AutoGen - The Automated Program Generator

For version 5.5, May 2003

Bruce Korb

bkorb@gnu.org

mailto:bkorb@gnu.org

AutoGen copyright (© 1992-2003 Bruce Korb

This is the second edition of the GNU AutoGen documentation,

Published by Bruce Korb, 910 Redwood Dr., Santa Cruz, CA 95060
AutoGen is free software.

You may redistribute it and/or modify it under the terms of the GNU General Public
License, as published by the Free Software Foundation; either version 2, or (at your option)
any later version.

AutoGen is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with AutoGen.
See the file "COPYING". If not, write to: The Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.

Chapter 1: Introduction 1

1 Introduction

AutoGen is a tool designed for generating program files that contain repetitive text with
varied substitutions. Its goal is to simplify the maintenance of programs that contain large
amounts of repetitious text. This is especially valuable if there are several blocks of such
text that must be kept synchronized in parallel tables.

One common example is the problem of maintaining the code required for processing
program options. Processing options requires a minimum of four different constructs be
kept in proper order in different places in your program. You need at least:

1. The flag character in the flag string,
2. code to process the flag when it is encountered,
3. a global state variable or two, and

4. a line in the usage text.

You will need more things besides this if you choose to implement long option names, rc/ini
file processing, environment variables and so on. All of this can be done mechanically; with
the proper templates and this program. In fact, it has already been done and AutoGen itself
uses it See Chapter 7 [AutoOpts|, page 66. For a simple example of Automated Option
processing, See Section 7.2 [Quick Start], page 69. For a full list of the Automated Option
features, See Section 7.1 [Features|, page 66.

1.1 The Purpose of AutoGen

The idea of this program is to have a text file, a template if you will, that contains
the general text of the desired output file. That file includes substitution expressions and
sections of text that are replicated under the control of separate definition files.

AutoGen was designed with the following features:

1. The definitions are completely separate from the template. By completely isolating
the definitions from the template it greatly increases the flexibility of the template
implementation. A secondary goal is that a template user only needs to specify those
data that are necessary to describe his application of a template.

2. Each datum in the definitions is named. Thus, the definitions can be rearranged,
augmented and become obsolete without it being necessary to go back and clean up
older definition files. Reduce incompatibilities!

3. Every definition name defines an array of values, even when there is only one entry.
These arrays of values are used to control the replication of sections of the template.

4. There are named collections of definitions. They form a nested hierarchy. Associated
values are collected and associated with a group name. These associated data are used
collectively in sets of substitutions.

5. The template has special markers to indicate where substitutions are required, much
like the ${VAR} construct in a shell here doc. These markers are not fixed strings.
They are specified at the start of each template. Template designers know best what
fits into their syntax and can avoid marker conflicts.

We did this because it is burdensome and difficult to avoid conflicts using either M4
tokenizaion or C preprocessor substitution rules. It also makes it easier to specify

Chapter 1: Introduction 2

expressions that transform the value. Of course, our expressions are less cryptic than
the shell methods.

6. These same markers are used, in conjunction with enclosed keywords, to indicate sec-
tions of text that are to be skipped and for sections of text that are to be repeated.
This is a major improvement over using C preprocessing macros. With the C prepro-
cessor, you have no way of selecting output text because it is an unvarying, mechanical
substitution process.

7. Finally, we supply methods for carefully controlling the output. Sometimes, it is just
simply easier and clearer to compute some text or a value in one context when its
application needs to be later. So, functions are available for saving text or values for
later use.

1.2 A Simple Example

This is just one simple example that shows a few basic features. If you are interested, you
also may run "make check" with the VERBOSE enviornment variable set and see a number
of other examples in the ‘agenb5/test/testdir’ directory.

Assume you have an enumeration of names and you wish to associate some string with
each name. Assume also, for the sake of this example, that it is either too complex or too
large to maintain easily by hand. We will start by writing an abbreviated version of what
the result is supposed to be. We will use that to construct our output templates.

In a header file, ‘1list.h’, you define the enumeration and the global array containing the
associated strings:
typedef enum {
IDX_ALPHA,
IDX_BETA,
IDX_OMEGA } 1list_enum;

extern const char* az_name_list[3 J];
Then you also have ‘list.c’ that defines the actual strings:
#include "list.h"
const char* az_name_list[] = {
"some alpha stuff",
"more beta stuff",
"final omega stuff" };
First, we will define the information that is unique for each enumeration name/string pair.
This would be placed in a file named, ‘1ist.def’, for example.
autogen definitions list;
list = { list_element = alpha;

list_info = "some alpha stuff"; };
list = { list_info = "more beta stuff";
list_element = beta; };
list = { list_element = omega;

list_info = "final omega stuff"; };

The autogen definitions list; entry defines the file as an AutoGen definition file
that uses a template named 1ist. That is followed by three list entries that define the

Chapter 1: Introduction 3

associations between the enumeration names and the strings. The order of the differently
named elements inside of list is unimportant. They are reversed inside of the beta entry
and the output is unaffected.

Now, to actually create the output, we need a template or two that can be expanded
into the files you want. In this program, we use a single template that is capable of multiple
output files. The definitions above refer to a ‘list’ template, so it would normally be
named, ‘list.tpl’.

It looks something like this. (For a full description, See Chapter 3 [Template File],
page 17.)

[+ AutoGen5 template h c +]
[+ CASE (suffix) +][+
== h +]
typedef enum {[+
FOR list "," +]
IDX_[+ (string-upcase! (get "list_element")) +][+
ENDFOR 1list +] } 1list_enum;

extern const char* az_name_list[[+ (count "list") +] 1;

[+

= c +]
#include "list.h"
const char* az_name_list[] = {[+
FOR 1list "," +]
"[+1list_info+]" [+
ENDFOR list +] };[+

ESAC +]

The [+ AutoGen5 template h ¢ +] text tells AutoGen that this is an AutoGen version
5 template file; that it is to be processed twice; that the start macro marker is [+; and the
end marker is +]. The template will be processed first with a suffix value of h and then
with c. Normally, the suffix values are appended to the ‘base-name’ to create the output
file name.

The [+ ==h +] and [+ == c +] CASE selection clauses select different text for the two
different passes. In this example, the output is nearly disjoint and could have been put in
two separate templates. However, sometimes there are common sections and this is just an
example.

The [+FOR 1list "," +] and [+ ENDFOR list +] clauses delimit a block of text that will
be repeated for every definition of 1ist. Inside of that block, the definition name-value
pairs that are members of each 1ist are available for substitutions.

The remainder of the macros are expressions. Some of these contain special expres-
sion functions that are dependent on AutoGen named values; others are simply Scheme
expressions, the result of which will be inserted into the output text. Other expressions are
names of AutoGen values. These values will be inserted into the output text. For example,
[+list_info+] will result in the value associated with the name list_info being inserted
between the double quotes and (string-upcase! (get "list_element")) will first "get"

Chapter 1: Introduction 4

the value associated with the name 1ist_element, then change the case of all the letters
to upper case. The result will be inserted into the output document.

If you have compiled AutoGen, you can copy out the template and definitions as de-
scribed above and run autogen list.def. This will produce exactly the hypothesized
desired output.

One more point, too. Lets say you decided it was too much trouble to figure out how
to use AutoGen, so you created this enumeration and string list with thousands of entries.
Now, requirements have changed and it has become necessary to map a string containing
the enumeration name into the enumeration number. With AutoGen, you just alter the
template to emit the table of names. It will be guaranteed to be in the correct order, missing
none of the entries. If you want to do that by hand, well, good luck.

1.3 csh/zsh caveat

AutoGen tries to use your normal shell so that you can supply shell code in a manner
you are accustomed to using. If, however, you use csh or zsh, you cannot do this. Csh is
sufficiently difficult to program that it is unsupported. Zsh, though largely programmable,
also has some anomolies that make it incompatible with AutoGen usage. Therefore, when
invoking AutoGen from these environments, you must be certain to set the SHELL envi-
ronment variable to a Bourne-derived shell. e.g., sh, ksh or bash.

Any shell you choose for your own scripts need to follow these basic requirements:

1. It handles trap $sig ":" without output to standard out. This is done when the server
shell is first started. If your shell does not handle this, then it may be able to by loading
functions from its start up files.

2. At the beginning of each scriptlet, the command \\cd $PWD is inserted. This ensures
that cd is not aliased to something peculiar and each scriptlet starts life in the execution
directory.

3. At the end of each scriptlet, the command echo mumble is appended. The program
you use as a shell must emit the single argument mumble on a line by itself.

1.4 A User’s Perspective

Alexandre wrote:
>

> I'd appreciate opinions from others about advantages/disadvantages of
> each of these macro packages.

I am using AutoGen in my pet project, and find one of its best points to be that it
separates the operational data from the implementation.

Indulge me for a few paragraphs, and all will be revealed: In the manual, Bruce cites the
example of maintaining command line flags inside the source code; traditionally spreading
usage information, flag names, letters and processing across several functions (if not files).
Investing the time in writing a sort of boiler plate (a template in AutoGen terminology)
pays by moving all of the option details (usage, flags names etc.) into a well structured
table (a definition file if you will), so that adding a new command line option becomes a
simple matter of adding a set of details to the table.

Chapter 1: Introduction 5

So far so good! Of course, now that there is a template, writing all of that tedious optargs
processing and usage functions is no longer an issue. Creating a table of the options needed
for the new project and running AutoGen generates all of the option processing code in
C automatically from just the tabular data. AutoGen in fact already ships with such a
template... AutoOpts.

One final consequence of the good separation in the design of AutoGen is that it is
retargetable to a greater extent. The eges/gec/fixine/inclhack.def can equally be used (with
different templates) to create a shell script (inclhack.sh) or a ¢ program (fixincl.c).

This is just the tip of the iceberg. AutoGen is far more powerful than these examples
might indicate, and has many other varied uses. I am certain Bruce or I could supply you
with many and varied examples, and I would heartily recommend that you try it for your
project and see for yourself how it compares to m4.

As an aside, I would be interested to see whether someone might be persuaded to ratio-
nalise autoconf with AutoGen in place of m4... Ben, are you listening? autoconf-3.0! ‘kay?
=)0l
Sincerely,

Gary V. Vaughan

Chapter 2: AutoGen Definitions File 6

2 AutoGen Definitions File

This chapter describes the syntax and semantics of the AutoGen definition file. In order
to instantiate a template, you normally must provide a definitions file that identifies itself
and contains some value definitions. Consequently, we keep it very simple. For "advanced"
users, there are preprocessing directives, sparse arrays, named indexes and comments that
may be used as well.

The definitions file is used to associate values with names. Every value is implicitly
an array of values, even if there is only one value. Values may be either simple strings
or compound collections of name-value pairs. An array may not contain both simple and
compound members. Fundamentally, it is as simple as:

prog_name = "autogen";
flag = {
name = templ_dirs;
value =L;
descrip = "Template search directory list";

};

For purposes of commenting and controlling the processing of the definitions, C-style
comments and most C preprocessing directives are honored. The major exception is that
the #if directive is ignored, along with all following text through the matching #endif
directive. The C preprocessor is not actually invoked, so C macro substitution is not
performed.

2.1 The Identification Definition

The first definition in this file is used to identify it as a AutoGen file. It consists of the
two keywords, ‘autogen’ and ‘definitions’ followed by the default template name and a
terminating semi-colon (;). That is:

AutoGen Definitions template-name;

Note that, other than the name template-name, the words ‘AutoGen’ and ‘Definitions’
are searched for without case sensitivity. Most lookups in this program are case insensitive.

Also, if the input contains more identification definitions, they will be ignored. This is done
so that you may include (see Section 2.5 [Directives|, page 10) other definition files without
an identification conflict.

AutoGen uses the name of the template to find the corresponding template file. It searches
for the file in the following way, stopping when it finds the file:

1. It tries to open ‘./template-name’. If it fails,
2. it tries ‘. /template-name.tpl’.
3. It searches for either of these files in the directories listed in the templ-dirs command

line option.

If AutoGen fails to find the template file in one of these places, it prints an error message
and exits.

Chapter 2: AutoGen Definitions File 7

2.2 Named Definitions

Any name may have multiple values associated with it in the definition file. If there is
more than one instance, the only way to expand all of the copies of it is by using the FOR
(see Section 3.6.13 [FOR], page 47) text function on it, as described in the next chapter.

There are two kinds of definitions, ‘simple’ and ‘compound’. They are defined thus (see
Section 2.9 [Full Syntax], page 14):

compound_name ’=’ ’{’ definition-list ’}’ ’;’
simple_name ’=’ string ’;’

no_text_name ’;’

No_text_name is a simple definition with a shorthand empty string value. The string values
for definitions may be specified in any of several formation rules.

2.2.1 Definition List

definition-1list is a list of definitions that may or may not contain nested compound
definitions. Any such definitions may only be expanded within a FOR block iterating over
the containing compound definition. See Section 3.6.13 [FOR], page 47.

Here is, again, the example definitions from the previous chapter, with three additional
name value pairs. Two with an empty value assigned (first and last), and a "global"
group_name.

autogen definitions list;

group_name = example;

list = { list_element = alpha; first;
list_info = "some alpha stuff"; };

list = { list_info = "more beta stuff";
list_element = beta; };
list = { list_element = omega; last;

list_info "final omega stuff"; };

2.2.2 Double Quote String

The string follows the C-style escaping (\, \n, \f, \v, etc.), plus octal character numbers
specified as \ooo. The difference from "C" is that the string may span multiple lines. Like
ANSI "C", a series of these strings, possibly intermixed with single quote strings, will be
concatenated together.

2.2.3 Single Quote String

This is similar to the shell single-quote string. However, escapes \ are honored before
another escape, single quotes ’> and hash characters #. This latter is done specifically to
disambiguate lines starting with a hash character inside of a quoted string. In other words,

fumble =’
#tendif

) .
3

could be misinterpreted by the definitions scanner, whereas this would not:

Chapter 2: AutoGen Definitions File 8

fumble = °’
\#endif

).
3

As with the double quote string, a series of these, even intermixed with double quote strings,
will be concatenated together.

2.2.4 Shell Output String

This is assembled according to the same rules as the double quote string, except that
there is no concatenation of strings and the resulting string is written to a shell server
process. The definition takes on the value of the output string.

NB The text is interpreted by a server shell. There may be left over state from previous
¢ processing and it may leave state for subsequent processing. However, a cd to the original
directory is always issued before the new command is issued.

2.2.5 An Unquoted String

A simple string that does not contain white space may be left unquoted. The string must
not contain any of the characters special to the definition text (i.e. ", #, 7, (,), ,, ;, <, =,
> [, 1, ¢, {, or }). This list is subject to change, but it will never contain underscore (_),
period (.), slash (/), colon (:), hyphen (=) or backslash (\\). Basically, if the string looks
like it is a normal DOS or UNIX file or variable name, and it is not one of two keywords
(‘autogen’ or ‘definitions’) then it is OK to not quote it, otherwise you should.

2.2.6 Scheme Result String

A scheme result string must begin with an open parenthesis (. The scheme expression
will be evaluated by Guile and the value will be the result. The AutoGen expression
functions are disabled at this stage, so do not use them.

2.2.7 A Here String

A ‘here string’ is formed in much the same way as a shell here doc. It is denoted
with a doubled less than character and, optionally, a hyphen. This is followed by optional
horizontal white space and an ending marker-identifier. This marker must follow the syntax
rules for identifiers. Unlike the shell version, however, you must not quote this marker. The
resulting string will start with the first character on the next line and continue up to but
not including the newline that precedes the line that begins with the marker token. No
backslash or any other kind of processing is done on this string. The characters are copied
directly into the result string.

Here are two examples:
strl = <<- STR_END

$quotes = "
STR_END;

[

str2 = << STR_END

Chapter 2: AutoGen Definitions File 9

$quotes = " > ¢

STR_END;
STR_END;

The first string contains no new line characters. The first character is the dollar sign,
the last the back quote.

The second string contains one new line character. The first character is the tab character
preceeding the dollar sign. The last character is the semicolon after the STR_END. That
STR_END does not end the string because it is not at the beginning of the line. In the
preceeding case, the leading tab was stripped.

2.2.8 Concatenated Strings

If single or double quote characters are used, then you also have the option, a la ANSI-C
syntax, of implicitly concatenating a series of them together, with intervening white space
ignored.

NB You cannot use directives to alter the string content. That is,

str = "fumble"

#ifdef LATER

"stumble"

#endif
will result in a syntax error. The preprocessing directives are not carried out by the C
preprocessor. However,

str = ’"fumble\n"

#ifdef LATER

" stumble\n"
#endif

J .
I

Will work. It will enclose the ‘#ifdef LATER’ and ‘#endif’ in the string. But it may
also wreak havoc with the definition processing directives. The hash characters in the
first column should be disambiguated with an escape \ or join them with previous lines:
"fumble\n#ifdef LATER....

2.3 Assigning an Index to a Definition

In AutoGen, every name is implicitly an array of values. When assigning values, they
are usually implicitly assiged to the next highest slot. They can also be specified explicitly:

mumble[9] = stumble;
mumble [0] = grumble;

If, subsequently, you assign a value to mumble without an index, its index will be 10, not 1.
If indexes are specified, they must not cause conflicts.

#define-d names may also be used for index values. This is equivalent to the above:

#define FIRST O
#define LAST 9O
mumble [LAST] = stumble;

Chapter 2: AutoGen Definitions File 10

mumble [FIRST] = grumble;
All values in a range do not have to be filled in. If you leave gaps, then you will have

a sparse array. This is fine (see Section 3.6.13 [FOR], page 47). You have your choice of
iterating over all the defined values, or iterating over a range of slots. This:

[+ FOR mumble +] [+ ENDFOR +]
iterates over all and only the defined entries, whereas this:
[+ FOR mumble (for-by 1) +][+ ENDFOR +]
will iterate over all 10 "slots". Your template will likely have to contain something like this:
[+ IF (exist? (sprintf "mumble[%d]" (for-index))) +]
or else "mumble" will have to be a compound value that, say, always contains a "grumble"
value:
[+ IF (exist? "grumble") +]

2.4 Dynamic Text

There are several methods for including dynamic content inside a definitions file. Three
of them are mentioned above (Section 2.2.4 [shell-generated], page 8 and see Section 2.2.6
[scheme-generated|, page 8) in the discussion of string formation rules. Another method
uses the #shell processing directive. It will be discussed in the next section (see Section 2.5
[Directives|, page 10). Guile/Scheme may also be used to yield to create definitions.

When the Scheme expression is preceeded by a backslash and single quote, then the
expression is expected to be an alist of names and values that will be used to create AutoGen
definitions.

This method can be be used as follows:

\’((name (value-expression))
(name2 (another-expr)))

This is entirely equivalent to:

name = (value-expression);

name2 = (another-expr);
Under the covers, the expression gets handed off to a Guile function named
alist->autogen-def in an expression that looks like this:

(alist->autogen-def
((name (value-expression)) (name2 (another-expr))))

2.5 Controlling What Gets Processed

Definition processing directives can only be processed if the ’#’ character is the first
character on a line. Also, if you want a '#’ as the first character of a line in one of your
string assignments, you should either escape it by preceding it with a backslash ‘\’, or by
embedding it in the string as in "\n#".

All of the normal C preprocessing directives are recognized, though several are ignored.
There is also an additional #shell - #endshell pair. Another minor difference is that
AutoGen directives must have the hash character (#) in column 1.

Chapter 2: AutoGen Definitions File 11

The final tweak is that #! is treated as a comment line. Using this feature, you can
use: ‘#! /usr/local/bin/autogen’ as the first line of a definitons file, set the mode to
executable and "run" the definitions file as if it were a direct invocation of AutoGen. This
was done for its hack value.

The ignored directives are: ‘#assert’, ‘#ident’, ‘#pragma’, and ‘#if’. Note that when
ignoring the #if directive, all intervening text through its matching #endif is also ignored,
including the #else clause.

The AutoGen directives that affect the processing of definitions are:

#define name [<text>]
Will add the name to the define list as if it were a DEFINE program argument.
Its value will be the first non-whitespace token following the name. Quotes are
not processed.

After the definitions file has been processed, any remaining entries in the define
list will be added to the environment.

#elif
This must follow an #if otherwise it will generate an error. It will be ignored.
#else
This must follow an #if, #ifdef or #ifndef. If it follows the #if, then it will
be ignored. Otherwise, it will change the processing state to the reverse of what
it was.
#endif
This must follow an #if, #ifdef or #ifndef. In all cases, this will resume
normal processing of text.
#endshell

FEnds the text processed by a command shell into autogen definitions.

#error [<descriptive text>]
This directive will cause AutoGen to stop processing and exit with a status of
EXIT_FAILURE.

#if [<ignored conditional expression>]
#if expressions are not analyzed. Everything from here to the matching #endif
is skipped.

#ifdef name-to-test
The definitions that follow, up to the matching #endif will be processed only
if there is a corresponding -Dname command line option.

#ifndef name-to-test
The definitions that follow, up to the matching #endif will be processed only
if there is not a corresponding -Dname command line option or there was a
canceling -Uname option.

#include unadorned-file—-name
This directive will insert definitions from another file into the current collection.
If the file name is adorned with double quotes or angle brackets (as in a C
program), then the include is ignored.

Chapter 2: AutoGen Definitions File 12

#line

Alters the current line number and/or file name. You may wish to use this
directive if you extract definition source from other files. getdefs uses this
mechanism so AutoGen will report the correct file and approximate line number
of any errors found in extracted definitions.

#option opt-name [<text>]
This directive will pass the option name and associated text to the AutoOpts
optionLoadLine routine (see [optionLoadLine|, page 68). The option text may
span multiple lines by continuing them with a backslash. The backslash /newline
pair will be replaced with two space characters. This directive may be used to
set a search path for locating template files For example, this:

#option templ-dirs $ENVVAR/dirname

will direct autogen to use the ENVVAR environment variable to find a direc-
tory named dirname that (may) contain templates. Since these directories are
searched in most recently supplied first order, search directories supplied in this
way will be searched before any supplied on the command line.

#shell

Invokes $SHELL or ‘/bin/sh’ on a script that should generate AutoGen defini-
tions. It does this using the same server process that handles the back-quoted
¢ text. CAUTION let not your $SHELL be csh.

#undef name-to-undefine
Will remove any entries from the define list that match the undef name pattern.

2.6 Pre-defined Names

When AutoGen starts, it tries to determine several names from the operating environ-
ment and put them into environment variables for use in both #ifdef tests in the definitions
files and in shell scripts with environment variable tests. __autogen__ is always defined.
For other names, AutoGen will first try to use the POSIX version of the sysinfo(2) system
call. Failing that, it will try for the POSIX uname (2) call. If neither is available, then only
"__autogen__" will be inserted into the environment. In all cases, the associated names
are converted to lower case, surrounded by doubled underscores and non-symbol characters
are replaced with underscores.

With Solaris on a sparc platform, sysinfo(2) is available. The following strings are
used:

e SI_SYSNAME (e.g., "__sunos__")

o SI_HOSTNAME (e.g., "__ellen__")

e SI_ARCHITECTURE (e.g., "__sparc__")

e SI_HW_PROVIDER (e.g., "__sun_microsystems__")
e SI_PLATFORM (e.g., "__sun_ultra_5_10__")

o SI_MACHINE (e.g., "_sundu__")

For Linux and other operating systems that only support the uname(2) call, AutoGen
will use these values:

Chapter 2: AutoGen Definitions File 13

e sysname (e.g., "_linux__")
e machine (e.g., "__i586__")

e nodename (e.g., "__bach__")

By testing these pre-defines in my definitions, you can select pieces of the definitions
without resorting to writing shell scripts that parse the output of uname(1). You can also
segregate real C code from autogen definitions by testing for "__autogen__".

#ifdef __bach__
location = home;
#else
location = work;
#endif

2.7 Commenting Your Definitions

The definitions file may contain C and C++ style comments.
/*
* This is a comment. It continues for several lines and closes
* when the characters ’*’ and ’/’ appear together.
*/

// this comment is a single line comment

2.8 What it all looks like.

This is an extended example
autogen definitions ‘template-name’;

/*

* This is a comment that describes what these
* definitions are all about.

*/

global = "value for a global text definition.";

/*
* Include a standard set of definitions
*/
#include standards.def
a_block = {
a_field;
a_subblock = {
sub_name = first;
sub_field = "sub value.";
}s;

#ifdef FEATURE
a_subblock = {
sub_name = second;

};

Chapter 2: AutoGen Definitions File 14

#tendif
};

2.9 YACC Language Grammar

The preprocessing directives and comments are not part of the grammar. They are
handled by the scanner/lexer. The following was extracted directly from the defParse.y
source file:

definitions : identity def_list TK_END
{ $$ = (YYSTYPE) (rootDefCtx.pDefs = (tDefEntry*)$2); }
| identity TK_END
{ $$ = makeEmptyDefs(); }

def_list : definition {$$=9%1; }
| definition def_list { $$ = addSibMacro($1, $2); }
| identity def_list <{ $$ = $2; }

identity : TK_AUTOGEN TK_DEFINITIONS filename ’;’
{ $$ = identify($3); }

definition : value_name ’;’
{ $$ = makeMacro($1, (YYSTYPE)"", VALTYP_TEXT); }

| value_name ’=’ text_list ’;°
{ $$ = makeMacroList($1, $3, VALTYP_TEXT); }

| value_name ’=’ block_list ’;’
{ $$ = makeMacrolList($1, $3, VALTYP_BLOCK); }

text_list : anystring { $$ = startList($1); }

| anystring ’,’ text_list { $$ = appendList($1, $3); }
block_list : def_block { $$ = startList($1); }

| def_block ’,’ block_list { $$ = appendList($1, $3); }
def_block : ’{’ def_list ’}’ {$$ =9%2;
anystring : filename { 8% =81; }

| TK_NUMBER {88 =815 } ;
filename : TK_OTHER_NAME { $$ = $1;

| TK_STRING { $$ = 81;

Chapter 2: AutoGen Definitions File 15

| TK_VAR_NAME { $$ = $1; } ;

value_name : TK_VAR_NAME

{ $$ = findPlace((YYSTYPE)$1, (YYSTYPE)NULL); }

| TK_VAR_NAME ’[’ TK_NUMBER ’]’
{ $$ = findPlace((YYSTYPE)$1, (YYSTYPE)$3); }

| TK_VAR_NAME ° [’ TK_VAR_NAME]’
{ $$ = findPlace((YYSTYPE)$1, (YYSTYPE)$3); }

2.10 Alternate Definition Forms

There are several methods for supplying data values for templates.

‘no definitions’

‘CGT’

‘XML’

It is entirely possible to write a template that does not depend upon external
definitions. Such a template would likely have an unvarying output, but be
convenient nonetheless because of an external library of either AutoGen or
Scheme functions, or both. This can be accommodated by providing the -
-override-tpl and --no-definitions options on the command line. See
Chapter 5 [autogen Invocation], page 53.

AutoGen behaves as a CGI server if the definitions input is from stdin and the
environment variable REQUEST_METHOD is defined and set to either "GET" or
"POST", See Section 6.2 [AutoGen CGI], page 63. Obviously, all the values
are constrained to strings because there is no way to represent nested values.

AutoGen comes with a program named, xml2ag. Its output can either be
redirected to a file for later use, or the program can be used as an AutoGen
wrapper. See Section 8.6 [xml2ag Invocation|, page 113.

The introductory template example (see Section 1.2 [Example Usagel, page 2)
can be rewritten in XML as follows:

<EXAMPLE template="list.tpl">

<LIST list_element="alpha"
list_info="some alpha stuff"/>

<LIST list_info="more beta stuff"
list_element="beta"/>

<LIST list_element="omega"
list_info="final omega stuff"/>

</EXAMPLE>

A more XML-normal form might look like this:

<EXAMPLE template="list.tpl">

<LIST list_element="alpha'">some alpha stuff</LIST>
<LIST list_element="beta" >more beta stuff</LIST>
<LIST list_element="omega'">final omega stuff</LIST>
</EXAMPLE>

Chapter 2: AutoGen Definitions File 16

but you would have to change the template 1list_info references into text
references.

‘standard AutoGen definitions’
Of course. :-)

Chapter 3: AutoGen Template 17

3 AutoGen Template

The AutoGen template file defines the content of the output text. It is composed of two
parts. The first part consists of a pseudo macro invocation and commentary. It is followed
by the template proper.

This pseudo macro is special. It is used to identify the file as a AutoGen template
file, fixing the starting and ending marks for the macro invocations in the rest of the file,
specifying the list of suffixes to be generated by the template and, optionally, the shell to
use for processing shell commands embedded in the template.

AutoGen-ing a file consists of copying text from the template to the output file until a
start macro marker is found. The text from the start marker to the end marker constitutes
the macro text. AutoGen macros may cause sections of the template to be skipped or
processed several times. The process continues until the end of the template is reached.
The process is repeated once for each suffix specified in the pseudo macro.

This chapter describes the format of the AutoGen template macros and the usage of
the AutoGen native macros. Users may augment these by defining their own macros. See
Section 3.6.4 [DEFINE], page 46.

3.1 Format of the Pseudo Macro

The pseudo macro is used to tell AutoGen how to process a template. It tells autogen:

1. The punctuation characters used to demarcate the start of a macro. It may be up to
seven characters long and must be the first non-whitespace characters in the file.

2. That start marker must be immediately followed by the marker strings "AutoGen5"
and then "template", though capitalization is not important.

The next several components may be intermingled:

3. Zero, one or more suffix specifications tell AutoGen how many times to process the

template file. No suffix specifications mean that it is to be processed once and that
the generated text is to be written to stdout. The current suffix for each pass can
be determined with the (suffix) scheme function (see Section 3.4.34 [SCM suffix],
page 29).
The suffix specification consists of a sequence of POSIX compliant file name characters
and, optionally, an equal sign and a file name "printf"-style formatting string. Two
string arguments are allowed for that string: the base name of the definition file and
the current suffix (that being the text to the left of the equal sign). (Note: "POSIX
compliant file name characters" consist of alphanumerics plus the period (.), hyphen
(=) and underscore (_) characters.)

4. Comment lines: blank lines, lines starting with a hash mark [#]), and edit mode com-
ments (text between pairs of —*- strings).

5. Scheme expressions may be inserted in order to make configuration changes before
template processing begins. It is used, for example, to allow the template writer to
specify the shell program that must be used to interpret the shell commands in the
template. It can have no effect on any shell commands in the definitions file, as that
file will have been processed by the time the pseudo macro is interpreted.

Chapter 3: AutoGen Template 18

(setenv "SHELL" "/bin/sh")

This is extremely useful to ensure that the shell used is the one the template was
written to use. By default, AutoGen determines the shell to use by user preferences.
Sometimes, that can be the "csh", though.

The scheme expression can also be used to save a pre-existing output file for later text
extraction (see Section 3.5.4 [SCM extract|, page 31).

(shellf "mv -f %1%$s.c %1$s.sav" (base-name))

6. Finally, the end-macro marker must be last. It must not begin with a POSIX file name
character, and if it begins with an equal sign, then it must be separated from any suffix
specification by white space.

It is generally a good idea to use some sort of opening bracket in the starting macro
and closing bracket in the ending macro (e.g. {, (, [, or even < in the starting macro).
It helps both visually and with editors capable of finding a balancing parenthesis. The
closing marker may not begin with an open parenthesis, as that is used to enclose a scheme
expression.

It is also helpful to avoid using the comment marker (#); the POSIXly acceptable file
name characters period (.), hyphen (=) and underscore (_); and finally, it is advisable to
avoid using any of the quote characters double, single or back-quote. But there is no special
check for any of these advisories.

As an example, assume we want to use [+ and +] as the start and end macro markers,
and we wish to produce a ‘.c’ and a ‘.h’ file, then the first macro invocation will look
something like this:

[+ AutoGenb5 template -*- Mode: emacs-mode-of-choice —*-
h=chk-%s.h
c

make sure we don’t use csh:
(setenv "SHELL" "/bin/sh") +]

The template proper starts after the pseudo-macro. The starting character is either the
first non-whitespace character or the first character after the newline that follows the end
macro marker.

3.2 Naming a value

When an AutoGen value is specified in a template, it is specified by name. The name
may be a simple name, or a compound name of several components. Since each named
value in AutoGen is implicitly an array of one or more values, each component may have
an index associated with it.

It looks like this:
comp-name-1 . comp-name-2 [2]
Note that if there are multiple components to a name, each component name is separated
by a dot (.). Indexes follow a component name, enclosed in square brackets ([and 1). The
index may be either an integer or an integer-valued define name. The first component of

the name is searched for in the current definition level. If not found, higher levels will be
searched until either a value is found, or there are no more definition levels. Subsequent

Chapter 3: AutoGen Template 19

components of the name must be found within the context of the newly-current definition
level. Also, if the named value is prefixed by a dot (.), then the value search is started in
the current context only. No higher levels are searched.

If someone rewrites this, I'll incorporate it. :-)

3.3 Macro Expression Syntax

AutoGen has two types of expressions: full expressions and basic ones. A full AutoGen
expression can appear by itself, or as the argument to certain AutoGen built-in macros:
CASE, IF, ELIF, INCLUDE, INVOKE (explicit invocation, see Section 3.6.16 [INVOKE],
page 49), and WHILE. If it appears by itself, the result is inserted into the output. If it is
an argument to one of these macros, the macro code will act on it sensibly.

You are constrained to basic expressions only when passing arguments to user defined
macros, See Section 3.6.4 [DEFINE], page 46.

The syntax of a full AutoGen expression is:
[[<apply-code>] <value-name>] [<basic-expr-1> [<basic-expr-2>]]
How the expression is evaluated depends upon the presence or absence of the apply code
and value name. The "value name" is the name of an AutoGen defined value, or not. If

it does not name such a value, the expression result is generally the empty string. All
expressions must contain either a value-name or a basic-expr.

3.3.1 Apply Code

The "apply code" selected determines the method of evaluating the expression. There
are five apply codes, including the non-use of an apply code.

‘no apply code’
This is the most common expression type. Expressions of this sort come in
three flavors:

‘<value-name>’
The result is the value of value-name, if defined. Otherwise it is
the empty string.

‘<basic-expr>’
The result of the basic expression is the result of the full expression,
See Section 3.3.2 [basic expression], page 20.

‘<value-name> <basic-expr>’
If there is a defined value for value-name, then the basic-expr is
evaluated. Otherwise, the result is the empty string.

‘% <value-name> <basic-expr>’
If value-name is defined, use basic-expr as a format string for sprintf. Then,
if the basic-expr is either a back-quoted string or a parenthesized expression,
then hand the result to the appropriate interpreter for further evaluation. Oth-
erwise, for single and double quote strings, the result is the result of the sprintf
operation. Naturally, if value-name is not defined, the result is the empty
string.

Chapter 3: AutoGen Template 20

For example, assume that fumble had the string value, stumble:

[+ % fumble ‘printf *%%x\\n’ $%s‘ +]
This would cause the shell to evaluate "printf ’%x\n’ $stumble". Assuming
that the shell variable stumble had a numeric value, the expression result would

be that number, in hex. Note the need for doubled percent characters and
backslashes.

‘? <value-name> <basic-expr-1> <basic-expr-2>’

Two basic-expr-s are required. If the value-name is defined, then the first
basic-expr-1 is evaluated, otherwise basic-expr-2 is.

‘= <value-name> <basic-expr>’

Evaluate basic-expr only if value-name is not defined.

?% <value-name> <basic-expr-1> <basic-expr-2>’

This combines the functions of ‘?” and ‘%4’. If value-name is defined, it behaves
exactly like ‘%’, above, using basic-expr-1. If not defined, then basic-expr-2
is evaluated.
For example, assume again that fumble had the string value, stumble:

[+ 7% fumble ‘cat $%s‘ ‘pwd +]
This would cause the shell to evaluate "cat $stumble". If fumble were not
defined, then the result would be the name of our current directory.

3.3.2 Basic Expression

A basic expression can have one of the following forms:

‘?STRING”’

‘"STRING"’

‘“STRING“’

‘(STRING)’

A single quoted string. Backslashes can be used to protect single quotes (?),
hash characters (#), or backslashes (\) in the string. All other characters of
STRING are output as-is when the single quoted string is evaluated. Back-
slashes are processed before the hash character for consistency with the defini-
tion syntax. It is needed there to avoid preprocessing conflicts.

A double quoted string. This is a cooked text string as in C, except that they
are not concatenated with adjacent strings. Evaluating "STRING" will output
STRING with all backslash sequences interpreted.

A back quoted string. When this expression is evaluated, STRING is first
interpreted as a cooked string (as in ‘"STRING"’) and evaluated as a shell
expression by the AutoGen server shell. This expression is replaced by the
stdout output of the shell.

A parenthesized expression. It will be passed to the Guile interpreter for eval-
uation and replaced by the resulting value.

Additionally, other than in the % and 7% expressions, the Guile expressions may
be introduced with the Guile comment character (;) and you may put a series

Chapter 3: AutoGen Template 21

of Guile expressions within a single macro. They will be implicitly evaluated as

if they were arguments to the (begin ...) expression. The result will be the
the result of the last Guile expression evaluated.

Chapter 3: AutoGen Template 22

3.4 AutoGen Scheme Functions

AutoGen uses Guile to interpret Scheme expressions within AutoGen macros. All of
the normal Guile functions are available, plus several extensions (see Section 3.5 [Common
Functions], page 31) have been added to augment the repertoire of string manipulation
functions and manage the state of AutoGen processing.

This section describes those functions that are specific to AutoGen. Please take note that
these AutoGen specific functions are not loaded and thus not made available until after the
command line options have been processed and the AutoGen definitions have been loaded.
They may, of course, be used in Scheme functions that get defined at those times, but they
cannot be invoked.

3.4.1 ‘ag-function?’ - test for function

Usage: (ag-function? ag-name)
return SCM_BOOL_T if a specified name is a user-defined AutoGen macro, otherwise return

SCM_BOOL._F.

Arguments:
ag-name - name of AutoGen macro

3.4.2 ‘base-name’ - base output name

Usage: (base-name)
Returns a string containing the base name of the output file(s). Generally, this is also the
base name of the definitions file.

This Scheme function takes no arguments.

3.4.3 ‘count’ - definition count

Usage: (count ag-name)
Count the number of entries for a definition. The input argument must be a string containing
the name of the AutoGen values to be counted. If there is no value associated with the
name, the result is an SCM immediate integer value of zero.

Arguments:
ag-name - name of AutoGen value

3.4.4 ‘def-file’ - definitions file name

Usage: (def-file)
Get the name of the definitions file. Returns the name of the source file containing the
AutoGen definitions.

This Scheme function takes no arguments.

3.4.5 ‘dne’ - "Do Not Edit" warning

Usage: (dne prefix [first_prefix | [optpfx |)
Generate a "DO NOT EDIT" or "EDIT WITH CARE" warning string. Which depends

Chapter 3: AutoGen Template 23

on whether or not the -—-writable command line option was set. The first argument is
a per-line string prefix. The optional second argument is a prefix for the first-line and, in
read-only mode, activates the editor hints.

-*— buffer-read-only: t —-*- vi: set ro:

The warning string also includes information about the template used to construct the file
and the definitions used in its instantiation.

The optional third argument is used when the first argument is actually an invocation
option and the prefix arguments get shifted. The first argument must be, specifically, "-d".
That is used to signify that the date stamp should not be inserted into the output.

Arguments:
prefix - string for starting each output line
first_prefix - Optional - for the first output line
optpfx - Optional - shifted prefix

3.4.6 ‘error’ - display message and exit

Usage: (error message)
The argument is a string that printed out as part of an error message. The message is
formed from the formatting string:

DEFINITIONS ERROR in %s line %d for %s: Y%s\n

The first three arguments to this format are provided by the routine and are: The name
of the template file, the line within the template where the error was found, and the current
output file name.

After displaying the message, the current output file is removed and autogen exits with
the EXIT_FAILURE error code. IF, however, the argument begins with the number 0
(zero), or the string is the empty string, then processing continues with the next suffix.

Arguments:
message - message to display before exiting

3.4.7 ‘exist?’ - test for value name

Usage: (exist? ag-name)
return SCM_BOOL_T iff a specified name has an AutoGen value. The name may include
indexes and/or member names. All but the last member name must be an aggregate
definition. For example:

(exist? "foo[3].bar.baz")

will yield true if all of the following is true:
There is a member value of either group or string type named baz for some group value
bar that is a member of the foo group with index 3. There may be multiple entries of bar
within foo, only one needs to contain a value for baz.

Arguments:
ag-name - name of AutoGen value

Chapter 3: AutoGen Template 24

3.4.8 ‘find-file’ - locate a file in the search path

Usage: (find-file file-name [suffix |)
AutoGen has a search path that it uses to locate template and definition files. This function
will search the same list for ‘file-name’, both with and without the ‘.suffix’, if provided.
Arguments:
file-name - name of file with text
suffix - Optional - file suffix to try, too

3.4.9 ‘first-for?’ - detect first iteration

Usage: (first-for? [for_var |)
Returns SCM_BOOL_T if the named FOR loop (or, if not named, the current inner-
most loop) is on the first pass through the data. Outside of any FOR loop, it returns
SCM_UNDEFINED. See Section 3.6.13 [FOR], page 47.

Arguments:
for_var - Optional - which for loop

3.4.10 ‘for-by’ - set iteration step

Usage: (for-by by)
This function records the "step by" information for an AutoGen FOR function. Outside of
the FOR macro itself, this function will emit an error. See Section 3.6.13 [FOR], page 47.

Arguments:
by - the iteration increment for the AutoGen FOR macro

3.4.11 ‘for-from’ - set initial index

Usage: (for-from from)
This function records the initial index information for an AutoGen FOR function. Outside
of the FOR macro itself, this function will emit an error. See Section 3.6.13 [FOR], page 47.

Arguments:
from - the initial index for the AutoGen FOR macro

3.4.12 ‘for-index’ - get current loop index

Usage: (for-index [for_var])
Returns the current index for the named FOR loop. If not named, then the index for the
innermost loop. Outside of any FOR loop, it returns SCM_UNDEFINED. See Section 3.6.13
[FOR], page 47.

Arguments:
for_var - Optional - which for loop

3.4.13 ‘for-sep’ - set loop separation string

Usage: (for-sep separator)
This function records the separation string that is to be inserted between each iteration of

Chapter 3: AutoGen Template 25

an AutoGen FOR function. This is often nothing more than a comma. Outside of the FOR
macro itself, this function will emit an error.

Arguments:
separator - the text to insert between the output of each FOR iteration

3.4.14 ‘for-to’ - set ending index

Usage: (for-to to)
This function records the terminating value information for an AutoGen FOR. function.
Outside of the FOR macro itself, this function will emit an error. See Section 3.6.13 [FOR],
page 47.

Arguments:
to - the final index for the AutoGen FOR macro

3.4.15 ‘get’ - get named value

Usage: (get ag-name [alt-val |)
Get the first string value associated with the name. It will either return the associated string
value (if the name resolves), the alternate value (if one is provided), or else the empty string.

Arguments:
ag-name - name of AutoGen value
alt-val - Optional - value if not present

3.4.16 ‘high-lim’ - get highest value index

Usage: (high-lim ag-name)
Returns the highest index associated with an array of definitions. This is generally, but
not necessarily, one less than the count value. (The indexes may be specified, rendering a
non-zero based or sparse array of values.)

This is very useful for specifying the size of a zero-based array of values where not all
values are present. For example:
tMyStruct myVals[[+ (+ 1 (high-1im "my-val-list")) +] 1;

Arguments:
ag-name - name of AutoGen value

3.4.17 ‘last-for?’ - detect last iteration

Usage: (last-for? [for_var])
Returns SCM_BOOL_T if the named FOR loop (or, if not named, the current inner-
most loop) is on the last pass through the data. Outside of any FOR loop, it returns
SCM_UNDEFINED. See Section 3.6.13 [FOR], page 47.

Arguments:
for_var - Optional - which for loop

Chapter 3: AutoGen Template 26

3.4.18 ‘len’ - get count of values

Usage: (len ag-name)
If the named object is a group definition, then "len" is the same as "count". Otherwise, if
it is one or more text definitions, then it is the sum of their string lengths. If it is a single
text definition, then it is equivalent to (string-length (get "ag-name")).

Arguments:
ag-name - name of AutoGen value

3.4.19 ‘low-lim’ - get lowest value index

Usage: (low-lim ag-name)
Returns the lowest index associated with an array of definitions.

Arguments:
ag-name - name of AutoGen value

3.4.20 ‘match-value?’ - test for matching value

Usage: (match-value? op ag-name test-str)

This function answers the question, "Is there an AutoGen value named ag-name with a value
that matches the pattern test-str using the match function op?" Return SCM_BOOL_T
iff at least one occurrence of the specified name has such a value. The operator can be any
function that takes two string arguments and yields a boolean. It is expected that you will
use one of the string matching functions provided by AutoGen.

The value name must follow the same rules as the ag-name argument for exist? (see
Section 3.4.7 [SCM exist?], page 23).

Arguments:
op - boolean result operator
ag-name - name of AutoGen value
test-str - string to test against

3.4.21 ‘out-delete’ - delete current output file

Usage: (out-delete)
Remove the current output file. Cease processing the template for the current suffix. It is
an error if there are push-ed output files. Use the (error "0") scheme function instead.
See Section 3.7 [output controls], page 50.

This Scheme function takes no arguments.

3.4.22 ‘out-depth’ - output file stack depth

Usage: (out-depth)
Returns the depth of the output file stack. See Section 3.7 [output controls], page 50.

This Scheme function takes no arguments.

Chapter 3: AutoGen Template 27

3.4.23 ‘out-move’ - change name of output file

Usage: (out-move new-name)
Rename current output file. See Section 3.7 [output controls], page 50. Please note: chang-
ing the name will not save a temporary file from being deleted. It may, however, be used
on the root output file.

Arguments:
new-name - new name for the current output file

3.4.24 ‘out-name’ - current output file name

Usage: (out-name)
Returns the name of the current output file. If the current file is a temporary, unnamed
file, then it will scan up the chain until a real output file name is found. See Section 3.7
[output controls|, page 50.

This Scheme function takes no arguments.

3.4.25 ‘out-pop’ - close current output file

Usage: (out-pop [disp |)
If there has been a push on the output, then close that file and go back to the previously
open file. It is an error if there has not been a push. See Section 3.7 [output controls],
page 50.

If there is no argument, no further action is taken. Otherwise, the argument should be
#t and the contents of the file are returned by the function.

Arguments:
disp - Optional - return contents of the file

3.4.26 ‘out-push-add’ - append output to file

Usage: (out-push-add file-name)
Identical to push-new, except the contents are not purged, but appended to. See Section 3.7
[output controls], page 50.

Arguments:
file-name - name of the file to append text to

3.4.27 ‘out-push-new’ - purge and create output file

Usage: (out-push-new | file-name |)
Leave the current output file open, but purge and create a new file that will remain open
until a pop delete or switch closes it. The file name is optional and, if omitted, the output
will be sent to a temporary file that will be deleted when it is closed. See Section 3.7 [output
controls|, page 50.

Arguments:
file-name - Optional - name of the file to create

Chapter 3: AutoGen Template 28

3.4.28 ‘out-resume’ - resume current output file

Usage: (out-resume suspName)
If there has been a suspended output, then make that output descriptor current again.
That output must have been suspended with the same tag name given to this routine as its
argument.

Arguments:
suspName - A name tag for reactivating

3.4.29 ‘out-suspend’ - suspend current output file

Usage: (out-suspend suspName)
If there has been a push on the output, then set aside the output descriptor for later
reactiviation with (out-resume "xxx"). The tag name need not reflect the name of the
output file. In fact, the output file may be an anonymous temporary file. You may also
change the tag every time you suspend output to a file, because the tag names are forgotten
as soon as the file has been "resumed".

Arguments:
suspName - A name tag for reactivating

3.4.30 ‘out-switch’ - close and create new output

Usage: (out-switch file-name)
Switch output files - close current file and make the current file pointer refer to the new file.
This is equivalent to out-pop followed by out-push-new, except that you may not pop the
base level output file, but you may switch it. See Section 3.7 [output controls], page 50.

Arguments:
file-name - name of the file to create

3.4.31 ‘set-option’ - Set a command line option

Usage: (set-option opt)
The text argument must be an option name followed by any needed option argument.
Returns SCM_UNDEFINED.

Arguments:
opt - AutoGen option name + its argument

3.4.32 ‘set-writable’ - Make the output file be writable

Usage: (set-writable | set? |)
This function will set the current output file to be writable (or not). This is only effective if
neither the -—writable nor —-not-writable have been specified. This state is reset when
the current suffix’s output is complete.

Arguments:
set? - Optional - boolean arg, false to make output non-writable

Chapter 3: AutoGen Template 29

3.4.33 ‘stack’ - make list of AutoGen values

Usage: (stack ag-name)
Create a scheme list of all the strings that are associated with a name. They must all be
text values or we choke.

Arguments:
ag-name - AutoGen value name

3.4.34 ‘suffix’ - get the current suffix

Usage: (suffix)
Returns the current active suffix (see Section 3.1 [pseudo macro|, page 17).

This Scheme function takes no arguments.

3.4.35 ‘tpl-file’ - get the template file name

Usage: (tpl-file)
Returns the name of the current template file.

This Scheme function takes no arguments.

3.4.36 ‘tpl-file-line’ - get the template file and line number

Usage: (tpl-file-line [msg-fmt])
Returns the file and line number of the current template macro using either the default
format, "from %s line %d", or else the format you supply. For example, if you want to
insert a "C" language file-line directive, you would supply the format "# %2%d %1$s".
Arguments:
msg-fmt - Optional - formatting for line message

3.4.37 ‘make-header-guard’ - make self-inclusion guard

Emit a #ifndef/#define sequence based upon the output file name and the provided
prefix. It will also define a scheme variables named, header-file and header-guard. The
#define name is composed as follows:

1. The first element is the string argument and a separating underscore.

2. That is followed by the name of the header file with illegal characters mapped to
underscores.

3. The end of the name is always, "_GUARD".

4. Finally, the entire string is mapped to upper case.

The final #define name is stored in an SCM symbol named header-guard. Conse-
quently, the concluding #endif for the file should read something like:

#endif /* [+ (. header-guard) +] */
The name of the header file (the current output file) is also stored in an SCM sym-

bol, header-file. Therefore, if you are also generating a C file that uses the previously
generated header file, you can put this into that generated file:

Chapter 3: AutoGen Template 30

#include "[+ (. header-file) +]"

Obviously, if you are going to produce more than one header file from a particular
template, you will need to be careful how these SCM symbols get handled.

Arguments:
prefix - first segment of #define name

3.4.38 ‘autogen-version’ - autogen version number

This is a symbol defining the current AutoGen version number string. It was first defined
in AutoGen-5.2.14. It is currently “5.5.4”.

Chapter 3: AutoGen Template 31

3.5 Common Scheme Functions

This section describes a number of general purpose functions that make the kind of
string processing that AutoGen does a little easier. Unlike the AutoGen specific functions
(see Section 3.4 [AutoGen Functions], page 22), these functions are available for direct use
during definition load time.

3.5.1 ‘bsd’ - BSD Public License

Usage: (bsd prog-name owner prefix)
Emit a string that contains the Free BSD Public License. It takes three arguments: prefix
contains the string to start each output line. owner contains the copyright owner. prog_
name contains the name of the program the copyright is about.

Arguments:
prog_name - name of the program under the BSD
owner - Grantor of the BSD License
prefix - String for starting each output line

3.5.2 ‘c-string’ - emit string for ANSI C

Usage: (c-string string)
Reform a string so that, when printed, the C compiler will be able to compile the data and
construct a string that contains exactly what the current string contains. Many non-printing
characters are replaced with escape sequences. Newlines are replaced with a backslash, an
n, a closing quote, a newline, seven spaces and another re-opening quote. The compiler will
implicitly concatenate them. The reader will see line breaks.

A K&R compiler will choke. Use kr-string for that compiler.

Arguments:
string - string to reformat

3.5.3 ‘error-source-line’ - display of file & line

Usage: (error-source-line)
This function is only invoked just before Guile displays an error message. It displays the file
name and line number that triggered the evaluation error. You should not need to invoke
this routine directly. Guile will do it automatically.

This Scheme function takes no arguments.

3.5.4 ‘extract’ - extract text from another file

Usage: (extract file-name marker-fmt [caveat | | default])
This function is used to help construct output files that may contain text that is carried
from one version of the output to the next.

The first two arguments are required, the second are optional:

e The file-name argument is used to name the file that contains the demarcated text.

Chapter 3: AutoGen Template 32

e The marker-fmt is a formatting string that is used to construct the starting and ending
demarcation strings. The sprintf function is given the marker-fmt with two arguments.
The first is either "START" or "END". The second is either "DO NOT CHANGE
THIS COMMENT" or the optional caveat argument.

e caveat is presumed to be absent if it is the empty string (""). If absent, “DO NOT
CHANGE THIS COMMENT?” is used as the second string argument to the marker-
fmt.

e When a default argument is supplied and no pre-existing text is found, then this text
will be inserted between the START and END markers.

The resulting strings are presumed to be unique within the subject file. As a simplified
example:

[+ (extract "fname" "// %s - SOMETHING - ¥%s" ""

"example default") +]

will result in the following text being inserted into the output:

// START - SOMETHING - DO NOT CHANGE THIS COMMENT

example default

// END - SOMETHING - DO NOT CHANGE THIS COMMENT
The “example default” string can then be carried forward to the next generation of the
output, provided the output is not named "fname" and the old output is renamed to
"fname" before AutoGen-eration begins.

NOTE: You can set aside previously generated source files inside the pseudo macro with
a Guile/scheme function, extract the text you want to keep with this extract
function. Just remember you should delete it at the end, too. Here is an
example from my Finite State Machine generator:

[+ AutoGen5 Template -*- Mode: text —*-
h=%s-fsm.h c=)s-fsm.c
(shellf
"[-f %1$s-fsm.h] && mv -f %1$s-fsm.h .fsm.head
[-f %1%s-fsm.c] && mv -f %1$s-fsm.c .fsm.code" (base-name)) +]
This code will move the two previously produced output files to files named ".fsm.head"
and ".fsm.code". At the end of the ¢’ output processing, I delete them.

Arguments:
file-name - name of file with text
marker-fmt - format for marker text
caveat - Optional - warn about changing marker
default - Optional - default initial text

3.5.5 ‘format-arg-count’ - count the args to a format

Usage: (format-arg-count format)
Sometimes, it is useful to simply be able to figure out how many arguments are required
by a format string. For example, if you are extracting a format string for the purpose
of generating a macro to invoke a printf-like function, you can run the formatting string
through this function to determine how many arguments to provide for in the macro. e.g.
for this extraction text:

Chapter 3: AutoGen Template 33

/*=fumble bumble
* fmt: ’stumble %s: %d\n’
=*/

You may wish to generate a macro:

#define BUMBLE(al,a2) printf_like(something, (al),(a2))
You can do this by knowing that the format needs two arguments.

Arguments:
format - formatting string

3.5.6 ‘fprintf’ - format to a file

Usage: (fprintf port format | format-arg ...])
Format a string using arguments from the alist. Write to a specified port. The result will
NOT appear in your output. Use this to print information messages to a template user.

Arguments:
port - Guile-scheme output port
format - formatting string
format-arg - Optional - list of arguments to formatting string

3.5.7 ‘gperf’ - perform a perfect hash function

Usage: (gperf name str)
Perform the perfect hash on the input string. This is only useful if you have previously
created a gperf program with the make-gperf function See Section 3.5.15 [SCM make-gperf],
page 35. The name you supply here must match the name used to create the program and
the string to hash must be one of the strings supplied in the make-gperf string list. The
result will be a perfect hash index.

See the documentation for gperf (1GNU) for more details.

Arguments:
name - name of hash list
str - string to hash

3.5.8 ‘gpl’ - GNU General Public License

Usage: (gpl prog-name prefix)
Emit a string that contains the GNU General Public License. It takes two arguments:
prefix contains the string to start each output line, and prog_name contains the name of
the program the copyright is about.

Arguments:
prog-name - name of the program under the GPL
prefix - String for starting each output line

Chapter 3: AutoGen Template 34

3.5.9 ‘hide-email’ - convert eaddr to javascript

Usage: (hide-email display eaddr)
Hides an email address as a java scriptlett. The ’mailto:” tag and the email address are
coded bytes rather than plain text. They are also broken up.

Arguments:
display - display text
eaddr - email address

3.5.10 ‘in?’ - test for string in list

Usage: (in? test-string string-list ...)
Return SCM_BOOL_T if the first argument string is found in one of the entries in the second
(list-of-strings) argument.
Arguments:
test-string - string to look for
string-list - list of strings to check

3.5.11 ‘join’ - join string list with separator

Usage: (join separator list ...)
With the first argument as the separator string, joins together an a-list of strings into one
long string. The list may contain nested lists, partly because you cannot always control
that.

Arguments:
separator - string to insert between entries
list - list of strings to join

3.5.12 ‘kr-string’ - emit string for K&R C

Usage: (kr-string string)
Reform a string so that, when printed, a K&R C compiler will be able to compile the
data and construct a string that contains exactly what the current string contains. Many
non-printing characters are replaced with escape sequences. New-lines are replaced with a
backslash-n-backslash and newline sequence,

Arguments:
string - string to reformat

3.5.13 ‘1gpl’ - GNU Library General Public License

Usage: (lgpl prog_-name owner prefix)
Emit a string that contains the GNU Library General Public License. It takes three argu-
ments: prefix contains the string to start each output line. owner contains the copyright
owner. prog_name contains the name of the program the copyright is about.

Arguments:
prog_name - name of the program under the LGPL
owner - Grantor of the LGPL
prefix - String for starting each output line

Chapter 3: AutoGen Template 35

3.5.14 ‘license’ - an arbitrary license

Usage: (license lic_name prog_name owner prefix)
Emit a string that contains the named license. The license text is read from a file named,
lic_name.lic, searching the standard directories. The file contents are used as a format
argument to printf(3), with prog_name and owner as the two string formatting arguments.
Each output line is automatically prefixed with the string prefix.

Arguments:
lic_.name - file name of the license
prog_name - name of the licensed program or library
owner - Grantor of the License
prefix - String for starting each output line

3.5.15 ‘make-gperf’ - build a perfect hash function program

Usage: (make-gperf name strings ...)
Build a program to perform perfect hashes of a known list of input strings. This function
produces no output, but prepares a program named, ‘gperf_<name>’ for use by the gperf
function See Section 3.5.7 [SCM gperf], page 33.

This program will be obliterated within a few seconds after AutoGen exits.

Arguments:
name - name of hash list
strings - list of strings to hash

3.5.16 ‘makefile-script’ - create makefile script

Usage: (makefile-script text)
This function will take ordinary shell script text and reformat it so that it will work properly
inside of a makefile shell script. Not every shell construct can be supported; the intent is
to have most ordinary scripts work without much, if any, alteration.

The following transformations are performed on the source text:
1. Trailing whitespace on each line is stripped.

2. Except for the last line, the string, " ; \\" is appended to the end of every line that
does not end with a backslash, semi-colon, conjunction operator or pipe. Note that this
will mutilate multi-line quoted strings, but make renders it impossible to use multi-line
constructs anyway.

3. If the line ends with a backslash, it is left alone.
4. If the line ends with one of the excepted operators, then a space and backslash is added.

5. The dollar sign character is doubled, unless it immediately precedes an opening paren-
thesis or the single character make macros *’, ’<’, ’@’, ’?” or '%’. Other single character
make macros that do not have enclosing parentheses will fail. For shell usage of the
"$e", "$7" and "$*" macros, you must enclose them with curly braces, e.g., "${7}".
The ksh construct $(<command>) will not work. Though some makes accept ${var}
constructs, this function will assume it is for shell interpretation and double the dollar
character. You must use $(var) for all make substitutions.

Chapter 3: AutoGen Template 36

Double dollar signs are replaced by four before the next character is examined.

Every line is prefixed with a tab, unless the first line already starts with a tab.

® N>

The newline character on the last line, if present, is suppressed.

9. Blank lines are stripped.

This function is intended to be used approximately as follows:

$ (TARGET) : $(DEPENDENCIES)

<+ (out-push-new) +>

....mostly arbitrary shell script text....
<+ (makefile-script (out-pop #t)) +>

Arguments:
text - the text of the script

3.5.17 ‘max’ - maximum value in list

Usage: (max list ...)
Return the maximum value in the list

Arguments:
list - list of values. Strings are converted to numbers

3.5.18 ‘min’ - minimum value in list

Usage: (min list ...)
Return the minimum value in the list

Arguments:
list - list of values. Strings are converted to numbers

3.5.19 ‘prefix’ - prefix lines with a string

Usage: (prefix prefix text)
Prefix every line in the second string with the first string.

For example, if the first string is "# " and the second contains:

two
lines
The result string will contain:

two
lines

Arguments:
prefix - string to insert at start of each line
text - multi-line block of text

3.5.20 ‘printf’ - format to stdout

Usage: (printf format | format-arg ... |)
Format a string using arguments from the alist. Write to the standard out port. The result

Chapter 3: AutoGen Template 37

will NOT appear in your output. Use this to print information messages to a template user.
Use “(sprintf ...)” to add text to your document.

Arguments:
format - formatting string
format-arg - Optional - list of arguments to formatting string

3.5.21 ‘raw-shell-str’ - single quote shell string

Usage: (raw-shell-str string)
Convert the text of the string into a singly quoted string that a normal shell will process
into the original string. (It will not do macro expansion later, either.) Contained single
quotes become tripled, with the middle quote escaped with a backslash. Normal shells will
reconstitute the original string.

NOTE: some shells will not correctly handle unusual non-printing characters. This
routine works for most reasonably conventional ASCII strings.

Arguments:
string - string to transform

3.5.22 ‘shell’ - invoke a shell script

Usage: (shell command)
Generate a string by writing the value to a server shell and reading the output back in. The
template programmer is responsible for ensuring that it completes within 10 seconds. If it
does not, the server will be killed, the output tossed and a new server started.

Arguments:
command - shell command - the result value is stdout

3.5.23 ‘shell-str’ - double quote shell string

Usage: (shell-str string)
Convert the text of the string into a double quoted string that a normal shell will process
into the original string, almost. It will add the escape character \\ before two special
characters to accomplish this: the backslash \\ and double quote ".

NOTE: some shells will not correctly handle unusual non-printing characters. This
routine works for most reasonably conventional ASCII strings.

WARNING:
This function omits the extra backslash in front of a backslash, however, if it is followed by
either a backquote or a dollar sign. It must do this because otherwise it would be impossible
to protect the dollar sign or backquote from shell evaluation. Consequently, it is not possible
to render the strings "\\$" or "*". The lesser of two evils.

All others characters are copied directly into the output.

The sub-shell-str variation of this routine behaves identically, except that the extra
backslash is omitted in front of " instead of ‘. You have to think about it. I'm open to
suggestions.

Meanwhile, the best way to document is with a detailed output example. If the back-
slashes make it through the text processing correctly, below you will see what happens

Chapter 3: AutoGen Template 38

with three example strings. The first example string contains a list of quoted foos, the
second is the same with a single backslash before the quote characters and the last is with
two backslash escapes. Below each is the result of the raw-shell-str, shell-str and
sub-shell-str functions.

foo[0] ’foo’ "foo" ‘foo‘ $foo
raw-shell-str —> ’’\’’foo’\’’ "foo" ‘foo‘ $foo’
shell-str -> " foo’ \"foo\" ‘foo‘ $foo"

sub-shell-str -> ‘’foo’ "foo" \‘foo\‘ $foo°

foo[1] \’bar\’ \"bar\" \‘bar\‘ \$bar
raw-shell-str -> >\’\’’bar\’\’’ \"bar\" \‘bar\‘ \$bar’
shell-str => "\\’bar\\’ \\\"bar\\\" \‘bar\‘ \$bar"

sub-shell-str —> ‘\\’bar\\’ \'"bar\" \\\‘bar\\\¢ \$bar®

foo[2] A\\ZBAZAN” \\"BAZ\\" \\‘BAZ\\‘ \\$BAZ
raw-shell-str -> >\\’\’’BAZ\\’\’’> \\"BAZ\\" \\‘BAZ\\‘ \\$BAZ’
shell-str => "NNANVBAZNANN? ANNNNBAZNNNAN" NN\ BAZN\NNC \\\$BAZ"

sub-shell-str -> “\\\\’BAZ\\\\’ \\\"BAZ\\\" \\\\\‘BAZ\\\\\‘ \\\$BAZ*

There should be four, three, five and three backslashes for the four examples on the last
line, respectively. The next to last line should have four, five, three and three backslashes. If
this was not accurately reproduced, take a look at the agen5/test/shell.test test. Notice the
backslashes in front of the dollar signs. It goes from zero to one to three for the "cooked"
string examples.

Arguments:
string - string to transform

3.5.24 ‘shellf’ - format a string, run shell

Usage: (shellf format | format-arg ...])
Format a string using arguments from the alist, then send the result to the shell for inter-
pretation.

Arguments:

format - formatting string
format-arg - Optional - list of arguments to formatting string

3.5.25 ‘sprintf’ - format a string

Usage: (sprintf format | format-arg ... |)
Format a string using arguments from the alist.
Arguments:

format - formatting string
format-arg - Optional - list of arguments to formatting string

3.5.26 ‘string-capitalize’ - capitalize a new string

Usage: (string-capitalize str)
Create a new SCM string containing the same text as the original, only all the first letter
of each word is upper cased and all other letters are made lower case.

Chapter 3: AutoGen Template 39

Arguments:
str - input string

3.5.27 ‘string-capitalize!’ - capitalize a string

Usage: (string-capitalize! str)
capitalize all the words in an SCM string.

Arguments:
str - input/output string

3.5.28 ‘string-contains-eqv?’ - caseless substring

Usage: (*=* text match)
string-contains-eqv?: Test to see if a string contains an equivalent string. ‘equivalent’ means
the strings match, but without regard to character case and certain characters are considered

R)

‘equivalent’. Viz., -, ' and ’~’ are equivalent.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.29 ‘string-contains?’ - substring match
Usage: (*==* text match)
string-contains?: Test to see if a string contains a substring. "strstr(3)" will find an address.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.30 ‘string-downcase’ - lower case a new string

Usage: (string-downcase str)
Create a new SCM string containing the same text as the original, only all the upper case
letters are changed to lower case.

Arguments:
str - input string

3.5.31 ‘string-downcase!’ - make a string be lower case
Usage: (string-downcase! str)
Change to lower case all the characters in an SCM string.

Arguments:
str - input/output string

Chapter 3: AutoGen Template 40

3.5.32 ‘string-end-eqv-match?’ - caseless regex ending

Usage: (*~ text match)
string-end-eqv-match?: Test to see if a string ends with a pattern. Case is not significant.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.33 ‘string-end-match?’ - regex match end

Usage: (*~~ text match)
string-end-match?: Test to see if a string ends with a pattern. Case is significant.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.34 ‘string-ends-eqv?’ - caseless string ending

Usage: (*= text match)
string-ends-eqv?: Test to see if a string ends with an equivalent string.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.35 ‘string-ends-with?’ - string ending

Usage: (*== text match)
string-ends-with?: Test to see if a string ends with a substring. stremp(3) returns zero for
comparing the string ends.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.36 ‘string-equals?’ - string matching

Usage: (== text match)
string-equals?: Test to see if two strings exactly match.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.37 ‘string-eqv-match?’ - caseless regex match

Usage: (~ text match)
string-eqv-match?: Test to see if a string fully matches a pattern. Case is not significant,
but any character equivalences must be expressed in your regular expression.

Chapter 3: AutoGen Template 41

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.38 ‘string-eqv?’ - caseless string match

Usage: (= text match)
string-eqv?: Test to see if two strings are equivalent. ‘equivalent’ means the strings match,
but without regard to character case and certain characters are considered ‘equivalent’.
Viz., ’-’, ’ and ’~7 are equivalent. If the arguments are not strings, then the result of the
numeric comparison is returned.

This is an overloaded operation. If the arguments are not both strings, then the query
is passed through to scm_num_eq_p().

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.39 ‘string-has-eqv-match?’ - caseless regex contains

Usage: (*~* text match)
string-has-eqv-match?: Test to see if a string contains a pattern. Case is not significant.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.40 ‘string-has-match?’ - contained regex match

Usage: (*~~* text match)
string-has-match?: Test to see if a string contains a pattern. Case is significant.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.41 ‘string-match?’ - regex match

Usage: (7~ text match)

string-match?: Test to see if a string fully matches a pattern. Case is significant.
Arguments:

text - text to test for pattern

match - pattern/substring to search for

3.5.42 ‘string-start-eqv-match?’ - caseless regex start

Usage: (™* text match)

string-start-eqv-match?: Test to see if a string starts with a pattern. Case is not significant.
Arguments:

text - text to test for pattern

match - pattern/substring to search for

Chapter 3: AutoGen Template 42

3.5.43 ‘string-start-match?’ - regex match start

Usage: (~~* text match)
string-start-match?: Test to see if a string starts with a pattern. Case is significant.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.44 ‘string-starts-eqv?’ - caseless string start

Usage: (=* text match)
string-starts-eqv?: Test to see if a string starts with an equivalent string.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.45 ‘string-starts-with?’ - string starting

Usage: (==* text match)
string-starts-with?: Test to see if a string starts with a substring.

Arguments:
text - text to test for pattern
match - pattern/substring to search for

3.5.46 ‘string-substitute’ - multiple global replacements

Usage: (string-substitute source match repl)
match and repl may be either a single string or a list of strings. Either way, they must
have the same structure and number of elements. For example, to replace all less than and
all greater than characters, do something like this:

(string-substitute source

(Il&" ||<|| Il>|')
("&alnp;" ll<ll ll>ll))
Arguments:

source - string to transform
match - substring or substring list to be replaced
repl - replacement strings or substrings

3.5.47 ‘string->c-name!’ - map non-name chars to underscore

Usage: (string->c-name! str)
Change all the graphic characters that are invalid in a C name token into underscores.
Whitespace characters are ignored. Any other character type (i.e. non-graphic and non-
white) will cause a failure.

Arguments:
str - input/output string

Chapter 3: AutoGen Template 43

3.5.48 ‘string-tr’ - convert characters with new result

Usage: (string-tr source match translation)
This is identical to string-tr!, except that it does not over-write the previous value.

Arguments:
source - string to transform
match - characters to be converted
translation - conversion list

3.5.49 ‘string-tr!’ - convert characters

Usage: (string-tr! source match translation)
This is the same as the tr (1) program, except the string to transform is the first argument.
The second and third arguments are used to construct mapping arrays for the transformation
of the first argument.

It is too bad this little program has so many different and incompatible implementations!

Arguments:
source - string to transform
match - characters to be converted
translation - conversion list

3.5.50 ‘string-upcase’ - upper case a new string

Usage: (string-upcase str)
Create a new SCM string containing the same text as the original, only all the lower case
letters are changed to upper case.

Arguments:
str - input string

3.5.51 ‘string-upcase!’ - make a string be upper case
Usage: (string-upcase! str)
Change to upper case all the characters in an SCM string.

Arguments:
str - input/output string

3.5.52 ‘sub-shell-str’ - back quoted (sub-)shell string

Usage: (sub-shell-str string)
This function is substantially identical to shell-str, except that the quoting character is
¢ and the "leave the escape alone" character is ".

Arguments:
string - string to transform

Chapter 3: AutoGen Template 44

3.5.53 ‘sum’ - sum of values in list

Usage: (sum list ...)
Compute the sum of the list of expressions.

Arguments:
list - list of values. Strings are converted to numbers

3.5.54 ‘html-escape-encode’ - escape special chars

Usage: (html-escape-encode str)
Substitute escape sequences for characters that are special to HTML/XML. It will replace
"g" <" and ">" with the strings, "&", "&1t;", and ">", respectively.
Arguments:
str - string to transform

3.6 AutoGen Native Macros

This section describes the various AutoGen natively defined macros. Unlike the Scheme
functions, some of these macros are "block macros" with a scope that extends through a
terminating macro. Block macros must not overlap. That is to say, a block macro started
within the scope of an encompassing block macro must have its matching end macro appear
before the encompassing block macro is either ended or subdivided.

The block macros are these:

CASE This macro has scope through the ESAC macro. The scope is subdivided by
SELECT macros. You must have at least one SELECT macro.

DEFINE This macro has scope through the ENDDEF macro. The defined user macro can
never be a block macro.

FOR This macro has scope through the ENDFOR macro.

IF This macro has scope through the ENDIF macro. The scope may be subdivided
by ELIF and ELSE macros. Obviously, there may be only one ELSE macro and
it must be the last of these subdivisions.

INCLUDE This macro has the scope of the included file. It is a block macro in the sense
that the included file must not contain any incomplete block macros.

WHILE This macro has scope through the ENDWHILE macro.

3.6.1 AutoGen Macro Syntax

The general syntax is:
[{ <native-macro-name> | <user-defined-name> }] [<arg> ...]

The syntax for <arg> depends on the particular macro, but is generally a full expression

(see Section 3.3 [expression syntax|, page 19). Here are the exceptions to that general rule:

1. INVOKE macros, implicit or explicit, must be followed by a list of name/string value
pairs. The string values are simple expressions, as described above.

That is, the INVOKE syntax is either:

Chapter 3: AutoGen Template 45

<user-macro-name> [<name> [= <expression>] ...]
or

INVOKE <name-expression> [<name> [= <expression>] ...]
AutoGen FOR macros must be in one of two forms:

FOR <name> [<separator-string>]
or

FOR <name> (...Scheme expression list)

where <name> must be a simple name and the Scheme expression list is expected to
contain one or more of the for-from, for-to, for-by, and for-sep functions. (See
Section 3.6.13 [FOR], page 47, and Section 3.4 [AutoGen Functions], page 22)

AutoGen DEFINE macros must be followed by a simple name. Anything after that is
ignored. See Section 3.6.4 [DEFINE], page 46.

The AutoGen COMMENT, ELSE, ESAC and the END* macros take no arguments and ignore
everything after the macro name (e.g. see Section 3.6.3 [COMMENT], page 46)

3.6.2 CASE - Select one of several template blocks

The arguments are evaluated and converted to a string, if necessary. (see Section 3.6.12

[EXPR], page 47) The scope of the macro is up to the matching ESAC function. Within the
scope of a CASE, this string is matched against case selection macros. There are sixteen
match macros that are derived from four different ways the test may be performed, plus an
"always true" match. The code for each selection expression is formed as follows:

1.

D.

Must the match start matching from the beginning of the string? If not, then the
match macro code starts with an asterisk ().

Must the match finish matching at the end of the string? If not, then the match macro
code ends with an asterisk (x).

Is the match a pattern match or a string comparison? If a comparison, use an equal
sign (=). If a pattern match, use a tilde (7).

Is the match case sensitive? If alphabetic case is important, double the tilde or equal
sign.

Do you need a default match when none of the others match? Use a single asterisk (*).

For example:

[+ CASE <full-expression> +]

[+ ""x "[Ttlest" +]reg exp must match at start, not at end
[+ == "TeSt" +]a full-string, case sensitive compare
[+ = "TEST" +]a full-string, case insensitive compare
[+ = +]Jalways match - no testing

[+ ESAC +]

<full-expression> (see Section 3.3 [expression syntax|, page 19) may be any expres-

sion, including the use of apply-codes and value-names. If the expression yields a number,
it is converted to a decimal string.

These case selection codes have also been implemented as Scheme expression functions

using the same codes (see Section 3.5 [Common Functions], page 31).

Chapter 3: AutoGen Template 46

3.6.3 COMMENT - A block of comment to be ignored

This function can be specified by the user, but there will never be a situation where it will
be invoked at emit time. The macro is actually removed from the internal representation.

If the native macro name code is #, then the entire macro function is treated as a
comment and ignored.

3.6.4 DEFINE - Define a user AutoGen macro

This function will define a new macro. You must provide a name for the macro. You
do not specify any arguments, though the invocation may specify a set of name/value pairs
that are to be active during the processing of the macro.

[+ define foo +]
. macro body with macro functiomns ...
[+ enddef +]
[+ foo bar=’raw text’ baz=<<text expression>> +]

Once the macro has been defined, this new macro can be invoked by specifying the macro
name as the first token after the start macro marker. Alternatively, you may make the
invocation explicitly invoke a defined macro by specifying INVOKE in the macro invocation.
If you do that, the macro name can be computed with an expression that gets evaluated
every time the INVOKE macro is encountered. See Section 3.6.16 [INVOKE], page 49.

Any remaining text in the macro invocation will be used to create new name/value
pairs that only persist for the duration of the processing of the macro. The expressions are
evaluated the same way basic expressions are evaluated. See Section 3.3 [expression syntax],
page 19.

The resulting definitions are handled much like regular definitions, except:

1. The values may not be compound. That is, they may not contain nested name/value
pairs.

2. The bindings go away when the macro is complete.
3. The name/value pairs are separated by whitespace instead of semi-colons.

4. Sequences of strings are not concatenated.

3.6.5 ELIF - Alternate Conditional Template Block

This macro must only appear after an IF function, and before any associated ELSE or
ENDIF functions. It denotes the start of an alternate template block for the IF function. Its
expression argument is evaluated as are the arguments to IF. For a complete description
See Section 3.6.14 [IF], page 48.

3.6.6 ELSE - Alternate Template Block

This macro must only appear after an IF function, and before the associated ENDIF
function. It denotes the start of an alternate template block for the IF function. For a
complete description See Section 3.6.14 [IF], page 48.

Chapter 3: AutoGen Template 47

3.6.7 ENDDEF - Ends a macro definition.

This macro ends the DEFINE function template block. For a complete description See
Section 3.6.4 [DEFINE], page 46.

3.6.8 ENDFOR - Terminates the FOR function template block

This macro ends the FOR function template block. For a complete description See Sec-
tion 3.6.13 [FOR/, page 47.

3.6.9 ENDIF - Terminate the IF Template Block

This macro ends the IF function template block. For a complete description See Sec-
tion 3.6.14 [IF], page 48.

3.6.10 ENDWHILE - Terminate the WHILE Template Block

This macro ends the WHILE function template block. For a complete description See
Section 3.6.19 [WHILE], page 49.

3.6.11 ESAC - Terminate the CASE Template Block

This macro ends the CASE function template block. For a complete description, See
Section 3.6.2 [CASE], page 45.

3.6.12 EXPR - Evaluate and emit an Expression

This macro does not have a name to cause it to be invoked explicitly, though if a
macro starts with one of the apply codes or one of the simple expression markers, then
an expression macro is inferred. The result of the expression evaluation (see Section 3.3
[expression syntax|, page 19) is written to the current output.

3.6.13 FOR - Emit a template block multiple times

This macro has a slight variation on the standard syntax:
FOR <value-name> [<separator-string>]
or
FOR <value-name> (...Scheme expression list
or
FOR <value-name> IN "quoted string" unquoted-string ...

Other than for the last form, the first macro argument must be the name of an AutoGen
value. If there is no value associated with the name, the FOR template block is skipped
entirely. The scope of the FOR macro extends to the corresponding ENDFOR macro. The last
form will create an array of string values named <value-name> that only exists within the
context of this FOR loop. With this form, in order to use a separator-string, you must
code it into the end of the template block using the (last-for?) predicate function (see
Section 3.4.17 [SCM last-for?], page 25).

Chapter 3: AutoGen Template 48

If there are any arguments after the value-name, the initial characters are used to de-
termine the form. If the first character is either a semi-colon (;) or an opening parenthesis
(Q), then it is presumed to be a Scheme expression containing the FOR macro specific func-
tions for-from, for-by, for-to, and/or for-sep. See Section 3.4 [AutoGen Functions],
page 22. If it consists of an ’i’ an 'n’ and separated by white space from more text, then
the FOR x IN form is processed. Otherwise, the remaining text is presumed to be a string
for inserting between each iteration of the loop. This string will be emitted one time less
than the number of iterations of the loop. That is, it is emitted after each loop, excepting
for the last iteration.

If the from /by /to functions are invoked, they will specify which copies of the named value
are to be processed. If there is no copy of the named value associated with a particular
index, the FOR template block will be instantiated anyway. The template must use methods
for detecting missing definitions and emitting default text. In this fashion, you can insert
entries from a sparse or non-zero based array into a dense, zero based array.

NB: the for-from, for-to, for-by and for-sep functions are disabled outside of the
context of the FOR macro. Likewise, the first-for, last-for and for-index functions
are disabled outside of the range of a FOR block.

[+FOR var (for-from 0) (for-to <number>) (for-sep ",") +]
. text with various substitutions ... [+
ENDFOR var+]

this will repeat the ... text with various substitutions ... <number>+1 times. Each
repetition, except for the last, will have a comma , after it.
[+FOR var ",\n" +]

. text with various substitutions ... [+
ENDFOR var +]

This will do the same thing, but only for the index values of var that have actually been
defined.

3.6.14 TF - Conditionally Emit a Template Block

Conditional block. Its arguments are evaluated (see Section 3.6.12 [EXPR], page 47)
and if the result is non-zero or a string with one or more bytes, then the condition is
true and the text from that point until a matched ELIF, ELSE or ENDIF is emitted. ELIF
introduces a conditional alternative if the IF clause evaluated FALSE and ELSE introduces
an unconditional alternative.

[+IF <full-expression> +]
emit things that are for the true condition[+

ELIF <full-expression-2> +]
emit things that are true maybe[+

ELSE "This may be a comment" +]
emit this if all but else fails[+

ENDIF "This may *also* be a comment" +]

Chapter 3: AutoGen Template 49

<full-expression> may be any expression described in the EXPR expression function, in-
cluding the use of apply-codes and value-names. If the expression yields an empty string,
it is interpreted as false.

3.6.15 INCLUDE - Read in and emit a template block

The entire contents of the named file is inserted at this point. The contents of the file
are processed for macro expansion. The arguments are eval-ed, so you may compute the
name of the file to be included. The included file must not contain any incomplete function
blocks. Function blocks are template text beginning with any of the macro functions ‘CASE’,
‘DEFINE’, ‘FOR’, ‘IF’ and ‘WHILE’; extending through their respective terminating macro
functions.

3.6.16 INVOKE - Invoke a User Defined Macro

User defined macros may be invoked explicitly or implicitly. If you invoke one implicitly,
the macro must begin with the name of the defined macro. Consequently, this may not be
a computed value. If you explicitly invoke a user defined macro, the macro begins with the
macro name INVOKE followed by a basic expression that must yield a known user defined
macro. A macro name _must_ be found, or AutoGen will issue a diagnostic and exit.

Arguments are passed to the invoked macro by name. The text following the macro
name must consist of a series of names each of which is followed by an equal sign (=) a