Net wor k Wor ki ng Group T. Boutell, et. al
Request for Comments: 2083 Boutel |l . Com 1Inc.
Cat egory: | nformational March 1997

PNG (Portabl e Network Graphics) Specification
Version 1.0

Status of this Meno

This meno provides information for the Internet comunity. This neno
does not specify an Internet standard of any kind. Distribution of
this meno is unlinted.

| ESG Not e:

The 1 ESG takes no position on the validity of any Intellectua
Property Rights statenments contained in this docunent.

Abstract

Thi s docunent describes PNG (Portable Network Graphics), an
extensible file format for the | ossless, portable, well-conpressed
storage of raster images. PNG provides a patent-free replacenent for
G F and can al so replace nany comon uses of TIFF. | ndexed-col or
grayscal e, and truecol or inmages are supported, plus an optional al pha
channel . Sanple depths range from1l to 16 bits.

PNG is designed to work well in online viewi ng applications, such as
the World Wde Wb, so it is fully streanable with a progressive

di splay option. PNGis robust, providing both full file integrity
checki ng and sinple detection of conmon transm ssion errors. Al so,
PNG can store ganma and chromaticity data for inproved col or matching
on het er ogeneous pl atforns.

This specification defines the Internet Media Type inmage/ png.

Tabl e of Contents

1. Introducti ON ... 4
2. Data Representati On e e 5
2.1. Integers and byte order 5
2.2. Color values 6
2.3, Image layout 6
2.4. Alpha channel 7
2.5, Filtering e 8
2.6. Interlaced data order 8
2.7. GNMTA COrrecCti ON e e e e 10

Boutell, et. al. I nf or mat i onal [Page 1]

RFC 2083 PNG Portabl e Network G aphics March 1997

2.8, TeXt StringsS e 10

3. File Structure 11
3.1, PNGfile signature e 11
3.2, Chunk layout 11
3.3. Chunk naming conventions i, 12
3.4, CRC algorithm e e 15

4, Chunk Specifications e 15
4.1, Critical chunks 15
4.1.1. IHDR Image header, 15

4.1.2. PLTE Palette e 17

4.1.3. IDAT Image data e 18

4.1.4. 1END Image trailer i, 19

4.2, Ancillary chunks 19
4.2.1. bKGD Background color i, 19

4.2.2. cHRM Primary chromaticities and white point 20

4.2.3. gANVA 1 mage gammBttt 21

4.2.4. hIST Image histogram 21

4.2.5. pHYs Physical pixel dinensions 22

4.2.6. sBIT Significant bits 22

4.2.7. tBEXt Textual data i 24

4.2.8. tIME Inmage last-nodification time 25

4.2.9. tRNS TransparencCy 26
4.2.10. zTXt Conpressed textual data 27

4.3. Summary of standard chunks 28
4.4, Additional chunk types, 29

5. Deflate/lInflate Compression 29
6. Filter AlgOrithms e 31
6. 1. Filter types 31
6.2. Filter type 0: None 32
6.3. Filter type 1: Sub e 33
6.4. Filter type 2: Up ... e 33
6.5. Filter type 3: AVerage it 34
6.6. Filter type 4: Paeth....... 35

7. Chunk Ordering Rules 36
7.1. Behavior of PNG editors i 37
7.2. Odering of ancillary chunks 38
7.3. Ordering of critical chunks 38

8. Msscellaneous TOPi CSttt 39
8.1. File nanme extension, 39
8.2. Internet nmedia type 39
8.3. Macintosh file layout i, 39
8.4. Multiple-image extension 39
8.5. Security considerations, 40

9. Reconmendations for Encoders i, 41
9.1. Sanple depth scaling i 41
9.2. Encoder gamma handling 42
9.3. Encoder color handling i, 45
9.4. Alpha channel creation i, 47

Boutell, et. al. I nf or mat i onal [Page 2]

RFC 2083

CRCRCRRE
©O©oo~No Ul

10. Re
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

11. d

12. Ap
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.
12.

13. Ap
14. Ap
15. Ap
16. Ap

17. Ap
18. Re

19. O

Boutel |,

PNG Portabl e Network G aphics March 1997

Suggested palettes e 48
Filter selection i 49
Text chunk processing i 49
Use of private chunks 50
Private type and nethod codes 51
connendatlons for Decoders 51
1. Error checking e 52
2. Pixel dimensions 52
3. Truecolor image handling 52
4. Sanple depth rescaling i, 53
5. Decoder gamma handling 54
6. Decoder color handling 56
7. Background col or 57
8. Al pha channel processing 58
9. Progressive display 62
10. Suggested-palette and histogramusage 63
11. Text chunk processing 64
0SS aAI Y o it i e 65
pendi X: Rationale e 69
1. Wy anewfile format? 69
2. Wy these features? 70
3. Wiy not these features? i 70
4. Wiy not use format X? 72
5. Byte order e 73
6. Interlacing e 73
7. VY QammmB? ... 73
8. Non-prenultiplied alpha 75
9. Filtering 75
10. Text StringsS e 76
11. PNGfile signature 77
12. Chunk layout e 77
13. Chunk naming conventions 78
14. Palette histograms i 80
pendi x: Ganma Tutorial 81
pendi x: Color Tutorial 89
pendi X: Sanple CRC Codey 94
pendi X: Online RESOUICESt 96
pendi x: Revision HiStory 96
fereNCes . 97
edi £ S 100
et. al. I nf or mat i onal [Page 3]

RFC 2083 PNG Portabl e Network G aphics March 1997

1

I ntroduction

The PNG fornmat provides a portable, legally unencunbered, well -
conpressed, well-specified standard for |ossless bitmapped i nmage
files.

Al though the initial notivation for devel opi ng PNG was to repl ace
G F, the design provides sone useful new features not available in
G F, with mninmal cost to devel opers

G F features retained in PNG incl ude

* | ndexed-col or images of up to 256 col ors.

* Streamability: files can be read and witten serially, thus
allowing the file format to be used as a conmuni cati ons
protocol for on-the-fly generation and di splay of images.

* Progressive display: a suitably prepared inmage file can be
di splayed as it is received over a comunications |ink
yielding a | owresolution inage very quickly foll owed by
gradual inprovenent of detail.

* Transparency: portions of the inage can be narked as
transparent, creating the effect of a non-rectangul ar i mage.

* Ancillary information: textual comments and other data can be
stored within the imge file

* Conpl ete hardware and pl atform i ndependence.

Ef fective, 100% | ossl ess conpression

I mportant new features of PNG not available in GF, include

Truecol or inages of up to 48 bits per pixel

Grayscal e images of up to 16 bits per pixel

Ful | al pha channel (general transparency nasks).

| mmge ganma i nformation, which supports automatic di splay of
i mages with correct brightness/contrast regardl ess of the
machi nes used to originate and di splay the inage.

Rel i abl e, straightforward detection of file corruption
Faster initial presentation in progressive display node.

* Ok F F

PNG i s designed to be:

* Sinmple and portable: devel opers should be able to inplenment PNG
easily.

* Legal |y unencunbered: to the best know edge of the PNG authors,
no al gorithnms under |egal challenge are used. (Some
consi derable effort has been spent to verify this.)

* Well conpressed: both indexed-col or and truecol or inages are
compressed as effectively as in any other w dely used | ossless
format, and in nost cases nore effectively.

Boutell, et. al. I nf or mat i onal [Page 4]

RFC 2083 PNG Portabl e Network G aphics March 1997

* | nt erchangeabl e: any standard-conform ng PNG decoder nust read
all conform ng PNG files.

* Flexible: the format allows for future extensions and private
add- ons, wi thout conprom sing interchangeability of basic PNG

* Robust: the design supports full file integrity checking as
wel |l as sinple, quick detection of conmon transm ssion errors.

The main part of this specification gives the definition of the file
format and recommendati ons for encoder and decoder behavior. An
appendi x gives the rationale for many desi gn decisions. Although the
rationale is not part of the formal specification, reading it can
hel p i npl enentors understand the design. Cross-references in the
main text point to relevant parts of the rationale. Additiona
appendi xes, also not part of the formal specification, provide
tutorials on gamma and color theory as well as other supporting

mat eri al

In this specification, the word "nmust" indicates a nandatory
requi renent, while "shoul d" indicates recommended behavi or

See Rationale: Wiy a new file format? (Section 12.1), Wy these
features? (Section 12.2), Wiy not these features? (Section 12.3), Wy
not use format X? (Section 12.4).

Pronunci ati on
PNG i s pronounced "ping"
2. Data Representation

This chapter discusses basic data representations used in PNG files,
as well as the expected representation of the inage data.

2.1. Integers and byte order

Al'l integers that require nore than one byte nust be in network
byte order: the nost significant byte conmes first, then the |ess
significant bytes in descending order of significance (MSB LSB for
two-byte integers, B3 B2 Bl BO for four-byte integers). The

hi ghest bit (value 128) of a byte is nunbered bit 7; the | owest
bit (value 1) is nunbered bit 0. Values are unsigned unl ess
otherw se noted. Values explicitly noted as signed are represented
in tw's conpl enent notation

See Rationale: Byte order (Section 12.5).

Boutell, et. al. I nf or mat i onal [Page 5]

RFC 2083 PNG Portabl e Network G aphics March 1997

2.2. Col or val ues

Col ors can be represented by either grayscale or RGB (red, green
bl ue) sample data. Gayscale data represents |um nance; RGB data
represents calibrated color information (if the cHRM chunk is
present) or uncalibrated device-dependent color (if cHRMis
absent). Al color values range fromzero (representing black) to
nost intense at the maxi mum value for the sanple depth. Note that
t he maxi mum val ue at a given sanple depth is (2"sanpl edepth)-1

not 2”sanpl edept h.

Sanpl e values are not necessarily linear; the gAMA chunk specifies
the ganma characteristic of the source device, and viewers are
strongly encouraged to conpensate properly. See Ganma correction
(Section 2.7).

Source data with a precision not directly supported in PNG (for
exanple, 5 bit/sanple truecolor) nust be scaled up to the next

hi gher supported bit depth. This scaling is reversible with no

|l oss of data, and it reduces the nunber of cases that decoders
have to cope with. See Recommendations for Encoders: Sanple depth
scaling (Section 9.1) and Reconmendati ons for Decoders: Sanple
depth rescaling (Section 10.4).

2.3. I mge | ayout

Conceptually, a PNG image is a rectangular pixel array, with

pi xel s appearing left-to-right within each scanline, and scanlines
appearing top-to-bottom (For progressive display purposes, the
data may actually be transnitted in a different order; see
Interlaced data order, Section 2.6.) The size of each pixel is
determined by the bit depth, which is the nunber of bits per
sanple in the imge data.

Three types of pixel are supported:

* An indexed-color pixel is represented by a single sanple
that is an index into a supplied palette. The inmage bit
depth determ nes the maxi num nunber of palette entries, but
not the color precision within the palette.

* A grayscale pixel is represented by a single sanple that is
a grayscal e level, where zero is black and the | argest val ue
for the bit depth is white.

* A truecolor pixel is represented by three sanples: red (zero
= black, max = red) appears first, then green (zero = bl ack
max = green), then blue (zero = black, max = blue). The bit
depth specifies the size of each sanple, not the total pixe
si ze.

Boutell, et. al. I nf or mat i onal [Page 6]

RFC 2083 PNG Portabl e Network G aphics March 1997

Optionally, grayscale and truecol or pixels can al so include an
al pha sanpl e, as described in the next section

Pi xel s are al ways packed into scanlines with no wasted bits

bet ween pixels. Pixels smaller than a byte never cross byte
boundari es; they are packed into bytes with the |leftnost pixel in
the high-order bits of a byte, the rightnost in the | ow order
bits. Pernitted bit depths and pixel types are restricted so that
in all cases the packing is sinple and efficient.

PNG permits nulti-sanple pixels only with 8- and 16-bit sanples,
so multiple sanples of a single pixel are never packed into one
byte. 16-bit sanples are stored in network byte order (MSB
first).

Scanl i nes al ways begin on byte boundaries. Wen pixels have fewer
than 8 bits and the scanline width is not evenly divisible by the
nunber of pixels per byte, the loworder bits in the last byte of
each scanline are wasted. The contents of these wasted bits are
unspeci fi ed.

An additional "filter type" byte is added to the begi nning of
every scanline (see Filtering, Section 2.5). The filter type byte
is not considered part of the inage data, but it is included in
the datastream sent to the conpression step

2. 4. Al pha channe

An al pha channel, representing transparency information on a per-
pi xel basis, can be included in grayscale and truecol or PNG
i mages.

An al pha value of zero represents full transparency, and a val ue
of (2”bitdepth)-1 represents a fully opaque pixel. Internediate
val ues indicate partially transparent pixels that can be conbi ned
with a background inmage to yield a conposite imge. (Thus, al pha
is really the degree of opacity of the pixel. But nost people
refer to al pha as providing transparency information, not opacity
i nformati on, and we continue that custom here.)

Al pha channel s can be included with images that have either 8 or
16 bits per sanple, but not with i mages that have fewer than 8
bits per sanple. Alpha sanples are represented with the sane bit
depth used for the image sanples. The al pha sanple for each pixe
is stored i Mmediately followi ng the grayscale or RGB sanpl es of

t he pi xel

Boutell, et. al. I nf or mat i onal [Page 7]

RFC 2083 PNG Portabl e Network G aphics March 1997

The color values stored for a pixel are not affected by the al pha
val ue assigned to the pixel. This rule is sonetines called
"unassoci ated" or "non-prenultiplied" al pha. (Another comon
technique is to store sanple values premultiplied by the al pha
fraction; in effect, such an image is already conposited against a
bl ack background. PNG does not use prenultiplied al pha.)

Transparency control is al so possible w thout the storage cost of
a full alpha channel. 1In an indexed-color inmage, an al pha val ue
can be defined for each palette entry. |In grayscale and truecol or
i mages, a single pixel value can be identified as being
"transparent". These techniques are controlled by the tRNS
ancillary chunk type.

I f no al pha channel nor tRNS chunk is present, all pixels in the
image are to be treated as fully opaque.

Vi ewers can support transparency control partially, or not at all

See Rationale: Non-prenultiplied al pha (Section 12.8),
Reconmendati ons for Encoders: Al pha channel creation (Section
9.4), and Reconmendations for Decoders: Al pha channel processing
(Section 10. 8).

2.5. Filtering

PNG al l ows the inage data to be filtered before it is conpressed.
Filtering can inprove the conpressibility of the data. The filter
step itself does not reduce the size of the data. Al PNG filters
are strictly |ossless.

PNG defines several different filter algorithms, including "None"
which indicates no filtering. The filter algorithmis specified
for each scanline by a filter type byte that precedes the filtered
scanline in the preconpression datastream An intelligent encoder
can switch filters fromone scanline to the next. The nethod for
choosing which filter to enploy is up to the encoder

See Filter Algorithms (Chapter 6) and Rationale: Filtering
(Section 12.9).

2.6. Interlaced data order

A PNG i mage can be stored in interlaced order to allow progressive
di splay. The purpose of this feature is to allow inmages to "fade
in" when they are being displayed on-the-fly. Interlacing
slightly expands the file size on average, but it gives the user a
meani ngf ul di splay nmuch nore rapidly. Note that decoders are

Boutell, et. al. I nf or mat i onal [Page 8]

RFC 2083 PNG Portabl e Network G aphics March 1997

required to be able to read interl aced i mages, whether or not they
actual |y perform progressive display.

Wth interlace nmethod 0, pixels are stored sequentially fromleft
to right, and scanlines sequentially fromtop to bottom (no
i nterlacing).

Interlace method 1, known as Adanv after its author, Adam M
Costell o, consists of seven distinct passes over the inmage. Each
pass transnits a subset of the pixels in the imge. The pass in
whi ch each pixel is transnmitted is defined by replicating the
followi ng 8-by-8 pattern over the entire imge, starting at the
upper |eft corner

16462646
TTTT7T7TT7T7T7T7
56565656
T T 77777
36463646
T7TT7T 77777
56565656
TTTT7T7TT7T7T7T7

Wthin each pass, the selected pixels are transmitted left to
right within a scanline, and selected scanlines sequentially from
top to bottom For exanple, pass 2 contains pixels 4, 12, 20,
etc. of scanlines 0, 8, 16, etc. (nunbering fromO0,0 at the upper
left corner). The last pass contains the entirety of scanlines 1
3, 5, etc.

The data within each pass is laid out as though it were a conplete
i mge of the appropriate dinensions. For exanple, if the conplete
image is 16 by 16 pixels, then pass 3 will contain tw scanlines,
each containing four pixels. Wen pixels have fewer than 8 bits,
each such scanline is padded as needed to fill an integral nunber
of bytes (see Image | ayout, Section 2.3). Filtering is done on
this reduced inmage in the usual way, and a filter type byte is
transmtted before each of its scanlines (see Filter Al gorithns,
Chapter 6). Notice that the transmnission order is defined so that

all the scanlines transmtted in a pass will have the sane nunber
of pixels; this is necessary for proper application of some of the
filters.

Caution: If the inage contains fewer than five columms or fewer
than five rows, some passes will be entirely enpty. Encoders and
decoders nust handle this case correctly. In particular, filter
type bytes are only associated with nonenpty scanlines; no filter
type bytes are present in an enpty pass.

Boutell, et. al. I nf or mat i onal [Page 9]

RFC 2083 PNG Portabl e Network G aphics March 1997

See Rationale: Interlacing (Section 12.6) and Recommendati ons for
Decoders: Progressive display (Section 10.9).

2.7. Ganma correction

PNG i mages can specify, via the gAMA chunk, the ganma
characteristic of the inmage with respect to the original scene.

Di spl ay programs are strongly encouraged to use this information,
pl us information about the display device they are using and room
lighting, to present the image to the viewer in a way that
reproduces what the image’s original author saw as closely as
possi ble. See Gamma Tutorial (Chapter 13) if you aren’t already
fam liar with gamm issues.

Ganma correction is not applied to the al pha channel, if any.
Al pha sanpl es always represent a linear fraction of full opacity.

For hi gh-precision applications, the exact chromaticity of the RGB
data in a PNG i rage can be specified via the cHRM chunk, all ow ng
nore accurate col or matching than ganma correction alone will
provide. See Color Tutorial (Chapter 14) if you aren't already
famliar with color representation issues.

See Rationale: Wiy gamm? (Section 12.7), Reconmendations for
Encoders: Encoder gama handling (Section 9.2), and
Recommendati ons for Decoders: Decoder ganma handling (Section
10.5).

2.8. Text strings

A PNG file can store text associated with the i nage, such as an
i mage description or copyright notice. Keywords are used to
i ndi cate what each text string represents.

| SO 8859-1 (Latin-1) is the character set recomended for use in
text strings [1SO-8859]. This character set is a superset of 7-
bit ASCII

Character codes not defined in Latin-1 should not be used, because
they have no platformindependent neaning. |If a non-Latin-1 code
does appear in a PNG text string, its interpretation will vary
across platforns and decoders. Sone systens nmight not even be
able to display all the characters in Latin-1, but nobst nobdern
systenms can.

Provision is also nade for the storage of conpressed text.

See Rationale: Text strings (Section 12.10).

Boutell, et. al. I nf or mat i onal [Page 10]

RFC 2083 PNG Portabl e Network G aphics March 1997

3. File Structure

A PNG file consists of a PNG signature foll owed by a series of
chunks. This chapter defines the signature and the basic properties
of chunks. Individual chunk types are discussed in the next chapter

3.1. PNGfile signature

The first eight bytes of a PNG file always contain the follow ng
(deci mal) val ues:

137 80 78 71 13 10 26 10

This signature indicates that the remainder of the file contains a
singl e PNG i nage, consisting of a series of chunks beginning with
an | HDR chunk and ending with an | END chunk.

See Rationale: PNG file signature (Section 12.11).
3. 2. Chunk | ayout
Each chunk consists of four parts:

Length
A 4-byte unsigned integer giving the nunber of bytes in the
chunk’s data field. The length counts only the data field, not
itself, the chunk type code, or the CRC. Zero is a valid
I ength. Although encoders and decoders should treat the |l ength
as unsigned, its value nmust not exceed (2731)-1 bytes.

Chunk Type
A 4-byte chunk type code. For convenience in description and
in examining PNG files, type codes are restricted to consist of
uppercase and | owercase ASCII letters (A-Z and a-z, or 65-90
and 97-122 decimal). However, encoders and decoders nust treat
the codes as fixed binary val ues, not character strings. For
exanple, it would not be correct to represent the type code
| DAT by the EBCDI C equival ents of those letters. Additiona
nam ng conventions for chunk types are discussed in the next
section.

Chunk Dat a

The data bytes appropriate to the chunk type, if any. This
field can be of zero |ength.

Boutell, et. al. I nf or mat i onal [Page 11]

RFC 2083 PNG Portabl e Network G aphics March 1997

CRC
A 4-byte CRC (Cyclic Redundancy Check) cal cul ated on the
precedi ng bytes in the chunk, including the chunk type code and
chunk data fields, but not including the Iength field. The CRC
is always present, even for chunks containing no data. See CRC
al gorithm (Section 3.4).

The chunk data length can be any nunber of bytes up to the
maxi mum therefore, inplenmentors cannot assune that chunks are
al i gned on any boundaries |arger than bytes.

Chunks can appear in any order, subject to the restrictions placed
on each chunk type. (One notable restriction is that |HDR nust
appear first and | END nust appear |last; thus the | END chunk serves
as an end-of-file marker.) Miltiple chunks of the sane type can
appear, but only if specifically permtted for that type.

See Rational e: Chunk layout (Section 12.12).
3. 3. Chunk nani ng conventions

Chunk type codes are assigned so that a decoder can determ ne sone
properties of a chunk even when it does not recognize the type
code. These rules are intended to allow safe, flexible extension
of the PNG format, by allow ng a decoder to deci de what to do when
it encounters an unknown chunk. The nanming rules are not normally
of interest when the decoder does recogni ze the chunk’s type.

Four bits of the type code, nanely bit 5 (value 32) of each byte,
are used to convey chunk properties. This choice neans that a
human can read off the assigned properties according to whether
each letter of the type code is uppercase (bit 5is 0) or

| owercase (bit 5 is 1). However, decoders should test the
properties of an unknown chunk by nunerically testing the
specified bits; testing whether a character is uppercase or

|l owercase is inefficient, and even incorrect if a locale-specific
case definition is used.

It is worth noting that the property bits are an inherent part of
t he chunk name, and hence are fixed for any chunk type. Thus,
TEXT and Text woul d be unrel ated chunk type codes, not the sane
chunk with different properties. Decoders nust recognize type
codes by a sinple four-byte literal conparison; it is incorrect to
perform case conversion on type codes.

Boutell, et. al. I nf or mat i onal [Page 12]

RFC 2083 PNG Portabl e Network G aphics March 1997

The senantics of the property bits are:

Ancillary bit: bit 5 of first byte
0 (uppercase) = critical, 1 (lowercase) = ancillary.

Chunks that are not strictly necessary in order to neaningfully
di splay the contents of the file are known as "ancillary"
chunks. A decoder encountering an unknown chunk in which the
ancillary bit is 1 can safely ignore the chunk and proceed to
di splay the inmage. The tine chunk (tIME) is an exanple of an
anci |l lary chunk.

Chunks that are necessary for successful display of the file's
contents are called "critical" chunks. A decoder encountering
an unknown chunk in which the ancillary bit is 0 nmust indicate
to the user that the inmage contains information it cannot
safely interpret. The imge header chunk (IHDR) is an exanple
of a critical chunk

Private bit: bit 5 of second byte

0 (uppercase) = public, 1 (lowercase) = private.

A public chunk is one that is part of the PNG specification or
is registered in the list of PNG special - purpose public chunk
types. Applications can al so define private (unregistered)
chunks for their own purposes. The nanes of private chunks
nmust have a | owercase second letter, while public chunks wll
al ways be assigned nanmes with uppercase second letters. Note
that decoders do not need to test the private-chunk property
bit, since it has no functional significance; it is sinply an
adm ni strative convenience to ensure that public and private
chunk nanmes will not conflict. See Additional chunk types
(Section 4.4) and Recommendati ons for Encoders: Use of private
chunks (Section 9.8).

Reserved bit: bit 5 of third byte
Must be O (uppercase) in files confornming to this version of
PNG

The significance of the case of the third letter of the chunk
nane is reserved for possible future expansion. At the present
tinme all chunk names nust have uppercase third letters.
(Decoders should not conplain about a | owercase third letter
however, as sonme future version of the PNG specification could
define a meaning for this bit. It is sufficient to treat a
chunk with a lowercase third letter in the same way as any

ot her unknown chunk type.)

Boutell, et. al. I nf or mat i onal [Page 13]

RFC 2083 PNG Portabl e Network G aphics March 1997

Safe-to-copy bit: bit 5 of fourth byte
0 (uppercase) = unsafe to copy, 1 (lowercase) = safe to copy.

This property bit is not of interest to pure decoders, but it
is needed by PNG editors (progranms that nodify PNG files).
This bit defines the proper handling of unrecognized chunks in
a file that is being nodified.

If a chunk’s safe-to-copy bit is 1, the chunk may be copied to
a nodified PNG file whether or not the software recogni zes the
chunk type, and regardl ess of the extent of the file

nodi fi cati ons.

If a chunk’s safe-to-copy bit is O, it indicates that the chunk
depends on the image data. |If the program has nade any changes
to critical chunks, including addition, nodification, deletion
or reordering of critical chunks, then unrecogni zed unsafe
chunks nust not be copied to the output PNG file. (O course,
if the program does recogni ze the chunk, it can choose to

out put an appropriately nodified version.)

A PNG editor is always allowed to copy all unrecogni zed chunks
if it has only added, deleted, nodified, or reordered ancillary
chunks. This inplies that it is not permssible for ancillary
chunks to depend on other ancillary chunks.

PNG editors that do not recognize a critical chunk nmust report
an error and refuse to process that PNG file at all. The

saf e/ unsaf e nmechanismis intended for use with ancillary
chunks. The safe-to-copy bit will always be 0 for critica
chunks.

Rules for PNG editors are discussed further in Chunk O dering
Rul es (Chapter 7).

For exanple, the hypothetical chunk type nane "bLOb" has the
property bits:

bLOb <-- 32 bit chunk type code represented in text form

||| +- Safe-to-copy bit is 1 (lower case letter; bit 5is 1)

| | +-- Reserved bit is O (upper case letter; bit 5 is 0)
| +--- Private bit is O (upper case letter; bit 5 is 0)
+---- Ancillary bit is 1 (lower case letter; bit 5is 1)

Therefore, this name represents an ancillary, public, safe-to-copy
chunk.

Boutell, et. al. I nf or mat i onal [Page 14]

RFC 2083 PNG Portabl e Network G aphics March 1997

See Rational e: Chunk nam ng conventions (Section 12.13).
3.4. CRC algorithm

Chunk CRCs are cal cul ated using standard CRC nethods with pre and
post conditioning, as defined by | SO 3309 [ISO 3309] or ITU-T V.42
[ITUV42]. The CRC pol ynonial enployed is

XN32+XN26+XN23+X N 22+ XN 16+XN12+X N 1 1+XN10+XAB+HX N T+HXNAB+X N4 +X N 2+X +1

The 32-bit CRC register is initialized to all 1's, and then the
data fromeach byte is processed fromthe least significant bit
(1) to the nost significant bit (128). After all the data bytes
are processed, the CRCregister is inverted (its ones conpl ement
is taken). This value is transnmitted (stored in the file) MSB
first. For the purpose of separating into bytes and ordering, the
| east significant bit of the 32-bit CRCis defined to be the
coefficient of the x*31 term

Practical calculation of the CRC al ways enpl oys a precal cul at ed
table to greatly accelerate the conputation. See Sanple CRC Code
(Chapter 15).
4. Chunk Specifications

This chapter defines the standard types of PNG chunks.

4.1. Critical chunks
Al'l inplenentations nust understand and successfully render the
standard critical chunks. A valid PNG inmage nust contain an | HDR
chunk, one or nore | DAT chunks, and an | END chunk.

4.1.1. I HDR I mage header

The I HDR chunk nust appear FIRST. It contains:

W dt h: 4 bytes
Hei ght : 4 bytes
Bit depth: 1 byte
Col or type: 1 byte
Conpression nethod: 1 byte
Filter method: 1 byte
Interlace nethod: 1 byte

Boutell, et. al. I nf or mat i onal [Page 15]

RFC 2083

Boutel |,

PNG Portabl e Network G aphics March 1997

W dth and hei ght give the inage dinmensions in pixels. They are
4-byte integers. Zero is an invalid value. The maxi mum for each
is (2731)-1 in order to acconmodat e | anguages that have
difficulty with unsigned 4-byte val ues.

Bit depth is a single-byte integer giving the nunber of bits
per sanple or per palette index (not per pixel). Valid values
are 1, 2, 4, 8, and 16, although not all values are all owed for
all color types.

Color type is a single-byte integer that describes the
interpretation of the inage data. Color type codes represent
suns of the following values: 1 (palette used), 2 (color used),
and 4 (al pha channel used). Valid values are 0, 2, 3, 4, and 6.

Bit depth restrictions for each color type are inposed to
simplify inplenentations and to prohibit conbinations that do
not conpress well. Decoders nust support all |ega

conbi nations of bit depth and color type. The all owed

conbi nati ons are:

Col or Al'l owed Interpretation
Type Bit Dept hs

0 1,2,4,8,16 Each pixel is a grayscal e sanple.
2 8,16 Each pixel is an R G B triple.
3 1,2,4,8 Each pixel is a palette index;

a PLTE chunk nust appear.

4 8,16 Each pixel is a grayscal e sanple,
foll owed by an al pha sanple.

6 8, 16 Each pixel is an R GB triple,
foll owed by an al pha sanpl e.

The sanple depth is the sane as the bit depth except in the
case of color type 3, in which the sanple depth is always 8
bits.

Conpression nethod is a single-byte integer that indicates the
met hod used to conpress the inmage data. At present, only
conpression nethod O (deflate/inflate conpression with a 32K
sliding window) is defined. Al standard PNG i nages nust be
conmpressed with this schene. The conpression nethod field is
provi ded for possible future expansion or proprietary variants.
Decoders nust check this byte and report an error if it holds

et. al. I nf or mat i onal [Page 16]

RFC 2083

PNG Portabl e Network G aphics March 1997

an unrecogni zed code. See Deflate/lnflate Conpression (Chapter
5) for details.

Filter method is a single-byte integer that indicates the
preprocessing nethod applied to the i mage data before
conpression. At present, only filter method O (adaptive
filtering with five basic filter types) is defined. As wth
the conpression method field, decoders nust check this byte and
report an error if it holds an unrecogni zed code. See Filter
Al gorithns (Chapter 6) for details.

Interlace nethod is a single-byte integer that indicates the
transm ssion order of the inage data. Two values are currently
defined: O (no interlace) or 1 (Adanv¥ interlace). See

Interl aced data order (Section 2.6) for details.

4.1.2. PLTE Palette

Boutel |,

The PLTE chunk contains from1l to 256 palette entries, each a
three-byte series of the form

Red: 1 byte (0 = black, 255 = red)
Green: 1 byte (0 = black, 255 = green)
Blue: 1 byte (0 = black, 255 = bl ue)

The nunber of entries is deternmined fromthe chunk length. A
chunk length not divisible by 3 is an error.

Thi s chunk nust appear for color type 3, and can appear for
color types 2 and 6; it nust not appear for color types 0 and
4. |If this chunk does appear, it nust precede the first |DAT
chunk. There nust not be nore than one PLTE chunk

For color type 3 (indexed color), the PLTE chunk is required.
The first entry in PLTE is referenced by pixel value 0, the
second by pixel value 1, etc. The nunber of palette entries
must not exceed the range that can be represented in the inage
bit depth (for exanple, 2"4 = 16 for a bit depth of 4). It is
perm ssible to have fewer entries than the bit depth would
allow. In that case, any out-of-range pixel value found in the
i mage data is an error

For color types 2 and 6 (truecolor and truecolor with al pha),
the PLTE chunk is optional. |If present, it provides a
suggested set of from1l to 256 colors to which the truecol or

i mage can be quantized if the viewer cannot display truecol or
directly. |If PLTE is not present, such a viewer will need to
select colors on its own, but it is often preferable for this

et. al. I nf or mat i onal [Page 17]

RFC 2083

PNG Portabl e Network G aphics March 1997

to be done once by the encoder. (See Recommendations for
Encoders: Suggested palettes, Section 9.5.)

Note that the palette uses 8 bits (1 byte) per sanple
regardl ess of the inmage bit depth specification. In
particular, the palette is 8 bits deep even when it is a
suggest ed quanti zation of a 16-bit truecol or inage.

There is no requirenent that the palette entries all be used by
the imge, nor that they all be different.

4.1.3. | DAT I mage data

Boutel |,

The | DAT chunk contains the actual inmage data. To create this
dat a:

* Begin with i mage scanlines represented as described in
I mage | ayout (Section 2.3); the layout and total size of
this raw data are determned by the fields of |HDR

* Filter the inmage data according to the filtering nethod
specified by the I HDR chunk. (Note that with filter
met hod 0, the only one currently defined, this inplies
prepending a filter type byte to each scanline.)

* Conpress the filtered data using the conpression nethod
specified by the | HDR chunk

The | DAT chunk contai ns the output datastream of the
conpression al gorithm

To read the image data, reverse this process

There can be nultiple I DAT chunks; if so, they nust appear
consecutively with no other intervening chunks. The conpressed
datastreamis then the concatenation of the contents of all the
| DAT chunks. The encoder can divide the conpressed datastream
i nto | DAT chunks however it wi shes. (Miltiple |IDAT chunks are
all oned so that encoders can work in a fixed anount of nenory;
typically the chunk size will correspond to the encoder’s
buffer size.) It is inportant to enphasize that |DAT chunk
boundari es have no semantic significance and can occur at any
point in the conpressed datastream A PNG file in which each

| DAT chunk contains only one data byte is |egal, though
remarkably wasteful of space. (For that natter, zero-length

| DAT chunks are |l egal, though even nore wasteful.)

See Filter Algorithms (Chapter 6) and Deflate/lnflate
Conmpression (Chapter 5) for details.

et. al. I nf or mat i onal [Page 18]

RFC 2083 PNG Portabl e Network G aphics March 1997

4.1.4. 1END I mage trailer

The | END chunk nust appear LAST. It nmarks the end of the PNG
datastream The chunk’s data field is enpty.

4.2. Ancillary chunks

Al ancillary chunks are optional, in the sense that encoders need
not wite them and decoders can ignore them However, encoders
are encouraged to wite the standard ancillary chunks when the
information is avail able, and decoders are encouraged to interpret
t hese chunks when appropriate and feasible.

The standard ancillary chunks are listed in al phabetical order
This is not necessarily the order in which they would appear in a
file.
4.2.1. bKGD Background col or
The bKGD chunk specifies a default background color to present
the i mage against. Note that viewers are not bound to honor
this chunk; a viewer can choose to use a different background.
For color type 3 (indexed color), the bKG chunk contains:
Pal ette index: 1 byte

The value is the palette index of the color to be used as
backgr ound.

For color types 0 and 4 (grayscale, with or wi thout al pha),
bKGD cont ai ns:

Gray: 2 bytes, range 0 .. (2"bitdepth)-1

(For consistency, 2 bytes are used regardl ess of the inmage bit
depth.) The value is the gray |level to be used as background.

For color types 2 and 6 (truecolor, with or w thout al pha),
bKGD cont ai ns:

Red: 2 bytes, range 0 .. (2"bitdepth)-1
Green: 2 bytes, range 0 .. (2"bitdepth)-1
Blue: 2 bytes, range 0 .. (2”bitdepth)-1

(For consistency, 2 bytes per sanple are used regardl ess of the

image bit depth.) This is the RGB color to be used as
backgr ound.

Boutell, et. al. I nf or mat i onal [Page 19]

RFC 2083 PNG Portabl e Network G aphics March 1997

When present, the bKGD chunk nust precede the first | DAT chunk
and nmust follow the PLTE chunk, if any.

See Recommendati ons for Decoders: Background col or (Section
10.7).

4.2.2. cHRM Prinmary chronmaticities and white point

Applications that need device-independent specification of
colors in a PNG file can use the cHRM chunk to specify the 1931
CIE x,y chromaticities of the red, green, and blue primaries
used in the image, and the referenced white point. See Col or
Tutorial (Chapter 14) for nore information.

The cHRM chunk cont ai ns:

VWhite Point x: 4 bytes
White Point y: 4 bytes
Red x: 4 bytes
Red vy: 4 bytes
Green Xx: 4 bytes
Green vy: 4 bytes
Bl ue x: 4 bytes
Bl ue vy: 4 bytes

Each val ue is encoded as a 4-byte unsigned integer,
representing the x or y value tines 100000. For exanple, a
val ue of 0.3127 would be stored as the integer 31270.

cHRMis allowed in all PNG files, although it is of little
val ue for grayscal e i mages.

If the encoder does not know the chromaticity values, it should
not wite a cHRM chunk; the absence of a cHRM chunk i ndicates
that the inmage’'s primary colors are device-dependent.

If the cHRM chunk appears, it nust precede the first | DAT
chunk, and it nust also precede the PLTE chunk if present.

See Recommendati ons for Encoders: Encoder col or handling

(Section 9.3), and Recommendati ons for Decoders: Decoder col or
handl i ng (Section 10.6).

Boutell, et. al. I nf or mat i onal [Page 20]

RFC 2083 PNG Portabl e Network G aphics March 1997

4.2.3. gAMA | mage gammma

The gAMA chunk specifies the gamma of the camera (or sinulated
canmera) that produced the inmage, and thus the gamma of the
imge with respect to the original scene. Mre precisely, the
gAMA chunk encodes the file_ganma val ue, as defined in Ganma
Tutorial (Chapter 13).

The gAMA chunk contai ns
| mmge ganma: 4 bytes

The value is encoded as a 4-byte unsigned integer, representing
gamma tinmes 100000. For exanple, a ganma of 0.45 would be
stored as the integer 45000.

If the encoder does not know the inage s gamma value, it should
not wite a gAMA chunk; the absence of a gAMA chunk i ndicates
that the gamma is unknown.

If the gAMA chunk appears, it nust precede the first | DAT
chunk, and it nust also precede the PLTE chunk if present.

See Gamma correction (Section 2.7), Recommendations for
Encoders: Encoder gama handling (Section 9.2), and
Recommendati ons for Decoders: Decoder ganma handling (Section
10.5).

4.2.4. hlST I mage hi stogram

The hl ST chunk gi ves the approxi nate usage frequency of each
color in the color palette. A histogramchunk can appear only
when a palette chunk appears. |If a viewer is unable to provide
all the colors listed in the palette, the histogrammy help it
deci de how to choose a subset of the colors for display.

The hl ST chunk contains a series of 2-byte (16 bit) unsigned
integers. There nust be exactly one entry for each entry in
the PLTE chunk. Each entry is proportional to the fraction of
pi xel s in the inage that have that palette index; the exact
scale factor is chosen by the encoder

H stogramentries are approxinate, with the exception that a
zero entry specifies that the corresponding palette entry is
not used at all in the image. It is required that a histogram
entry be nonzero if there are any pixels of that color.

Boutell, et. al. I nf or mat i onal [Page 21]

RFC 2083

PNG Portabl e Network G aphics March 1997

When the palette is a suggested quanti zation of a truecol or

i mage, the histogramis necessarily approximte, since a
decoder may nmap pixels to palette entries differently than the
encoder did. In this situation, zero entries should not
appear.

The hl ST chunk, if it appears, nust follow the PLTE chunk, and
must precede the first | DAT chunk.

See Rationale: Palette histograns (Section 12.14), and
Recommendati ons for Decoders: Suggested-pal ette and hi st ogram
usage (Section 10.10).

4.2.5. pHYs Physical pixel dinensions

The pHYs chunk specifies the intended pixel size or aspect
ratio for display of the image. It contains:

Pi xel s per unit, X axis: 4 bytes (unsigned integer)
Pi xels per unit, Y axis: 4 bytes (unsigned integer)
Unit specifier: 1 byte

The follow ng values are legal for the unit specifier

0: unit is unknown
1: unit is the neter

When the unit specifier is 0, the pHYs chunk defines pixe
aspect ratio only; the actual size of the pixels renmains
unspeci fi ed.

Conversion note: one inch is equal to exactly 0.0254 neters.

If this ancillary chunk is not present, pixels are assuned to
be square, and the physical size of each pixel is unknown.

If present, this chunk nust precede the first |DAT chunk

See Recommendations for Decoders: Pixel dinensions (Section
10.2).

4.2.6. sBIT Significant bits

Boutel |,

To sinplify decoders, PNG specifies that only certain sanple
dept hs can be used, and further specifies that sanple val ues
shoul d be scaled to the full range of possible values at the
sanmpl e depth. However, the sBIT chunk is provided in order to
store the original nunber of significant bits. This allows

et. al. I nf or mat i onal [Page 22]

RFC 2083

Boutel |,

PNG Portabl e Network G aphics March 1997

decoders to recover the original data |osslessly even if the
data had a sanple depth not directly supported by PNG W
recommend that an encoder enit an sBIT chunk if it has
converted the data froma | ower sanple depth.

For color type 0 (grayscale), the sBIT chunk contains a single
byte, indicating the nunber of bits that were significant in
t he source data.

For color type 2 (truecolor), the sBIT chunk contains three
bytes, indicating the nunber of bits that were significant in
the source data for the red, green, and bl ue channels,
respectively.

For color type 3 (indexed color), the sBIT chunk contains three
bytes, indicating the nunber of bits that were significant in
the source data for the red, green, and bl ue conponents of the
pal ette entries, respectively.

For color type 4 (grayscale with al pha channel), the sBIT chunk
contains two bytes, indicating the nunmber of bits that were
significant in the source grayscal e data and the source al pha
data, respectively.

For color type 6 (truecolor with al pha channel), the sBIT chunk
contains four bytes, indicating the nunber of bits that were
significant in the source data for the red, green, blue and

al pha channel s, respectively.

Each depth specified in sBIT nust be greater than zero and | ess
than or equal to the sanple depth (which is 8 for indexed-color
i mges, and the bit depth given in IHDR for other color types).

A decoder need not pay attention to sBIT: the stored inmage is a
valid PNG file of the sanple depth indicated by IHDR However,
if the decoder wishes to recover the original data at its
original precision, this can be done by right-shifting the
stored sanples (the stored palette entries, for an indexed-
color image). The encoder nust scale the data in such a way
that the high-order bits match the original data.

If the sBIT chunk appears, it nust precede the first | DAT
chunk, and it nust also precede the PLTE chunk if present.

See Recommendations for Encoders: Sanple depth scaling (Section

9.1) and Recommendati ons for Decoders: Sanple depth rescaling
(Section 10.4).

et. al. I nf or mat i onal [Page 23]

RFC 2083

PNG Portabl e Network G aphics March 1997

4,.2.7. tEXt Textual data

Boutel |,

Textual information that the encoder wi shes to record with the
i mage can be stored in tEXt chunks. Each tEXt chunk contains a
keyword and a text string, in the format:

Keywor d: 1-79 bytes (character string)
Nul | separator: 1 byte
Text : n bytes (character string)

The keyword and text string are separated by a zero byte (null
character). Neither the keyword nor the text string can
contain a null character. Note that the text string is not
null-ternminated (the length of the chunk is sufficient
information to locate the ending). The keyword nust be at

| east one character and | ess than 80 characters long. The text
string can be of any length fromzero bytes up to the maxi num
perm ssi ble chunk size |l ess the length of the keyword and
separ at or.

Any nunber of tEXt chunks can appear, and nore than one with
the sane keyword is perm ssible.

The keyword indicates the type of information represented by
the text string. The followi ng keywords are predefined and
shoul d be used where appropri ate:

Title Short (one line) title or caption for inmage
Aut hor Name of inmage’s creator

Description Description of inage (possibly |ong)

Copyri ght Copyright notice

Creation Tine Time of original image creation

Sof t war e Software used to create the inmage

Di scl ai mer Legal discl ai ner

Wr ni ng War ni ng of nature of content

Sour ce Devi ce used to create the i mage

Comment M scel | aneous conment; conversion from

G F comrent

For the Creation Tinme keyword, the date format defined in
section 5.2.14 of RFC 1123 is suggested, but not required
[RFC-1123]. Decoders should allow for free-format text
associated with this or any other keyword.

O her keywords may be invented for other purposes. Keywords of
general interest can be registered with the maintainers of the
PNG specification. However, it is also permtted to use
private unregistered keywords. (Private keywords shoul d be

et. al. I nf or mat i onal [Page 24]

RFC 2083 PNG Portabl e Network G aphics March 1997

reasonably sel f-explanatory, in order to mninize the chance
that the sane keyword will be used for inconpatible purposes by
di fferent people.)

Both keyword and text are interpreted according to the I SO
8859-1 (Latin-1) character set [ISO 8859]. The text string can
contain any Latin-1 character. Newines in the text string
shoul d be represented by a single linefeed character (decinal
10); use of other control characters in the text is

di scour aged.

Keywords nust contain only printable Latin-1 characters and
spaces; that is, only character codes 32-126 and 161-255
decimal are allowed. To reduce the chances for hunan

m sreadi ng of a keyword, leading and trailing spaces are

forbi dden, as are consecutive spaces. Note also that the non-
br eaki ng space (code 160) is not pernmitted in keywords, since
it is visually indistinguishable froman ordinary space.

Keywords nust be spelled exactly as registered, so that
decoders can use sinple literal conparisons when | ooking for
particul ar keywords. In particular, keywords are considered
case-sensitive

See Recommendati ons for Encoders: Text chunk processing
(Section 9.7) and Recommendati ons for Decoders: Text chunk
processing (Section 10.11).

4.2.8. tIME Image last-nodification time

The tIME chunk gives the tine of the |last inage nodification

(not the tinme of initial inmage creation). It contains:
Year : 2 bytes (conplete; for exanple, 1995, not 95)
Month: 1 byte (1-12)

Day: 1 byte (1-31)
Hour : 1 byte (0-23)
M nute: 1 byte (0-59)

Second: 1 byte (0-60) (yes, 60, for leap seconds; not 61
a conmon error)

Uni versal Tine (UTC, also called GMIN should be specified
rather than local tine.

Boutell, et. al. I nf or mat i onal [Page 25]

RFC 2083

PNG Portabl e Network G aphics March 1997

The tIME chunk is intended for use as an autonatically-applied
time stanp that is updated whenever the image data i s changed
It is reconmmended that tlIME not be changed by PNG editors that
do not change the image data. See also the Creation Tinme tEXt
keyword, which can be used for a user-supplied tine.

4.2.9. tRNS Transparency

Boutel |,

The tRNS chunk specifies that the i mage uses sinple
transparency: either al pha values associated with palette
entries (for indexed-color images) or a single transparent
color (for grayscale and truecol or images). Although sinple
transparency is not as elegant as the full al pha channel, it
requires |less storage space and is sufficient for many conmon
cases.

For color type 3 (indexed color), the tRNS chunk contains a
series of one-byte al pha val ues, corresponding to entries in
t he PLTE chunk:

Al pha for palette index 0: 1 byte
Al pha for palette index 1: 1 byte
etc ...

Each entry indicates that pixels of the corresponding palette
i ndex nmust be treated as having the specified al pha val ue.

Al pha val ues have the sanme interpretation as in an 8-bit ful

al pha channel: 0 is fully transparent, 255 is fully opaque,
regardl ess of inmage bit depth. The tRNS chunk nust not contain
nore al pha values than there are palette entries, but tRNS can

contain fewer values than there are palette entries. 1In this
case, the al pha value for all remaining palette entries is
assuned to be 255. In the commpn case in which only palette

i ndex 0 need be made transparent, only a one-byte tRNS chunk is
needed.

For color type 0 (grayscale), the tRNS chunk contains a single
gray level value, stored in the format:

Gray: 2 bytes, range 0 .. (2"bitdepth)-1
(For consistency, 2 bytes are used regardl ess of the inmage bit
depth.) Pixels of the specified gray level are to be treated as

transparent (equivalent to al pha value 0); all other pixels are
to be treated as fully opaque (al pha value (2"bitdepth)-1).

et. al. I nf or mat i onal [Page 26]

RFC 2083

PNG Portabl e Network G aphics March 1997

For color type 2 (truecolor), the tRNS chunk contains a single
RGB col or value, stored in the fornat:

Red: 2 bytes, range 0 .. (2"bitdepth)-1
Green: 2 bytes, range 0 .. (2"bitdepth)-1
Blue: 2 bytes, range 0 .. (2"bitdepth)-1

(For consistency, 2 bytes per sanple are used regardl ess of the
i mge bit depth.) Pixels of the specified color value are to be
treated as transparent (equivalent to al pha value 0); all other
pi xels are to be treated as fully opaque (al pha val ue

(27bi tdepth)-1).

tRNS is prohibited for color types 4 and 6, since a full al pha
channel is already present in those cases.

Not e: when dealing with 16-bit grayscale or truecolor data, it
is inportant to conpare both bytes of the sanple values to
determi ne whether a pixel is transparent. Although decoders
may drop the | ow order byte of the sanples for display, this
nmust not occur until after the data has been tested for
transparency. For exanple, if the grayscale |evel 0x0001 is
specified to be transparent, it would be incorrect to conpare
only the high-order byte and decide that 0x0002 is al so
transparent.

When present, the tRNS chunk nust precede the first |DAT chunk
and nust follow the PLTE chunk, if any.

4.2.10. zTXt Conpressed textual data

Boutel |,

The zTXt chunk contains textual data, just as tEXt does;
however, zTXt takes advantage of conpression. zTXt and tEXt
chunks are semantically equivalent, but zTXt is recommended for
storing large bl ocks of text.

A zTXt chunk contai ns:

Keywor d: 1-79 bytes (character string)
Nul I separator: 1 byte
Compression nethod: 1 byte
Conpressed text: n bytes

The keyword and null separator are exactly the sane as in the

t EXt chunk. Note that the keyword is not conpressed. The
conpression nethod byte identifies the conpression nethod used
inthis zTXt chunk. The only value presently defined for it is
0 (deflate/inflate conpression). The conpression nethod byte is

et. al. I nf or mat i onal [Page 27]

RFC 2083

PNG Portabl e Network G aphics March 1997

foll owed by a conpressed datastreamthat nakes up the renai nder
of the chunk. For conpression nethod 0, this datastream
adheres to the zlib datastreamformat (see Deflate/lnflate
Conpression, Chapter 5). Deconpression of this datastream
yields Latin-1 text that is identical to the text that would be
stored in an equival ent tEXt chunk

Any nunber of zTXt and tEXt chunks can appear in the sane file.
See the preceding definition of the tEXt chunk for the
predefi ned keywords and the recommended format of the text.

See Recommendati ons for Encoders: Text chunk processing
(Section 9.7), and Reconmendati ons for Decoders: Text chunk
processing (Section 10.11).

4.3. Summary of standard chunks

This table sumari zes sone properties of the standard chunk types.

Boutel |,

Critical chunks (nust appear in this order, except PLTE
is optional):

Name Muiltiple Odering constraints

oK?
| HDR No Must be first
PLTE No Bef ore | DAT
| DAT Yes Mul tiple | DATs nust be consecutive
| END No Must be | ast

Ancil lary chunks (need not appear in this order):

Name Miltiple Odering constraints

oxK?
cHRM No Bef ore PLTE and | DAT
gAMA No Bef ore PLTE and | DAT
sBIT No Bef ore PLTE and | DAT
bKGD No After PLTE; before | DAT
hl ST No After PLTE;, before | DAT
t RNS No After PLTE; before | DAT
pHYs No Bef ore | DAT
t1 MVE No None
t EXt Yes None
zZTXt Yes None

et. al. I nf or mat i onal [Page 28]

RFC 2083 PNG Portabl e Network G aphics March 1997

Standard keywords for tEXt and zTXt chunks:

Title Short (one line) title or caption for inmage
Aut hor Name of image’s creator

Description Description of inmage (possibly |ong)

Copyri ght Copyright notice

Creation Tine Tinme of original imge creation

Sof t war e Software used to create the inmage

Di scl ai mer Legal di scl ai nmer

Wr ni ng War ni ng of nature of content

Sour ce Device used to create the imge

Comment M scel | aneous conmment; conversion from

G F conmment
4.4. Additional chunk types

Addi tional public PNG chunk types are defined in the docunent "PNG
Speci al - Pur pose Public Chunks" [PNG EXTENSI ONS]. Chunks descri bed
there are expected to be |l ess widely supported than those defined
in this specification. However, application authors are
encouraged to use those chunk types whenever appropriate for their
applications. Additional chunk types can be proposed for
inclusion in that list by contacting the PNG specification

mai ntai ners at png-i nfo@unet. uu. net or at png-group@ga. org.

New public chunks will only be registered if they are of use to
others and do not violate the design phil osophy of PNG Chunk
registration is not automatic, although it is the intent of the
authors that it be straightforward when a new chunk of potentially
wi de application is needed. Note that the creation of new
critical chunk types is discouraged unless absolutely necessary.

Applications can al so use private chunk types to carry data that
is not of interest to other applications. See Recomendations for
Encoders: Use of private chunks (Section 9.8).

Decoders nust be prepared to encounter unrecognized public or
private chunk type codes. Unrecognized chunk types nust be
handl ed as described in Chunk nanming conventions (Section 3.3).

5. Deflate/lnflate Conpression

PNG conpression nethod O (the only conpressi on nethod presently
defined for PNG specifies deflate/inflate conpression with a 32K
sliding window. Deflate conpression is an LZ77 derivative used in
zip, gzip, pkzip and related prograns. Extensive research has been
done supporting its patent-free status. Portable C inplenmentations
are freely avail abl e.

Boutell, et. al. I nf or mat i onal [Page 29]

RFC 2083 PNG Portabl e Network G aphics March 1997

Def | at e- conpressed datastreans within PNG are stored in the "zlib"
format, which has the structure:

Conpressi on nethod/flags code: 1 byte
Addi tional flags/check bits: 1 byte
Conpressed data bl ocks: n bytes
Check val ue: 4 bytes

Further details on this format are given in the zlib specification
[RFC- 1950] .

For PNG conpression nmethod 0, the zlib conpression nethod/flags code
nmust specify nmethod code 8 ("deflate" conpression) and an LZ77 w ndow
size of not nore than 32K. Note that the zlib conpression nethod
nunber is not the sane as the PNG conpression nethod nunber. The
addi tional flags nust not specify a preset dictionary.

The conpressed data within the zlib datastreamis stored as a series
of bl ocks, each of which can represent raw (unconpressed) data,

LZ77- conpressed data encoded with fixed Huf fman codes, or LZ77-
conpressed data encoded with custom Huf fnman codes. A marker bit in
the final block identifies it as the |ast block, allow ng the decoder
to recogni ze the end of the conpressed datastream Further details
on the conpression algorithmand the encoding are given in the

defl ate specification [RFC- 1951].

The check value stored at the end of the zlib datastreamis

cal cul ated on the unconpressed data represented by the datastream
Note that the algorithmused is not the sane as the CRC cal cul ation
used for PNG chunk check values. The zlib check value is usefu

mai nly as a cross-check that the deflate and inflate algorithns are
i mpl emented correctly. Verifying the chunk CRCs provi des adequat e
confidence that the PNG file has been transnitted undamaged.

In a PNG file, the concatenation of the contents of all the |IDAT
chunks nmakes up a zlib datastream as specified above. This

dat astream deconpresses to filtered i mage data as descri bed el sewhere
in this docunent.

It is inmportant to enphasize that the boundaries between | DAT chunks
are arbitrary and can fall anywhere in the zlib datastream There is
not necessarily any correl ation between | DAT chunk boundari es and
deflate bl ock boundaries or any other feature of the zlib data. For
exanple, it is entirely possible for the term nating zlib check val ue
to be split across | DAT chunks.

Boutell, et. al. I nf or mat i onal [Page 30]

RFC 2083 PNG Portabl e Network G aphics March 1997

In the sane vein, there is no required correl ation between the
structure of the inmage data (i.e., scanline boundaries) and deflate
bl ock boundaries or | DAT chunk boundaries. The conplete inmage data
is represented by a single zlib datastreamthat is stored in some
nunber of | DAT chunks; a decoder that assumes any nore than this is
incorrect. (O course, sone encoder inplenmentations nmay enit files
in which sone of these structures are indeed related. But decoders
cannot rely on this.)

PNG al so uses zlib datastreanms in zTXt chunks. In a zTXt chunk, the
remai nder of the chunk followi ng the conpression nethod byte is a
zlib datastream as specified above. This datastream deconpresses to
the user-readabl e text described by the chunk’s keyword. Unlike the
i mage data, such datastreans are not split across chunks; each zTXt
chunk contains an i ndependent zlib datastream

Addi tional docunentation and portable C code for deflate and inflate
are available fromthe Info-ZI P archives at
<URL: ftp://ftp.uu.net/pub/archiving/zip/>.
6. Filter Algorithns
This chapter describes the filter algorithns that can be applied
bef ore conpression. The purpose of these filters is to prepare the
i mage data for optinmum conpression.
6.1. Filter types
PNG filter method O defines five basic filter types:

Type Nane

0 None

1 Sub

2 Up

3 Aver age
4 Paet h

(Note that filter nethod O in | HDR specifies exactly this set of
five filter types. |If the set of filter types is ever extended, a
different filter nethod nunber will be assigned to the extended
set, so that decoders need not deconpress the data to di scover
that it contains unsupported filter types.)

The encoder can choose which of these filter algorithns to apply
on a scanline-by-scanline basis. |In the imge data sent to the
conpression step, each scanline is preceded by a filter type byte
that specifies the filter algorithmused for that scanline.

Boutell, et. al. I nf or mat i onal [Page 31]

RFC 2083 PNG Portabl e Network G aphics March 1997

Filtering algorithns are applied to bytes, not to pixels,

regardl ess of the bit depth or color type of the inmage. The
filtering algorithm work on the byte sequence forned by a
scanline that has been represented as described in I mage | ayout
(Section 2.3). If the inmage includes an al pha channel, the al pha
data is filtered in the sane way as the i nage data

When the inmage is interlaced, each pass of the interlace pattern
is treated as an independent image for filtering purposes. The
filters work on the byte sequences formed by the pixels actually
transmtted during a pass, and the "previous scanline" is the one
previously transmitted in the sane pass, not the one adjacent in
the conplete inage. Note that the subimge transnitted in any one
pass is always rectangular, but is of smaller w dth and/or height
than the conplete image. Filtering is not applied when this

subi nage is enpty.

For all filters, the bytes "to the left of" the first pixel in a
scanline nust be treated as being zero. For filters that refer to
the prior scanline, the entire prior scanline nmust be treated as
being zeroes for the first scanline of an image (or of a pass of
an interlaced i mge).

To reverse the effect of a filter, the decoder nust use the
decoded val ues of the prior pixel on the sane |ine, the pixe

i medi ately above the current pixel on the prior line, and the

pi xel just to the left of the pixel above. This inplies that at

| east one scanline’s worth of image data will have to be stored by
the decoder at all tines. Even though sone filter types do not
refer to the prior scanline, the decoder will always need to store
each scanline as it is decoded, since the next scanline m ght use
afilter that refers to it.

PNG i nposes no restriction on which filter types can be applied to
an imge. However, the filters are not equally effective on all
types of data. See Recommendations for Encoders: Filter selection
(Section 9.6).
See also Rationale: Filtering (Section 12.9).

6.2. Filter type 0: None

Wth the None filter, the scanline is transmtted unnodified; it
is only necessary to insert a filter type byte before the data.

Boutell, et. al. I nf or mat i onal [Page 32]

RFC 2083 PNG Portabl e Network G aphics March 1997

6.3. Filter type 1. Sub

The Sub filter transnmits the difference between each byte and the
val ue of the corresponding byte of the prior pixel

To conpute the Sub filter, apply the following fornula to each
byte of the scanline:

Sub(x) = Raw(x) - Raw(x- bpp)

where x ranges fromzero to the nunber of bytes representing the
scanline mnus one, Raw(x) refers to the raw data byte at that
byte position in the scanline, and bpp is defined as the nunber of
byt es per conplete pixel, rounding up to one. For exanple, for
color type 2 with a bit depth of 16, bpp is equal to 6 (three
sanpl es, two bytes per sanple); for color type O with a bit depth
of 2, bpp is equal to 1 (rounding up); for color type 4 with a bit
depth of 16, bpp is equal to 4 (two-byte grayscal e sanple, plus
two- byt e al pha sanpl e).

Note this conputation is done for each byte, regardl ess of bit
depth. In a 16-bit inmage, each MSB is predicted fromthe
preceding M5B and each LSB fromthe preceding LSB, because of the
way that bpp is defined.

Unsi gned arithnetic nodulo 256 is used, so that both the inputs
and outputs fit into bytes. The sequence of Sub values is
transmitted as the filtered scanline.

For all x < 0, assume Rawm(x) = 0.

To reverse the effect of the Sub filter after deconpression
out put the follow ng val ue:

Sub(x) + Raw(x-bpp)
(conputed nod 256), where Raw refers to the bytes al ready decoded.
6.4. Filter type 2: Up
The Up filter is just like the Sub filter except that the pixe
i medi atel y above the current pixel, rather than just to its left,

is used as the predictor.

To conmpute the Up filter, apply the following forrmula to each byte
of the scanline:

Up(Xx) = Raw(x) - Prior(x)

Boutell, et. al. I nf or mat i onal [Page 33]

RFC 2083 PNG Portabl e Network G aphics March 1997

where x ranges fromzero to the nunber of bytes representing the
scanline mnus one, Raw(x) refers to the raw data byte at that
byte position in the scanline, and Prior(x) refers to the
unfiltered bytes of the prior scanline.

Note this is done for each byte, regardless of bit depth.

Unsi gned arithnmetic nmodul o 256 is used, so that both the inputs
and outputs fit into bytes. The sequence of Up values is
transmitted as the filtered scanline.

On the first scanline of an inmage (or of a pass of an interlaced
i mage), assune Prior(x) =0 for all x.

To reverse the effect of the Up filter after deconpression, output
the foll ow ng val ue:

Up(x) + Prior(x)

(conputed nod 256), where Prior refers to the decoded bytes of the
prior scanline.

6.5. Filter type 3: Average

The Average filter uses the average of the two nei ghboring pixels
(left and above) to predict the value of a pixel

To conmpute the Average filter, apply the following formula to each
byte of the scanline:

Average(x) = Rawmx) - floor((Raw x-bpp) +Prior(x))/2)

where x ranges from zero to the nunber of bytes representing the
scanline mnus one, Raw(x) refers to the raw data byte at that
byte position in the scanline, Prior(x) refers to the unfiltered
bytes of the prior scanline, and bpp is defined as for the Sub
filter.

Note this is done for each byte, regardl ess of bit depth. The
sequence of Average values is transnmitted as the filtered
scanl i ne.

The subtraction of the predicted value fromthe raw byte nust be
done nodul o 256, so that both the inputs and outputs fit into
bytes. However, the sum Raw(x-bpp) +Prior(x) nust be forned

wi t hout overflow (using at |least nine-bit arithnetic). floor()
indicates that the result of the division is rounded to the next
lower integer if fractional; in other words, it is an integer
division or right shift operation

Boutell, et. al. I nf or mat i onal [Page 34]

RFC 2083 PNG Portabl e Network G aphics March 1997

For all x < 0, assunme Raw(x) = 0. On the first scanline of an
i mage (or of a pass of an interlaced i mage), assune Prior(x) =0
for all x.

To reverse the effect of the Average filter after deconpression
out put the foll ow ng val ue:

Average(x) + floor((Raw x-bpp)+Prior(x))/2)

where the result is computed nod 256, but the prediction is
calculated in the same way as for encoding. Raw refers to the
byt es al ready decoded, and Prior refers to the decoded bytes of
the prior scanline.

6.6. Filter type 4: Paeth

The Paeth filter conputes a sinple linear function of the three
nei ghboring pixels (left, above, upper left), then chooses as
predi ctor the neighboring pixel closest to the conputed val ue.
This technique is due to Alan W Paeth [PAETH].

To conmpute the Paeth filter, apply the following formula to each
byte of the scanline:

Paet h(x) = Raw(x) - Paet hPredictor(Raw x-bpp), Prior(x),
Pri or (x-bpp))

where x ranges fromzero to the nunber of bytes representing the
scanline m nus one, Raw(x) refers to the raw data byte at that
byte position in the scanline, Prior(x) refers to the unfiltered
bytes of the prior scanline, and bpp is defined as for the Sub
filter.

Note this is done for each byte, regardless of bit depth.

Unsi gned arithmetic nmodul o 256 is used, so that both the inputs
and outputs fit into bytes. The sequence of Paeth values is
transmtted as the filtered scanli ne.

Boutell, et. al. I nf or mat i onal [Page 35]

RFC 2083 PNG Portabl e Network G aphics March 1997

The Paet hPredictor function is defined by the foll ow ng
pseudocode:

function PaethPredictor (a, b, c)

begi n
; a=1left, b = above, ¢ = upper |eft
p:=a+b-c ; initial estimate
pa := abs(p - a) ; distances to a, b, ¢
pb := abs(p - b)
pc := abs(p - c¢)

; return nearest of a,b,c,
; breaking ties in order a,b,c.
if pa <= pb AND pa <= pc then return a
else if pb <= pc then return b
el se return c
end

The cal culations within the PaethPredictor function nust be
perfornmed exactly, w thout overflow Arithmetic nodulo 256 is to
be used only for the final step of subtracting the function result
fromthe target byte val ue

Note that the order in which ties are broken is critical and nust
not be altered. The tie break order is: pixel to the left, pixe
above, pixel to the upper left. (This order differs fromthat
given in Paeth’'s article.)

For all x < 0, assume Rawm(x) = 0 and Prior(x) = 0. On the first
scanline of an image (or of a pass of an interlaced image), assune
Prior(x) =0 for all x.

To reverse the effect of the Paeth filter after deconpression
out put the follow ng val ue:

Paet h(x) + Paet hPredict or (Raw(x-bpp), Prior(x), Prior(x-bpp))
(conputed nod 256), where Raw and Prior refer to bytes already
decoded. Exactly the same PaethPredictor function is used by both
encoder and decoder.

7. Chunk Ordering Rul es
To all ow new chunk types to be added to PNG it is necessary to
establish rules about the ordering requirenents for all chunk types.

O herwi se a PNG editing program cannot know what to do when it
encounters an unknown chunk

Boutell, et. al. I nf or mat i onal [Page 36]

RFC 2083 PNG Portabl e Network G aphics March 1997

We define a "PNG editor" as a programthat nodifies a PNG file and

wi shes to preserve as nuch as possible of the ancillary infornation
inthe file. Two exanples of PNG editors are a programthat adds or
nmodi fi es text chunks, and a programthat adds a suggested palette to
a truecolor PNG file. Odinary imge editors are not PNG editors in
this sense, because they usually discard all unrecognized infornation
while reading in an imge. (Note: we strongly encourage prograns
handling PNG files to preserve ancillary information whenever
possi bl e.)

As an exanpl e of possible problens, consider a hypothetical new
ancillary chunk type that is safe-to-copy and is required to appear
after PLTE if PLTE is present. |f our programto add a suggested
PLTE does not recognize this new chunk, it may insert PLTE in the
wong place, nanely after the new chunk. W could prevent such
probl enms by requiring PNG editors to discard all unknown chunks, but
that is a very unattractive solution. Instead, PNG requires
ancillary chunks not to have ordering restrictions like this.

To prevent this type of problemwhile allowi ng for future extension
we put some constraints on both the behavior of PNG editors and the
al | oned ordering requirenents for chunks.

7.1. Behavior of PNG editors
The rules for PNG editors are:

* When copyi ng an unknown unsafe-to-copy ancillary chunk, a
PNG edi tor must not nove the chunk relative to any critica
chunk. It can relocate the chunk freely relative to other
ancillary chunks that occur between the sane pair of
critical chunks. (This is well defined since the editor
must not add, delete, nodify, or reorder critical chunks if
it is preserving unknown unsafe-to-copy chunks.)

* When copyi ng an unknown safe-to-copy ancillary chunk, a PNG
editor must not nove the chunk from before |DAT to after
| DAT or vice versa. (This is well defined because |IDAT is
al ways present.) Any other reordering is permtted.

* When copying a known ancillary chunk type, an editor need
only honor the specific chunk ordering rules that exist for
that chunk type. However, it can always choose to apply the
above general rules instead.

* PNG editors nust give up on encountering an unknown critica
chunk type, because there is no way to be certain that a
valid file will result fromnodifying a file containing such
a chunk. (Note that sinply discarding the chunk is not good
enough, because it m ght have unknown inplications for the
interpretation of other chunks.)

Boutell, et. al. I nf or mat i onal [Page 37]

RFC 2083 PNG Portabl e Network G aphics March 1997

These rules are expressed in terns of copying chunks from an i nput
file to an output file, but they apply in the obvious way if a PNG
file is nodified in place.

See al so Chunk nami ng conventions (Section 3.3).
7.2. Ordering of ancillary chunks

The ordering rules for an ancillary chunk type cannot be any
stricter than this:

* Unsaf e-to-copy chunks can have ordering requirenments
relative to critical chunks.

* Saf e-to-copy chunks can have ordering requirenments relative
to | DAT.

The actual ordering rules for any particular ancillary chunk type
may be weaker. See for exanple the ordering rules for the
standard ancillary chunk types (Summary of standard chunks,
Section 4.3).

Decoders must not assune nore about the positioning of any
ancillary chunk than is specified by the chunk ordering rules. In
particular, it is never valid to assune that a specific ancillary
chunk type occurs with any particular positioning relative to
other ancillary chunks. (For exanple, it is unsafe to assune that
your private ancillary chunk occurs imredi ately before END. Even
i f your application always wites it there, a PNG editor night
have inserted some other ancillary chunk after it. But you can
safely assunme that your chunk will remai n somewhere between | DAT
and | END.)

7.3. Ordering of critical chunks

Critical chunks can have arbitrary ordering requirenents, because
PNG editors are required to give up if they encounter unknown
critical chunks. For exanple, |IHDR has the special ordering rule
that it nust always appear first. A PNG editor, or indeed any
PNG witing program nust know and follow the ordering rules for
any critical chunk type that it can emt.

Boutell, et. al. I nf or mat i onal [Page 38]

RFC 2083 PNG Portabl e Network G aphics March 1997

8. M scel |l aneous Topics
8.1. File nane extension

On systens where file nanmes customarily include an extension
signifying file type, the extension ".png" is recommended for PNG
files. Lower case ".png" is preferred if file names are case-
sensitive

8.2. Internet nedia type

The Internet Assigned Nunbers Authority (1ANA) has registered
"image/ png" as the Internet Media Type for PNG [RFC- 2045, RFC
2048]. For robustness, decoders nmay choose to al so support the
interimmedia type "inmage/ x-png" which was in use before

regi stration was conpl ete

8.3. Macintosh file | ayout

In the Apple Macintosh system the follow ng conventions are
reconmended:

* The four-byte file type code for PNGfiles is "PN&". (This
code has been registered with Apple for PNG files.) The
creator code will vary depending on the creating
appl i cation.

* The contents of the data fork nust be a PNG file exactly as
described in the rest of this specification

* The contents of the resource fork are unspecified. It may
be enpty or may contain application-dependent resources.

* When transferring a Macintosh PNG file to a non- Maci nt osh
system only the data fork should be transferred.

8.4. Miltiple-inmge extension

PNG itself is strictly a single-inmage format. However, it nmay be
necessary to store nmultiple inmages within one file; for exanple,

this is needed to convert some G F files. |In the future, a
mul ti pl e-image format based on PNG nay be defined. Such a fornmat
will be considered a separate file format and will have a

different signature. PNG supporting applications may or may not
choose to support the nultiple-imge fornmat.

See Rationale: Wiy not these features? (Section 12.3).

Boutell, et. al. I nf or mat i onal [Page 39]

RFC 2083 PNG Portabl e Network G aphics March 1997

8.5. Security considerations

A PNG file or datastreamis conposed of a collection of explicitly
typed "chunks". Chunks whose contents are defined by the

speci fication could actually contain anything, including malicious
code. But there is no known risk that such malicious code could
be executed on the recipient’s conputer as a result of decoding

t he PNG i nage

The possible security risks associated with future chunk types
cannot be specified at this tine. Security issues will be
consi dered when eval uati ng chunks proposed for registration as
public chunks. There is no additional security risk associated
wi th unknown or uni npl emented chunk types, because such chunks
will be ignored, or at nost be copied into another PNG file.

The tEXt and zTXt chunks contain data that is nmeant to be

di splayed as plain text. It is possible that if the decoder

di spl ays such text without filtering out control characters,
especially the ESC (escape) character, certain systens or

term nals could behave in undesirable and i nsecure ways. W
recommend that decoders filter out control characters to avoid
this risk; see Reconmendations for Decoders: Text chunk processing
(Section 10.11).

Because every chunk’s length is available at its begi nning, and
because every chunk has a CRC trailer, there is a very robust

def ense agai nst corrupted data and agai nst fraudul ent chunks that
attenpt to overflow the decoder’s buffers. Also, the PNG
signature bytes provide early detection of comon file

transm ssion errors.

A decoder that fails to check CRCs could be subject to data
corruption. The only likely consequence of such corruption is
incorrectly displayed pixels within the inage. Wrse things m ght
happen if the CRC of the IHDR chunk is not checked and the width
or height fields are corrupted. See Reconmendations for Decoders:
Error checking (Section 10.1).

A poorly witten decoder m ght be subject to buffer overflow,
because chunks can be extrenely large, up to (2731)-1 bytes | ong.
But properly witten decoders will handl e | arge chunks w thout
difficulty.

Boutell, et. al. I nf or mat i onal [Page 40]

RFC 2083 PNG Portabl e Network G aphics March 1997

9. Recommendati ons for Encoders

Thi s chapter gives sone recomendati ons for encoder behavior. The
only absolute requirement on a PNG encoder is that it produce files
that conformto the format specified in the preceding chapters.
However, best results will usually be achieved by follow ng these
reconmendat i ons.

9.1. Sanple depth scaling

When encodi ng i nput sanples that have a sanple depth that cannot
be directly represented in PNG the encoder nust scale the sanples
up to a sanple depth that is allowed by PNG The nost accurate
scaling method is the linear equation

out put = ROUND(i nput * MAXOUTSAMPLE / MAXI NSAMPLE)

where the input sanples range fromO to MAXI NSAMPLE and the
outputs range fromO0 to MAXOUTSAMPLE (which is (2"sanpl edepth)-1).

A cl ose approximation to the linear scaling method can be achieved
by "left bit replication”, which is shifting the valid bits to
begin in the nost significant bit and repeating the nost
significant bits into the open bits. This nethod is often faster
to conpute than linear scaling. As an exanple, assunme that 5-bit
sanpl es are being scaled up to 8 bits. If the source sanple val ue
is 27 (in the range fromO0-31), then the original bits are:

Left bit replication gives a value of 222:
76543 210
| Leftnost Bits Repeated to Fill Open Bits
Oiginal Bits
whi ch natches the val ue conputed by the |inear equation. Left bit

replication usually gives the sane value as linear scaling, and is
never off by nore than one.

Boutell, et. al. I nf or mat i onal [Page 41]

RFC 2083 PNG Portabl e Network G aphics March 1997

A distinctly |less accurate approximation is obtained by sinply
left-shifting the input value and filling the | ow order bits with
zeroes. This schenme cannot reproduce white exactly, since it does
not generate an all-ones maxi mum val ue; the net effect is to
darken the image slightly. This nmethod is not recommended in
general, but it does have the effect of inproving conpression
particularly when dealing with greater-than-eight-bit sanple
depths. Since the relative error introduced by zero-fill scaling
is small at high sanple depths, some encoders may choose to use
it. Zero-fill nust not be used for al pha channel data, however,
since many decoders wi |l special -case al pha values of all zeroes
and all ones. It is inportant to represent both those val ues
exactly in the scal ed data.

When the encoder wites an sBIT chunk, it is required to do the
scaling in such a way that the high-order bits of the stored
sanmples match the original data. That is, if the sBIT chunk
specifies a sanple depth of S, the high-order S bits of the stored
data nust agree with the original S-bit data values. This allows
decoders to recover the original data by shifting right. The
added | oworder bits are not constrained. Note that all the above
scaling nmethods neet this restriction

When scaling up source data, it is recomended that the | ow order
bits be filled consistently for all sanples; that is, the same
source val ue should generate the sanme sanple value at any pixe
position. This inproves conpression by reducing the nunber of

di stinct sanple values. However, this is not a requirenent, and
sonme encoders may choose not to followit. For exanple, an
encoder mght instead dither the loworder bits, inproving

di spl ayed image quality at the price of increasing file size.

In sone applications the original source data may have a range
that is not a power of 2. The linear scaling equation still works
for this case, although the shifting nethods do not. It is
recommended that an sBIT chunk not be witten for such inmages,
since sBIT suggests that the original data range was exactly
0..2"S-1.

9. 2. Encoder gamma handl i ng

See Gamma Tutorial (Chapter 13) if you aren’t already famliar
with gamma i ssues.

Proper handling of ganma encodi ng and the gAMA chunk in an encoder

depends on the prior history of the sanple val ues and on whet her
t hese val ues have al ready been quantized to integers.

Boutell, et. al. I nf or mat i onal [Page 42]

RFC 2083 PNG Portabl e Network G aphics March 1997

If the encoder has access to sanple intensity values in floating-
poi nt or high-precision integer form (perhaps froma conputer

i mage renderer), then it is recommended that the encoder perform
its own ganma encodi ng before quantizing the data to integer

val ues for storage in the file. Applying gamma encoding at this
stage results in inmages with fewer banding artifacts at a given
sanpl e depth, or allows snaller sanples while retaining the same
visual quality.

A linear intensity level, expressed as a floating-point value in
the range 0 to 1, can be converted to a gamma-encoded sanpl e val ue

by
sanple = ROUND((intensity ~ encoder_ganma) * MAXSAMPLE)

The file_gamma value to be witten in the PNG gAMA chunk is the
same as encoder_gama in this equation, since we are assuming the
initial intensity value is linear (in effect, camera_ganmm is
1.0).

If the inage is being witten to a file only, the encoder_ganma
val ue can be sel ected sonewhat arbitrarily. Values of 0.45 or 0.5
are generally good choi ces because they are conmon in video
systens, and so nost PNG decoders should do a good job displaying
such i mages.

Some i mage renderers may sinultaneously wite the inage to a PNG
file and display it on-screen. The displayed pixels should be
gamma corrected for the display systemand view ng conditions in
use, so that the user sees a proper representation of the intended
scene. An appropriate ganma correction value is

screen_gc = view ng_ganmma / di splay_ganma

If the renderer wants to wite the same ganma-corrected sanple
values to the PNG file, avoiding a separate ganma-encodi ng step
for file output, then this screen_gc value should be witten in
the gAMA chunk. This will allow a PNG decoder to reproduce what
the file's originator saw on screen during rendering (provided the
decoder properly supports arbitrary values in a gAMA chunk).

However, it is equally reasonable for a renderer to apply ganma
correction for screen display using a ganmma appropriate to the
viewi ng conditions, and to separately ganma-encode the sanple
values for file storage using a standard val ue of gama such as
0.5. In fact, this is preferable, since sone PNG decoders nay not
accurately display i mages with unusual gAMA val ues

Boutell, et. al. I nf or mat i onal [Page 43]

RFC 2083 PNG Portabl e Network G aphics March 1997

Conput er graphics renderers often do not perform ganma encodi ng,

i nstead maki ng sanple values directly proportional to scene |ight
intensity. |If the PNG encoder receives sanple values that have

al ready been quantized into linear-light integer values, there is
no point in doing gamma encoding on them that would just result
in further loss of information. The encoder should just wite the
sanple values to the PNGfile. This "linear" sanple encoding is
equi val ent to gama encoding with a ganma of 1.0, so graphics
prograns that produce linear sanples should always enit a gAVA
chunk specifying a gamma of 1.0.

When the sanple values cone directly froma piece of hardware, the
correct gAMA value is determ ned by the gamma characteristic of
the hardware. |In the case of video digitizers ("frame grabbers"),
gAMA shoul d be 0.45 or 0.5 for NTSC (possibly less for PAL or
SECAM since video canera transfer functions are standardi zed.

| mmge scanners are less predictable. Their output sanples may be
linear (ganma 1.0) since CCD sensors thenselves are |linear, or the
scanner hardware nay have al ready applied gamma correction
designed to conpensate for dot gain in subsequent printing (gama
of about 0.57), or the scanner may have corrected the sanples for
di splay on a CRT (gamma of 0.4-0.5). You will need to refer to
the scanner’s manual, or even scan a calibrated gray wedge, to
determ ne what a particul ar scanner does.

File format converters generally should not attenpt to convert
supplied images to a different ganma. Store the data in the PNG
file without conversion, and record the source gamma if it is
known. Ganmma alteration at file conversion tine causes re-
quanti zation of the set of intensity levels that are represented,
i ntroduci ng further roundoff error with little benefit. It’'s

al nrost al ways better to just copy the sanple values intact from
the input to the output file.

In sone cases, the supplied image may be in an inmage format (e.g.
TIFF) that can describe the ganmma characteristic of the inmage. 1In
such cases, a file format converter is strongly encouraged to
wite a PNG gAMA chunk that corresponds to the known gamma of the
source image. Note that sone file formats specify the gama of
the display system not the camera. |If the input file' s gamma
value is greater than 1.0, it is alnost certainly a display system
ganmma, and you should use its reciprocal for the PNG gAMA

Boutell, et. al. I nf or mat i onal [Page 44]

RFC 2083 PNG Portabl e Network G aphics March 1997

If the encoder or file fornmat converter does not know how an inage
was originally created, but does know that the inage has been

di spl ayed satisfactorily on a display with gama di spl ay_ganma
under lighting conditions where a particular view ng _gamm is
appropriate, then the i mage can be marked as having the
file_ganmm:

file gamma = viewi ng gamma / di spl ay_gama

This will allow viewers of the PNG file to see the sane inmage that
the person running the file format converter saw. Although this
may not be precisely the correct value of the inage gamm, it’'s
better to wite a gAMA chunk with an approxi mately right val ue
than to onit the chunk and force PNG decoders to guess at an
appropriate ganma.

On the other hand, if the image file is being converted as part of
a "bul k" conversion, with no one | ooking at each image, then it is
better to onit the gAMA chunk entirely. |If the inage gamma has to
be guessed at, leave it to the decoder to do the guessing.

Gamma does not apply to al pha sanples; alpha is always represented
linearly.

See al so Recommendati ons for Decoders: Decoder ganma handli ng
(Section 10.5).

9. 3. Encoder col or handling

See Color Tutorial (Chapter 14) if you aren’t already famliar
with color issues.

If it is possible for the encoder to determine the chromaticities
of the source display prinmaries, or to make a strong guess based
on the origin of the inage or the hardware running it, then the
encoder is strongly encouraged to output the cHRM chunk. If it
does so, the gAMA chunk should al so be witten; decoders can do
little with cHRMif gAMA is nissing

Boutell, et. al. I nf or mat i onal [Page 45]

RFC 2083 PNG Portabl e Network G aphics March 1997

Video created with recent video equi pnent probably uses the CCR
709 primaries and D65 white point [ITU BT709], which are:

R G B Wi te
X 0. 640 0. 300 0. 150 0. 3127
y 0. 330 0. 600 0. 060 0. 3290
An ol der but still very popular video standard is SMPTE-C [SMPTE-
170M :
R G B Wi te
X 0. 630 0. 310 0. 155 0. 3127
y 0. 340 0. 595 0. 070 0. 3290

The original NTSC color primaries have not been used in decades.
Al t hough you may still find the NTSC nunbers listed in standards
docunents, you won't find any images that actually use them

Scanners that produce PNG files as output should insert the filter
chromaticities into a cHRM chunk and the camera_ganmma into a gAMA
chunk.

In the case of hand-drawn or digitally edited i nages, you have to
det erm ne what nonitor they were viewed on when bei ng produced.
Many image editing prograns allow you to specify what type of
nonitor you are using. This is often because they are working in
sone devi ce-independent space internally. Such prograns have
enough information to wite valid cHRM and gAMA chunks, and shoul d
do so automatically.

If the encoder is conpiled as a portion of a conputer inage
renderer that performs full-spectral rendering, the nonitor val ues
that were used to convert fromthe internal device-independent
col or space to RGB should be witten into the cHRM chunk. Any
colors that are outside the ganut of the chosen RGB device shoul d
be clipped or otherw se constrained to be within the gamut; PNG
does not store out of ganut col ors.

If the conputer inmage renderer perfornms calculations directly in
devi ce- dependent RGB space, a cHRM chunk should not be witten
unl ess the scene description and rendering paraneters have been

adjusted to ook good on a particular nonitor. |In that case, the
data for that nonitor (if known) should be used to construct a
cHRM chunk

Boutell, et. al. I nf or mat i onal [Page 46]

RFC 2083 PNG Portabl e Network G aphics March 1997

There are often cases where an inage's exact origins are unknown,
particularly if it began life in sone other format. A few i mage
formats store calibration information, which can be used to fil

in the cHRM chunk. For exanple, all PhotoCD i nages use the CCR
709 primaries and D65 whitepoint, so these values can be witten
into the cHRM chunk when converting a PhotoCD file. PhotoCD al so
uses the SMPTE-170M transfer function, which is closely

approxi mated by a gAMA of 0.5. (PhotoCD can store col ors outside
the RGB ganmut, so the inmage data will require ganut mappi ng before
witing to PNG format.) TIFF 6.0 files can optionally store
calibration information, which if present should be used to
construct the cHRM chunk. G F and nost other formats do not store
any calibration information.

It is not recormended that file format converters attenpt to
convert supplied images to a different RGB col or space. Store the
data in the PNG file w thout conversion, and record the source
primary chromaticities if they are known. Col or space
transformation at file conversion time is a bad i dea because of
gamut m smatches and rounding errors. As with ganma conversions,
it's better to store the data |osslessly and i ncur at nobst one
conversion when the image is finally displayed.

See al so Recommendati ons for Decoders: Decoder col or handling
(Section 10.6).

9.4. Al pha channel creation

The al pha channel can be regarded either as a nmask that
tenporarily hides transparent parts of the inmage, or as a neans

for constructing a non-rectangular inmage. 1In the first case, the
color values of fully transparent pixels should be preserved for
future use. In the second case, the transparent pixels carry no
useful data and are sinply there to fill out the rectangul ar i mage

area required by PNG In this case, fully transparent pixels
shoul d all be assigned the sane col or value for best conpression

| mage aut hors should keep in nind the possibility that a decoder

wi Il ignore transparency control. Hence, the colors assigned to
transparent pixels should be reasonabl e background col ors whenever
f easi bl e.

For applications that do not require a full al pha channel, or
cannot afford the price in conpression efficiency, the tRNS
transparency chunk is al so avail abl e.

Boutell, et. al. I nf or mat i onal [Page 47]

RFC 2083 PNG Portabl e Network G aphics March 1997

If the inage has a known background color, this color should be
witten in the bKG chunk. Even decoders that ignore transparency
may use the bKGD color to fill unused screen area.

If the original inmage has prenultiplied (also called "associated")
al pha data, convert it to PNGs non-prenultiplied format by

di vidi ng each sanpl e value by the correspondi ng al pha val ue, then
mul ti plying by the nmaxi num value for the image bit depth, and
rounding to the nearest integer. 1In valid premultiplied data, the
sanpl e val ues never exceed their correspondi ng al pha val ues, so
the result of the division should always be in the range 0 to 1

If the al pha value is zero, output black (zeroes).

9.5. Suggested pal ettes

A PLTE chunk can appear in truecolor PNG files. |In such files,
the chunk is not an essential part of the image data, but sinply
represents a suggested palette that viewers nay use to present the
i mage on i ndexed-col or display hardware. A suggested palette is
of no interest to viewers running on truecol or hardware.

I f an encoder chooses to provide a suggested palette, it is
recommended that a hl ST chunk also be witten to indicate the
relative inportance of the palette entries. The histogram val ues
are nost easily conputed as "nearest neighbor" counts, that is,

t he approxi mate usage of each palette entry if no dithering is
applied. (These counts will often be available for free as a
consequence of devel opi ng the suggested palette.)

For images of color type 2 (truecolor w thout al pha channel), it
is recomended that the palette and hi stogram be conputed with
reference to the RG data only, ignoring any transparent-col or
specification. |If the file uses transparency (has a tRNS chunk),
viewers can easily adapt the resulting palette for use with their

i nt ended background color. They need only replace the palette
entry closest to the tRNS color with their background col or (which
may or nmay not natch the file's bKGD color, if any).

For inmages of color type 6 (truecolor with al pha channel), it is
recommended that a bKG chunk appear and that the palette and

hi st ogram be conputed with reference to the inmage as it would
appear after conpositing against the specified background col or
This definition is necessary to ensure that useful palette entries
are generated for pixels having fractional al pha values. The
resulting palette will probably only be useful to viewers that
present the inmge agai nst the same background color. It is
recommended that PNG editors delete or reconpute the palette if
they alter or renove the bKG chunk in an i mage of color type 6.

Boutell, et. al. I nf or mat i onal [Page 48]

RFC 2083 PNG Portabl e Network G aphics March 1997

I f PLTE appears wi thout bKG in an i mage of color type 6, the
ci rcunst ances under which the palette was conputed are
unspeci fi ed.

9.6. Filter selection

For inmages of color type 3 (indexed color), filter type 0 (None)
is usually the nost effective. Note that color inmages with 256 or
fewer colors should al nost always be stored in indexed col or
format; truecolor format is likely to be much | arger.

Filter type 0 is also reconmended for inages of bit depths |ess

than 8. For lowbit-depth grayscale inmages, it nay be a net win
to expand the inmage to 8-bit representation and apply filtering,
but this is rare.

For truecol or and grayscal e inmages, any of the five filters may
prove the nost effective. |f an encoder uses a fixed filter, the
Paeth filter is nost likely to be the best.

For best conpression of truecol or and grayscal e i mages, we
recommend an adaptive filtering approach in which a filter is
chosen for each scanline. The follow ng sinple heuristic has
perfornmed well in early tests: conpute the output scanline using
all five filters, and select the filter that gives the snallest
sum of absol ute val ues of outputs. (Consider the output bytes as
signed differences for this test.) This nmethod usually

out perforns any single fixed filter choice. However, it is likely
that rmuch better heuristics will be found as nore experience is
gai ned wi th PNG

Filtering according to these reconmendations is effective on
interlaced as well as noninterlaced inmges.

9.7. Text chunk processing

A nonenpty keyword nust be provided for each text chunk. The
generi c keyword "Coment" can be used if no better description of
the text is available. |If a user-supplied keyword is used, be
sure to check that it neets the restrictions on keywords.

PNG text strings are expected to use the Latin-1 character set.
Encoders shoul d avoid storing characters that are not defined in
Latin-1, and should provide character code remapping if the |oca
systenmis character set is not Latin-1

Encoders shoul d di scourage the creation of single |ines of text
| onger than 79 characters, in order to facilitate easy reading.

Boutell, et. al. I nf or mat i onal [Page 49]

RFC 2083 PNG Portabl e Network G aphics March 1997

It is reconmmended that text itens |ess than 1K (1024 bytes) in
si ze shoul d be out put using unconpressed tEXt chunks. In
particular, it is recormmended that the basic title and author
keywords shoul d al ways be output using unconpressed tEXt chunks.
Lengt hy disclainmers, on the other hand, are ideal candidates for
ZTXt.

Placing large tEXt and zTXt chunks after the image data (after

| DAT) can speed up inmage display in some situations, since the
decoder won’t have to read over the text to get to the i nage data.
But it is recommended that small text chunks, such as the inmage
title, appear before |DAT.

9.8. Use of private chunks

Appl i cations can use PNG private chunks to carry information that
need not be understood by other applications. Such chunks nmust be
gi ven nanes with | owercase second letters, to ensure that they can
never conflict with any future public chunk definition. Note,
however, that there is no guarantee that some other application
will not use the same private chunk nanme. |f you use a private
chunk type, it is prudent to store additional identifying
informati on at the begi nning of the chunk data.

Use an ancillary chunk type (lowercase first letter), not a
critical chunk type, for all private chunks that store information
that is not absolutely essential to viewthe image. Creation of
private critical chunks is discouraged because they render PNG
files unportable. Such chunks should not be used in publicly
avai l abl e software or files. |If private critical chunks are
essential for your application, it is recommended that one appear
near the start of the file, so that a standard decoder need not
read very far before discovering that it cannot handle the file.

If you want others outside your organi zation to understand a chunk
type that you invent, contact the maintainers of the PNG
specification to subnmit a proposed chunk nane and definition for
addition to the list of special-purpose public chunks (see

Addi tional chunk types, Section 4.4). Note that a proposed public
chunk nanme (w th uppercase second letter) nmust not be used in
publicly available software or files until registration has been
appr oved.

If an ancillary chunk contains textual information that m ght be
of interest to a human user, you should not create a special chunk
type for it. Instead use a tEXt chunk and define a suitable
keyword. That way, the information will be available to users not
usi ng your software.

Boutell, et. al. I nf or mat i onal [Page 50]

RFC 2083 PNG Portabl e Network G aphics March 1997

Keywords in tEXt chunks shoul d be reasonably self-expl anatory,
since the idea is to let other users figure out what the chunk
contains. |If of general useful ness, new keywords can be
registered with the nmaintainers of the PNG specification. But it
is permssible to use keywords w thout registering themfirst.

9.9. Private type and nethod codes

Thi s specification defines the nmeaning of only sonme of the
possi bl e values of some fields. For exanple, only conpression
method O and filter types O through 4 are defined. Nunbers
greater than 127 nust be used when inventing experinental or
private definitions of values for any of these fields. Nunbers
bel ow 128 are reserved for possible future public extensions of
this specification. Note that use of private type codes may
render a file unreadabl e by standard decoders. Such codes are
strongly di scouraged except for experinental purposes, and shoul d
not appear in publicly available software or files.

10. Recommendati ons for Decoders

This chapter gives sone recommendati ons for decoder behavior. The
only absolute requirenment on a PNG decoder is that it successfully
read any file conforming to the format specified in the preceding

chapters. However, best results will usually be achi eved by

foll owi ng these recomendati ons.

10. 1. Error checking

To ensure early detection of common file-transfer problens,
decoders should verify that all eight bytes of the PNG file
signature are correct. (See Rationale: PNG file signature,
Section 12.11.) A decoder can have additional confidence in the
file's integrity if the next eight bytes are an | HDR chunk header
with the correct chunk | ength.

Unknown chunk types nust be handl ed as described in Chunk naning
conventions (Section 3.3). An unknown chunk type is not to be
treated as an error unless it is a critical chunk.

It is strongly recommended that decoders should verify the CRC on
each chunk.

In sone situations it is desirable to check chunk headers (length
and type code) before reading the chunk data and CRC. The chunk
type can be checked for plausibility by seeing whether all four
bytes are ASCI| letters (codes 65-90 and 97-122); note that this
need only be done for unrecognized type codes. |If the total file

Boutell, et. al. I nf or mat i onal [Page 51]

RFC 2083 PNG Portabl e Network G aphics March 1997

10.

10.

size is known (fromfile systeminformation, HTTP protocol, etc),
the chunk I ength can be checked for plausibility as well.

If CRCs are not checked, dropped/added data bytes or an erroneous
chunk | ength can cause the decoder to get out of step and

m si nterpret subsequent data as a chunk header. Verifying that
the chunk type contains letters is an inexpensive way of providing
early error detection in this situation.

For known-1|ength chunks such as | HDR, decoders should treat an
unexpected chunk length as an error. Future extensions to this
specification will not add new fields to existing chunks; instead,
new chunk types will be added to carry new i nformation.

Unexpected values in fields of known chunks (for exanple, an
unexpect ed conpression nethod in the I HDR chunk) nust be checked
for and treated as errors. However, it is recomended that
unexpected field values be treated as fatal errors only in
critical chunks. An unexpected value in an ancillary chunk can be
handl ed by ignoring the whole chunk as though it were an unknown
chunk type. (This reconmendati on assunes that the chunk’s CRC has
been verified. |In decoders that do not check CRCs, it is safer to
treat any unexpected value as indicating a corrupted file.)

2. Pixel dinensions

Non-square pixels can be represented (see the pHYs chunk), but
viewers are not required to account for them a viewer can present
any PNG file as though its pixels are square.

Conversely, viewers running on display hardware wi th non-square
pi xel s are strongly encouraged to rescal e i mages for proper
di spl ay.

3. Truecol or image handling

To achi eve PNG s goal of universal interchangeability, decoders
are required to accept all types of PNG i nage: indexed-col or
truecolor, and grayscale. Viewers running on indexed-col or

di spl ay hardware need to be able to reduce truecol or images to

i ndexed format for viewing. This process is usually called "col or
quanti zation".

Boutell, et. al. I nf or mat i onal [Page 52]

RFC 2083 PNG Portabl e Network G aphics March 1997

10.

A sinmple, fast way of doing this is to reduce the inmage to a fixed
palette. Palettes with uniformcolor spacing ("color cubes") are
usual ly used to nmininize the per-pixel conputation. For

phot ograph-1i ke i mages, dithering is reconended to avoid ugly
contours in what should be snmooth gradients; however, dithering

i ntroduces graininess that can be objectionable.

The quality of rendering can be inproved substantially by using a
pal ette chosen specifically for the imge, since a color cube
usual Iy has numerous entries that are unused in any particul ar

i mage. This approach requires nore work, first in choosing the
pal ette, and second in napping individual pixels to the closest
avail able color. PNG allows the encoder to supply a suggested
palette in a PLTE chunk, but not all encoders will do so, and the
suggested palette may be unsuitable in any case (it nmay have too
many or too few colors). H gh-quality viewers will therefore need
to have a palette selection routine at hand. A large |ookup table
is usually the nost feasible way of napping individual pixels to
palette entries with adequate speed.

Nurmer ous i npl ementations of color quantization are available. The
PNG reference inplenmentation, |ibpng, includes code for the
pur pose.

4. Sanple depth rescaling

Decoders may wi sh to scale PNG data to a | esser sanple depth (data
precision) for display. For exanple, 16-bit data will need to be
reduced to 8-bit depth for use on nobst present-day display
hardware. Reduction of 8-bit data to 5-bit depth is al so conmnon.

The npbst accurate scaling is achieved by the |inear equation
out put = ROUND(i nput * MAXOUTSAMPLE / MAXI NSAMPLE)
wher e

MAXI NSAMPLE = (27sanpl edepth)-1
MAXQUTSAMPLE = (2”desired_sanpl edepth)-1

A slightly |l ess accurate conversion is achieved by sinply shifting
right by sanpl edept h-desired_sanpl edepth places. For exanple, to
reduce 16-bit sanples to 8-bit, one need only discard the | ow
order byte. In many situations the shift nmethod is sufficiently
accurate for display purposes, and it is certainly nuch faster.
(But if ganma correction is being done, sanmple rescaling can be
merged into the ganma correction | ookup table, as is illustrated

i n Decoder ganma handling, Section 10.5.)

Boutell, et. al. I nf or mat i onal [Page 53]

RFC 2083 PNG Portabl e Network G aphics March 1997

10.

When an sBI T chunk is present, the original pre-PNG data can be
recovered by shifting right to the sanple depth specified by sBIT.
Note that linear scaling will not necessarily reproduce the
original data, because the encoder is not required to have used
linear scaling to scale the data up. However, the encoder is
required to have used a nethod that preserves the high-order bits,
so shifting always works. This is the only case in which shifting
nm ght be said to be nore accurate than linear scaling.

When conparing pi xel values to tRNS chunk val ues to detect
transparent pixels, it is necessary to do the conparison exactly.
Therefore, transparent pixel detection nust be done before
reduci ng sanpl e precision.

5. Decoder gamma handli ng

See Gamma Tutorial (Chapter 13) if you aren’t already famliar
wi th gama i ssues.

To produce correct tone reproduction, a good inmage display program
shoul d take into account the gammas of the image file and the

di splay device, as well as the view ng_gamma appropriate to the
lighting conditions near the display. This can be done by

cal cul ating

gbright = insanple / MAXI NSAMPLE

bright = gbright ~ (1.0 / file_ganm)
vbright = bright ~ view ng_gamma

gcvideo = vbright ~ (1.0 / display_gamm)
fbval = ROUND(gcvi deo * MAXFBVAL)

wher e MAXI NSAMPLE i s the nmaxi num sanple value in the file (255 for
8-bit, 65535 for 16-bit, etc), MAXFBVAL is the maxi nrum val ue of a
franme buffer sanple (255 for 8-bit, 31 for 5-bit, etc), insanple
is the value of the sanple in the PNG file, and fbval is the val ue
to wite into the frane buffer. The first line converts from

i nteger sanples into a nornalized 0 to 1 floating point value, the
second undoes the ganma encoding of the inmage file to produce a
linear intensity value, the third adjusts for the view ng
conditions, the fourth corrects for the display system s ganma
value, and the fifth converts to an integer frane buffer sanple.
In practice, the second through fourth lines can be nerged into

gcvideo = gbright”(viewing gamma / (file_ganma*di spl ay_ganm))

so as to performonly one power cal culation. For color inmages, the
entire calculation is perforned separately for R, G and B val ues

Boutell, et. al. I nf or mat i onal [Page 54]

RFC 2083 PNG Portabl e Network G aphics March 1997

It is not necessary to performtranscendental math for every

pi xel . Instead, conpute a | ookup table that gives the correct
out put value for every possible sanple value. This requires only
256 cal cul ations per image (for 8-bit accuracy), not one or three
cal cul ations per pixel. For an indexed-color inmage, a one-tine
correction of the palette is sufficient, unless the i nage uses
transparency and i s being displayed agai nst a nonuni form

backgr ound.

In sone cases even the cost of conmputing a gamma | ookup table may
be a concern. In these cases, viewers are encouraged to have
preconput ed gamma correction tables for file_ganmm val ues of 1.0
and 0.5 with sonme reasonabl e choice of view ng _gamma and

di splay_gamm, and to use the table closest to the gama i ndi cated
inthe file. This will produce acceptable results for the majority
of real files.

When the incom ng i nage has unknown ganmma (no gAMA chunk), choose
a likely default file_gamma val ue, but allow the user to select a
new one if the result proves too dark or too light.

In practice, it is often difficult to determ ne what val ue of

di spl ay_gamma shoul d be used. In systens with no built-in gama
correction, the display ganma is deternined entirely by the CRT.
Assum ng a CRT _gamma of 2.5 is recommended, unless you have
detailed calibration measurenents of this particular CRT
avai | abl e.

However, many nodern frame buffers have | ookup tables that are
used to performganma correction, and on these systens the

di spl ay_ganmma val ue should be the gamma of the | ookup table and
CRT conbi ned. You may not be able to find out what the | ookup
table contains fromw thin an image viewer application, so you nmay
have to ask the user what the system s ganma val ue is.
Unfortunately, different manufacturers use different ways of

speci fying what should go into the |ookup table, so interpretation
of the system gamma val ue is system dependent. Gamma Tutori al
(Chapter 13) gives sone exanpl es.

The response of real displays is actually nore conpl ex than can be
described by a single nunmber (display_gamm). If actua
measurenents of the nonitor’s |light output as a function of
voltage input are available, the fourth and fifth lines of the
conput ati on above can be replaced by a | ookup in these
nmeasurenents, to find the actual frame buffer val ue that nost
nearly gives the desired brightness.

Boutell, et. al. I nf or mat i onal [Page 55]

RFC 2083 PNG Portabl e Network G aphics March 1997

10.

The val ue of view ng gamua depends on lighting conditions; see

Gamma Tutorial (Chapter 13) for nore detail. ldeally, a viewer
woul d al l ow the user to specify view ng_ganmmma, either directly
nunerically, or via selecting from"bright surround", "dim

surround”, and "dark surround" conditions. Viewers that don't
want to do this should just assune a value for view ng_ganmma of
1.0, since nost conputer displays live in brightly-lit roons.

When viewi ng images that are digitized fromvideo, or that are
destined to becone video frames, the user might want to set the
vi ewi ng_ganmma to about 1.25 regardl ess of the actual |evel of room
lighting. This value of viewing gamma is "built into" NTSC video
practice, and displaying an inmage with that view ng_ganma al |l ows
the user to see what a TV set would show under the current room
lighting conditions. (This is not the same thing as trying to
obtain the nost accurate rendition of the content of the scene,
whi ch woul d require adjusting view ng_gamma to correspond to the
roomlighting level.) This is another reason viewers m ght want
to allow users to adjust view ng_ganma directly.

6. Decoder col or handling

See Col or Tutorial (Chapter 14) if you aren’t already famliar
with col or issues.

In many cases, decoders will treat inage data in PNG files as

devi ce- dependent RGB data and display it w thout nodification
(except for appropriate ganma correction). This provides the
fastest display of PNG inages. But unless the viewer uses exactly
the sane di splay hardware as the original inmage author used, the
colors will not be exactly the same as the original author saw,
particularly for darker or near-neutral colors. The cHRM chunk
provides information that allows closer color matching than that
provi ded by gammma correction al one.

Decoders can use the cHRM data to transformthe i mage data from
RGB to XYZ and thence into a perceptually linear color space such
as CIE LAB. They can then partition the colors to generate an
optinmal palette, because the geonetric distance between two col ors
in CIE LAB is strongly related to how different those col ors
appear (unlike, for example, RG@ or XYZ spaces). The resulting
pal ette of