving the successful encryption of a challenge or a CHV, see below).

BCD: Number representation where a number is expressed as a sequence of decimal digits and then each decimal digit is encoded as a four bit binary number. E.g. decimal 92 would be encoded as the eight bit sequence 1001 0010.

BER: Basic Encoding Rules. Rules for encoding an ASN.1 object into a byte sequence.

Cardholder: The person or entity presenting a smart card for use.

Card Issuer: The organization or entity that owns and provides a smart card product.

CHV: CardHolder Verification. Also called the PIN. Typically a 4 to 8 digit number entered by the cardholder to verify that the cardholder is authorized to use the card.

Command: A message sent by the terminal to the card that initiates an action and solicits a response from the card.

Command/response pair: Set of two messages: a command to the card followed by a response from the card.

Cryptogram: Result of a cryptographic operation.

Data element: Item of information as seen at the interface between a token and an application for which are defined a name, a description of logical content, a format and a coding. Defined in ISO/IEC 7816-4.

Data unit: The smallest set of bits that can be unambiguously referenced. Defined in ISO/IEC 7816-4.

DER: Distinguished Encoding Rules for encoding ASN.1 objects in byte-sequences. A special case of BER.

DF: Dedicated file. File containing file control information, and, optionally, memory available for allocation. It may be the parent of elementary files and/or other dedicated files.
DIR file: Directory file. An optional elementary file containing a list of applications supported by the card and optional related data elements. Defined in ISO/IEC 7816-5.

DO: Data Object. Information as seen at the interface between a card and an application. Consists of a tag, a length and a value (i.e., a data element). Defined in ISO/IEC 7816-4.

EF: Elementary file. A set of data units or records which share the same identifier. It cannot be a parent of another file.

File control information (FCI): Logical, structural, and security attributes of a file as defined in ISO/IEC 7816-4.

File identifier: A 2-byte binary value used to address a file on a smart card.

Function: A process accomplished by one or more commands and resultant actions that are used to perform all or part of a transaction.

ICC: Integrated Circuit Card. Another name for a smart card.

IEC: International Electrotechnical Commission.

Internal Elementary File: Elementary file for storing data interpreted by the card.

ISO: International Organization for Standardization

Level: Number of DFs in the path to a file, starting with the path from the master file.

Memory Card: A card with a simple memory chip with read and write capacity.

Message: String of bytes transmitted by the internal device to the card or vice versa, excluding transmission-control characters.

MF: Master file. Mandatory unique dedicated file representing the root of the structure. The MF typically has the file identifier 3F0016.

NEV: An access condition indicating a given function is never accessible.
Nibble: Half a byte. The most significant nibble of a byte consists of bits b8 b7 b6 b5 and the least significant of bits b4 b3 b2 b1.

Parent file: The MF or DF immediately preceding a given file within the hierarchy.
Password: Data that may be required by the application to be presented to the card by its user before data can be processed.

Path: Concatenation of file identifiers without delimitation. If the path starts with the MF identifier, it is an absolute path; otherwise it is a relative path.

PER: Packed Encoding Rules for encoding ASN.1 objects in byte sequences. A special case of BER.

PIN: Personal Identification Number. See CHV.

PIN Pad: An arrangement of alphanumeric and command keys to be used for PIN entry.

Provider: Authority who has or who obtained the rights to create the MF or a DF in the card.
Reader: As used in this specification, refers to a PC peripheral device that supports bi-directional I/O to an ISO/IEC 7816 standard ICC.

Record: String of bytes that can be handled as a whole by the card and referenced by a record number or by a record identifier.

Record Identifier: Value associated with a record that can be used to reference that record. Several records may have the same record identifier within an EF.

Record number: A sequential number assigned to each record that uniquely identifies the record within its EF.

Response: A message returned by the ICC to the terminal after the processing of a command message received by the ICC.
RID: Registered application provider identifier.

Stored Value Card: A smart card that stores non-bearer information like e-cash.

Template: Value field of a constructed data object, defined to give a logical grouping of data objects. Defined in ISO/IEC 7816-6.

Token: In this specification, a portable device capable of storing persistent data.

Tokenholder: Analogous to cardholder.

Uniform Resource Identifiers: a compact string of characters for identifying an abstract or physical resource. Described in RFC 2396.

3 Symbols and Abbreviations

BER

Basic Encoding Rules

DER

Distinguished Encoding Rules

DF

Dedicated File

DF(X)
Dedicated file with name ‘X’

DO

Data Object

EF

Elementary File

EF(X)
Elementary file with name ‘X’

FCD

Final Committee Draft

IDO

Interindustry Data Object

MF

Master File

ODF

Object Directory File

PIN

Personal Identification Number

TLV
Tag-Length-Value

URL

Uniform Resource Locator (a class of uniform resource identifiers)

In this document, ASN.1 types, definitions and values are written in bold courier.

4 General Overview

This document defines the PKCS#15 Cryptographic Token Information Format. The format specifies how keys, certificates and application-specific data may be stored on an ISO/IEC 7816 compliant IC card or other media. It has the following characteristics:

· Dynamic structure enables implementations on a wide variety of media, including stored value cards and pure software implementations

· When implemented on an IC Card, it allows multiple applications to reside on the card (even multiple PKCS#15 applications)

· Supports storage of any PKCS#11 objects (keys, certificates and data)

· Support for multiple PINs whenever the token supports it
In general, an attempt has been made to be flexible enough to allow for many different token types, while still preserving the requirements for interoperability. A key factor for this in the case of IC Cards is the notion of ‘Directory Files
’ (See section 6.5) which provides a layer of indirection between objects on the token and the actual format of these objects. The format is also well suited for pure software implementations, where it can act as a replacement for or complement to PKCS#12.
4.1 Object Model
4.1.1 Object Classes
This recommendation defines four general classes of objects: Keys, Certificates, Authentication Objects and Data Objects. All these object classes have sub-classes, e.g. Private Keys, Secret Keys and Public Keys, whose instantiations become objects actually stored on tokens. Objects can be private, meaning that they are protected against unauthorized access, or public. In the IC Card case, access (read, write, etc) to private objects is defined by Access Control Objects. Conditional access (from a cardholder’s perspective) is usually achieved with PINs. In other cases, such as when PKCS#15 is implemented in software, private objects may be protected against unauthorized access by cryptographic means. Public objects are not protected from read-access. Whether they are protected against modifications or not depends on the particular implementation. The following is a figure of the PKCS#15 object hierarchy:

Figure 1: PKCS #15 Object hierarchy (instances of abstract object classes does not exist on tokens).
4.1.2 Attribute types
All objects have a number of attributes. Objects ‘inherits’ attribute types from their parent classes (in particular, every object inherit attributes from the abstract PKCS#15 ‘Common’ or ‘Top’ object). Attributes are defined in detail in Section 8.
5 IC Card File Format

This section describes how to implement the PKCS#15 application on IC Cards.

5.1 Overview

In general, an IC card file format specifies how certain abstract, higher level elements such as keys and certificates are to be represented in terms of more lower level elements such as IC card files and directory structures. The format may also suggest how and under which circumstances these higher level objects may be accessed by external sources and how these access rules are to be implemented in the underlying representation (i.e. the card's operating system). However, since it is anticipated that this recommendation will be used in many types of applications, this later task has been left to each application provider’s discretion. Some general suggestions can be found in Appendix A, though, and specific requirements for an Electronic Identity Profile of this recommendation can be found in Appendix B.
Note that the words “format” and “contents” shall be interpreted to mean ‘The way the information appears to a host side application making use of a predefined set of commands (ISO/IEC 7816-4 and perhaps the FCD of ISO/IEC 7816-8) to access this data’. It may well be that a particular card is able to store the information described here in a more compact or efficient way than another card, however the “card-edge” representation of the information shall be the same in both cases. PKCS#15 is therefore a “token-edge” specification.

5.2 IC Card requirements

This section of this recommendation requires that compliant tokens have necessary support for ISO/IEC 7816-4, ISO/IEC 7816-5 and ISO/IEC 7816-6 (hierarchic logical file system, direct or indirect application selection, access control mechanisms and read operations).
5.3

5.4 Card File Structure

A card supporting this recommendation will have the following layout:

Figure 2: Typical PKCS#15 Card Layout
.

The general file structure is shown above. The contents of the PKCS#15 Application Directory is somewhat dependent on the type of IC card and its intended use, but the following file structure is believed to be the most common:

Figure 3: Contents of DF(PKCS15) (Example).

The contents and purpose of each file and directory is described below.
5.5 MF directory contents

This section describes some EFs of the IC Card’s master directory, MF. Currently, only one EF in the MF might be affected by the PKCS#15 application, EF(DIR).

5.5.1 EF(DIR)

This optional file shall, if present, contain one or several application templates as defined in ISO/IEC 7816-5. The application template (tag ‘61’) for a PKCS15 application shall at least contain the following DOs:

· Application Identifier (tag ‘4F’), value defined in this recommendation

· Path (tag ‘51’), value supplied by application issuer

Other tags from ISO/IEC 7816-5 may, at the application issuer’s discretion, be present as well. In particular, it is recommended that application issuers include both the ‘Discretionary data’ data object (tag ‘53’) and the ‘Application label’ data object (tag ‘50’), and let them contain the object identifier for their application and an application label for it, respectively. This will simplify application selection when several PKCS#15 applications reside on one card. An example of EF(DIR) contents may be found in Appendix C.
5.6 PKCS#15 Application Directory Contents

This section describes the EFs of the PKCS#15 application directory, DF(PKCS15).

5.6.1 EF(ODF)

The mandatory Object Directory File (ODF) is an elementary file, which contains pointers to other EFs (PrKDFs, PuKDFs, SKDFs, CDFs, DODFs and AODFs), each one containing a directory over PKCS#15 objects of a particular class. The ASN.1 syntax for the contents of EF(ODF) is described in section 8.3.

Figure 4: EF(ODF) points to other EFs. Dashed arrows are explained in the text.
5.6.2 Private Key Directory Files (PrKDFs)

These elementary files can be regarded as directories of private keys known to the PKCS#15 application. They are optional, but at least one PrKDF must be present on an IC Card which contains private keys (or references to private keys) known to the PKCS#15 application. They contain general key attributes such as labels, intended usage, identifiers, etc. When applicable, they also contain cross-reference pointers to authentication objects used to protect access to the keys. The rightmost arrow in Figure 4 indicates this. Furthermore, they contain pointers to the keys themselves. There can be any number of PrKDFs in a PKCS#15 DF, but it is anticipated that in the normal case there will only be one. The keys themselves may reside anywhere on the card. The ASN.1 syntax for the contents of PrKDFs is described in section 8.4.
Figure 5: EF(PrKDF) contains private key attributes and pointers to the keys
5.6.3 Public Key Directory Files (PuKDFs)

These elementary files can be regarded as directories of public keys known to the PKCS#15 application. They are optional, but at least one PuKDF must be present on an IC Card which contains public keys (or references to public keys) known to the PKCS#15 application. They contain general key attributes such as labels, intended usage, identifiers, etc. Furthermore, they contain pointers to the keys themselves. When the private key corresponding to a public key also resides on the card, the keys must share the same identifier. There can be any number of PuKDFs in a PKCS#15 DF, but it is anticipated that in the normal case there will only be one. The keys themselves may reside anywhere on the card. The ASN.1 syntax for the contents of PuKDFs is described in section 8.5.

Figure 6: EF(PuKDF) contains public key attributes and pointers to the keys

5.6.4 Secret Key Directory Files (SKDFs)

These elementary files can be regarded as directories of secret keys known to the PKCS#15 application. They are optional, but at least one SKDF must be present on an IC Card which contains secret keys (or references to secret keys) known to the PKCS#15 application. They contain general key attributes such as labels, intended usage, identifiers, etc. When applicable, they also contain cross-reference pointers to authentication objects used to protect access to the keys. Furthermore, they contain pointers to the keys themselves. There can be any number of SKDFs in a PKCS#15 DF, but it is anticipated that in the normal case there will only be one. The keys themselves may reside anywhere on the card. The ASN.1 syntax for the contents of SKDFs is described in section 8.6.
Figure 7: EF(SKDF) contains secret key attributes and pointers to the keys
5.6.5 Certificate Directory Files (CDFs)

These elementary files can be regarded as directories of certificates known to the PKCS#15 application. They are optional, but at least one CDF must be present on an IC Card which contains certificates (or references to certificates) known to the PKCS#15 application. They contain general certificate attributes such as labels, identifiers, etc. When a certificate contains a public key whose private key also resides on the card, the certificate and the private key must share the same identifier (this is indicated with a dashed-arrow in Figure 4). Furthermore, they contain pointers to the certificates themselves. There can be any number of CDFs in a PKCS#15 DF, but it is anticipated that in the normal case there will only be one or two (one for trusted (from the card issuer’s perspective) certificates and one which the cardholder may update). The certificates themselves may reside anywhere on the card (or even outside the card, see Section 8). The ASN.1 syntax for the contents of CDFs is described in section 8.7.
Figure 8: EF(CDF) contains certificate attributes and pointers to the certificates
5.6.6 Data Object Directory Files (DODFs)

These files can be regarded as directories of data objects (other than keys or certificates) known to the PKCS#15 application. They are optional, but at least one DODF must be present on an IC Card which contains such data objects (or references to such data objects) known to the PKCS#15 application. They contain general data object attributes such as identifiers of the application to which the data object belongs, whether it is a private or public object, etc. Furthermore, they contain pointers to the data objects themselves. There can be any number of DODFs in a PKCS#15 DF, but it is anticipated that in the normal case there will only be one. The data objects themselves may reside anywhere on the card. The ASN.1 syntax for the contents of DODFs is described in section 8.8.

Figure 9: EF(DODF) contains data object attributes and pointers to the data objects.
5.6.7 Authentication Object Directory Files (AODFs)

These elementary files can be regarded as directories of authentication objects (e.g. PINs) known to the PKCS#15 application. They are optional, but at least one AODF must be present on an IC Card, which contains authentication objects restricting access to PKCS#15 objects. They contain generic authentication object attributes such as (in the case of PINs) allowed characters, PIN length, PIN padding character, etc. Furthermore, they contain pointers to the authentication objects themselves (e.g. in the case of PINs, pointers to the DF in which the PIN file resides). Authentication objects are used to control access to other objects such as keys. Information about which authentication object that protects a particular key is stored in the key’s directory file, e.g. PrKDF (indicated in Figure 4, the rightmost arrow). There can be any number of AODFs in a PKCS#15 DF, but it is anticipated that in the normal case there will only be one. The keys themselves may reside anywhere on the card. The ASN.1 syntax for the contents of the AODFs is described in section 8.9.
Figure 10: EF(AODF) contains authentication object attributes and pointers to the authentication objects
5.6.8 EF(TokenInfo)

The mandatory TokenInfo elementary file shall contain generic information about the token as such and it's capabilities, as seen by the PKCS15 application. This information includes the token serial number, supported file types, algorithms implemented on the token, etc. The ASN.1 syntax for the contents of the TokenInfo file is described in detail in section 8.10.

5.6.9 Other elementary files in the PKCS#15 directory

These (optional) files will contain the actual values of objects (such as private keys, public keys, secret keys, certificates and application specific data) referenced from within PrKDFs, SKDFs, PuKDFs, CDFs or DODFs. The ASN.1 format for the contents of these files follows from the ASN.1 descriptions in Section 8.

5.7 File Identifiers

The following file identifiers are defined for the PKCS15 files. Note that the RID (see ISO/IEC 7816-5) is A0 00 00 00 63.

File
DF
File Identifier (relative to nearest DF)

MF
X
0x3F00 (ISO/IEC 7816-4)

DIR

0x2F00 (ISO/IEC 7816-4)

PKCS15
X
Decided by application issuer
 (AID is RID || "PKCS-15")

ODF

0x5031

TokenInfo

0x5032

AODFs

Decided by application issuer

PrKDFs

Decided by application issuer

PuKDFs

Decided by application issuer

SKDFs

Decided by application issuer

CDFs

Decided by application issuer

DODFs

Decided by application issuer

Other EFs

Decided by application issuer

Table 1: File Identifiers

5.8 PKCS#15 Application Selection

PKCS#15 compliant IC cards should support direct application selection as defined in ISO/IEC 7816-4 section 9 and ISO/IEC 7816-5, section 6 (the full AID is to be used as parameter for a ‘SELECT FILE’ command). If direct application selection isn’t supported, or several PKCS#15 applications reside on the card, an EF(DIR) file with contents as specified in Section 6.4.1 must be used.

The operating system of the card will keep track of the currently selected application and only allow the commands applicable to that particular application while it is selected.
When several PKCS#15 applications resides on one card, they shall be distinguished by their object identifier (tag ‘53’) in their application template in EF(DIR). It is recommended that the application label (tag ‘50’) also is present to simplify the man-machine interface (this label is suggest to contain some vendor-specific information (e.g. vendor name in short form). See also Section 6.4.1.

5.8.1 AID for the PKCS#15 application

The Application Identifier (AID) data element consists of 12 bytes and its contents is defined below. The AID is used as the filename for DF(PKCS15) in order to facilitate direct selection of the PKCS#15 application on multi-application cards with only one PKCS#15 application present.

The AID is composed of RID || PIX, where '||' denotes concatenation. RID is the 5 byte globally ‘Registered Identifier’ as specified in ISO/IEC 7816-5. RID shall be set to A0 00 00 00 63 for the purposes of this recommendation. PIX (Proprietary application Identifier eXtension) shall be set to "PKCS-15".
The full AID for the current version of this recommendation is thus

A0 00 00 00 63 50 4B 43 53 2D 31 35

5.9 Object Management

Although the record-oriented format described in this document simplifies the problem of managing objects in the PKCS#15 application, it does not eliminate it. This section contains some guidelines for dealing with management (adding, removing and modifying) of PKCS#15 objects.

5.9.1 Adding (Creating) new objects

Given sufficient privileges to a suitable object directory file (e.g. a CDF in the case of a new certificate), information about a new object is normally appended to the file. If the object directory file (e.g. CDF) is a true linear record file this will be a simple ISO/IEC 7816-4 command (‘APPEND RECORD’). In the case of a transparent object directory file, an ‘UPDATE BINARY’ command is suggested.
In the case of replacing a previous object, space can be conserved by updating the bytes previously used to hold information about that object. The space can be found by searching for a record with a ‘00’ tag in the linear record file case, or a ‘logical’ such record in the transparent file case. Since all records consist of DER-encoded values, these ‘empty’ areas will be easy to find (‘00’ is not a valid ASN.1 tag). This method is also consistent with ISO/IEC 7816-4 annex D.
The value of the object (e.g. the certificate itself in the case of a certificate object) shall be stored in a separate file, perhaps together with the values of other objects with the same access restrictions. If the object is marked as ‘private’, this file must be protected against unauthorized access with an authentication object (e.g. PIN). A private object must be protected both against unauthorized read-access and unauthorized write-access.
5.9.2 Removing objects
Once again, sufficient privileges are assumed. In particular, the object in question must be ‘modifiable’ (see Section 8.1.7), and if it is a ‘private’ object (again, see Section 8.1.7), authorization requirements must be met (e.g. a correct PIN must have been presented prior to the operation).
Removing a record is done by the ‘WRITE RECORD’ or ‘UPDATE RECORD’ command in the linear record file case, and by the ‘WRITE BINARY’ or ‘UPDATE BINARY’ command in the transparent file case. Records shall be erased be either replacing the outermost tag with a ‘00’ byte or by re-writing the whole file with its new information content. Just overwriting the tag but preserving the length bytes allows for easy traversal of the file later on. An example, assuming an EF(CDF) consisting of 3 logical records (that is, information about three different certificates known to the PKCS#15 application): After removing the information about the second certificate, the file will (logically) contain any of the following:

Example 1: To the left: Linear record CDF file. Empty record’s tag is replaced with a ‘00’ byte. ‘L’ indicates length bytes, untouched. Middle: Transparent file, same case. To the right: transparent CDF file, Empty (logical) record) simply removed, whole file rewritten.
5.9.3 Modifying objects
Once again, sufficient privileges as in the previous subsection are assumed. In the linear record file case, the affected directory file (e.g. EF(CDF), EF(DODF), etc) record is simply updated (‘UPDATE RECORD’). In the transparent file case, if the encoding of the new information does not require more space than the previous information did, the (logical) record may be updated. Alternatively, the whole file may be re-written, but this may prove to be more costly.
6 Untrusted Tokens
This section describes considerations to be made when implementing PKCS#15 on tokens not capable of protecting the integrity and confidentiality of PKCS#15 objects themselves. The typical case is when PKCS#15 is being implemented in software. The format described in this section is an application of IETF RFC [CMS].
6.1 Object protection

Both private and public objects needs to be protected from unauthorized access. The solution chosen for PKCS#15 is a combination of integrity-protection and encryption. Private objects are to be encrypted, and after combining (encrypted) private and public objects in one data structure, the whole structure is authenticated. Content encryption keys shall be session-keys (one-time use) and the session keys themselves shall be encrypted by long-term key-encryption keys and stored within the structure. Message authentication keys are also session-keys, encrypted with long-term key-encryption keys. All key-encryption keys shall be derived from user passwords.
6.2 Key derivation algorithms

Allowed key derivation functions (algorithms used to derive a key-encryption key from a user password) are defined in PKS#5 v2.0. The set of allowed algorithms is thus:
PKCS15KeyDerivationAlgorithms ALGORITHM-IDENTIFIER ::= {

 {SYNTAX PBKDF2-params IDENTIFIED BY id-PBKDF2},

 ... -- For future extensions

 }

6.3 Key encryption algorithms

IETF RFC [CMS] defines algorithms for encryption of session keys (“Symmetric Key-Encryption Algorithms”), and they are adapted for use here as well. The set of allowed algorithms is thus:
PKCS15KeyEncryptionAlgorithms ALGORITHM-IDENTIFIER ::= {
 {SYNTAX NULL IDENTIFIED BY id-alg-3DESwrap} |
 {SYNTAX INTEGER IDENTIFIED BY id-algRC2wrap},

 ... -- For future extensions

 }

6.4 Content encryption algorithms

IETF RFC [CMS] defines algorithms for encryption of private objects (“Content Encryption Algorithms”), and they are adapted for use here as well. The set of allowed algorithms is thus:

PKCS15ContentEncryptionAlgorithms ALGORITHM-IDENTIFIER ::= {
 {SYNTAX OCTET STRING (SIZE(8)) IDENTIFIED BY des-ede3-cbc} |
 {SYNTAX RC2CBCParameter IDENTIFIED BY rc2-cbc},

 ... -- For future extensions

 }

6.5 MAC algorithms

RFC [CMS] also defines algorithms for authenticating various structures. These algorithms are adapted here for the purpose of authenticating structures containing PKCS#15 objects. The set of allowed algorithms is thus:

PKCS15SMACAlgorithms ALGORITHM-IDENTIFIER ::= {

 {IDENTIFIED BY hMAC-SHA1},
 ... -- For future extensions

 }
6.6 Digest algorithms

RFC [CMS] also defines digest algorithms. These algorithms are adapted here for the purpose of authenticating structures containing PKCS#15 objects. The set of allowed algorithms is thus:

PKCS15DigestAlgorithms ALGORITHM-IDENTIFIER ::= {

 {SYNTAX NULL IDENTIFIED BY sha-1} |

 {SYNTAX NULL IDENTIFIED BY md5},

 ... -- For future extensions

 }

6.7 Constructing a PKCS#15 token in software

This section describes how to generate a software PKCS#15 token. It also applies when PKCS#15 tokens are stored on other untrusted media, e.g. stored-value cards without PIN protection.

6.7.1 Constructing values of type ‘Enveloped Data’

After having collected all private objects in one or several values
 of type SEQUENCE OF PKCS15Objects (see Section 8), an RFC [CMS] EnvelopedData structure is created for each of these values as follows (refer to RFC [CMS] for identifier and type definitions):

· EnvelopedData.version must have the value ‘2’.

· EnvelopedData.originatorInfo shall not be present

· EnvelopedData.recipientInfos must contain exactly one RecipientInfo, which must be of type KEKRecipientInfo. In the KEKRecipientInfo, the following restrictions apply:

· KEKRecipientInfo.version must be ‘4’.

· KEKRecipientInfo.kekid.keyIdentifier shall be empty unless the KEKRecipientInfo.kekid.other field is present. In that case, it shall contain an UTF-8 encoded label, e.g. “Signature key password”, for the password being used to protect the content-encryption key.

· KEKRecipientInfo.kekid.date shall not be present.

· KEKRecipientInfo.kekid.other shall be present only if the content-encryption key has been encrypted with a key-encryption key derived from a password different from the password being used for derivation of the key-encryption key for the message-authentication key (see Section 7.7.2 below). This option is not recommended, however. If present, it must contain an algorithm identifier chosen from the set PKCS15KeyDerivationAlgorithms above. In this case, this algorithm identifier identifies the algorithm used to derive a key-encryption key from the user’s password. The key-encryption key is then used to encrypt the content-encryption key, which in turn is being used to encrypt the private objects.

· KEKRecipientInfo.keyEncryptionAlgorithm must be chosen from the set of PKCS15KeyEncryptionAlgorithms defined above.

· EnvelopedData.encryptedContentInfo.contentType must have the value {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-15(15) content-types(3) pkcs15-private-objects(2)}.
· EnvelopedData.encryptedContentInfo.contentEncryptionAlgorithm must be chosen from the set of PKCS15ContentEncryptionAlgorithms defined above.

· EnvelopedData.encryptedContentInfo.encryptedContent must contain the result of encrypting a BER-encoding of a value of type (private) SEQUENCE OF PKCS15Objects with the content-encryption key encrypted in KEKRecipientInfo.encryptedKey and the algorithm indicated in EnvelopedData.encryptedContentInfo.contentEncryptionAlgorithm.

· EnvelopedData.unprotectedAttrs shall not be present.

In the absence of a specific password for a particular EnvelopedData structure, the content-encryption key shall be encrypted with a key-encryption key derived from the user’s authentication password (see next section) by the chosen key derivation algorithm.

6.7.2 Constructing values of type ‘AuthenticatedData’

After this, all EnvelopedData structures and the sequence of public objects is collected in a value of type PKCS15Token (see Section 8.2), and a value of type AuthenticatedData (see RFC [CMS]) is constructed as follows:

· AuthenticatedData.version must have the value ‘0’.

· AuthenticatedData.originatorInfo must not be present.

· AuthenticatedData.recipientInfos must contain exactly one RecipientInfo, which shall be of type KEKRecipientInfo. In the KEKRecipientInfo, the following restrictions apply:

· KEKRecipientInfo.version must be ‘4’.

· KEKRecipientInfo.kekid.keyIdentifier may contain an UTF-8 encoded label for the user password, which is used to derive an authentication key. It is recommended that this field is empty, however.

· KEKRecipientInfo.kekid.date shall not be present.

· KEKRecipientInfo.kekid.other must be present and contain an algorithm identifier chosen from the set PKCS15KeyDerivationAlgorithms above.

· KEKRecipientInfo.keyEncryptionAlgorithm must be chosen from the set of PKCS15KeyEncryptionAlgorithms defined above.

· AuthenticatedData.macAlgorithm must be chosen from the set of PKCS15MACAlgorithms defined above.

· AuthenticatedData.digestAlgorithm must be present and contain a value from the set of PKCS15DigestAlgorithms defined above.

· AuthenticatedData.encapContentInfo.eContentType must have the value {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-15(15) content-types(3) pkcs15-token(1)}
· AuthenticatedData.encapContentInfo.eContent must contain a DER-encoding of the PKCS15Token structure. The encoding is wrapped inside an OCTET STRING, as specified in RFC [CMS].

· AuthenticatedData.authenticatedAttributes must be present, and contain both the id-contentType attribute and the id-messageDigest attribute, as specified in RFC [CMS].

· AuthenticatedData.mac must contain the message authentication code.

· AuthenticatedData.unauthenticatedAttributes shall not be present.

6.8 PKCS #15 software tokens as directory attributes

If stored within a directory, the following attribute may be used to represent the resulting type:

pkcs15Token ATTRIBUTE ::= {

 WITH SYNTAX AuthenticatedData

 EQUALITY MATCHING RULE objectidentifierMatch

 ID { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

 pkcs-15(15) attributes(2) pkcs15-token(1)}

6.9 Using PKCS#15 software tokens

When “opening” a value of type AuthenticatedData as described above, proceed as follows:

· Transform the user’s password to a key-encryption key in accordance with the key derivation algorithm indicated in the KEKRecipientInfo.kekid.other field.

· Use this key to decrypt the KEKRecipientInfo.encryptedKey. This yields the message-authentication key.

· Calculate and validate the AuthenticatedData.mac as defined in Section 9.2 of RFC [CMS], using the input data and the message-authentication key.

· All public objects in the encapsulated PKCS15Token are now authenticated and ready for use.

· For each sequence of private objects (i.e. each EnvelopedData structure) in the encapsulated PKCS15Token, use either the key-encryption key derived from the user’s password or a key-encryption key derived from a password indicated in the EnvelopedData’s KEKRecipientInfo.kekid.keyIdentifier field to decrypt the corresponding EnvelopedData structure’s KEKRecipientInfo.encryptedKey. This yields this EnvelopedData structure’s content-encryption key.

· Use the content-encryption key to decrypt the EnvelopedData structure’s EncryptedContentInfo.encryptedContent. This yields a SEQUENCE OF PKCS15Objects.

· When all EnvelopedData structures in the PKCS15Token type has been successfully decrypted, the software token is “opened” for use by the authenticated user.

Note: The intention is that the whole AuthenticatedData structure is authenticated with a message-authentication key encrypted with a key-encryption key derived from a user password. Each EnvelopedData wrapped inside the AuthenticatedData structure is then protected with unique content-encryption keys each one encrypted with the key-encryption key. While it is possible to use different passwords for different EnvelopedData structures (via the use of the KEKRecipientInfo.kekid.keyIdentifier field), and therefore have different key-encryption keys for each EnvelopedData structure, it is not recommended due to interoperability reasons.

7 Information Syntax in ASN.1

This section contains a detailed description on ASN.1 constructs to be used in PKCS#15 tokens. This section applies to ISO/IEC 7816-4 compliant IC Card implementations as well as other implementations. If nothing else is mentioned, DER-encoding of values is assumed.
7.1 Basic ASN.1 defined types

7.1.1 PKCS15Identifier

PKCS15Identifier ::= OCTET STRING (SIZE (0..pkcs15-ub-identifier))

The PKCS15Identifier type is a constrained version of PKCS#11’s CKA_ID. It is a token-internal identifier. For cross-reference purposes, two or more objects may have the same PKCS15Identifier value. One example of this is a private key and one or more corresponding certificates.
7.1.2 PKCS15Reference

PKCS15Reference ::= INTEGER (0..pkcs15-ub-reference)

This type is used for generic reference purposes.

7.1.3 PKCS15Label

PKCS15Label ::= UTF8String (SIZE(0..pkcs15-ub-label))

This type is used for all labels (i.e. user assigned object names).
7.1.4 PKCS15ReferencedValue and PKCS15Path

PKCS15ReferencedValue ::= CHOICE {

 path PKCS15Path,

 url PrintableString

 }

PKCS15Path ::= SEQUENCE {

 path OCTET STRING, --See ISO7816-5

 index INTEGER (1..pkcs15-ub-index) OPTIONAL,

 length INTEGER (1..pkcs15-ub-index) OPTIONAL

 } (WITH COMPONENTS {..., index PRESENT, length PRESENT}|

 WITH COMPONENTS {..., index ABSENT, length ABSENT})

A PKCS15ReferencedValue is a reference to a PKCS15 object value of some kind. This can either be some external reference (captured by the url identifier) or a reference to a file on the token (the path identifier). In the PKCS15Path case, identifiers index and length may specify a specific location within the file. If the file in question is a linear record file, index will be the record number (in the ISO/IEC 7816-4 definition) and length can be set to ‘0’ (if the card’s operating system allows an Le parameter equal to ‘0’ in a “READ RECORD” command). Lengths of fixed records may be found in the PKCS15TokenInfo file as well (see Section 8.10).
If the file is a transparent file, then index can be used to specify an offset within the file, and length the length of the segment (index would then become parameter P1 and/or P2 and length the parameter Le in a ‘READ BINARY’ command). By using index and length, several objects may be stored within the same transparent file
.
In the url case, the given url must be in accordance with IETF RFC 2396.
7.1.5 PKCS15ObjectValue

PKCS15ObjectValue { Type } ::= CHOICE {

 indirect PKCS15ReferencedValue,

 direct [0] Type

 } (CONSTRAINED BY {-- if indirection is being used,

 -- then it is expected that the reference points

 -- either to an object of type -- Type -- or (key

 -- case) to a card-specific key file --})

The PKCS15ObjectValue construct is intended to catch the choice which can be made between storing a particular PKCS#15 object (key, certificate, etc) ‘in-line’ or by indirect reference (i.e. by pointing to another location where the value resides). On tokens supporting the ISO/IEC 7816-4 logical file organization (i.e. EFs and DFs), the indirect alternative shall always be used. In other cases, any of the CHOICE alternatives may be used.

7.1.6 PKCS15PathOrObjects

PKCS15PathOrObjects {ObjectType} ::= CHOICE {

 path PKCS15Path,

 objects [0] SEQUENCE OF ObjectType

 }

This construct is used to reference sequences of objects either residing within the ODF or externally. If the path alternative is used, then it is expected that the file pointed to by path contain the value part of an object of type SEQUENCE OF ObjectType (that is, the ‘SEQUENCE OF’ tag and length shall not be present in the file). On cards supporting the ISO/IEC 7816-4 logical file organization (i.e. EFs and DFs), the path alternative shall always be used. In other cases, any of the CHOICE alternatives may be used.
7.1.7 PKCS15CommonObjectAttributes

This type is a container for attributes common to all PKCS#15 objects.

PKCS15CommonObjectAttributes ::= SEQUENCE {

 label PKCS15Label,

 flags PKCS15CommonObjectFlags OPTIONAL,

 authId PKCS15Identifier OPTIONAL,

 ... -- For future extensions

 } (CONSTRAINED BY {-- authId must be present in the IC Card

 -- case if flags.private is set. It must equal an

 -- authID in one AuthRecord in the AODF -- })

PKCS15CommonObjectFlags ::= BIT STRING {

 private(0),

 modifiable (1)

 }

-- A compatible, alternative approach offering finer granularity:

-- PKCS15CommonObjectAttributes ::= SEQUENCE {

-- label PKCS15Label,

-- accessControlInfo PKCS15AccessControlInfo OPTIONAL,

-- ... -- For future extensions

-- }

-- PKCS15AccessControlInfo ::= CHOICE {

-- authId PKCS15Identifier,

-- accessControlRules SEQUENCE OF PKCS15AccessControlRule

-- } (CONSTRAINED BY { -- authID must be present in AODF })

-- PKCS15AccessControlRules ::= SEQUENCE {

-- accessMode PKCS15AccessMode,

-- securityCondition PKCS15SecurityCondition

-- }

-- PKCS15AccessMode ::= BIT STRING {

-- create(0),

-- delete(1),

-- read(2),

-- write(3),

-- execute(4)}

-- }

-- PKCS15SecurityCondition ::= CHOICE {

-- authId PKCS15Identifier,

-- not [0] PKCS15SecurityCondition,

-- and [1] SEQUENCE SIZE (2..MAX) OF PKCS15SecurityCondition,

-- or [2] SEQUENCE SIZE (2..MAX) OF PKCS15SECURITYCondition,

-- ... –- For future extensions

-- }

-- Comments about the alternative approach are welcome. While offering

-- an oppurtunity for fine-grained access control (in software) it is

-- also more complex, and most of the information should be present on

-- the token anyway.

The label is the equivalent of the CKA_LABEL present in PKCS#11, and enables unique user-oriented names for each object.

The flags field indicates whether the particular object is private or not, and whether it is of type read-only or not. As in PKCS#11, a private object may only be accessed after proper authentication (e.g. PIN verification). If an object is marked as modifiable, it should be possible to update the value of the object. If an object is both private and modifiable, updating is only allowed after successful authentication, however. Since properties such as private and modifiable can be deduced by other means on IC Cards, e.g. by studying EFs FCI, this field is optional and not necessary when these circumstances applies.

 The authId field gives, in the case of a private object, a cross-reference back to the authentication object used to protect this object (For a description of authentication objects, see section 6.5.7).

7.1.8 PKCS15CommonKeyAttributes

This type contains all attributes common to PKCS#15 keys, except for the PKCS15CommonObjectAttributes.

PKCS15CommonKeyAttributes ::= SEQUENCE {

 iD PKCS15Identifier,

 usage PKCS15KeyUsageFlags,
 native BOOLEAN DEFAULT TRUE,

 accessFlags PKCS15KeyAccessFlags OPTIONAL,

 keyReference PKCS15Reference OPTIONAL,

 startDate GeneralizedTime OPTIONAL,

 endDate [0] GeneralizedTime OPTIONAL,

 ... -- For future extensions
 }

PKCS15KeyUsageFlags ::= BIT STRING {

 encrypt (0),

 decrypt (1),

 sign (2),

 signRecover (3),

 wrap (4),

 unwrap (5),

 verify (6),

 verifyRecover (7),
 derive (8),
 nonRepudiation (9)
 }
PKCS15KeyAccessFlags ::= BIT STRING {

 sensitive (0),

 extractable (1),

 alwaysSensitive (2),

 neverExtractable(3),

 local (4)

 }

The iD field must be unique for each key stored in the token.

The usage field (encrypt, decrypt, sign, signRecover, wrap, unwrap, verify, verifyRecover, derive and nonRepudiation) signals the intended usage of the key as defined in PKCS#11. To map between ISO/IEC 9594-8 (X.509) keyUsage flags for public keys, and PKCS#15 flags for public keys, use the following table (to map to PKCS#15 flags for private keys, use the functional counterpart, i.e. encrypt -> decrypt etc):

PKCS#15 identifier
Corresponding X.509 keyUsage flag for public key

Encrypt
DataEncipherment

Verify
DigitalSignature, KeyCertSign, CRLSign

VerifyRecover
DigitalSignature, KeyCertSign, CRLSign

Derive
KeyAgreement

Wrap
KeyEncipherment

NonRepudiation

NonRepudiation

Table 2 : Mapping between PKCS#15 key usage flags and X.509 keyUsage extension flags
The native field identifies whether the token is able to use the key for hardware computations or not (e.g. this field is by default true for all RSA keys stored in special RSA key files on an RSA capable IC Card).

.The semantics of the accessFlags field’s sensitive, extractable, alwaysSensitive, neverExtractable and local identifiers is the same as in PKCS#11. This field is not required to be present in cases where its value can be deduced by other means (e.g. pure software implementations).

The keyReference field is only applicable for IC Cards with cryptographic capabilities. If present, it contains a card-specific reference to the key in question (usually a small integer, for further information see ISO/IEC 7816-4 and FCD ISO/IEC 7816-8).

The startDate and endDate fields have the same semantics as in PKCS#11.

7.1.9 PKCS15CommonPrivateKeyAttributes

This type contains all attributes common to PKCS#15 private keys, except for PKCS15CommonKeyAttributes and PKCS15CommonObjectAttributes.

PKCS15CommonPrivateKeyAttributes ::= SEQUENCE {
 subjectName Name OPTIONAL,
 keyIdentifiers [0] SEQUENCE OF PKCS15KeyIdentifier OPTIONAL,

 ... -- For future extensions
 }

PKCS15KeyIdentifier ::= SEQUENCE {

 idType PKCS15KEY-IDENTIFIER.&id ({PKCS15KeyIdentifiers}),

 idValue PKCS15KEY-IDENTIFIER.&Value ({PKCS15KeyIdentifiers}{@idType})

}

The motivation for the fields of the PKCS15CommonPrivateKeyAttributes type above is as follows:

The subjectName field, when present, shall contain the distinguished name of the owner of the private key, as specified in a certificate containing the public key corresponding to this private key.

The keyIdentifiers field: When receiving for example an enveloped message together with information about the public key used for encrypting the message's session key, the application needs to deduce which (if any) of the private keys present on the token that should be used for decrypting the session key. In messages based on the PKCS #7 format, the IssuerAndSerialNumber construct may be used, in other schemes other types may be used. This version of this recommendation defines four possible ways of identifying a key (for a definition of the ASN.1 class PKCS15KEY-IDENTIFIER see section 8):

· pkcs15IssuerAndSerialNumber: The value of this type must contain a DER-encoding of a sequence of the issuer’s distinguished name and the serial number of a certificate which contains the public key associated with the private key

· pkcs15SubjectKeyIdentifier: The value of this type must be an OCTET STRING containing the same as the value of the corresponding certificate extension in an X.509 v3 certificate which contains the public key associated with the private key

· pkcs15IssuerAndSerialNumberHash: As for pkcs15IssuerAndSerialNumber, but the value is an OCTET STRING which contains a SHA-1 hash value of this information in order to preserve space

· pkcs15SubjectPublicKeyHash: A hash for the public key associated with the private key. In the RSA case, the modulus of the public key shall be used
, and the hash is to be done on the (network-order or big-endian) byte string representation of it. The hash-algorithm shall be SHA-1. In the case of Elliptic Curves, it is recommended that the hash be calculated on the ECPoint OCTET STRING using uncompressed representation. As an alternative, the hash can also be used as the PKCS15CommonKeyAttributes.iD. This can simplify lookups of certificate – private key pairs.

7.1.10 PKCS15CommonPublicKeyAttributes

This type contains all attributes common to PKCS#15 public keys, except for PKCS15CommonKeyAttributes and PKCS15CommonObjectAttributes.

PKCS15CommonPublicKeyAttributes ::= SEQUENCE {
 subjectName Name OPTIONAL,
 ... -- For future extensions
 }

The motivation for the fields of the PKCS15CommonPublicKeyAttributes type above is as follows:
The subjectName field, when present, shall contain the distinguished name of the owner of the public key as it appears in a certificate containing the public key.
7.1.11 PKCS15CommonSecretKeyAttributes

This type contains all attributes common to PKCS#15 secret keys, except for PKCS15CommonKeyAttributes and PKCSCommonObjectAttributes.

PKCS15CommonSecretKeyAttributes ::= SEQUENCE {

 keyLen INTEGER OPTIONAL, –- keylength (in bits)

 ... -- For future extensions

 }

The motivation for the fields of the PKCS15SecretKeyAttributes type above is as follows:

The optional keyLen field signals the key length used, in those cases where a particular algorithm can have a varying keylength.

7.1.12 PKCS15KeyInfo

This type, which is an optional part of each private and public key type, contains either (IC Card case) a reference to a particular entry in the EF(TokenInfo) file, or explicit information about the key in question (parameters and operations supported by the token). The supportedOperations field is optional and can be absent on tokens which does not support any operations with the key. Note the distinction between PKCS15KeyUsageFlags and PKCS15KeyInfo.paramsAndOps.supportedOperations: The former indicates the intended usage of the key, the latter indicates the operations (if any) the token can perform with the key.
PKCS15KeyInfo {ParameterType, OperationsType} ::= CHOICE {

 reference PKCS15Reference,

 paramsAndOps SEQUENCE {

 parameters ParameterType,

 supportedOperations OperationsType OPTIONAL}

 }

7.1.13 PKCS15CommonCertificateAttributes

This type contains all attributes common to PKCS#15 certificates, except for the PKCS15CommonObjectAttributes.

PKCS15CommonCertificateAttributes ::= SEQUENCE {

 iD PKCS15Identifier,

 cA BOOLEAN DEFAULT FALSE,
 requestId PKCS15KeyIdentifier OPTIONAL,
 ... -- For future extensions
 }

The iD field is only present for X509 certificates in PKCS#11, but has for generality reasons been “promoted” to a common certificate attribute in this recommendation. When a public key in the certificate in question corresponds to a private key also known to the PKCS#15 application, they must share the same value for the iD field. This requirement will simplify searches for a private key corresponding to a particular certificate and vice versa.
The cA field indicates whether the certificate is a CA certificate or not.
The requestId field simplifies the search of a particular certificate, when the requester knows (and conveys) some distinguishing information about the requested certificate, e.g. the hash of the issuers public key. This can be used, for example, when a user certificate has to be chosen and sent to a server as part of a user authentication, and the server provides the client with distinguishing information for a particular certificate.

7.1.14 PKCS15CommonDataObjectAttributes and PKCS15ApplicationIdentifier

The PKCS15CommonDataObjectAttributes type contains all attributes common to PKCS#15 data objects, except for the PKCS15CommonObjectAttributes.

PKCS15CommonDataObjectAttributes ::= SEQUENCE {

 applicationName PKCS15Label OPTIONAL,

 applicationOID OBJECT IDENTIFIER OPTIONAL,

 ... -- For future extensions

 } (WITH COMPONENTS {..., applicationName PRESENT}|

 WITH COMPONENTS {..., applicationOID PRESENT})
The applicationName field is intended to contain the name or the registered object identifier for the application to which the data object in question “belongs”. In order to avoid application name collisions, the applicationOID alternative is recommended. As indicated in ASN.1, at least one of the components has to be present in a value of type PKCS15CommonDataObjectAttributes.

7.1.15 PKCS15CommonAuthenticationObjectAttributes

This type contains all attributes common to PKCS#15 authentication objects, except for the PKCS15CommonObjectAttributes.

PKCS15CommonAuthenticationObjectAttributes ::= SEQUENCE {

 authId PKCS15Identifier,

 ... –- For future extensions

 }

The authId must be a unique identifier. It is used for cross-reference purposes from private PKCS#15 objects.

7.1.16 PKCS15Object

This type is a template for all kinds of PKCS#15 objects. It is parameterized with object class attributes, object subclass attributes and object type attributes.

PKCS15Object {ClassAttributes, SubClassAttributes, TypeAttributes} ::=

 SEQUENCE {

 commonObjectAttributes PKCS15CommonObjectAttributes,

 classAttributes ClassAttributes,

 subClassAttributes [0] SubClassAttributes OPTIONAL,

 typeAttributes TypeAttributes

 }

7.2 PKCS15Token

This type is intended for software tokens. It’s use is described in Section 7.

PKCS15Token ::= SEQUENCE {

 version INTEGER {v1(0)}(v1,...),

 pkcs15Objects SEQUENCE OF CHOICE {

 privateObjects [0] EnvelopedData,

 publicObjects [1] SEQUENCE OF PKCS15Objects

 }

 }

-- An alternative approach, offering finer granularity

-- PKCS15Token ::= SEQUENCE {

-- version INTEGER {v1(0)}(v1,...),

-- pkcs15Objects SEQUENCE OF CHOICE {

-- privateKeyObjects [0] EnvelopedData,

-- secretKeyObjects [1] EnvelopedData,

-- otherPrivateObjects [2] EnvelopedData,

-- publicObjects [3] SEQUENCE OF PKCS15Objects

-- }

-- } (CONSTRAINED BY { -- Only PKCS15Objects of type

 -- ‘PKCS15PrivateKey’ in the wrapped

 -- ‘privateKeyObjects’,etc. --})

-- Comments are requested as to which alternative is the most suitable

The version field is only to be incremented when backwards-incompatible changes to this syntax have been made. For this version of this recommendation, the value of version shall be 0 (v1). For a description of the other fields, see Section 7.

7.3 The PKCS15Objects type

This type is a placeholder for the various object types defined in this recommendation.
PKCS15Objects ::= CHOICE {

 privateKeys [0] PKCS15PrivateKeys,

 publicKeys [1] PKCS15PublicKeys,

 secretKeys [2] PKCS15SecretKeys,

 certificates [3] PKCS15Certificates,
 trustedCertificates [4] PKCS15Certificates,
 dataObjects [5] PKCS15DataObjects,

 authObjects [6] PKCS15AuthObjects,

 ... -- For future extensions

 }

PKCS15PrivateKeys ::= PKCS15PathOrObjects {PKCS15PrivateKey}

PKCS15SecretKeys ::= PKCS15PathOrObjects {PKCS15SecretKey}

PKCS15PublicKeys ::= PKCS15PathOrObjects {PKCS15PublicKey}

PKCS15Certificates ::= PKCS15PathOrObjects {PKCS15Certificate}

PKCS15DataObjects ::= PKCS15PathOrObjects {PKCS15Data}

PKCS15AuthObjects ::= PKCS15PathOrObjects {PKCS15Authentication}

In the IC Card case, the intention is that EF(ODF) will consist of a number of DOs (records) of type PKCS15Objects, representing different object types. Each DO will reference a file containing a directory of objects of the particular type. Since the path alternative of the PKCS15PathOrObject type is recommended, this will result in a record oriented ODF, which simplifies updating.

In case of tokens not being able to protect objects from unauthorized access, the PKCS15Token type defined in Section 8.2 shall be used. In those cases, it is not anticipated that any authentication objects will be present. Examples of PKCS15Token and PKCS15Objects values can be found in Appendix C.
The trustedCertificates field is intended for implementations on IC Cards supporting the ISO/IEC 7816-4 logical file organization. In these cases, the card issuer might want to include a number of trusted (e.g. CA) certificates on the card (and make sure that they are not modified or replaced later on by an application), while still allowing the cardholder to add other certificates. The CDF pointed to from this field shall therefore be protected from cardholder modifications, as shall the certificates pointed to from that CDF itself.
7.4 The PKCS15PrivateKeys type

This type contains information pertaining to private key objects stored in the token. Since, in the ISO/IEC 7816-4 IC card case, the path alternative of the PKCS15PathOrObjects type is to be chosen, PKCS15PrivateKeys entries (records) in EF(ODF) points to elementary files that can be regarded as directories of private keys, ‘Private Key Directory Files’ (PrKDFs). The contents of an EF(PrKDF) must be the value of the DER encoding of a SEQUENCE OF PKCS15PrivateKey (i.e. excluding the outermost tag and length bytes). This gives the PrKDFs the same, simple structure as the ODF, namely a number of TLV records.

In the case of tokens not supporting the ISO/IEC 7816-4 logical file organization, any of the CHOICE alternatives of PKCS15PathOrObjects may be used.

Examples of PKCS15PrivateKey values can be found in Appendix C.

The PKCS15PrivateKey structure is as follows:

PKCS15PrivateKey ::= CHOICE {

 privateRSAKey PKCS15PrivateKeyObject {

 PKCS15PrivateRSAKeyAttributes},

 privateECKey [0] PKCS15PrivateKeyObject {

 PKCS15PrivateECKeyAttributes},
 privateDHKey [1] PKCS15PrivateKeyObject {

 PKCS15PrivateDHKeyAttributes},

 privateDSAKey [2] PKCS15PrivateKeyObject {

 PKCS15PrivateDSAKeyAttributes},

 privateKEAKey [3] PKCS15PrivateKeyObject {

 PKCS15PrivateKEAKeyAttributes},
 ... -- For future extensions

 }

PKCS15PrivateKeyObject {KeyAttributes} ::= PKCS15Object {

 PKCS15CommonKeyAttributes,

 PKCS15CommonPrivateKeyAttributes,

 KeyAttributes}

In other words, in the IC Card case, each EF(PrKDF) will consist of a number of context-tagged elements representing different private keys. Each private key element will consist of a number of common object attributes (PKCS15CommonObjectAttributes, PKCS15CommonKeyAttributes and PKCS15CommonPrivateKeyAttributes) and, in addition the particular key type’s attributes.

7.4.1 Private RSA key objects

PKCS15PrivateRSAKeyAttributes ::= SEQUENCE {

 keyInfo PKCS15KeyInfo {PKCS15RSAParameters,

 PKCS15PublicKeyOperations} OPTIONAL,

 modulusLength INTEGER, -- modulus length in bits, e.g. 1024

 value PKCS15ObjectValue {PKCS15RSAPrivateKey},

 ... –- For future extensions

 }

PKCS15RSAPrivateKey ::= SEQUENCE {

 modulus [0] INTEGER OPTIONAL, -- n

 publicExponent [1] INTEGER OPTIONAL, -- e

 privateExponent [2] INTEGER OPTIONAL, -- d

 prime1 [2] INTEGER OPTIONAL, -- p

 prime2 [3] INTEGER OPTIONAL, -- q

 exponent1 [4] INTEGER OPTIONAL, -- d mod (p-1)

 exponent2 [5] INTEGER OPTIONAL, -- d mod (q-1)

 coefficient [6] INTEGER OPTIONAL -- inv(q) mod p

 } (CONSTRAINED BY

 {-- must be possible to reconstruct modulus and

 -- privateExponent from selected fields --})

The semantics of the fields is as follows:

· PKCS15PrivateRSAKeyAttributes.keyInfo: Information about parameters that applies to this key (NULL in the case of RSA keys) and operations the token can carry out with this key. In the IC Card case, the reference alternative of a PKCS15KeyInfo must be used, and the reference shall “point” to a particular entry in EF(TokenInfo), see below. The field is not needed if the information is available through other means.

· PKCS15PrivateRSAKeyAttributes.modulusLength: On many tokens, one must be able to format data to be signed prior to sending the data to the token. In order to be able to format the data in a correct manner the length of the key must be known. The length must be expressed in bits, e.g. 1024.

· PKCS15PrivateRSAKeyAttributes.value: The value shall, in the IC Card case, be a path to a file containing either a value of type PKCS15RSAPrivateKey or (in the case of a card capable of performing on-chip RSA encryption) some card specific representation of a private RSA key. As mentioned, this will be indicated in the PKCS15CommonKeyAttributes.accessFlags field. In other cases, the application issuer is free to choose any alternative. Note that, besides the case of RSA capable IC cards, although the PKCS15RSAPrivateKey type is very flexible, it is still constrained by the fact that it must be possible to reconstruct the modulus and the private exponent from whatever fields present.

7.4.2 Private Elliptic Curve key objects

PKCS15PrivateECKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15ECParameters,

 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15ECPrivateKey},

 ... -- For future extensions
 }

PKCS15ECPrivateKey ::= INTEGER

The semantics of these types is as follows:

· PKCS15PrivateECKeyAttributes.keyInfo: Information about parameters that applies to this key and operations the token can carry out with this key. In the IC Card case, the reference alternative of a PKCS15KeyInfo must be used, and the reference shall “point” to a particular entry in EF(TokenInfo), see below. The field is not needed if the information is available through other means.

· PKCS15PrivateECKeyAttributes.value: The value shall, in the IC Card case, be a path to a file containing either a value of type PKCS15ECPrivateKey or (in the case of a card capable of performing on-chip EC operations) some card specific representation of a private EC key. As mentioned, this will be indicated in the PKCS15CommonKeyAttributes.accessFlags field. In other cases, the application issuer is free to choose any alternative.

7.4.3 Private Diffie-Hellman key objects

PKCS15PrivateDHKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15DHParameters,
 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15DHPrivateKey},

 ... -- For future extensions
 }

PKCS15DHPrivateKey ::= INTEGER –- Diffie-Hellman exponent
The semantics of these types is as follows:

· PKCS15PrivateDHKeyAttributes.keyInfo: Information about parameters that applies to this key and operations the token can carry out with this key. In the IC Card case, the reference alternative of a PKCS15KeyInfo must be used, and the reference shall “point” to a particular entry in EF(TokenInfo), see below. The field is not needed if the information is available through other means.
· PKCS15PrivateDHKeyAttributes.value: The value shall, in the IC Card case, be a path to a file containing either a value of type PKCS15DHPrivateKey or (in the case of a card capable of performing on-chip EC operations) some card specific representation of a private Diffie-Hellman key. As mentioned, this will be indicated in the PKCS15CommonKeyAttributes.accessFlags field. In other cases, the application issuer is free to choose any alternative.

7.4.4 Private Digital Signature Algorithm key objects

PKCS15PrivateDSAKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15DSAParameters,
 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15DSAPrivateKey},

 ... -– For future extensions
 }

PKCS15DSAPrivateKey ::= INTEGER

The semantics of these types is as follows:

· PKCS15PrivateDSAKeyAttributes.keyInfo: Information about parameters that applies to this key and operations the token can carry out with this key. In the IC Card case, the reference alternative of a PKCS15KeyInfo must be used, and the reference shall “point” to a particular entry in EF(TokenInfo), see below. The field is not needed if the information is available through other means.
· PKCS15PrivateDSAKeyAttributes.value: The value shall, in the IC Card case, be a path to a file containing either a value of type PKCS15DSAPrivateKey or (in the case of a card capable of performing on-chip DSA operations) some card specific representation of a private DSA key. As mentioned, this will be indicated in the PKCS15CommonKeyAttributes.accessFlags field. In other cases, the application issuer is free to choose any alternative.
7.4.5 Private KEA key objects

PKCS15PrivateKEAKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15KEAParameters,
 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15KEAPrivateKey},

 ... -- For future extensions
 }

PKCS15KEAPrivateKey ::= INTEGER

The semantics of these types is as follows:

· PKCS15PrivateKEAKeyAttributes.keyInfo: Information about parameters that applies to this key and operations the token can carry out with this key. In the IC Card case, the reference alternative of a PKCS15KeyInfo must be used, and the reference shall “point” to a particular entry in EF(TokenInfo), see below. The field is not needed if the information is available through other means.
· PKCS15PrivateKEAKeyAttributes.value: The value shall, in the IC Card case, be a path to a file containing either a value of the PKCS15KEAPrivateKey type or (in the case of a card capable of performing on-chip KEA operations) some card specific representation of a private KEA key. As mentioned, this will be indicated in the PKCS15CommonKeyAttributes.accessFlags field. In other cases, the application issuer is free to choose any alternative.
7.5 The PKCS15PublicKeys type

This data structure contains information pertaining to public key objects stored in the token. Since, in the IC card case, the path alternative of the PKCS15PathOrObjects type is to be chosen, PKCS15PublicKeys entries (records) in EF(ODF) points to elementary files that can be regarded as directories of certificates, ‘Public Key Directory Files’ (PuKDFs). The contents of an EF(PuKDF) must be the value of the DER encoding of a SEQUENCE OF PKCS15PublicKey (i.e. excluding the outermost tag and length bytes). This gives the PuKDFs the same, simple structure as the ODF, namely a number of TLV records.

In the case of tokens not supporting the ISO/IEC 7816-4 logical file organization, any of the CHOICE alternatives of PKCS15PathOrObjects may be used.
Examples of this type can be found in appendix C.

PKCS15PublicKey ::= CHOICE {

 publicRSAKey PKCS15PublicKeyObject {

 PKCS15PublicRSAKeyAttributes},

 publicECKey [0] PKCS15PublicKeyObject {

 PKCS15PublicECKeyAttributes},

 publicDHKey [1] PKCS15PublicKeyObject {

 PKCS15PublicDHKeyAttributes},

 publicDSAKey [2] PKCS15PublicKeyObject {

 PKCS15PublicDSAKeyAttributes},

 publicKEAKey [3] PKCS15PublicKeyObject {

 PKCS15PublicKEAKeyAttributes},

 ... -- For future extensions

 }

PKCS15PublicKeyObject {KeyAttributes} ::= PKCS15Object {

 PKCS15CommonKeyAttributes,

 PKCS15CommonPublicKeyAttributes,

 KeyAttributes}

In other words, in the IC Card case, each EF(PuKDF) will consist of a number of context-tagged elements representing different public keys. Each element will consist of a number of common object attributes (PKCS15CommonObjectAttributes and PKCS15CommonKeyAttributes) and in addition the particular public key type’s attributes.
7.5.1 Public RSA key objects
PKCS15PublicRSAKeyAttributes ::= SEQUENCE {

 keyInfo PKCS15KeyInfo {PKCS15RSAParameters,

 PKCS15PublicKeyOperations} OPTIONAL,

 modulusLength INTEGER, -- modulus length in bits, e.g. 1024

 value PKCS15ObjectValue {PKCS15RSAPublicKey},

 ... –- For future extensions

 }

PKCS15RSAPublicKey ::= SEQUENCE {

 modulus INTEGER, -- n

 publicExponent INTEGER -- e

 }

The semantics of the fields is as follows:

· PKCS15PublicRSAKeyAttributes.keyInfo: Information about parameters that applies to this key (NULL in the case of RSA keys) and operations the token can carry out with this key. In the IC Card case, the reference alternative of a PKCS15KeyInfo must be used, and the reference shall “point” to a particular entry in EF(TokenInfo), see below. The field is not needed if the information is available through other means.
· PKCS15PublicRSAKeyAttributes.modulusLength: On many tokens, one must be able to format data to be encrypted prior to sending the data to the card. In order to be able to format the data in a correct manner the length of the key must be known. The length should be expressed in bits, e.g. 1024.

· PKCS15PublicRSAKeyAttributes.value: The value shall, in the IC Card case, be a path to a file containing either a value of type PKCS15RSAPublicKey or (in the case of a card capable of performing on-chip RSA encryption) some card specific representation of a public RSA key. As mentioned, this will be indicated in the keyInfo field. In other cases, the application issuer is free to choose any alternative.
7.5.2 Public Elliptic Curve key objects
PKCS15PublicECKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15ECParameters,
 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15ECPublicKey},

 ... -- For future extensions

 }

PKCS15ECPublicKey ::= PKCS15ECPoint
The semantics of these types is as follows:

· PKCS15PublicECKeyAttributes.keyInfo: Information about parameters that applies to this key and operations the token can carry out with this key. In the IC Card case, the reference alternative of a PKCS15KeyInfo must be used, and the reference shall “point” to a particular entry in EF(TokenInfo), see below. The field is not needed if the information is available through other means.
· PKCS15PublicECKeyAttributes.value: The value shall, in the IC Card case, be a path to a file containing either a value of type PKCS15ECPublicKey or (in the case of a card capable of performing on-chip EC operations) some card specific representation of a public EC key. As mentioned, this will be indicated in the keyInfo field. In other cases, the application issuer is free to choose any alternative.
7.5.3 Public Diffie-Hellman key objects
PKCS15PublicDHKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15DHParameters,
 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15DHPublicKey},

 ... -- For future extensions

 }

PKCS15DHPublicKey ::= PKCS15DiffieHellmanPublicNumber
The semantics of these types is as follows:

· PKCS15PublicDHKeyAttributes.keyInfo: Information about parameters that applies to this key and operations the token can carry out with this key. In the IC Card case, the reference alternative of a PKCS15KeyInfo must be used, and the reference shall “point” to a particular entry in EF(TokenInfo), see below. The field is not needed if the information is available through other means.
· PKCS15PublicDHKeyAttributes.value: The value shall, in the IC Card case, be a path to a file containing either a value of type PKCS15DHPublicKey or (in the case of a card capable of performing on-chip EC operations) some card specific representation of a public Diffie-Hellman key. As mentioned, this will be indicated in the keyInfo field. In other cases, the application issuer is free to choose any alternative.
7.5.4 Public Digital Signature Algorithm objects
PKCS15PublicDSAKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15DSAParameters,
 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15DSAPublicKey},

 ... -- For future extensions
 }

PKCS15DSAPublicKey ::= INTEGER

The semantics of these types is as follows:

· PKCS15PublicDSAKeyAttributes.keyInfo: Information about parameters that applies to this key and operations the token can carry out with this key. In the IC Card case, the reference alternative of a PKCS15KeyInfo must be used, and the reference shall “point” to a particular entry in EF(TokenInfo), see below.
· PKCS15PublicDSAKeyAttributes.value: The value shall, in the IC Card case, be a path to a file containing either a value of type PKCS15DSAPublicKey or (in the case of a card capable of performing on-chip DSA operations) some card specific representation of a public DSA key. As mentioned, this will be indicated in the keyInfo field. In other cases, the application issuer is free to choose any alternative.
7.5.5 Public KEA key objects

PKCS15PublicKEAKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15KEAParameters,
 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15KEAPublicKey},

 ... -- For future extensions
 }

PKCS15KEAPublicKey ::= INTEGER

The semantics of these types is as follows:

· PKCS15PublicKEAKeyAttributes.keyInfo: Information about parameters that applies to this key and operations the token can carry out with this key. In the IC Card case, the reference alternative of a PKCS15KeyInfo must be used, and the reference shall “point” to a particular entry in EF(TokenInfo), see below. The field is not needed if the information is available through other means.
· PKCS15PublicKEAKeyAttributes.value: The value shall, in the IC Card case, be a path to a file containing either a value of the PKCS15KEAPublicKey type or (in the case of a card capable of performing on-chip KEA operations) some card specific representation of a public KEA key. As mentioned, this will be indicated in the keyInfo field. In other cases, the application issuer is free to choose any alternative.
7.6 The PKCS15SecretKeys type

This data structure contains information pertaining to secret keys stored in the token. Since, in the IC card case, the path alternative of the PKCS15PathOrObjects type is to be chosen, PKCS15SecretKeys entries (records) in EF(ODF) points to elementary files that can be regarded as directories of secret keys, ‘Secret Key Directory Files’ (SKDFs). The contents of an EF(SKDF) must be the value of the DER encoding of a SEQUENCE OF PKCS15SecretKey (i.e. excluding the outermost tag and length bytes). This gives the SKDFs the same, simple structure as the ODF, namely a number of TLV records.

In the case of tokens not supporting the ISO/IEC 7816-4 logical file organization, any of the CHOICE alternatives of PKCS15PathOrObjects may be used.

Examples of this type can be found in appendix C.

PKCS15SecretKey ::= CHOICE {

 genericSecretKey PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 rc2key [0] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 rc4key [1] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 desKey [2] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 des2Key [3] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 des3Key [4] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 castKey [5] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 cast3Key [6] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 cast5Key [7] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 cast128Key [8] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 rc5Key [9] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 ideaKey [10] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 skipjackKey [11] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 batonKey [12] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 juniperKey [13] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 rc6Key [14] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 ... -- For future extensions

 }

PKCS15SecretKeyObject {KeyAttributes} ::= PKCS15Object {

 PKCS15CommonKeyAttributes,

 PKCS15CommonSecretKeyAttributes,

 KeyAttributes}

In other words, in the IC Card case, each EF(SKDF) will consist of a number of context-tagged elements representing different secret keys. Each element will consist of a number of common object attributes (PKCS15CommonObjectAttributes and PKCS15CommonSecretKeyAttributes) and in addition the particular secret key type’s attributes. All key types defined in this version correspond to key types defined in PKCS#11, and they all contain the same attributes, PKCS15GenericSecretKeyAttributes, defined below.

7.6.1 Generic secret key objects

These objects represent generic keys, available for use in various algorithms, or for derivation of other secret keys.

PKCS15GenericSecretKeyAttributes ::= SEQUENCE {

 value PKCS15ObjectValue { OCTET STRING },

 ... -- For future extensions

 }

The semantics of these fields is as follows:

· PKCS15GenericSecretKeyAttributes.value: The value shall, in the IC Card case, be a path to a file containing an OCTET STRING. In other cases, the application issuer is free to choose any alternative offered by the PKCS15ObjectValue type.

7.6.2 Other secret key objects

These key objects represent keys of various types. In the case of tokens capable of performing cryptographic computations with keys of certain types, the key representation is token specific (indicated by the PKCS15CommonKeyAttributes.native field. Otherwise, the key shall be stored as an OCTET STRING, as indicated above.

7.7 The PKCS15Certificates type

This data structure contains information pertaining to certificate objects stored in the token. Since, in the IC card case, the path alternative of the PKCS15PathOrObjects type is to be chosen, PKCS15Certificates entries (records) in EF(ODF) points to elementary files that can be regarded as directories of certificates, ‘Certificate Directory Files’ (CDFs). The contents of an EF(CDF) must be the value of the DER encoding of a SEQUENCE OF PKCS15Certificate (i.e. excluding the outermost tag and length bytes). This gives the CDFs the same, simple structure as the ODF, namely a number of TLV records.

In the case of tokens not supporting the ISO/IEC 7816-4 logical file organization, any of the CHOICE alternatives of PKCS15PathOrObjects may be used.
Examples of this type can be found in appendix C.

PKCS15Certificate ::= CHOICE {

 x509Certificate PKCS15CertificateObject {

 PKCS15X509CertificateAttributes},

 x509AttributeCertificate [0] PKCS15CertificateObject {

 PKCS15X509AttributeCertificateAttributes},
 x9-68Certificate [1] PKCS15CertificateObject {

 PKCS15x9-68CertificateAttributes},
 wtlsCertificate [2] PKCS15CertificateObject {

 PKCS15WTLSCertificateAttributes},

 ... -- For future extensions
 }

PKCS15CertificateObject {CertAttributes} ::= PKCS15Object {

 PKCS15CommonCertificateAttributes,

 NULL,

 CertAttributes}

In other words, in the IC Card case, each EF(CDF) will consist of a number of context-tagged elements representing different certificate objects. Each element will consist of a number of common object attributes (PKCS15CommonObjectAttributes and PKCS15CommonCertificateAttributes) and in addition the particular certificate type’s attributes.
7.7.1 X.509 certificate objects

PKCS15X509CertificateAttributes ::= SEQUENCE {

 subject [0] Name OPTIONAL,

 issuer [1] Name OPTIONAL,

 serialNumber [2] CertificateSerialNumber OPTIONAL,

 value [3] PKCS15ObjectValue { PKCS15X509Certificate },

 ... -- For future extensions
 }

The semantics of the fields is as follows:

· PKCS15X509CertificateAttributes.subject, PKCS15X509CertificateAttributes.issuer and PKCS15X509CertificateAttributes.serialNumber: The semantics of these fields is the same as for the corresponding fields in PKCS#11. The reason for making them optional is to provide some space-efficiency, since they already are present in the certificate itself.

· PKCS15X509CertificateAttributes.value: The value shall, in the IC Card case, be a PKCS15ReferencedValue either to a file containing a DER encoded certificate at the given location, or a url to some location where the certificate in question can be found. In other cases, the application issuer is free to choose any alternative.

7.7.2 X.509 attribute certificate Objects

PKCS15X509AttributeCertificateAttributes ::= SEQUENCE {

 value PKCS15ObjectValue { PKCS15AttributeCertificate },

 ... -- For future extensions
 }

The semantics of the fields is as follows:

· PKCS15X509AttributeCertificateAttributes.value: The value shall, in the IC Card case, be a PKCS15ReferencedValue either to a file containing a DER encoded attribute certificate at the given location, or a url to some location where the attribute certificate in question can be found. In other cases, the application issuer is free to choose any alternative.

7.7.3 ANSI X9.68 lightweight certificate objects

PKCS15x9-68CertificateAttributes ::= SEQUENCE {

 value PKCS15ObjectValue { PKCS15x9-68Certificate },

 ... -- For future extensions

 }

The semantics of the fields is as follows:

· PKCS15x9-68CertificateAttributes.value: The value shall, in the IC Card case, be a PKCS15ReferencedValue either to a file containing a DER or PER encoded light-weight certificate at the given location, or a url to some location where the certificate in question can be found. In other cases, the application issuer is free to choose any alternative.

7.7.4 WTLS certificate objects

PKCS15WTLSCertificateAttributes ::= SEQUENCE {

 value PKCS15ObjectValue { PKCS15WTLSCertificate },

 ... -- For future extensions

 }

The semantics of the fields is as follows:

· PKCS15x9-68CertificateAttributes.value: The value shall, in the IC Card case, be a PKCS15ReferencedValue either to a file containing a WTLS encoded light-weight certificate at the given location, or a url to some location where the certificate in question can be found. In other cases, the application issuer is free to choose any alternative.

7.8 The PKCS15DataObjects type

This data structure contains information pertaining to data objects stored in the token. Since, in the IC card case, the path alternative of the PKCS15PathOrObjects type is to be chosen, PKCS15DataObjects entries (records) in EF(ODF) points to elementary files that can be regarded as directories of data objects, ‘Data Object Directory Files’ (DODFs). The contents of an EF(DODF) must be the value of the DER encoding of a SEQUENCE OF PKCS15DataObject. This gives the DODFs the same, simple structure as the ODF, namely a number of TLV records.

In the case of tokens not supporting the ISO/IEC 7816-4 logical file organization, any of the CHOICE alternatives of PKCS15PathOrObjects may be used.
Examples of this type can be found in appendix C.
PKCS15Data ::= CHOICE {

 opaqueDO PKCS15DataObject {PKCS15Opaque},

 externalIDO [0] PKCS15DataObject {
PKCS15ExternalIDO},
 oidDO [1] PKCS15DataObject {PKCS15OidDO},

 ... -- For future extensions

 }

PKCS15DataObject {DataObjectAttributes} ::= PKCS15Object {

 PKCS15CommonDataObjectAttributes,

 NULL,

 DataObjectAttributes}

In other words, in the IC Card case, DODFs will consist of a number of context-tagged elements representing different data objects. Each element will consist of a number of common object attributes (PKCS15CommonObjectAttributes and PKCS15CommonDataObjectAttributes) and in addition the particular data object type’s attributes.
7.8.1 Opaque data objects

Opaque data objects are the least specified data objects. PKCS#15 makes no interpretation of these objects at all; it is completely left to applications accessing these objects.

PKCS15Opaque ::= PKCS15ObjectValue {PKCS15-OPAQUE.&Type}

7.8.2

·
·
·
7.8.3 External data objects
As an alternative, the DODF may contain one or several externally defined inter-industry data objects. In order that these objects follow a compatible tag allocation scheme as defined in section 4.4 of ISO/IEC 7816-6 in the IC card case, they have been defined as follows:

PKCS15ExternalIDO ::= PKCS15ObjectValue {PKCS15IDOs}

PKCS15IDOs ::= CHOICE {

 applicationTemplate [APPLICATION 1] PKCS15External,

 cardHolderData [APPLICATION 5] PKCS15External,

 cardData [APPLICATION 6] PKCS15External,

 authenticationData [APPLICATION 7] PKCS15External,

 applicationRelatedData [APPLICATION 14] PKCS15External

 }

PKCS15External ::= PKCS15-OPAQUE.&Type

 -- Possible data elements are defined in ISO/IEC 7816-6

Note that all these constructed types are defined in ISO/IEC 7816-6, and that each one may contain other data objects (primitive or constructed), e.g. context-tagged proprietary objects. By using this construct, the areas (or files) on an IC card pointed to by the PKCS15ObjectValue {PKCS15ExternalIDO} type, will consist of TLV pairs, each with a tag of either ‘61’, ‘65’, ‘66’, ‘67’ or ‘6E’, which is in accordance with ISO/IEC 7816-6. The choice of tags (applicationTemplate, cardHolderData, cardData, authenticationData or applicationRelatedData) for the PKCS15IDOs shall be made in accordance with the guidelines in ISO/IEC 7816-6. By using these data objects, applications enhance interoperability.

7.8.4 Data objects identified by OBJECT IDENTIFIERS

This type provides a way to store, search and retrieve data objects with assigned object identifiers. An example of this type of information is any ASN.1 ATTRIBUTE.

PKCS15OidDO ::= SEQUENCE {

 id OBJECT IDENTIFIER,

 value PKCS15ObjectValue {PKCS15-OPAQUE.&Type}

}

7.9 The PKCS15AuthenticationObject type

This data structure, only relevant to tokens capable of authenticating a cardholder, contains information about how this cardholder authentication shall be carried out. Since, in the IC card case, the path alternative of the PKCS15PathOrObjects type is to be chosen, PKCS15AuthenticationObject entries (records) in EF(ODF) points to elementary files that can be regarded as directories of authentication objects, ‘Authentication Object Directory Files’ (AODFs). The contents of an EF(AODF) must be the value of the DER encoding of a SEQUENCE OF PKCS15AuthenticationObject. This gives the AODFs the same, simple structure as the ODF, namely a number of TLV records.

Examples of this type can be found in appendix C.

PKCS15Authentication ::= CHOICE {

 pin PKCS15AuthenticationObject { PKCS15PinAttributes },

 ... -- For future extensions, e.g. biometric
authentication
 -- objects

 }

PKCS15AuthenticationObject {AuthObjectAttributes} ::= PKCS15Object {

 PKCS15CommonAuthenticationObjectAttributes,

 NULL,

 AuthObjectAttributes}

In other words, in the IC Card case, each EF(AODF) will consist of a number of context-tagged elements representing different authentication objects. Each element will consist of a number of common object attributes (PKCS15CommonObjectAttributes and PKCS15CommonAuthenticationObjectAttributes) and in addition the particular authentication object type’s attributes. Each authentication object must have a distinct PKCS15CommonAuthenticationObjectAttributes.authID, enabling unambiguous authentication object lookup for private objects.

7.9.1 Pin Objects

PKCS15PinAttributes ::= SEQUENCE {

 pinFlags PKCS15PinFlags,

 pinType PKCS15PinType,

 minLength INTEGER
 (pkcs15-lb-minPinLength..pkcs15-ub-minPinLength),

 storedLength INTEGER
 (pkcs15-lb-minPinLength..pkcs15-ub-storedPinLength),
 maxLength INTEGER OPTIONAL,
 pinReference [0] PKCS15Reference OPTIONAL,
 padChar OCTET STRING (SIZE(1)) OPTIONAL,

 lastPinChange GeneralizedTime OPTIONAL,
 path PKCS15Path OPTIONAL,
 ... -- For future extensions

}

PKCS15PinFlags ::= BIT STRING {

 case-sensitive (0),

 local (1),

 change-disabled (2),

 unblock-disabled (3),

 initialized (4),

 needs-padding (5),

 unblockingPin (6),

 soPin (7)

 } (CONSTRAINED BY { -- ‘unblockingPin’ and ‘soPIN’ cannot both

 -- be set -- })

PKCS15PinType ::= ENUMERATED {bcd, ascii-numeric, utf8, ...
 -- bcd = one nibble contains one digit

 -- ascii-numeric = one byte contains one ASCII digit

 -- utf8 = password is stored in UTF8 encoding

 }

The semantics of these fields is as follows:

· PKCS15PinAttributes.pinFlags: This field signals whether the PIN is:

· case-sensitive, meaning that a user-given PIN shall not be converted to all-uppercase before presented to the card (see below)

· local, meaning that the PIN is local to the PKCS#15 application

· change-disabled, meaning that it is not possible to change the PIN

· unblock-disabled, meaning that it is not possible to unblock the PIN

· initialized, meaning that the PIN has been initialized

· needs-padding, meaning that, depending on the length of the given PIN and the stored length, the PIN may need to be padded before being presented to the card

· unblockingPin, meaning that the PIN may be used for unblocking purposes

· soPin, meaning that the PIN is a Security Officer PIN (in the PKCS#11 sense)

· PKCS15PinAttributes.pinType: This field determines the type of PIN:

· bcd (Binary Coded Decimal, each nibble of a byte shall contain one digit of the PIN),

· ascii-numeric (Each byte of the PIN contain an ASCII encoded digit)

· utf8 (Each character is encoded in accordance with UTF8)

· PKCS15PinAttributes.minLength: Minimum length (in characters) of new PINs (if allowed to change).

· PKCS15PinAttributes.storedLength: Stored length on token (in bytes). Used to deduce the number of padding characters needed.

· PKCS15PinAttributes.maxLength: On some tokens, PINs are not padded, and there is therefore a need to know the maximum PIN length (in characters) allowed.
· PKCS15PinAttributes.pinReference: This optional field is a token-specific reference to the PIN in question. It is anticipated that it can be used as a ‘P2’ parameter in the ISO/IEC 7816-4 ‘VERIFY’ command, when applicable.

· PKCS15PinAttributes.padChar: Padding character to use (usually ‘FF16’ or ‘00’). Not needed if pinFlags indicates that padding isn’t needed for this token. If the PKCS15PinAttributes.pinType is of type bcd, then padChar should consist of two nibbles of the same value, any nibble could be used as the “padding nibble”. E.g., ‘55’ is allowed, meaning padding with ‘01012’, but ‘34’ is illegal.

·
· PKCS15PinAttributes.lastPinChange: This field is intended to be used in applications that requires knowledge of the date the PIN last was changed (e.g. to enforce PIN expiration policies). When the PIN is not set (or never has been changed) the value shall be (using the value-notation defined in X.680) ‘000000000000Z’. As another example, a PIN changed on January 6, 1999 at 1934 (7 34 PM) UTC would have a lastPinChange value of ‘19990106193400Z’.
· PKCS15PinAttributes.path: Path to the DF in which the PIN resides. The path shall be selected by a host application before doing a PIN operation, in order to enable a suitable authentication context for the PIN operation. If not present, a card holder verification must always be possible to perform without a prior ‘SELECT’ operation.
7.9.1.1 Transforming a supplied PIN

The steps taken to transform a user-supplied PIN to something presented to the token shall be as follows:

1. Convert the PIN in accordance with the PIN type:

a) If the PIN is a ‘utf8’ PIN, transform it to UTF8 [RFC 2279]: x = UTF8(PIN). Then, if the case-sensitive flag is off, convert x to uppercase: x = NLSUPPERCASE(x) (NLSUPPERCASE = locale dependent uppercase)

b) If the PIN is a ‘bcd’ PIN, verify that each character is a digit and pack the characters as BCD [see section 3] digits: x = BCD(PIN)
c) If the PIN is an ‘ascii-numeric’ PIN, verify that each character is a digit in the current codepage and –if needed- convert the characters to ascii [ANSI X3.4] digits: x = ASCII(PIN)
2. If indicated in the ‘pinFlags’ field, pad x to the right with the padding character, padChar, to stored length storedLength: x = PAD(x, padChar, storedLength).

Example: (ascii-)Numeric PIN ‘123410’, stored length 8 bytes, and padding character ‘FF16’ gives that the value presented to the token will be ‘31323334FFFFFFFF16’

7.10 The PKCS#15 Information File, EF(TokenInfo)

This file, only relevant to ISO/IEC 7816-4 compliant IC Cards, contains general information about the PKCS#15 application and the token it resides on. It’s data structure is defined as follows:

PKCS15TokenInfo ::= SEQUENCE {
 version INTEGER {v1(0)} (v1,...),

 serialNumber INTEGER, –- IC Card serial number

 manufacturerID UTF8String (SIZE (1..32)) OPTIONAL,

 tokenflags PKCS15TokenFlags,
 seInfo SET OF PKCS15SecurityEnvironmentInfo OPTIONAL,

 recordInfo PKCS15RecordInfo OPTIONAL,
 supportedAlgorithms [0] SET OF PKCS15AlgorithmInfo OPTIONAL,

 ... -- For future extensions
 } (CONSTRAINED BY { -- Each PKCS15AlgorithmInfo.reference value must be unique --})

PKCS15TokenFlags ::= BIT STRING {

 readonly (0),

 loginRequired (1),

 prnGeneration (2),

 eidCompliant (3)
 }
PKCS15SecurityEnvironmentInfo ::= SEQUENCE {

 se INTEGER (0..127),

 owner OBJECT IDENTIFIER,

 ... -- For future extensions

 }

PKCS15RecordInfo ::= SEQUENCE {

 oDFRecordLength [0] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,

 prKDFRecordLength [1] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,

 puKDFRecordLength [2] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,

 sKDFRecordLength [3] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,

 cDFRecordLength [4] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,

 dODFRecordLength [5] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,

 aODFRecordLength [6] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL
 }
PKCS15AlgorithmInfo ::= SEQUENCE {

 reference PKCS15Reference,

 algorithm PKCS15-ALGORITHM.&id({PKCS15AlgorithmSet}),

 parameters PKCS15-ALGORITHM.&Parameters({PKCS15AlgorithmSet}{@algorithm}),

 supportedOperations PKCS15-ALGORITHM.&Operations({PKCS15AlgorithmSet}{@algorithm})

 }
pkcs15-alg-null PKCS15-ALGORITHM ::= {

 PARAMETERS NULL OPERATIONS {{generate-key}} ID -1}

pkcs15-alg-rsa PKCS15-ALGORITHM ::= {

 PARAMETERS PKCS15RSAParameters OPERATIONS {PKCS15PublicKeyOperations} ID 0}

pkcs15-alg-ec PKCS15-ALGORITHM ::= {

 PARAMETERS PKCS15ECParameters OPERATIONS {PKCS15PublicKeyOperations} ID 3}

pkcs15-alg-dh PKCS15-ALGORITHM ::= {

 PARAMETERS PKCS15DHParameters OPERATIONS {PKCS15PublicKeyOperations} ID 2} pkcs15-alg-dsa PKCS15-ALGORITHM ::= {

 PARAMETERS PKCS15DSAParameters OPERATIONS {PKCS15PublicKeyOperations} ID 1}

pkcs15-alg-kea PKCS15-ALGORITHM ::= {

 PARAMETERS PKCS15KEAParameters OPERATIONS {PKCS15PublicKeyOperations} ID 5}
PKCS15AlgorithmSet PKCS15-ALGORITHM ::= {

 pkcs15-alg-null |

 pkcs15-alg-rsa |

 pkcs15-alg-ec |
 pkcs15-alg-dh |
 pkcs15-alg-dsa |
 pkcs15-alg-kea,

 ... -- For future extensions

 }

PKCS15RSAParameters ::= NULL

PKCS15ECParameters ::= Parameters –- See ANSI X9.62

PKCS15DHParameters ::= DomainParameters –- See ANSI X9.42
PKCS15DSAParameters ::= DomainParameters -- See ANSI X9.42

PKCS15KEAParameters ::= DomainParameters -- See ANSI X9.42
PKCS15-ALGORITHM ::= CLASS {

 &id INTEGER UNIQUE,

 &Parameters,

 &Operations PKCS15Operations

} WITH SYNTAX {

 PARAMETERS &Parameters OPERATIONS &Operations ID &id}

PKCS15PublicKeyOperations ::= PKCS15Operations

PKCS15Operations ::= BIT STRING {

 compute-checksum (0), -- H/W computation of checksum

 compute-signature (1), -- H/W computation of signature

 verify-checksum (2), -- H/W verification of checksum

 verify-signature (3), -- H/W verification of signature

 encipher (4), -- H/W encryption of data

 decipher (5), -- H/W decryption of data

 hash (6), –- H/W hashing

 generate-key (7) -- H/W key generation

 }

The interpretation of these fields should be as follows:
· PKCS15TokenInfo.version: This field contains the number of the particular version of this specification the token application is based upon.
· PKCS15TokenInfo.serialNumber: This field shall contain the token’s unique serial number, for IC Card issued in accordance with ISO/IEC 7812-1 and coded in accordance with ISO/IEC 8583.

· PKCS15TokenInfo.manufacturerID: This optional field shall, when present, contain identifying information about the application issuer, UTF8-encoded.

· PKCS15TokenInfo.tokenflags: This field contains information about the token per se. Flags include: If the whole PKCS#15 application is read-only, if login (i.e. authentication) is required before accessing any data, if the token supports pseudo-random number generation and if the token conforms to the electronic identification profile of this specification, specified in Annex B.

· PKCS15TokenInfo.seInfo: This optional field is intended to convey information about pre-set security environments on the card, and the owner of these environments. The definition of these environments is currently out of scope for this recommendation.

· PKCS15TokenInfo.recordInfo: This optional field has two purposes:

· to indicate whether the elementary files ODF, PrKDF, PuKDF, SKDF, CDF, DODF and AODF are linear record files or transparent files (if the field is present, they shall be linear record files, otherwise they shall be transparent files); and

· if they are linear record files, whether they are of fixed-length or not (if they are of fixed length, corresponding values in PKS15RecordInfo are present and not equal to zero and indicates the record length. If some files are linear record files but not of fixed length, then corresponding values in PKCS15RecordInfo can either be absent or set to zero.
· PKCS15TokenInfo.supportedAlgorithms: The intent of this optional field is to indicate cryptographic algorithms, associated parameters and operations supported by the card. The reference field of PKCS15AlgorithmInfo is a unique reference that is used for cross-reference purposes from PrKDFs and PuKDFs. Values of the PKCS15Commands field (compute-checksum, compute-signature, verify-checksum, verify-signature, encipher, decipher, hash and derive-key) identifies operations the token can perform with a particular algorithm.

8 ASN.1 Module

This section includes all of the ASN1 type, value and information object class definitions contained in this recommendation, in the form of the ASN.1 module PKCS15Framework.

PKCS15Framework {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-15(15) modules(1) framework(1)}

-- This module has been checked for conformance with the ASN.1 standard

-- by the OSS ASN.1 Tools

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS All --

-- All types and values defined in this module is exported for use in other

-- ASN.1 modules.

IMPORTS

informationFramework, authenticationFramework, selectedAttributeTypes

 FROM UsefulDefinitions {joint-iso-ccitt ds(5) modules(1)

 usefulDefinitions(0) 3}

Name, ATTRIBUTE

 FROM InformationFramework informationFramework

Certificate, AttributeCertificate, CertificateSerialNumber, SIGNED{}

 FROM AuthenticationFramework authenticationFramework

DirectoryString

 FROM SelectedAttributeTypes selectedAttributeTypes

ECPoint, Parameters

 FROM ANSI-X9-62 {iso(1) member-body(2) us(840) ansi-x962(10045) module(4) 1}

DiffieHellmanPublicNumber, DomainParameters

 FROM ANSI-X9-42 {iso(1) member-body(2) us(840) ansi-x942(10046) module(5) 1}

EnvelopedData, AuthenticatedData, IssuerAndSerialNumber,

 id-alg-3DESwrap, id-algRC2wrap, des-ede3-cbc, rc2-cbc,

 RC2CBCParameter, hMAC-SHA1, sha-1, md5 FROM

 CryptographicMessageSyntax {iso(1) member-body(2) us(840)

 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0) cms(1)}

id-PBKDF2, PBKDF2-params

 FROM PKCS5 {iso(1) member-body(2) us(840) rsadsi(113549)

 pkcs(1) pkcs-5(5) modules(0) pbe(1)};

-- Constants

pkcs15-ub-identifier INTEGER ::= 32

pkcs15-ub-reference INTEGER ::= 127

pkcs15-ub-index INTEGER ::= 65535

pkcs15-ub-label INTEGER ::= pkcs15-ub-identifier

pkcs15-lb-minPinLength INTEGER ::= 4

pkcs15-ub-minPinLength INTEGER ::= 8

pkcs15-ub-storedPinLength INTEGER ::= 64

pkcs15-ub-recordLength INTEGER ::= 16383

-- Object Identifiers

pkcs15 OBJECT IDENTIFIER { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

 pkcs-15(15)}

pkcs15-mo {pkcs15 1} -- Modules branch

pkcs15-at {pkcs15 2} –- Attribute branch

pkcs15-ct {pkcs15 3} -- Content type branch

pkcs15-at-token {pkcs15-at 1} –- ATTRIUBTE object identifier

pkcs15-ct-token {pkcs15-ct 1} -- Content type for authenticated data

pkcs15-ct-privateObjects {pkcs15-ct 2} –- Content type for private objects in enveloped

 -- data

-- Untrusted token algorithms

ALGORITHM-IDENTIFIER ::= CLASS {

 &id OBJECT IDENTIFIER UNIQUE,

 &Value OPTIONAL

} WITH SYNTAX {

 [SYNTAX &Value] IDENTIFIED BY &id

}

PKCS15KeyDerivationAlgorithms ALGORITHM-IDENTIFIER ::= {

 {SYNTAX PBKDF2-params IDENTIFIED BY id-PBKDF2},

 ... -- For future extensions

 }

PKCS15KeyEncryptionAlgorithms ALGORITHM-IDENTIFIER ::= {

 {SYNTAX NULL IDENTIFIED BY id-alg-3DESwrap}|

 {SYNTAX INTEGER IDENTIFIED BY id-algRC2wrap},

 ... -- For future extensions

 }

PKCS15ContentEncryptionAlgorithms ALGORITHM-IDENTIFIER ::= {

 {SYNTAX OCTET STRING (SIZE(8)) IDENTIFIED BY des-ede3-cbc}|

 {SYNTAX RC2CBCParameter IDENTIFIED BY rc2-cbc},

 ... -- For future extensions

 }

PKCS15SMACAlgorithms ALGORITHM-IDENTIFIER ::= {

 {IDENTIFIED BY hMAC-SHA1},

 ... -- For future extensions

 }

PKCS15DigestAlgorithms ALGORITHM-IDENTIFIER ::= {

 {SYNTAX NULL IDENTIFIED BY sha-1}|

 {SYNTAX NULL IDENTIFIED BY md5},

 ... -- For future extensions

 }

PKCS15Token ::= SEQUENCE {

 version INTEGER {v1(0)}(v1,...),

 pkcs15Objects SEQUENCE OF CHOICE {

 privateObjects [0] EnvelopedData,

 publicObjects [1] SEQUENCE OF PKCS15Objects

 }

 }

pkcs15Token ATTRIBUTE ::= {

 WITH SYNTAX AuthenticatedData

 EQUALITY MATCHING RULE objectidentifierMatch

 ID { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

 pkcs-15(15) attributes(2) pkcs15-token(1)}

}

-- Basic types

PKCS15Identifier ::= OCTET STRING (SIZE (0..pkcs15-ub-identifier))

PKCS15Reference ::= INTEGER (0..pkcs15-ub-reference)

PKCS15Label ::= UTF8String (SIZE(0..pkcs15-ub-label))

PKCS15ReferencedValue ::= CHOICE {

 path PKCS15Path,

 url PrintableString

 }

PKCS15Path ::= SEQUENCE {

 path OCTET STRING, --See ISO7816-5

 index INTEGER (1..pkcs15-ub-index) OPTIONAL,

 length INTEGER (1..pkcs15-ub-index) OPTIONAL

 } (WITH COMPONENTS {..., index PRESENT, length PRESENT}|

 WITH COMPONENTS {..., index ABSENT, length ABSENT})

PKCS15ObjectValue { Type } ::= CHOICE {

 indirect PKCS15ReferencedValue,

 direct [0] Type

 } (CONSTRAINED BY {-- if indirection is being used,

 -- then it is expected that the reference points

 -- either to an object of type -- Type -- or (key

 -- case) to a card-specific key file --})

PKCS15PathOrObjects {ObjectType} ::= CHOICE {

 path PKCS15Path,

 objects SEQUENCE OF ObjectType

 }

-- Attribute types

PKCS15CommonObjectAttributes ::= SEQUENCE {

 label PKCS15Label,

 flags PKCS15CommonObjectFlags OPTIONAL,

 authId PKCS15Identifier OPTIONAL,

 ... -- For future extensions

 } (CONSTRAINED BY {-- authId must be present in the IC Card

 -- case if flags.private is set. It must equal an

 -- authID in one AuthRecord in the AODF -- })

PKCS15CommonObjectFlags ::= BIT STRING {

 private(0),

 modifiable (1)

 }

PKCS15CommonKeyAttributes ::= SEQUENCE {

 iD PKCS15Identifier,

 usage PKCS15KeyUsageFlags,

 native BOOLEAN DEFAULT TRUE,

 accessFlags PKCS15KeyAccessFlags OPTIONAL,

 keyReference PKCS15Reference OPTIONAL,

 startDate GeneralizedTime OPTIONAL,

 endDate [0] GeneralizedTime OPTIONAL,

 ... -- For future extensions

 }

PKCS15KeyUsageFlags ::= BIT STRING {

 encrypt (0),

 decrypt (1),

 sign (2),

 signRecover (3),

 wrap (4),

 unwrap (5),

 verify (6),

 verifyRecover (7),

 derive (8),

 nonRepudiation (9)

 }

PKCS15KeyAccessFlags ::= BIT STRING {

 sensitive (0),

 extractable (1),

 alwaysSensitive (2),

 neverExtractable(3),

 local (4)

 }

PKCS15CommonPrivateKeyAttributes ::= SEQUENCE {

 subjectName Name OPTIONAL,

 keyIdentifiers [0] SEQUENCE OF PKCS15KeyIdentifier OPTIONAL,

 ... -- For future extensions

 }

PKCS15KeyIdentifier ::= SEQUENCE {

 idType PKCS15KEY-IDENTIFIER.&id ({PKCS15KeyIdentifiers}),

 idValue PKCS15KEY-IDENTIFIER.&Value ({PKCS15KeyIdentifiers}{@idType})

}

PKCS15KeyIdentifiers PKCS15KEY-IDENTIFIER ::= {

 pkcs15IssuerAndSerialNumber|

 pkcs15SubjectKeyIdentifier|

 pkcs15IssuerAndSerialNumberHash|

 pkcs15SubjectKeyHash|

 pkcs15IssuerKeyHash,

 ... -- For future extensions

}

PKCS15KEY-IDENTIFIER ::= CLASS {

 &id INTEGER UNIQUE,

 &Value

} WITH SYNTAX {

 SYNTAX &Value IDENTIFIED BY &id

}

pkcs15IssuerAndSerialNumber PKCS15KEY-IDENTIFIER::=

 {SYNTAX IssuerAndSerialNumber IDENTIFIED BY 1}

 -- As defined in RFC [CMS]

pkcs15SubjectKeyIdentifier PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 2}

 -- From x509v3 certificate extension

pkcs15IssuerAndSerialNumberHash PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 3}

 -- Assumes SHA-1 hash of DER encoding of IssuerAndSerialNumber

pkcs15SubjectKeyHash PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 4}

 -- Hash method defined in section 8.

pkcs15IssuerKeyHash PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 5}

 -- Hash method defined in section 8.

PKCS15CommonPublicKeyAttributes ::= SEQUENCE {

 subjectName Name OPTIONAL,

 ... -- For future extensions

 }

PKCS15CommonSecretKeyAttributes ::= SEQUENCE {

 keyLen INTEGER OPTIONAL, -- keylength (in bits)

 ... -- For future extensions

 }

PKCS15KeyInfo {ParameterType, OperationsType} ::= CHOICE {

 reference PKCS15Reference,

 paramsAndOps SEQUENCE {

 parameters ParameterType,

 supportedOperations OperationsType OPTIONAL}

 }

PKCS15CommonCertificateAttributes ::= SEQUENCE {

 iD PKCS15Identifier,

 cA BOOLEAN DEFAULT FALSE,

 requestId PKCS15KeyIdentifier OPTIONAL,

 ... -- For future extensions

 }

PKCS15CommonDataObjectAttributes ::= SEQUENCE {

 applicationName PKCS15Label OPTIONAL,

 applicationOID OBJECT IDENTIFIER OPTIONAL,

 ... -- For future extensions

 } (WITH COMPONENTS {..., applicationName PRESENT}|

 WITH COMPONENTS {..., applicationOID PRESENT})

PKCS15CommonAuthenticationObjectAttributes ::= SEQUENCE {

 authId PKCS15Identifier,

 ... -- For future extensions

 }

-- PKCS15 Objects

PKCS15Object {ClassAttributes, SubClassAttributes, TypeAttributes} ::=

 SEQUENCE {

 commonObjectAttributes PKCS15CommonObjectAttributes,

 classAttributes ClassAttributes,

 subClassAttributes [0] SubClassAttributes OPTIONAL,

 typeAttributes TypeAttributes

 }

PKCS15Objects ::= CHOICE {

 privateKeys [0] PKCS15PrivateKeys,

 publicKeys [1] PKCS15PublicKeys,

 secretKeys [2] PKCS15SecretKeys,

 certificates [3] PKCS15Certificates,

 trustedCertificates [4] PKCS15Certificates,

 dataObjects [5] PKCS15DataObjects,

 authObjects [6] PKCS15AuthObjects,

 ... -- For future extensions

 }

PKCS15PrivateKeys ::= PKCS15PathOrObjects {PKCS15PrivateKey}

PKCS15SecretKeys ::= PKCS15PathOrObjects {PKCS15SecretKey}

PKCS15PublicKeys ::= PKCS15PathOrObjects {PKCS15PublicKey}

PKCS15Certificates ::= PKCS15PathOrObjects {PKCS15Certificate}

PKCS15DataObjects ::= PKCS15PathOrObjects {PKCS15Data}

PKCS15AuthObjects ::= PKCS15PathOrObjects {PKCS15Authentication}

PKCS15PrivateKey ::= CHOICE {

 privateRSAKey PKCS15PrivateKeyObject {

 PKCS15PrivateRSAKeyAttributes},

 privateECKey [0] PKCS15PrivateKeyObject {

 PKCS15PrivateECKeyAttributes},

 privateDHKey [1] PKCS15PrivateKeyObject {

 PKCS15PrivateDHKeyAttributes},

 privateDSAKey [2] PKCS15PrivateKeyObject {

 PKCS15PrivateDSAKeyAttributes},

 privateKEAKey [3] PKCS15PrivateKeyObject {

 PKCS15PrivateKEAKeyAttributes},

 ... -- For future extensions

 }

PKCS15PrivateKeyObject {KeyAttributes} ::= PKCS15Object {

 PKCS15CommonKeyAttributes,

 PKCS15CommonPrivateKeyAttributes,

 KeyAttributes}

PKCS15PrivateRSAKeyAttributes ::= SEQUENCE {

 keyInfo PKCS15KeyInfo {PKCS15RSAParameters,

 PKCS15PublicKeyOperations} OPTIONAL,

 modulusLength INTEGER, -- modulus length in bits, e.g. 1024

 value PKCS15ObjectValue {PKCS15RSAPrivateKey},

 ... -- For future extensions

 }

PKCS15RSAPrivateKey ::= SEQUENCE {

 modulus [0] INTEGER OPTIONAL, -- n

 publicExponent [1] INTEGER OPTIONAL, -- e

 privateExponent [2] INTEGER OPTIONAL, -- d

 prime1 [2] INTEGER OPTIONAL, -- p

 prime2 [3] INTEGER OPTIONAL, -- q

 exponent1 [4] INTEGER OPTIONAL, -- d mod (p-1)

 exponent2 [5] INTEGER OPTIONAL, -- d mod (q-1)

 coefficient [6] INTEGER OPTIONAL -- inv(q) mod p

 } (CONSTRAINED BY

 {-- must be possible to reconstruct modulus and

 -- privateExponent from selected fields --})

PKCS15PrivateECKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15ECParameters,

 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15ECPrivateKey},

 ... -- For future extensions

 }

PKCS15ECPrivateKey ::= INTEGER

PKCS15PrivateDHKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15DHParameters,

 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15DHPrivateKey},

 ... -- For future extensions

 }

PKCS15DHPrivateKey ::= INTEGER -- Diffie-Hellman exponent

PKCS15PrivateDSAKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15DSAParameters,

 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15DSAPrivateKey},

 ... -- For future extensions

 }

PKCS15DSAPrivateKey ::= INTEGER

PKCS15PrivateKEAKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15KEAParameters,

 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15KEAPrivateKey},

 ... -- For future extensions

 }

PKCS15KEAPrivateKey ::= INTEGER

PKCS15PublicKey ::= CHOICE {

 publicRSAKey PKCS15PublicKeyObject {

 PKCS15PublicRSAKeyAttributes},

 publicECKey [0] PKCS15PublicKeyObject {

 PKCS15PublicECKeyAttributes},

 publicDHKey [1] PKCS15PublicKeyObject {

 PKCS15PublicDHKeyAttributes},

 publicDSAKey [2] PKCS15PublicKeyObject {

 PKCS15PublicDSAKeyAttributes},

 publicKEAKey [3] PKCS15PublicKeyObject {

 PKCS15PublicKEAKeyAttributes},

 ... -- For future extensions

 }

PKCS15PublicKeyObject {KeyAttributes} ::= PKCS15Object {

 PKCS15CommonKeyAttributes,

 PKCS15CommonPublicKeyAttributes,

 KeyAttributes}

PKCS15PublicRSAKeyAttributes ::= SEQUENCE {

 keyInfo PKCS15KeyInfo {PKCS15RSAParameters,

 PKCS15PublicKeyOperations} OPTIONAL,

 modulusLength INTEGER, -- modulus length in bits, e.g. 1024

 value PKCS15ObjectValue {PKCS15RSAPublicKey},

 ... -- For future extensions

 }

PKCS15RSAPublicKey ::= SEQUENCE {

 modulus INTEGER, -- n

 publicExponent INTEGER -- e

 }

PKCS15PublicECKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15ECParameters,

 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15ECPublicKey},

 ... -- For future extensions

 }

PKCS15ECPublicKey ::= PKCS15ECPoint

PKCS15PublicDHKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15DHParameters,

 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15DHPublicKey},

 ... -- For future extensions

 }

PKCS15DHPublicKey ::= PKCS15DiffieHellmanPublicNumber

PKCS15PublicDSAKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15DSAParameters,

 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15DSAPublicKey},

 ... -- For future extensions

 }

PKCS15DSAPublicKey ::= INTEGER

PKCS15PublicKEAKeyAttributes ::= SEQUENCE {

 keyInfo [0] PKCS15KeyInfo {PKCS15KEAParameters,

 PKCS15PublicKeyOperations} OPTIONAL,

 value [1] PKCS15ObjectValue {PKCS15KEAPublicKey},

 ... -- For future extensions

 }

PKCS15KEAPublicKey ::= INTEGER

PKCS15SecretKey ::= CHOICE {

 genericSecretKey PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 rc2key [0] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 rc4key [1] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 desKey [2] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 des2Key [3] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 des3Key [4] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 castKey [5] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 cast3Key [6] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 cast5Key [7] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 cast128Key [8] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 rc5Key [9] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 ideaKey [10] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 skipjackKey [11] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 batonKey [12] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 juniperKey [13] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 rc6Key [14] PKCS15SecretKeyObject

 {PKCS15GenericSecretKeyAttributes},

 ... -- For future extensions

 }

PKCS15SecretKeyObject {KeyAttributes} ::= PKCS15Object {

 PKCS15CommonKeyAttributes,

 PKCS15CommonSecretKeyAttributes,

 KeyAttributes}

PKCS15GenericSecretKeyAttributes ::= SEQUENCE {

 value PKCS15ObjectValue { OCTET STRING },

 ... -- For future extensions

 }

PKCS15Certificate ::= CHOICE {

 x509Certificate PKCS15CertificateObject {

 PKCS15X509CertificateAttributes},

 x509AttributeCertificate [0] PKCS15CertificateObject {

 PKCS15X509AttributeCertificateAttributes},

 x9-68Certificate [1] PKCS15CertificateObject {

 PKCS15x9-68CertificateAttributes},

 wtlsCertificate [2] PKCS15CertificateObject {

 PKCS15WTLSCertificateAttributes},

 ... -- For future extensions

 }

PKCS15CertificateObject {CertAttributes} ::= PKCS15Object {

 PKCS15CommonCertificateAttributes,

 NULL,

 CertAttributes}

PKCS15X509CertificateAttributes ::= SEQUENCE {

 subject [0] Name OPTIONAL,

 issuer [1] Name OPTIONAL,

 serialNumber [2] CertificateSerialNumber OPTIONAL,

 value [3] PKCS15ObjectValue { PKCS15X509Certificate },

 ... -- For future extensions

 }

PKCS15X509AttributeCertificateAttributes ::= SEQUENCE {

 value PKCS15ObjectValue { PKCS15AttributeCertificate },

 ... -- For future extensions

 }

PKCS15x9-68CertificateAttributes ::= SEQUENCE {

 value PKCS15ObjectValue { PKCS15x9-68Certificate },

 ... -- For future extensions

 }

PKCS15WTLSCertificateAttributes ::= SEQUENCE {

 value PKCS15ObjectValue { PKCS15WTLSCertificate },

 ... -- For future extensions

 }

PKCS15Data ::= CHOICE {

 opaqueDO PKCS15DataObject {PKCS15Opaque},

 externalIDO [0] PKCS15DataObject {PKCS15ExternalIDO},

 oidDO [1] PKCS15DataObject {PKCS15OidDO},

 ... -- For future extensions

 }

PKCS15DataObject {DataObjectAttributes} ::= PKCS15Object {

 PKCS15CommonDataObjectAttributes,

 NULL,

 DataObjectAttributes}

PKCS15ExternalIDO ::= PKCS15ObjectValue {PKCS15IDOs}

PKCS15IDOs ::= CHOICE {

 applicationTemplate [APPLICATION 1] PKCS15External,

 cardHolderData [APPLICATION 5] PKCS15External,

 cardData [APPLICATION 6] PKCS15External,

 authenticationData [APPLICATION 7] PKCS15External,

 applicationRelatedData [APPLICATION 14] PKCS15External

 }

PKCS15External ::= PKCS15-OPAQUE.&Type

 -- Possible data elements are defined in ISO/IEC 7816-6

PKCS15Opaque ::= PKCS15ObjectValue {PKCS15-OPAQUE.&Type}

PKCS15OidDO ::= SEQUENCE {

 id OBJECT IDENTIFIER,

 value PKCS15ObjectValue {PKCS15-OPAQUE.&Type}

}

PKCS15Authentication ::= CHOICE {

 pin PKCS15AuthenticationObject {

 PKCS15PinAttributes},

 ... -- For future extensions, e.g. biometric authentication

 -- objects

 }

PKCS15AuthenticationObject {AuthObjectAttributes} ::= PKCS15Object {

 PKCS15CommonAuthenticationObjectAttributes,

 NULL,

 AuthObjectAttributes}

PKCS15PinAttributes ::= SEQUENCE {

 pinFlags PKCS15PinFlags,

 pinType PKCS15PinType,

 minLength INTEGER

 (pkcs15-lb-minPinLength..pkcs15-ub-minPinLength),

 storedLength INTEGER

 (pkcs15-lb-minPinLength..pkcs15-ub-storedPinLength),

 maxLength INTEGER OPTIONAL,

 pinReference [0] PKCS15Reference OPTIONAL,

 padChar OCTET STRING (SIZE(1)) OPTIONAL,

 lastPinChange GeneralizedTime OPTIONAL,

 path PKCS15Path OPTIONAL,

 ... -- For future extensions

 }

PKCS15PinFlags ::= BIT STRING {

 case-sensitive (0),

 local (1),

 change-disabled (2),

 unblock-disabled (3),

 initialized (4),

 needs-padding (5),

 unblockingPin (6),

 soPin (7)

 } (CONSTRAINED BY { -- 'unblockingPin' and 'soPIN' cannot both

 -- be set --})

PKCS15PinType ::= ENUMERATED {bcd, ascii-numeric, utf8, ...

 -- bcd = one nibble contains one digit

 -- ascii-numeric = one byte contains one ASCII digit

 -- utf8 = password is stored in UTF8 encoding

 }

PKCS15TokenInfo ::= SEQUENCE {

 version INTEGER {v1(0)} (v1,...),

 serialNumber INTEGER, -- IC Card serial number

 manufacturerID UTF8String (SIZE (1..32)) OPTIONAL,

 tokenflags PKCS15TokenFlags,

 seInfo SET OF PKCS15SecurityEnvironmentInfo OPTIONAL,

 recordInfo PKCS15RecordInfo OPTIONAL,

 supportedAlgorithms [0] SET OF PKCS15AlgorithmInfo OPTIONAL,

 ... -- For future extensions

 } (CONSTRAINED BY { -- Each PKCS15AlgorithmInfo.reference value

 -- must be unique --})

PKCS15TokenFlags ::= BIT STRING {

 readonly (0),

 loginRequired (1),

 prnGeneration (2),

 eidCompliant (3)

 }

PKCS15SecurityEnvironmentInfo ::= SEQUENCE {

 se INTEGER (0..127),

 owner OBJECT IDENTIFIER,

 ... -- For future extensions

 }

PKCS15RecordInfo ::= SEQUENCE {

 oDFRecordLength [0] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,

 prKDFRecordLength [1] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,

 puKDFRecordLength [2] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,

 sKDFRecordLength [3] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,

 cDFRecordLength [4] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,

 dODFRecordLength [5] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL,

 aODFRecordLength [6] INTEGER (0..pkcs15-ub-recordLength) OPTIONAL

 }

PKCS15AlgorithmInfo ::= SEQUENCE {

 reference PKCS15Reference,

 algorithm PKCS15-ALGORITHM.&id({PKCS15AlgorithmSet}),

 parameters PKCS15-ALGORITHM.&Parameters({PKCS15AlgorithmSet}{@algorithm}),

 supportedOperations PKCS15-ALGORITHM.&Operations({PKCS15AlgorithmSet}{@algorithm})

 }

PKCS15-ALGORITHM ::= CLASS {

 &id INTEGER UNIQUE,

 &Parameters,

 &Operations PKCS15Operations

} WITH SYNTAX {

 PARAMETERS &Parameters OPERATIONS &Operations ID &id}

pkcs15-alg-null PKCS15-ALGORITHM ::= {

 PARAMETERS NULL OPERATIONS {{generate-key}} ID -1}

pkcs15-alg-rsa PKCS15-ALGORITHM ::= {

 PARAMETERS PKCS15RSAParameters OPERATIONS

 {PKCS15PublicKeyOperations} ID 0}

pkcs15-alg-dsa PKCS15-ALGORITHM ::= {

 PARAMETERS PKCS15DSAParameters OPERATIONS

 {PKCS15PublicKeyOperations} ID 1}

pkcs15-alg-dh PKCS15-ALGORITHM ::= {

 PARAMETERS PKCS15DHParameters OPERATIONS

 {PKCS15PublicKeyOperations} ID 2}

pkcs15-alg-ec PKCS15-ALGORITHM ::= {

 PARAMETERS PKCS15ECParameters OPERATIONS

 {PKCS15PublicKeyOperations} ID 3}

pkcs15-alg-kea PKCS15-ALGORITHM ::= {

 PARAMETERS PKCS15KEAParameters OPERATIONS

 {PKCS15PublicKeyOperations} ID 5}

PKCS15AlgorithmSet PKCS15-ALGORITHM ::= {

 pkcs15-alg-null |

 pkcs15-alg-rsa |

 pkcs15-alg-ec |

 pkcs15-alg-dh |

 pkcs15-alg-dsa |

 pkcs15-alg-kea,

 ... -- For future extensions

 }

PKCS15PublicKeyOperations ::= PKCS15Operations

PKCS15Operations ::= BIT STRING {

 compute-checksum (0), -- H/W computation of checksum

 compute-signature (1), -- H/W computation of signature

 verify-checksum (2), -- H/W verification of checksum

 verify-signature (3), -- H/W verification of signature

 encipher (4), -- H/W encryption of data

 decipher (5), -- H/W decryption of data

 hash (6), -- H/W hashing

 generate-key (7) -- H/W key generation

 }

PKCS15RSAParameters ::= NULL

PKCS15ECParameters ::= Parameters -- See ANSI X9.62

PKCS15DHParameters ::= DomainParameters -- See ANSI X9.42

PKCS15DSAParameters ::= DomainParameters -- See ANSI X9.42

PKCS15KEAParameters ::= DomainParameters -- See ANSI X9.42

PKCS15ECPoint ::= ECPoint -- See ANSI X9.62

PKCS15DiffieHellmanPublicNumber ::= DiffieHellmanPublicNumber -- See ANSI X9.42

PKCS15X509Certificate ::= Certificate -- See X.509

PKCS15AttributeCertificate ::= AttributeCertificate -- See X.509

PKCS15x9-68Certificate ::= PKCS15-OPAQUE.&Type

PKCS15WTLSCertificate ::= PKCS15-OPAQUE.&Type

PKCS15-OPAQUE ::= TYPE-IDENTIFIER

END

9 Revision History

Version 0.1

The first draft version of this document was posted in September 1998.

Version 0.2

The second draft version of this document was posted for the PKCS Workshop in October 1998.

Version 0.3

The third draft version of this document was posted for public review in November 1998. Changes were based on feedback both from the pkcs-tng mailing list and from the workshop.
Version 0.4
This is the fourth draft version of this document, posted for a 30-day public review period in February 1999. Changes are based on feedback from the pkcs-tng and cryptoki mailing lists.
Appendix A: File Access Conditions (Informative)

A.1 Scope

This appendix is only applicable to IC Card implementations.

A.2 Background

Since this recommendation is intended to be independent of particular IC card brands and models, we define 'generic' IC card access methods which should be straightforward to map to actual IC card operating system-native commands (assuming the card is an ISO/IEC 7816-4 compliant IC card).

A.3 Read-Only and Read-Write cards

Access conditions for files in the PKCS15 application can be set up differently depending on if the application is to be read-only or read-write. A read-only card might be desired for high-security purposes, for example when it has been issued using a secure issuing process, and it is to be certain that it can not be manipulated afterwards.

The following is a table of different possible access methods, which is a superset of the PKCS15Operations type. These are generic methods which should be possible to map to all different IC card types (sometimes the mapping might turn out to be a “No-Op”, because the card does not support any similar operation). The exact access methods, and their meaning, varies for each IC card type. In the table, a ‘*’ indicates that the access method is only relevant for files containing keys. These methods are abbreviated to ‘CRYPT’ in Table 5.
File type
Access method
Meaning

DF
Create
Allows new files, both EFs and DFs to be created in the DF.

Delete
Allows files in the DF to be deleted. Relevant only for cards which support deletion.

EF
Read
It is allowed to read the file’s contents.

Update
It is allowed to update the file’s contents.

Append
It is allowed to append information to the file (usually only applicable to linear record files).

Compute checksum
* The contents of the file can be used when computing a checksum

Compute Signature
* The contents of the file can be used when computing a signature

Verify checksum
* The contents of the file can be used when verifying a checksum

Verify signature
* The contents of the file can be used when verifying a signature

Encipher
* The contents of the file can be used in an enciphering operation

Decipher
* The contents of the file can be used in a deciphering operation

Table 3: File access methods

Note that it is the directory’s access methods, and not the files’, which decide if files in the directory are allowed to be created or deleted.

Each access method can have the following conditions. These are also generic and should be possible to implement on all IC card types.

Type
Meaning

NEV
The operation is never allowed, not even after cardholder verification.

ALW
The operation is always allowed, without cardholder verification.

CHV
The operation is allowed after a successful card holder verification.

SYS
The operation is allowed after a system key presentation, typically available only to the card issuer (The Security Officer case), e.g. ‘EXTERNAL AUTHENTICATE’

Table 4: Possible access conditions
The following access conditions are recommended for files related to the PKCS#15 application
:
File
DF
R/O card
R/W card

MF
X
Create: SYS

Delete: NEV
Create: SYS

Delete: SYS

DIR

Read: ALW

Update: SYS

Append: SYS
Same as for R/O card.

PIN files

Read: NEV

Update: NEV

Append: NEV
Read: NEV

Update: CHV

Append: NEV

PKCS15
X
Create: SYS

Delete: NEV
Create: CHV | SYS
Delete: CHV | SYS

TokenInfo

Read: ALW

Update: NEV

Append: NEV
Same as for R/O card.

ODF

Read: ALW

Update: NEV

Append: SYS | NEV
Read: ALW

Update: SYS | NEV
Append: SYS | NEV

AODFs

Read: ALW

Update: NEV

Append: NEV
Read: ALW

Update: CHV | SYS | NEV
Append: CHV | SYS | NEV

PrKDFs, PuKDFs, SKDFs, CDFs and DODFs

Read: ALW | CHV

Update: NEV

Append: SYS | NEV
Read: ALW | CHV

Update: CHV

Append: CHV

Trusted CDFs

Read: ALW | CHV

Update: NEV

Append: SYS | NEV
Read: ALW | CHV

Update: SYS | NEV

Append: SYS | NEV

Key files

Read: NEV

Update: NEV

Append: NEV
Crypt: CHV
Read: NEV

Update: CHV | SYS | NEV

Append: CHV | SYS | NEV
Crypt: CHV

Other EFs

Read: ALW | CHV

Update: NEV

Append: SYS | NEV

Read: ALW | CHV

Update: CHV

Append: CHV

Table 5: Access conditions for the files

The difference between a read-only and a read-write (R-W) card is basically as follows: For a R-W card, new files can be created (to allow addition of new objects) and some EFs (e. g. CDFs only containing references to public objects) are allowed to be updated (to allow adding info about new objects) after correct cardholder verification. It is also possible to replace files on an R-W card.

It is recommended that all cards be personalized with the read-write access control settings, unless they are issued for an environment with high security requirements.

Appendix B: An Electronic Identification Profile of PKCS#15 (Normative)
This section describes a profile of PKCS#15 suitable for electronic identification (EID) purposes and requirements for it. Implementations may claim compliance with this profile. The profile includes requirements both for tokens and for host-side applications making use of EID tokens.

B.1 PKCS#15 objects

· Private Keys: A PKCS#15 token issued for EID purposes should contain at least two private keys, of which one should be usable for digital signature purposes and have it’s key usage flags set to nonRepudiation only. The union of the key usage flags for the other keys should contain the values ‘sign’ and ‘decrypt’. Authentication objects or encryption must protect all private keys. PIN-protection must be used whenever the token supports it. The nonRepudiation key should be protected with an authentication object used only for this key (alternatively: encrypted with a separate key/password). The key length must be sufficient for intended purposes (e.g. 1024 bits or more in the RSA case and 160 bits or more in the EC case, assuming all other parameters has been chosen in a secure manner).
Allowed private key types for this profile are:

· RSA keys
· Elliptic Curve keys (This profile places no restrictions on the domain parameters other than the ones mentioned above)
Host-side applications claiming conformance to this profile must recognize these key types and be able to use them.
· Secret Keys: No requirements. Objects of this type may or may not be present on the token, depending on the application issuer’s discretion. There is no requirement for host-side applications to handle these keys.

· Public Keys: No requirements. Objects of this type may or may not be present on the token, depending on the application issuer’s discretion. There is no requirement for host-side applications to handle these keys.

· Certificates: For each private key at least one corresponding certificate should be stored in the token. The certificates must be of type PKCS15X509Certificate. If an application issuer stores CA certificates on a token which supports the ISO/IEC 7816-4 logical file organization, and which has suitable file access mechanisms, then it is recommended that they are stored in a protected file, pointed to by a CDF file which is only modifiable by the card issuer (or not modifiable at all). This implies usage of the trustedCertificates field in the PKCS15ODF type. User certificates for which private keys exist on the token should be profiled in accordance with IETF RFC 2459.
· Host-side applications are required to recognize and be able to use the PKCS15X509Certificate type.
· Data objects: No requirements. Objects of this type may or may not be present on the token, depending on the application issuer’s discretion.
· Authentication objects: As follows from the description above, in the case of an IC Card capable of protecting files with authentication objects, at least one authentication objects (PINs) must be present on the card, protecting private objects. A separate PIN shall be used for the non-repudiation key, if such a key exist. Any use of the private keys in the card shall be preceded by user PIN verification. Any positive verification of one PIN code shall not enable the use of security services associated with another PIN code. Three consecutive and incorrect verifications of a certain user PIN code shall block all security services associated with that PIN code. PINs must be at least 4 characters (BCD, UTF8 or ASCII) long.
When a PIN is blocked through three consecutive incorrect PIN verifications, the PIN may only be unblocked through a special unblocking procedure, defined by the application issuer.

B.2 Considerations for non-IC Card cases

In these cases, use of encryption and signature algorithms are necessary to protect the privacy and confidentiality of private objects. The PKCS15Token type must be authenticated using one of the authentication algorithms in PKCS15MACAlgorithms.

It is recommended that the first EnvelopedData type in the PKCS15Token only contain private keys, and that subsequent EnvelopedData types contain other private objects. All public objects (certificates corresponding to the private keys and any public keys or public data objects) must be included in the PKCS15ObjectSequence.publicObjects field.

B.3 Constraints on ASN.1 types

Unless otherwise mentioned, conforming applications are required to recognize all OPTIONAL fields. The following constraints applies for tokens and applications claiming conformance to this EID profile:

· PKCS15CommonKeyAttributes.startDate must not be present.

· PKCS15CommonKeyAttributes.endDate must not be present.

· PKCS15CommonPrivateKeyAttributes.subjectName must not be present.

· PKCS15X509CertificateAttributes.subjeect must not be present.

· PKCS15X509CertificateAttributes.issuer must not be present.

· PKCS15X509CertificateAttributes.serialNumber must not be present.

B.4 File relationships in the IC card case

The purpose of the following figure is to show the relationship between certain files (EF(ODF), EF(PrKDF), EF(AODF) and EF(CDF)) in the DF(PKCS15) directory.
Note that it is possible for PKCS15Path pointers in EF(ODF) to point to locations inside the EF(ODF) itself. For example, if a card issuer intends to ‘lock’ EF(ODF), EF(PrKDF) and EF(AODF), they can all be stored within the same (physical) EF, EF(ODF). The advantage of this is that fewer ‘SELECT’ and ‘READ’ operations need to be done in order to read the contents of these files. There should be no need for host side applications to be modified due to this fact, however, since ordinary path pointers must be used anyway.

Figure 11: IC Card file relationships in the DF(PKCS15). Dashed arrows indicate cross-references.

B.5 Access Control Rules

On cryptographically capable IC cards, The private keys must be private objects, and should be marked as ‘sensitive’. Files, which contain private keys, should be protected against removal and/or overwriting. Using the definitions in Appendix A, the following access conditions shall be set for files in the PKCS#15 application directory (as in Appendix A, a “|” in the table stands for logical ‘OR’, i.e. a card issuer is free to make any choice, including Boolean expressions of available options):
File
Access Conditions, R-O Card
Access Conditions. R-W card

MF
Create: SYS

Delete: NEV
Create: SYS

Delete: SYS

EF(DIR)
Read: ALW

Update: SYS

Append: SYS
Read: ALW

Update: SYS

Append: SYS

PIN files
Read: NEV

Update: NEV

Append: NEV
Read: NEV

Update: CHV

Append: NEV

DF(PKCS15)
Create: SYS

Delete: NEV
Create: CHV | SYS

Delete: SYS

EF(TokenInfo)
Read: ALW

Update: NEV

Append: NEV
Read: ALW

Update: NEV

Append: NEV

EF(ODF)
Read: ALW

Update: NEV

Append: NEV
Read: ALW

Update: SYS

Append: SYS

AODFs
Read: ALW

Update: NEV

Append: NEV
Read: ALW

Update: NEV

Append: CHV | SYS

PrKDFs, PuKDFs, SKDFs, CDFs and DODFs
Read: ALW | CHV

Update: NEV

Append: SYS | NEV
Read: ALW | CHV

Update: CHV | SYS | NEV

Append: SYS | CHV

Trusted CDFs
Read: ALW | CHV

Update: NEV

Append: SYS | NEV
Read: ALW | CHV

Update: SYS | NEV

Append: SYS | NEV

Key files (see footnote for
Table 5)
Read: NEV

Update: NEV

Append: NEV

Crypt: CHV
Read: NEV

Update: CHV | SYS | NEV

Append: CHV | SYS | NEV

Crypt: CHV

Other EFs in the PKCS15 directory
Read: ALW | CHV

Update: NEV

Append: SYS | NEV
Crypt: CHV (when applic.)
Read: ALW | CHV

Update: CHV | SYS | NEV

Append: CHV | SYS | NEV
Crypt: CHV (when applic.)

Table 6: Access Control Rules for the EID profile of PKCS#15

10

Appendix C: Examples (Informative)

11
Note that, similar to section 6.1, when this section talks about or describes ‘contents’ of IC Card files, this is just a shorthand notation for “the contents of the files as it appears to someone using standard IC Card commands in accordance with ISO/IEC 7816-4 to access them”.

All examples are shown both in the formal value notation defined in X.680 and in DER encoding.

C.1 Example of EF(DIR)

Example contents of EF(DIR) for an IC Card with using indirect application selection.

Value notation:

{

 aid ‘A000000063504B43532D3135’H,

 label “RSA DSI”, -- UTF8 Encoded

 path ‘3F005015’H,

 oid {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

 pkcs-15(15) applications(4) eid(1)}

 –- Example OID, not for actual use

}
DER encoding:

61 29

 4F 0C A0 00 00 00 63 50 4B 43 53 2D 31 35

 50 07 52 53 41 20 44 53 49

 51 04 3F 00 50 15

 53 0A 2A 86 48 86 F7 0D 01 0F 04 01

C.2 Example of a whole PKCS15 application

The IC Card in this example has on-chip support for RSA and DES-EDE-CBC algorithm computation in addition to pseudo-random number generation. It is assumed that this information can be deduced from the card’s ATR string. As a consequence of this, the TokenInfo file contains no supportedAlgorithms field. The PKCS15 application is profiled for use in an electronic identification environment, in compliance with Appendix B, and has two RSA key pairs and two certificates. One key pair is only to be used for non-repudiation purposes and is protected with a separate authentication object (a PIN). There is also a private data object belonging to an application named ‘APP’. The total overhead for storing the PKCS#15 relevant information is in this case 410 bytes, but without the data object belonging to the ‘APP’ application it would have been 367 bytes.

C.2.1 EF(TokenInfo)

Value notation:

{

 version v1,

 serialNumber 975222251540124,

 manufacturerID “RSA DSI”,

 tokenflags {prnGeneration, eidCompliant}

}
DER encoding:

30 1B

 02 01 00

 02 09 15 97 52 22 25 15 40 12 30

 0C 07 52 53 41 20 44 53 49

 03 02 04 30

The total size of the data is 29 bytes.

C.2.2 EF(ODF)

Value notation:

{

 privateKeys : path : {

 path ‘3F0050154401’H

 },

 certificates : path : {

 path ‘3F0050154402’H

 },

 dataObjects : path : {

 path ‘3F0050154403’H

 },

 authObjects : path : {

 path ‘3F0050154404’H

 }

}
DER encoding (as specified, outermost SEQUENCE OF omitted):

A0 0A

 30 08

 04 06 3F 00 50 15 44 01

A3 0A

 30 08

 04 06 3F 00 50 15 44 02

A5 0A

 30 08

 04 06 3F 00 50 15 44 03

A6 0A

 30 08

 04 06 3F 00 50 15 44 04

As can be seen, the ODF simply consists of four records, and the total size of the data is 48 bytes.

C.2.3 EF(PrKDF)

Value notation:

{

 privateRSAKey : {

 commonObjectAttributes {

 label "KEY1",

 flags {private},

 authId '01'H

 },

 classAttributes {

 iD '45'H,

 usage {decrypt, sign, unwrap},

 -- By default 'native' RSA key

 },

 subClassAttributes {

 keyIdentifiers {

 {

 idType 4, -- Subject key hash

 idValue OCTET STRING :

 '3245DF2DA4584C34451AAAADF442547823181920'H

 -- Faked value of SHA-1 hash

 }

 }

 },

 typeAttributes {

 modulusLength 1024,

 value indirect : path : {

 path '3F0050154B01'H

 }

 }

 },

 privateRSAKey : {

 commonObjectAttributes {

 label "KEY2",

 flags {private},

 authId '02'H

 },

 classAttributes {

 iD '46'H,

 usage {nonRepudiation},

 -- By default 'native' RSA key

 },

 subClassAttributes {

 keyIdentifiers {

 {

 idType 4, -- Subject key hash

 idValue OCTET STRING :

 '3245DF2DA4584C34451AAAADF442547823181921'H

 -- Faked value of SHA-1 hash

 }

 }

 },

 typeAttributes {

 modulusLength 1024,

 value indirect : path : {

 path '3F0050154B02'H

 }

 }

 }

}
DER encoding (as specified, outermost SEQUENCE OF omitted):

30 47

 30 0D

 0C 04 4B 45 59 31

 03 02 07 80

 04 01 01

 30 07

 04 01 45

 03 02 02 64

 A0 1D

 30 1B

 30 19

 02 01 04

 04 14 3245DF2DA4584C34451AAAADF442547823181920

 30 0E

 02 02 04 00

 30 08

 04 06 3F 00 50 15 4B 01

30 47

 30 0D

 0C 04 4B 45 59 32

 03 02 07 80

 04 01 02

 30 08

 04 01 46

 03 03 06 00 40

 A0 1D

 30 1B

 30 19

 02 01 04

 04 14 3245DF2DA4584C34451AAAADF442547823181921

 30 0E

 02 02 04 00

 30 08

 04 06 3F 00 50 15 4B 01

The content of files 3F00/5015/4B01 and 3F00/5015/4B02 is completely card-specific. Operations possible to perform with keys in these files may either be deduced by looking at the contents of the TokenInfo file or by external knowledge of the card in question (ATR). The size of the data is 146 bytes (two records of 73 bytes each).

C.2.4 EF(CDF)

Value notation:

{

 x509Certificate : {

 commonObjectAttributes {

 label "CERT1",

 flags {},

 },

 classAttributes {

 iD '45'H

 -- By default not CA

 },

 typeAttributes {

 value indirect : path : {

 path '3F0050154331'H

 }

 }

 },

 x509Certificate : {

 commonObjectAttributes {

 label "CERT2",

 flags {},

 },

 classAttributes {

 iD '46'H

 -- By default not CA

 },

 typeAttributes {

 value indirect : path : {

 path '3F0050154B02'H

 }

 }

 }

}
DER encoding (as specified, outermost SEQUENCE OF omitted):

30 1C

 30 09

 0C 05 43 45 52 54 31

 03 00

 30 03

 04 01 45

 30 0A

 30 08

 04 06 3F 00 50 15 43 31

30 1C

 30 09

 0C 05 43 45 52 54 32

 03 00

 30 03

 04 01 46

 30 0A

 30 08

 04 06 3F 00 41 4E 43 31

Files 3F00/5015/4331 and 3F00/414E/4331 should contain DER-encoded certificate structures in accordance with ISO/IEC 9594-8. Note that the second certificate resides in a different DF under the MF in this example. The size of the data is 60 bytes (two records of 30 bytes each).

C.2.5 EF(AODF)

Value notation:

{

 pin : {

 commonObjectAttributes {

 label "PIN1",

 flags {private}

 },

 classAttributes {

 authId '01'H, -- Binds to KEY1

 },

 typeAttributes {

 pinFlags {change-disabled, initialized, need-padding},

 pinType bcd-numeric,

 minLength 4,

 storedLength 8,

 padChar 'FF'H

 -- path not given, implicitly PIN file in MF

 }

 }

 pin : {

 commonObjectAttributes {

 label "PIN2",

 flags {private}

 },

 classAttributes {

 authId '02'H, -- Binds to KEY1

 },

 typeAttributes {

 pinFlags {change-disabled, initialized, need-padding},

 pinType bcd-numeric,

 minLength 4,

 storedLength 8,

 padChar 'FF'H

 path {

 path '3F0050150100'H

 }

 }

 }

}
DER encoding (as specified, outermost SEQUENCE OF omitted):

30 23

 30 0A

 0C 04 50 49 4E 31

 03 02 07 80

 30 03

 04 01 01

 30 10

 03 02 02 2C

 0A 01 00

 02 01 04

 02 01 08

 04 01 FF

30 2D

 30 0A

 0C 04 50 49 4E 32

 03 02 07 80

 30 03

 04 01 02

 30 1A

 03 02 02 4C

 0A 01 00

 02 01 04

 02 01 08

 04 01 FF

 30 08

 04 06 3F 00 50 15 01 00

The content of files 3F00/5015/0100 and 3F00/0000 is card specific and not specified in PKS#15. The size of the data is 84 bytes (one record of length 37 bytes, the other of length 47 bytes).

C.2.6 EF(DODF)

Value notation:

{

 opaqueDO : {

 commonObjectAttributes {

 label "OBJECT1",

 flags {private, modifiable},

 authId '02'H

 },

 classAttributes {

 applicationName "APP"

 }

 typeAttributes indirect : path : {

 path '3F0050154431'H

 }

 }

}

DER encoding (outermost SEQUENCE OF omitted, as specified):

30 29

 30 10

 0C 07 4F 42 4A 45 43 54 31

 03 02 06 C0

 04 01 02

 30 05

 0C 03 41 50 50

 30 0E

 04 06 3F 00 50 15 44 31

 02 01 40

 02 01 30

The size of the data is 43 bytes (one record). The data entry in file 3F00/5015/4431 is to be found 64 bytes from the beginning of the file and is 48 bytes long.

C.3 Software example

This example is the equivalent of the example in the previous section, only implemented in software (one file). The TokenInfo type is not relevant in this case and omitted, as are authentication objects. The key-encryption key is derived from the user’s password by using the “PBKDF2” algorithm defined in PKCS#5. The password used in this example is “pkcs15”.

Value notation:

examplePKCS15AuthenticatedToken ::= { -- AuthenticatedData

 version 0,

 recipientInfos {

 kekri : {

 version 4,

 kekId {

 keyIdentifier ''H,

 other {

 keyAttrId {iso(1) member-body(2) us(840)

 rsadsi(113549) pkcs(1) pkcs-5(5) 9},

 -- OBJECT IDENTIFIER for id-PBKDF2 in PKCS#5

 keyAttr {

 saltSource {

 algorithm id-saltSpecified -- See PKCS5,

 parameters OCTET STRING : '0123456789ABCDEF'H

 },

 iterationCount 1024,

 keyLength 21,

 }

 }

 },

 keyEncryptionAlgorithm {

 algorithm id-alg-3DESwrap,

 parameters NULL

 },

 encryptedKey ''H -- Not (yet) specified

 }

 },

 macAlgorithm {

 algorithm hMAC-SHA1

 },

 digestAlgorithm {

 algorithm sha-1

 parameters NULL

 },

 encapContentInfo {

 eContentType {pkcs15-ct-token},

 eContent ''H -- Not (yet) included here, but see below for the

 -- value notation for a PKCS15Token which goes

 -- here (DER encoded inside the octet string)

 },

 authenticatedAttributes {

 {

 attrType id-contentType,

 attrValues {

 OBJECT IDENTIFIER : {pkcs15-ct-token}

 }

 },

 {

 attrType id-messageDigest,

 attrValues {

 OCTET STRING : ''H -- Not (yet) included in this

 -- example

 }

 }

 },

 mac ''H, -- Not (yet) included in this example

}

examplePKCS15Token PKCS15Token ::= { -- To be DER encoded and

 -- encapsulated within an 'AuthenticatedData' type

 version v1,

 pkcs15Objects {

 privateObjects : {

 version 2,

 recipientInfos {

 kekri : {

 version 4,

 kekid {},

 keyEncryptionAlgorithm {

 algorithm id-alg-3DESwrap,

 parameters NULL

 },

 encryptedKey ''H -- Not (yet) in this example

 }

 },

 encryptedContentInfo {

 contentType {pkcs15-ct-privateObject},

 contentEncryptionAlgorithm {

 algorithm {des-ede3-cbc},

 parameters OCTET STRING : '1324354657687980'H

 },

 encryptedContent ''H -- Not (yet) in this example,

 -- but shall be the result of encrypting the DER-

 -- encoding of a SEQUENCE OF PKCS15Objects where

 -- all objects are private. As an example of this

 -- type, see the 'pkcs15ExamplePrivateObjects' below

 }

 },

 publicObjects : { -- SEQUENCE OF PKCS15Objects (public ones)

 certificates : {

 x509Certificate : {

 commonObjectAttributes {

 label "CERT1"

 -- 'flags' not needed, soft token

 },

 classAttributes {

 iD '45'H

 -- By default not CA

 },

 typeAttributes {

 value : direct : {

 -- A X.509 certificate goes here

 }

 }

 },

 x509Certificate : {

 commonObjectAttributes {

 label "CERT2"

 -- flags not needed, soft token

 },

 classAttributes {

 iD '46'H

 -- By default not CA

 },

 typeAttributes {

 value direct : {

 -- A X.509 certificate goes here

 }

 }

 }

 }

 }

 }

}

pkcs15ExamplePrivateObjects SEQUENCE OF PKCS15Objects ::= {

 -- To be encoded and encrypted and stored inside an EnvelopedData

 -- type.

 privateKeys: {

 privateRSAKey : {

 commonObjectAttributes {

 label "KEY1"

 -- 'flags' not needed, soft token

 -- 'authId' not needed, soft token

 },

 classAttributes {

 iD '45'H,

 usage {decrypt, sign, unwrap},

 native FALSE,

 },

 subClassAttributes {

 keyIdentifiers {

 {

 idType 4, -- Subject key hash

 idValue OCTET STRING : '4321567890ABCDEF'H

 -- Faked value

 }

 }

 },

 typeAttributes {

 modulusLength 1024,

 value direct : {

 -- Insert a value of type 'PKCS15RSAPrivateKey' here

 }

 }

 },

 privateRSAKey : {

 commonObjectAttributes {

 label "KEY2"

 -- 'flags' not needed, soft token

 -- 'authId' not needed, soft token

 },

 classAttributes {

 iD '46'H,

 usage {nonRepudiation},

 native FALSE,

 },

 subClassAttributes {

 keyIdentifiers {

 {

 idType 4, -- Subject key hash

 idValue OCTET STRING : '1234567890ABCDEF'H

 -- Faked value

 }

 }

 },

 typeAttributes {

 modulusLength 1024,

 value direct : {

 -- Insert a value of type 'PKCS15RSAPrivateKey' here

 }

 }

 }

 }

 dataObjects : {

 opaqueDO : {

 commonObjectAttributes {

 label "OBJECT1"

 -- 'flags' not needed, soft token

 -- 'authId' not needed, soft token

 },

 classAttributes {

 applicationName "APP"

 }

 typeAttributes direct OCTET STRING : '1234'H

 }

 }

}

DER encoding - TBD

About PKCS

The Public-Key Cryptography Standards are specifications produced by RSA Laboratories in cooperation with secure systems developers worldwide for the purpose of accelerating the deployment of public-key cryptography. First published in 1991 as a result of meetings with a small group of early adopters of public-key technology, the PKCS documents have become widely referenced and implemented. Contributions from the PKCS series have become part of many formal and de facto standards, including ANSI X9.45, PKIX, SET, S/MIME, and SSL.

Further development of PKCS occurs through mailing list discussions and occasional workshops, and suggestions for improvement are welcome. For more information, contact:

PKCS Editor
RSA Laboratories
2955 Campus Drive, Suite 400
San Mateo, CA 94403-2507 USA
(650) 295-7600
(650) 295-7700 (fax)
pkcs-editor@rsa.com
http://www.rsa.com/rsalabs/pubs/PKCS
EF(DODF)

EF(CDF)

EF(TokenInfo)

EF(PrKDF)

Other DFs/EFfs…

DF(PKCS#15)

EF(AODF)

DF(PKCS#15)

EF(DIR)

EF(AODF)

EF(ODF)

EF(CDF)

MF

EF(PrKDF)

PrKDF pointer

CDF pointer

AODF pointer

DODF pointer

Private Secret key #1

Private Secret key #2

Information about private secret key #1

Informa

Information about t secretprivate key #2

Information about secret key #n

Private key #2

Private keyCertificate #1

Private Certificatekey #2

Information about private certificatekey #1

Informa

Information about pcertificaterivate key #2

Information about certificate #n

Private key #2

Publicrivate key #1

Private Public key #2

Information about publicrivate key #1

Informa

Information about ppublicrivate key #2

Information about public key #n

Private key #2

Private keyData object #1

Private Data objectkey #2

Information about private data objectkey #1

Informa

Information about pdata objectrivate key #2

Information about data object #n

Private key #2

Private keyAuth. object #1

Private Auth. objectkey #2

Information about private auth. objectkey #1

Informa

Information about pauth. objectrivate key #2

Information about auth. object #n

Private key #2

PKCS #15 Top Object (virtualabstract)

PIN Object (structural)

Authentication Object (virtualabstract)

External data objects (structural)

Data Object (virtualabstract)

X.509 Certificate (structural)

Other Certificates (structural)

Certificate Object (virtualabstract)

Public Key (structural)

Private Key (structural)

Secret Key (structural)

Key Object (abstract(virtual)

Private SecretPrivate key #1

Private PrivaSecrete key #2

Information about privateprivate secret key #1

Informa

Information about t secretprivateprivate key #2

Information about secretprivate key #n

Private key #2

Cert 1 Info

00 L …

Cert 3 Info

Cert 1 Info

00 L …

Cert 3 Info

Cert 1 Info

Cert 3 Info

AODF

PrKDF

CDF

Private key 1

EF(CDF)

EF(PrKDF)

Cert 2

Cert 1 info

Cert 2 info

EF(AODF)

Cert 1

Key 1 info

Key 2 info

PIN 1 info

PIN 2 info

Private key 2

EF(ODF)

AODF

PrKDF

CDF

PIN 1 info

PIN 2 info

Key 1 info

Key 2 info

EF(ODF)

EF(AODF)

Private key 1

EF(PrKDF)

Cert 1 info

Cert 2 info

Private key 2

EF(CDF)

Cert 2

Cert 1

EF(ODF)

� Not to be misunderstood with ISO/IEC dedicated files ‘DFs’.

� For the purpose of this recommendation, EF(DIR) is only needed on IC Cards which do not support direct application selection as defined in ISO/IEC 7816-5 or when multiple PKCS#15 applications reside on a single card.

� There might be export-related reasons for having several sequences of private objects. Specifically, if private key objects are collected in one sequence, it might be permitted to protect these with a stronger algorithm than one used to protect general data objects.

� On some IC Cards which supports having several keys in one EF, keys are referenced by an identifier when used, but updating the EF requires knowledge of an offset and/or length of the data. In these cases, the PKCS15CommonKeyAttributes.keyR-reference field shall be used for access to the key, and the presence of the PKS15Path.index and PKCS15Path.length depends on the card issuer’s discretion (they are not needed for card usage purposes, but may be used for modification purposes).

� Note: The nonRepudiation value is not present in PKCS#11.

� Note: This is different from the hash method used e.g. in IETF RFC [PKIX], but it serves the purpose of being independent of certificate format – alternative certificate formats not DER-encoding the public key has been proposed.

� A “|” in the table stands for logical OR, i.e. the card issuer may choose any alternative, including Boolean expressions of available options. E.g. UPDATE of an EF(ODF) on a R/W card may be permitted only after correct cardholder verification ‘CHV’ AND an external authentication ‘SYS’.

� Files containing private or secret keys and the token supports crypto-related commands for these files

� This section applies in particular to pure software implementations

Copyright © 1991-1999 RSA Laboratories, a division of RSA Data Security, Inc., a Security Dynamics Company. License to copy this document is granted provided that it is identified as “RSA Data Security, Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or referencing this document.

DRAFT

Copyright © 1998-1999 RSA Laboratories.

