BIND 9 Administrator Reference
Manual

BIND Version 9.9.8b1

=

Copyright (© 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Internet Systems
Consortium, Inc. (“ISC”)

Copyright (© 2000, 2001, 2002, 2003 Internet Software Consortium.

Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is
hereby granted, provided that the above copyright notice and this permission notice appear in all
copies.

THE SOFTWARE IS PROVIDED ”AS IS” AND ISC DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR

PERFORMANCE OF THIS SOFTWARE.

Internet System Consortium
950 Charter Street
Redwood City, California
USA
http:/ /www.isc.org/

Contents

1 Introduction 1
1.1 Scopeof Document 1
1.2 Organization of ThisDocument 1
1.3 Conventions Used in This Document 1
14 The Domain Name System (DNS) 2

141 DNSFundamentals. e 2
142 Domainsand Domain Names 2
143 Zones. e 2
1.4.4 Authoritative Name Servers 3
1441 ThePrimaryMaster 3
1442 Slave Servers i e e e e e e e 3
1.44.3 StealthServers e 3
145 CachingNameServers 4
1451 Forwarding 4
14.6 Name Serversin MultipleRoles 4

2 BIND Resource Requirements 5
2.1 Hardwarerequirements 5
22 CPURequirements 5
2.3 Memory Requirements 5
2.4 Name Server Intensive EnvironmentIssues 5
2.5 Supported Operating Systems L 6

3 Name Server Configuration 7
3.1 Sample Configurations 7

3.1.1 AcCaching-only NameServer 7

3.1.2 An Authoritative-only Name Server 7

32 LoadBalancing 8
3.3 NameServerOperations e 9
3.3.1 Tools for Use With the Name Server Daemon 9
3.3.11 DiagnosticTools 9

3.3.1.2 Administrative Tools 9

332 Signals e 11

4 Advanced DNS Features 13
41 Notify o 13
42 DynamicUpdate 13

421 Thejournalfile 14

4.3 Incremental Zone Transfers (IXFR) 14
44 SplitDNS. e 14
441 Examplesplit DNSsetup 15

45 TSIG . . 17
45.1 Generate Shared Keys for Each Pairof Hosts 18
4511 AutomaticGeneration. oo 18

4512 Manual Generation 18

452 Copying the Shared Secret to Both Machines 18
45.3 Informing the Servers of the Key’s Existence 18
454 Instructing the ServertoUsetheKey 19

455 TSIGKeyBased AccessControl. 19
456 Errors. e 19

4.6 TKEY . . . o 19
47 SIG0) . . o o 20
4.8 DNSSEC 20

i BIND 9.9.8b1 (Extended Support Version)

CONTENTS

481 GeneratingKeys 20

482 SigningtheZone 21

483 Configuring Servers 21

4.9 DNSSEC, Dynamic Zones, and Automatic Signing 23
49.1 Converting from insecure tosecure 23
49.2 Dynamic DNSupdatemethod 24

49.3 Fully automatic zonesigning L o L L 24
494 Private-typerecords L L L 25

495 DNSKEYrollovers 25

49.6 Dynamic DNSupdatemethod 25
49.7 Automatickeyrollovers L L o 26
498 NSEC3PARAMrolloversviaUPDATE. 26

499 Converting from NSECtoNSEC3 26
49.10 Converting from NSEC3toNSEC 26
49.11 Converting from secure toinsecure 26
49.12 Periodicre-signing 26
49.13 NSEC3and OPTOUT i 27

410 Dynamic Trust Anchor Management 27
410.1 ValidatingResolver 27
4.10.2 Authoritative Server 27

411 PKCS#11 (Cryptoki) support 28
411.1 Prerequisites. e 28
411.1.1 Building OpenSSL for the AEP Keyper on Linux 29

4.11.1.2 Building OpenSSL for the SCA 6000 on Solaris 30

411.1.3 Building OpenSSL for SoftHSM 30

4112 Building BIND O with PKCS#11. 31
411.21 Configuring BIND 9 for Linux with the AEP Keyper 31

411.2.2 Configuring BIND 9 for Solaris with the SCA6000 31

411.23 Configuring BIND 9 for SoftHSM 31

4113 PKCS#11Tools 32
4114 Usingthe HSM 32
4115 Specifying the engine on the commandline 33
4.11.6 Running named with automatic zone re-signing 33

412 TPv6 Supportin BIND9 34
4.12.1 Address Lookups Using AAAARecords 34
4.12.2 Address to Name Lookups Using Nibble Format. 34

5 The BIND 9 Lightweight Resolver 37
51 The Lightweight Resolver Library 37
52 RunningaResolver Daemon 37
6 BIND 9 Configuration Reference 39
6.1 Configuration FileElements L 39
6.1.1 AddressMatch Lists 41
6.1.1.1 Syntax 41

6.1.12 Definitionand Usage 41

6.1.2 CommentSyntax 42
6.1.2.1 Syntax e 42

6.12.2 Definitionand Usage 42

6.2 Configuration File Grammar. L 43
6.2.1 aclStatement Grammar L L 43

6.2.2 acl Statement Definitionand Usage 43

6.2.3 controls Statement Grammar Lo o 44

6.24 controls Statement Definitionand Usage 44

6.2.5 include Statement Grammar Lo 45

6.2.6 include Statement Definitionand Usage 45
6.2.7 keyStatement Grammar L 45

6.2.8 key Statement Definitionand Usage 45

6.29 logging Statement Grammar 45

BIND 9.9.8b1 (Extended Support Version) ii

CONTENTS

6.3

6.2.10 logging Statement Definitionand Usage 46
6.2.10.1 ThechannelPhrase 46
6.2.10.2 ThecategoryPhrase 48
6.2.10.3 The query-errors Category 50

6.2.11 lwres Statement Grammar. Lo 52

6.2.12 lwres Statement Definitionand Usage 52

6.2.13 masters Statement Grammar Lo Lo oo 52

6.2.14 masters Statement Definitionand Usage 53

6.2.15 options Statement Grammar L Lo o 53

6.2.16 options Statement Definitionand Usage 57
6.2.16.1 BooleanOptions o 62
6.2.162 Forwarding 67
6.2.16.3 Dual-stackServers L 68
62164 AccessControl 68
62165 Interfaceso 70
6.216.6 Query Address 71
6.216.7 ZoneTransfers 72
6.2.16.8 UDPPortLists 74
6.2.16.9 Operating System Resource Limits 75
6.2.16.10 Server Resource Limits 75
6.2.16.11 Periodic Task Intervals 78
6.2.16.12 Topology e 78
6.2.16.13 The sortlist Statement 79
6.216.14 RRset Ordering, 80
621615 Tuning 81
6.2.16.16 Built-in server informationzones, 83
6.2.16.17 Built-in Empty Zones L oo 83
6.2.16.18 Additional Section Caching 87
6.2.16.19 Content Filtering 87
6.2.16.20 Response Policy Zone (RPZ) Rewriting 88
6.2.16.21 Response Rate Limiting 91

6.2.17 server Statement Grammar oo 92

6.2.18 server Statement Definitionand Usage 93

6.2.19 statistics-channels Statement Grammar 94

6.2.20 statistics-channels Statement Definitionand Usage 94

6.2.21 trusted-keys Statement Grammar oL 95

6.2.22 trusted-keys Statement Definitionand Usage 95

6.2.23 managed-keys Statement Grammar L. Lo L 95

6.2.24 managed-keys Statement Definitionand Usage 96

6.2.25 view Statement Grammar L L L 96

6.2.26 view Statement Definitionand Usage 97

6.2.27 zone Statement Grammar 98

6.2.28 zone Statement Definitionand Usage 101
6.228.1 ZoneTypes 101
62282 Class. e 103
62283 ZoneOptions. e 103
6.2.28.4 Dynamic Update Policies 107

ZoneFile L 110

6.3.1 Types of Resource Records and WhentoUseThem 110
6.3.1.1 ResourceRecords 110
6.3.12 Textualexpressionof RRs. 113

6.3.2 Discussionof MXRecords 113

633 Setting TTLs e 114

6.3.4 InverseMappinginIPv4. o 114

6.3.5 Other Zone File Directives 115
6351 The@ (at-sign) 115
6.3.5.2 The $ORIGIN Directive i it 115
6.3.5.3 The $INCLUDE Directive 115
6.354 The$TTL Directive 116

iii BIND 9.9.8b1 (Extended Support Version)

CONTENTS

6.3.6 BIND Master File Extension: the $GENERATE Directive
6.3.7 Additional File Formats

6.4 BIND9Statistics e e e e
6.4.0.1 TheStatisticsFile

6.4.1 StatisticsCounters
6.4.1.1 Name Server StatisticsCounters

6.4.1.2 Zone Maintenance Statistics Counters

6.4.1.3 Resolver Statistics Counters

6.4.1.4 SocketI/O StatisticsCounters

6.4.1.5 Compatibility with BIND 8 Counters

7 BIND 9 Security Considerations

7.1 AccessControl Lists. e e

7.2 Chroot and Setuid
721

7.3 Dynamic Update Security

8 Troubleshooting
8.1 Common Problems

8.1.1 It's not working; how can I figure out what’s wrong?
8.2 Incrementing and Changing the Serial Number
83 WhereCanlIGetHelp?

A Release Notes
A.1 Release Notes for BIND Version 9.9.8b1
All
Al2
Al3
Al4
A.15
A.l.6
Al7
A.1.8

Download
Security Fixes
New Features
Feature Changes
Bug Fixes

B A Brief History of the DNS and BIND
B.1 Section

C General DNS Reference Information
C.1 IPv6 addresses (AAAA)
c2

C.2.1 Request for Comments (RFCs)
C.2.2 Internet Drafts

C.2.3 Other Documents AboutBIND

D BIND 9 DNS Library Support
D.1 BIND 9 DNS Library Support
D.1.1 Prerequisite
D.1.2
D.1.3
D.1.4
D.1.5
D.1.6

Known Defects/Restrictions
The dns.conf File

D.1.6.1
D.1.6.2
D.1.6.3
D.1.6.4
D.1.6.5
D.1.6.6
Library References

sample-async: a simple stub resolver, working asynchronously
sample-request: a simple DNS transaction client

sample-update: a simple dynamic update client program

D.1.7

The chroot Environment
722 Using the setuid Function

Introduction e

EndofLife.
Thank You

Bibliography (and Suggested Reading)

Compilation
Installation.

Sample Applications o
sample: a simple stub resolver utility

sample-gai: getaddrinfo() and getnameinfo() testcode

nsprobe: domain/name server checker in terms of RFC 4074 . .

BIND 9.9.8b1 (Extended Support Version) iv

CONTENTS

E Manual pages 145
E1 dig e 145
E2 host 151
E3 dnssec-checkds 153
E4 dnssec-coverage 154
E.5 dnssec-dsfromkey 155
E.6 dnssec-keyfromlabel 157
E7 dnssec-keygen e 160
E8 dnssec-revoke 164
E9 dnssec-settime 165
E.10 dnssec-signzone 167
E1l dnssec-verify 172
E.12 named-checkconf 173
E.13 named-checkzone L 175
El4 named e 177
E.15 named-journalprint 180
El6 nsupdate e 181
El7 rndc e 186
E.18 rndc.conf e 190
E19 rndc-confgen 192
E.20 ddns-confgen 194
E2l arpaname. 195
E22 genrandom e 196
E23 isc-hmac-fixup 196
E24 nsec3hash e 197

\Y BIND 9.9.8b1 (Extended Support Version)

Chapter 1

Introduction

The Internet Domain Name System (DNS) consists of the syntax to specify the names of entities in the
Internet in a hierarchical manner, the rules used for delegating authority over names, and the system
implementation that actually maps names to Internet addresses. DNS data is maintained in a group of
distributed hierarchical databases.

1.1 Scope of Document

The Berkeley Internet Name Domain (BIND) implements a domain name server for a number of oper-
ating systems. This document provides basic information about the installation and care of the Internet
Systems Consortium (ISC) BIND version 9 software package for system administrators.

This version of the manual corresponds to BIND version 9.9.

1.2 Organization of This Document

In this document, Chapter 1 introduces the basic DNS and BIND concepts. Chapter 2 describes resource
requirements for running BIND in various environments. Information in Chapter 3 is task-oriented in its
presentation and is organized functionally, to aid in the process of installing the BIND 9 software. The
task-oriented section is followed by Chapter 4, which contains more advanced concepts that the system
administrator may need for implementing certain options. Chapter 5 describes the BIND 9 lightweight
resolver. The contents of Chapter 6 are organized as in a reference manual to aid in the ongoing mainte-
nance of the software. Chapter 7 addresses security considerations, and Chapter § contains troubleshoot-
ing help. The main body of the document is followed by several appendices which contain useful refer-
ence information, such as a bibliography and historic information related to BIND and the Domain Name
System.

1.3 Conventions Used in This Document

In this document, we use the following general typographic conventions:

To describe: We use the style:
a pathname, filename, URL, hostname, mailing | Fixed width
list name, or new term or concept
literal user input Fixed Width Bold
program output Fixed Width

1 BIND 9.9.8b1 (Extended Support Version)

1.4. THE DOMAIN NAME SYSTEM (DNS) CHAPTER 1. INTRODUCTION

The following conventions are used in descriptions of the BIND configuration file:

To describe: We use the style:
keywords Fixed Width
variables Fixed Width
Optional input [Text is enclosed in square brackets]

1.4 The Domain Name System (DNS)

The purpose of this document is to explain the installation and upkeep of the BIND (Berkeley Internet
Name Domain) software package, and we begin by reviewing the fundamentals of the Domain Name
System (DNS) as they relate to BIND.

1.4.1 DNS Fundamentals

The Domain Name System (DNS) is a hierarchical, distributed database. It stores information for map-
ping Internet host names to IP addresses and vice versa, mail routing information, and other data used
by Internet applications.

Clients look up information in the DNS by calling a resolver library, which sends queries to one or more
name servers and interprets the responses. The BIND 9 software distribution contains a name server,
named, and a resolver library, liblwres. The older libbind resolver library is also available from ISC as
a separate download.

1.4.2 Domains and Domain Names

The data stored in the DNS is identified by domain names that are organized as a tree according to or-
ganizational or administrative boundaries. Each node of the tree, called a domain, is given a label. The
domain name of the node is the concatenation of all the labels on the path from the node to the oot node.
This is represented in written form as a string of labels listed from right to left and separated by dots. A
label need only be unique within its parent domain.

For example, a domain name for a host at the company Example, Inc. could be ourhost .example.com,
where com s the top level domain to which ourhost . example. combelongs, example is a subdomain
of com, and ourhost is the name of the host.

For administrative purposes, the name space is partitioned into areas called zones, each starting at a
node and extending down to the leaf nodes or to nodes where other zones start. The data for each zone
is stored in a name server, which answers queries about the zone using the DNS protocol.

The data associated with each domain name is stored in the form of resource records (RRs). Some of the
supported resource record types are described in Section 6.3.1.

For more detailed information about the design of the DNS and the DNS protocol, please refer to the
standards documents listed in Section C.2.1.

1.4.3 Zones

To properly operate a name server, it is important to understand the difference between a zone and a
domain.

As stated previously, a zone is a point of delegation in the DNS tree. A zone consists of those contigu-
ous parts of the domain tree for which a name server has complete information and over which it has
authority. It contains all domain names from a certain point downward in the domain tree except those

BIND 9.9.8b1 (Extended Support Version) 2

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

which are delegated to other zones. A delegation point is marked by one or more NS records in the
parent zone, which should be matched by equivalent NS records at the root of the delegated zone.

For instance, consider the example . com domain which includes names such as host .aaa.example.
comand host .bbb.example.comeven though the example.com zone includes only delegations for
the aaa.example.comand bbb.example.comzones. A zone can map exactly to a single domain, but
could also include only part of a domain, the rest of which could be delegated to other name servers.
Every name in the DNS tree is a domain, even if it is terminal, that is, has no subdomains. Every subdomain
is a domain and every domain except the root is also a subdomain. The terminology is not intuitive and
we suggest that you read RFCs 1033, 1034 and 1035 to gain a complete understanding of this difficult
and subtle topic.

Though BIND is called a “"domain name server”, it deals primarily in terms of zones. The master and
slave declarations in the named. conf file specify zones, not domains. When you ask some other site
if it is willing to be a slave server for your domain, you are actually asking for slave service for some
collection of zones.

1.4.4 Authoritative Name Servers

Each zone is served by at least one authoritative name server, which contains the complete data for the
zone. To make the DNS tolerant of server and network failures, most zones have two or more authori-
tative servers, on different networks.

Responses from authoritative servers have the “authoritative answer” (AA) bit set in the response pack-
ets. This makes them easy to identify when debugging DNS configurations using tools like dig (Sec-
tion 3.3.1.1).

1.4.4.1 The Primary Master

The authoritative server where the master copy of the zone data is maintained is called the primary
master server, or simply the primary. Typically it loads the zone contents from some local file edited by
humans or perhaps generated mechanically from some other local file which is edited by humans. This
file is called the zone file or master file.

In some cases, however, the master file may not be edited by humans at all, but may instead be the result
of dynamic update operations.

1.4.4.2 Slave Servers

The other authoritative servers, the slave servers (also known as secondary servers) load the zone con-
tents from another server using a replication process known as a zone transfer. Typically the data are
transferred directly from the primary master, but it is also possible to transfer it from another slave. In
other words, a slave server may itself act as a master to a subordinate slave server.

1.4.4.3 Stealth Servers

Usually all of the zone’s authoritative servers are listed in NS records in the parent zone. These NS
records constitute a delegation of the zone from the parent. The authoritative servers are also listed in the
zone file itself, at the fop level or apex of the zone. You can list servers in the zone’s top-level NS records
that are not in the parent’s NS delegation, but you cannot list servers in the parent’s delegation that are
not present at the zone’s top level.

A stealth server is a server that is authoritative for a zone but is not listed in that zone’s NS records.
Stealth servers can be used for keeping a local copy of a zone to speed up access to the zone’s records or
to make sure that the zone is available even if all the ”official” servers for the zone are inaccessible.

3 BIND 9.9.8b1 (Extended Support Version)

1.4. THE DOMAIN NAME SYSTEM (DNS) CHAPTER 1. INTRODUCTION

A configuration where the primary master server itself is a stealth server is often referred to as a "hidden
primary” configuration. One use for this configuration is when the primary master is behind a firewall
and therefore unable to communicate directly with the outside world.

1.4.5 Caching Name Servers

The resolver libraries provided by most operating systems are stub resolvers, meaning that they are not
capable of performing the full DNS resolution process by themselves by talking directly to the authori-
tative servers. Instead, they rely on a local name server to perform the resolution on their behalf. Such
a server is called a recursive name server; it performs recursive lookups for local clients.

To improve performance, recursive servers cache the results of the lookups they perform. Since the
processes of recursion and caching are intimately connected, the terms recursive server and caching server
are often used synonymously.

The length of time for which a record may be retained in the cache of a caching name server is controlled
by the Time To Live (TTL) field associated with each resource record.

1.4.5.1 Forwarding

Even a caching name server does not necessarily perform the complete recursive lookup itself. Instead,
it can forward some or all of the queries that it cannot satisfy from its cache to another caching name
server, commonly referred to as a forwarder.

There may be one or more forwarders, and they are queried in turn until the list is exhausted or an
answer is found. Forwarders are typically used when you do not wish all the servers at a given site
to interact directly with the rest of the Internet servers. A typical scenario would involve a number
of internal DNS servers and an Internet firewall. Servers unable to pass packets through the firewall
would forward to the server that can do it, and that server would query the Internet DNS servers on the
internal server’s behalf.

1.4.6 Name Servers in Multiple Roles

The BIND name server can simultaneously act as a master for some zones, a slave for other zones, and
as a caching (recursive) server for a set of local clients.

However, since the functions of authoritative name service and caching/recursive name service are
logically separate, it is often advantageous to run them on separate server machines. A server that
only provides authoritative name service (an authoritative-only server) can run with recursion disabled,
improving reliability and security. A server that is not authoritative for any zones and only provides
recursive service to local clients (a caching-only server) does not need to be reachable from the Internet
at large and can be placed inside a firewall.

BIND 9.9.8b1 (Extended Support Version) 4

Chapter 2

BIND Resource Requirements

2.1 Hardware requirements

DNS hardware requirements have traditionally been quite modest. For many installations, servers that
have been pensioned off from active duty have performed admirably as DNS servers.

The DNSSEC features of BIND 9 may prove to be quite CPU intensive however, so organizations that
make heavy use of these features may wish to consider larger systems for these applications. BIND 9 is
fully multithreaded, allowing full utilization of multiprocessor systems for installations that need it.

2.2 CPU Requirements

CPU requirements for BIND 9 range from i486-class machines for serving of static zones without caching,
to enterprise-class machines if you intend to process many dynamic updates and DNSSEC signed zones,
serving many thousands of queries per second.

2.3 Memory Requirements

The memory of the server has to be large enough to fit the cache and zones loaded off disk. The max-
cache-size option can be used to limit the amount of memory used by the cache, at the expense of
reducing cache hit rates and causing more DNS traffic. Additionally, if additional section caching (Sec-
tion 6.2.16.18) is enabled, the max-acache-size option can be used to limit the amount of memory used
by the mechanism. It is still good practice to have enough memory to load all zone and cache data into
memory — unfortunately, the best way to determine this for a given installation is to watch the name
server in operation. After a few weeks the server process should reach a relatively stable size where
entries are expiring from the cache as fast as they are being inserted.

2.4 Name Server Intensive Environment Issues

For name server intensive environments, there are two alternative configurations that may be used.
The first is where clients and any second-level internal name servers query a main name server, which
has enough memory to build a large cache. This approach minimizes the bandwidth used by external
name lookups. The second alternative is to set up second-level internal name servers to make queries
independently. In this configuration, none of the individual machines needs to have as much memory
or CPU power as in the first alternative, but this has the disadvantage of making many more external
queries, as none of the name servers share their cached data.

5 BIND 9.9.8b1 (Extended Support Version)

2.5. SUPPORTED OPERATING SYSTEMS CHAPTER 2. BIND RESOURCE REQUIREMENTS

2.5 Supported Operating Systems

ISC BIND 9 compiles and runs on a large number of Unix-like operating systems and on Microsoft
Windows Server 2003 and 2008, and Windows XP and Vista. For an up-to-date list of supported systems,
see the README file in the top level directory of the BIND 9 source distribution.

BIND 9.9.8b1 (Extended Support Version) 6

Chapter 3

Name Server Configuration

In this chapter we provide some suggested configurations along with guidelines for their use. We sug-
gest reasonable values for certain option settings.

3.1 Sample Configurations

3.1.1 A Caching-only Name Server

The following sample configuration is appropriate for a caching-only name server for use by clients
internal to a corporation. All queries from outside clients are refused using the allow-query option.
Alternatively, the same effect could be achieved using suitable firewall rules.

// Two corporate subnets we wish to allow queries from.
acl corpnets { 192.168.4.0/24; 192.168.7.0/24; };
options {

// Working directory

directory "/etc/namedb";

allow-query { corpnets; };
bi
// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type master;
file "localhost.rev";
notify noj;

3.1.2 An Authoritative-only Name Server

This sample configuration is for an authoritative-only server that is the master server for "example.

”

com” and a slave for the subdomain “eng.example.com”.

options {
// Working directory
directory "/etc/namedb";
// Do not allow access to cache
allow—query—-cache { none; };

7 BIND 9.9.8b1 (Extended Support Version)

3.2. LOAD BALANCING CHAPTER 3. NAME SERVER CONFIGURATION

// This is the default

allow—query { any; };

// Do not provide recursive service
recursion no;

}i

// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type master;
file "localhost.rev";
notify noj;
}i
// We are the master server for example.com
zone "example.com" {
type master;
file "example.com.db";
// IP addresses of slave servers allowed to
// transfer example.com
allow—-transfer {
192.168.4.14;
192.168.5.53;
}i
}i
// We are a slave server for eng.example.com
zone "eng.example.com" {
type slave;
file "eng.example.com.bk";
// IP address of eng.example.com master server
masters { 192.168.4.12; };
}i

3.2 Load Balancing

A primitive form of load balancing can be achieved in the DNS by using multiple records (such as
multiple A records) for one name.

For example, if you have three WWW servers with network addresses of 10.0.0.1, 10.0.0.2 and 10.0.0.3,
a set of records such as the following means that clients will connect to each machine one third of the
time:

Name TTL CLASS TYPE Resource Record (RR) Data
WWW 600 IN A 10.0.0.1

600 IN A 10.0.0.2

600 IN A 10.0.0.3

When a resolver queries for these records, BIND will rotate them and respond to the query with the
records in a different order. In the example above, clients will randomly receive records in the order 1,
2,3;2,3,1;and 3, 1, 2. Most clients will use the first record returned and discard the rest.

For more detail on ordering responses, check the rrset-order sub-statement in the options statement, see
RRset Ordering.

BIND 9.9.8b1 (Extended Support Version) 8

CHAPTER 3. NAME SERVER CONFIGURATION 3.3. NAME SERVER OPERATIONS

3.3 Name Server Operations

3.3.1 Tools for Use With the Name Server Daemon

This section describes several indispensable diagnostic, administrative and monitoring tools available
to the system administrator for controlling and debugging the name server daemon.

3.3.1.1 Diagnostic Tools

The dig, host, and nslookup programs are all command line tools for manually querying name servers.
They differ in style and output format.

dig The domain information groper (dig) is the most versatile and complete of these lookup tools. It has
two modes: simple interactive mode for a single query, and batch mode which executes a query
for each in a list of several query lines. All query options are accessible from the command line.

Usage
dig [@server] domain [query-typel [query-class] [+query-option]
[-dig-option] [%comment]

The usual simple use of dig will take the form
dig @server domain query-type query-class

For more information and a list of available commands and options, see the dig man page.

host The host utility emphasizes simplicity and ease of use. By default, it converts between host names
and Internet addresses, but its functionality can be extended with the use of options.

Usage
host [-aCdlnrsTwv] [-c class] [-N ndots] [-t type]l [-W timeout] [-R
retries] [-m flag] [-4] [-6] hostname [server]

For more information and a list of available commands and options, see the host man page.

nslookup nslookup has two modes: interactive and non-interactive. Interactive mode allows the user
to query name servers for information about various hosts and domains or to print a list of hosts
in a domain. Non-interactive mode is used to print just the name and requested information for a
host or domain.

Usage
nslookup [-option...] [host—-to—-find | — [server]]

Interactive mode is entered when no arguments are given (the default name server will be used)
or when the first argument is a hyphen (*-’) and the second argument is the host name or Internet
address of a name server.

Non-interactive mode is used when the name or Internet address of the host to be looked up is
given as the first argument. The optional second argument specifies the host name or address of a
name server.

Due to its arcane user interface and frequently inconsistent behavior, we do not recommend the
use of nslookup. Use dig instead.

3.3.1.2 Administrative Tools

Administrative tools play an integral part in the management of a server.

named-checkconf The named-checkconf program checks the syntax of a named. conf file.

9 BIND 9.9.8b1 (Extended Support Version)

3.3. NAME SERVER OPERATIONS CHAPTER 3. NAME SERVER CONFIGURATION

Usage

named-checkconf [-jvz] [-t directory] [filename]

named-checkzone The named-checkzone program checks a master file for syntax and consistency.

Usage
named-checkzone [-djgvD] [-c class] [-o output] [-t directory] [-w
directory] [-k (ignore|warn|fail)]l [-n (ignore|warn|fail)]l [-W

(ignorfﬂwarn)] zone [filename]

named-compilezone Similar to named-checkzone, but it always dumps the zone content to a specified
file (typically in a different format).

rndc The remote name daemon control (rndc) program allows the system administrator to control the
operation of a name server. Since BIND 9.2, rndc supports all the commands of the BIND 8 ndc
utility except ndc start and ndc restart, which were also not supported in ndc’s channel mode. If
you run rndc without any options it will display a usage message as follows:

Usage
rndc [-c config] [-s server] [-p port] [-y key] command [command...]

See rndc(8) for details of the available rndc commands.

rndc requires a configuration file, since all communication with the server is authenticated with
digital signatures that rely on a shared secret, and there is no way to provide that secret other than
with a configuration file. The default location for the rndc configuration file is /etc/rndc. conf,
but an alternate location can be specified with the —c option. If the configuration file is not found,
rndc will also look in /etc/rndc.key (or whatever sysconfdir was defined when the BIND
build was configured). The rndc.key file is generated by running rndc-confgen -a as described
in Section 6.2.4.

The format of the configuration file is similar to that of named.conf, but limited to only four
statements, the options, key, server and include statements. These statements are what associate
the secret keys to the servers with which they are meant to be shared. The order of statements is
not significant.

The options statement has three clauses: default-server, default-key, and default-port. default-
server takes a host name or address argument and represents the server that will be contacted if no
—s option is provided on the command line. default-key takes the name of a key as its argument,
as defined by a key statement. default-port specifies the port to which rndc should connect if no
port is given on the command line or in a server statement.

The key statement defines a key to be used by rndc when authenticating with named. Its syntax
is identical to the key statement in named. conf. The keyword key is followed by a key name,
which must be a valid domain name, though it need not actually be hierarchical; thus, a string like
“rndc_key” is a valid name. The key statement has two clauses: algorithm and secret. While the
configuration parser will accept any string as the argument to algorithm, currently only the string
"hmac-md5” has any meaning. The secret is a base-64 encoded string as specified in RFC 3548.

The server statement associates a key defined using the key statement with a server. The keyword
server is followed by a host name or address. The server statement has two clauses: key and
port. The key clause specifies the name of the key to be used when communicating with this
server, and the port clause can be used to specify the port rndc should connect to on the server.

A sample minimal configuration file is as follows:

key rndc_key {
algorithm "hmac-md5";
secret
"c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gY¥nVO0IG1lhZGUgZmOyIGEgd29tYW4K";
}i

BIND 9.9.8b1 (Extended Support Version) 10

CHAPTER 3. NAME SERVER CONFIGURATION 3.3. NAME SERVER OPERATIONS

options {
default-server 127.0.0.1;
default-key rndc_key;
}i

This file, if installed as /etc/rndc.conf, would allow the command:
Srndc reload

to connect to 127.0.0.1 port 953 and cause the name server to reload, if a name server on the local
machine were running with following controls statements:

controls {
inet 127.0.0.1
allow { localhost; } keys { rndc_key; 1};

}i

and it had an identical key statement for rndc_key.

Running the rndc-confgen program will conveniently create a rndc. conf file for you, and also
display the corresponding controls statement that you need to add to named. conf. Alternatively,
you can run rndc-confgen -a to set up a rndc. key file and not modify named. conf at all.

3.3.2 Signals

Certain UNIX signals cause the name server to take specific actions, as described in the following table.
These signals can be sent using the kill command.

SIGHUP Causes the server to read named. conf and reload the database.
SIGTERM Causes the server to clean up and exit.
SIGINT Causes the server to clean up and exit.

11 BIND 9.9.8b1 (Extended Support Version)

Chapter 4

Advanced DNS Features

4.1 Notify

DNS NOTIFY is a mechanism that allows master servers to notify their slave servers of changes to a
zone’s data. In response to a NOTIFY from a master server, the slave will check to see that its version of
the zone is the current version and, if not, initiate a zone transfer.

For more information about DNS NOTIFY, see the description of the notify option in Section 6.2.16.1
and the description of the zone option also-notify in Section 6.2.16.7. The NOTIFY protocol is specified
in RFC 1996.

NOTE

As a slave zone can also be a master to other slaves, named, by default, sends
% NOTIFY messages for every zone it loads. Specifying notify master-only; will
cause named to only send NOTIFY for master zones that it loads.

4.2 Dynamic Update

Dynamic Update is a method for adding, replacing or deleting records in a master server by sending it
a special form of DNS messages. The format and meaning of these messages is specified in RFC 2136.

Dynamic update is enabled by including an allow-update or an update-policy clause in the zone state-
ment.

If the zone’s update-policy is set to local, updates to the zone will be permitted for the key 1ocal-ddns,
which will be generated by named at startup. See Section 6.2.28.4 for more details.

Dynamic updates using Kerberos signed requests can be made using the TKEY/GSS protocol by set-
ting either the tkey-gssapi-keytab option, or alternatively by setting both the tkey-gssapi-credential
and tkey-domain options. Once enabled, Kerberos signed requests will be matched against the update
policies for the zone, using the Kerberos principal as the signer for the request.

Updating of secure zones (zones using DNSSEC) follows RFEC 3007: RRSIG, NSEC and NSEC3 records
affected by updates are automatically regenerated by the server using an online zone key. Update au-
thorization is based on transaction signatures and an explicit server policy.

13 BIND 9.9.8b1 (Extended Support Version)

4.3. INCREMENTAL ZONE TRANSFERS (IXFR) CHAPTER 4. ADVANCED DNS FEATURES

4.21 The journal file

All changes made to a zone using dynamic update are stored in the zone’s journal file. This file is auto-
matically created by the server when the first dynamic update takes place. The name of the journal file is
formed by appending the extension . jnl to the name of the corresponding zone file unless specifically
overridden. The journal file is in a binary format and should not be edited manually.

The server will also occasionally write (“dump”) the complete contents of the updated zone to its zone
file. This is not done immediately after each dynamic update, because that would be too slow when a
large zone is updated frequently. Instead, the dump is delayed by up to 15 minutes, allowing additional
updates to take place. During the dump process, transient files will be created with the extensions . jnw
and . jbk; under ordinary circumstances, these will be removed when the dump is complete, and can
be safely ignored.

When a server is restarted after a shutdown or crash, it will replay the journal file to incorporate into the
zone any updates that took place after the last zone dump.

Changes that result from incoming incremental zone transfers are also journalled in a similar way.

The zone files of dynamic zones cannot normally be edited by hand because they are not guaranteed to
contain the most recent dynamic changes — those are only in the journal file. The only way to ensure
that the zone file of a dynamic zone is up to date is to run rndc stop.

If you have to make changes to a dynamic zone manually, the following procedure will work: Disable
dynamic updates to the zone using rndc freeze zone. This will update the zone’s master file with the
changes stored in its . jn1 file. Edit the zone file. Run rndc thaw zone to reload the changed zone and
re-enable dynamic updates.

rndc sync zone will update the zone file with changes from the journal file without stopping dynamic
updates; this may be useful for viewing the current zone state. To remove the . jnl file after updating
the zone file, use rndc sync -clean.

4.3 Incremental Zone Transfers (IXFR)

The incremental zone transfer (IXFR) protocol is a way for slave servers to transfer only changed data,
instead of having to transfer the entire zone. The IXFR protocol is specified in RFC 1995. See [Proposed
Standards].

When acting as a master, BIND 9 supports IXFR for those zones where the necessary change history
information is available. These include master zones maintained by dynamic update and slave zones
whose data was obtained by IXFR. For manually maintained master zones, and for slave zones obtained
by performing a full zone transfer (AXFR), IXFR is supported only if the option ixfr-from-differences is
set to yes.

When acting as a slave, BIND 9 will attempt to use IXFR unless it is explicitly disabled. For more
information about disabling IXFR, see the description of the request-ixfr clause of the server statement.

4.4 Split DNS

Setting up different views, or visibility, of the DNS space to internal and external resolvers is usually
referred to as a Split DNS setup. There are several reasons an organization would want to set up its DNS
this way.

One common reason for setting up a DNS system this way is to hide “internal” DNS information from
“external” clients on the Internet. There is some debate as to whether or not this is actually useful.
Internal DNS information leaks out in many ways (via email headers, for example) and most savvy
"attackers” can find the information they need using other means. However, since listing addresses
of internal servers that external clients cannot possibly reach can result in connection delays and other
annoyances, an organization may choose to use a Split DNS to present a consistent view of itself to the
outside world.

BIND 9.9.8b1 (Extended Support Version) 14

CHAPTER 4. ADVANCED DNS FEATURES 4.4. SPLIT DNS

Another common reason for setting up a Split DNS system is to allow internal networks that are behind
filters or in RFC 1918 space (reserved IP space, as documented in RFC 1918) to resolve DNS on the
Internet. Split DNS can also be used to allow mail from outside back in to the internal network.

4.4.1 Example split DNS setup

Let’s say a company named Example, Inc. (example.com) has several corporate sites that have an
internal network with reserved Internet Protocol (IP) space and an external demilitarized zone (DMZ),
or “outside” section of a network, that is available to the public.

Example, Inc. wants its internal clients to be able to resolve external hostnames and to exchange mail
with people on the outside. The company also wants its internal resolvers to have access to certain
internal-only zones that are not available at all outside of the internal network.

In order to accomplish this, the company will set up two sets of name servers. One set will be on the
inside network (in the reserved IP space) and the other set will be on bastion hosts, which are “proxy”
hosts that can talk to both sides of its network, in the DMZ.

The internal servers will be configured to forward all queries, except queries for sitel.internal,
site2.internal, sitel.example.com, and site2.example.com, to the servers in the DMZ.
These internal servers will have complete sets of information for sitel.example.com, site2.example.
com, sitel.internal,and site2.internal.

To protect the sitel.internal and site2.internal domains, the internal name servers must be
configured to disallow all queries to these domains from any external hosts, including the bastion hosts.

The external servers, which are on the bastion hosts, will be configured to serve the "public” version
of the sitel and site2.example.com zones. This could include things such as the host records for
public servers (www.example.comand ftp.example.com), and mail exchange (MX) records (a.mx .
example.comand b.mx.example.com).

In addition, the public sitel and site2.example.com zones should have special MX records that
contain wildcard (**') records pointing to the bastion hosts. This is needed because external mail servers
do not have any other way of looking up how to deliver mail to those internal hosts. With the wildcard
records, the mail will be delivered to the bastion host, which can then forward it on to internal hosts.

Here’s an example of a wildcard MX record:
* IN MX 10 externall.example.com.

Now that they accept mail on behalf of anything in the internal network, the bastion hosts will need
to know how to deliver mail to internal hosts. In order for this to work properly, the resolvers on the
bastion hosts will need to be configured to point to the internal name servers for DNS resolution.

Queries for internal hostnames will be answered by the internal servers, and queries for external host-
names will be forwarded back out to the DNS servers on the bastion hosts.

In order for all this to work properly, internal clients will need to be configured to query only the internal
name servers for DNS queries. This could also be enforced via selective filtering on the network.

If everything has been set properly, Example, Inc.’s internal clients will now be able to:
o Look up any hostnames in the sitel and site2.example.com zones.
e Look up any hostnames in the sitel.internal and site2.internal domains.
e Look up any hostnames on the Internet.
e Exchange mail with both internal and external people.
Hosts on the Internet will be able to:
e Look up any hostnames in the sitel and site2.example.com zones.

e Exchange mail with anyone in the sitel and site2.example.com zones.

15 BIND 9.9.8b1 (Extended Support Version)

4.4. SPLIT DNS CHAPTER 4. ADVANCED DNS FEATURES

Here is an example configuration for the setup we just described above. Note that this is only configu-
ration information; for information on how to configure your zone files, see Section 3.1.

Internal DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips—-go-here; };

options {

forward only;
// forward to external servers
forwarders {

bastion-ips—-go-here;
bi
// sample allow-transfer (no one)
allow—-transfer { none; };
// restrict query access
allow—query { internals; externals; };
// restrict recursion
allow-recursion { internals; };

}i

// sample master zone

zone "sitel.example.com" ({
type master;
file "m/sitel.example.com";
// do normal iterative resolution (do not forward)
forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };

}i

// sample slave zone
zone "site2.example.com" {
type slave;
file "s/site2.example.com";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };
}i

zone "sitel.internal" {
type master;
file "m/sitel.internal";
forwarders { };
allow-query { internals; };
allow-transfer { internals; }

}i

zone "site2.internal" {
type slave;
file "s/site2.internal";

BIND 9.9.8b1 (Extended Support Version) 16

CHAPTER 4. ADVANCED DNS FEATURES 4.5. TSIG

masters { 172.16.72.3; };

forwarders { };

allow-query { internals };

allow-transfer { internals; }
bi

External (bastion host) DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips—-go-here; };

options {

// sample allow-transfer (no one)
allow-transfer { none; };

// default query access

allow—query { any; };

// restrict cache access

allow—query-cache { internals; externals; };
// restrict recursion

allow—-recursion { internals; externals; };

}i

// sample slave zone
zone "sitel.example.com" {
type master;
file "m/sitel.foo.com";
allow-transfer { internals; externals; };

}i

zone "site2.example.com" {
type slave;
file "s/site2.foo.com";
masters { another_bastion_host_maybe; };
allow—-transfer { internals; externals; }

}i
In the resolv.conf (or equivalent) on the bastion host(s):

search

nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4

4.5 TSIG

This is a short guide to setting up Transaction SIGnatures (TSIG) based transaction security in BIND. It
describes changes to the configuration file as well as what changes are required for different features,
including the process of creating transaction keys and using transaction signatures with BIND.

17 BIND 9.9.8b1 (Extended Support Version)

4.5. TSIG CHAPTER 4. ADVANCED DNS FEATURES

BIND primarily supports TSIG for server to server communication. This includes zone transfer, notify,
and recursive query messages. Resolvers based on newer versions of BIND 8 have limited support for
TSIG.

TSIG can also be useful for dynamic update. A primary server for a dynamic zone should control access
to the dynamic update service, but IP-based access control is insufficient. The cryptographic access
control provided by TSIG is far superior. The nsupdate program supports TSIG via the -k and -y
command line options or inline by use of the key.

4.5.1 Generate Shared Keys for Each Pair of Hosts

A shared secret is generated to be shared between hostl and host2. An arbitrary key name is chosen:
“host1-host2.”. The key name must be the same on both hosts.

4.5.1.1 Automatic Generation

The following command will generate a 128-bit (16 byte) HMAC-SHA256 key as described above.
Longer keys are better, but shorter keys are easier to read. Note that the maximum key length is the
digest length, here 256 bits.

dnssec-keygen —a hmac-sha256 -b 128 -n HOST hostl-host2.

The key is in the file Khost 1-host2.+163+00000.private. Nothing directly uses this file, but the
base-64 encoded string following “Key : ” can be extracted from the file and used as a shared secret:

Key: La/E5CJjG90+osljgla2jda==

The string “La/E5CjG90+0s1jg0a2 jdA=="can be used as the shared secret.

4.5.1.2 Manual Generation

The shared secret is simply a random sequence of bits, encoded in base-64. Most ASCII strings are valid
base-64 strings (assuming the length is a multiple of 4 and only valid characters are used), so the shared
secret can be manually generated.

Also, a known string can be run through mmencode or a similar program to generate base-64 encoded
data.

4.5.2 Copying the Shared Secret to Both Machines

This is beyond the scope of DNS. A secure transport mechanism should be used. This could be secure
FTP, ssh, telephone, etc.

4.5.3 Informing the Servers of the Key’s Existence

Imagine host1 and host 2 are both servers. The following is added to each server’s named. conf file:

key hostl-host2. {

algorithm hmac-sha256;

secret "La/E5CjG90+osljgla2jda==";
}i

The secret is the one generated above. Since this is a secret, it is recommended that either named. conf
be non-world readable, or the key directive be added to a non-world readable file that is included by
named.conf.

BIND 9.9.8b1 (Extended Support Version) 18

CHAPTER 4. ADVANCED DNS FEATURES 4.6. TKEY

At this point, the key is recognized. This means that if the server receives a message signed by this key,
it can verify the signature. If the signature is successfully verified, the response is signed by the same
key.

4.5.4 Instructing the Server to Use the Key

Since keys are shared between two hosts only, the server must be told when keys are to be used. The
following is added to the named. conf file for host1, if the IP address of host2 is 10.1.2.3:

server 10.1.2.3 {
keys { hostl-host2. ;};
bi

Multiple keys may be present, but only the first is used. This directive does not contain any secrets, so
it may be in a world-readable file.

If host1 sends a message that is a request to that address, the message will be signed with the specified
key. host1 will expect any responses to signed messages to be signed with the same key.

A similar statement must be present in host2’s configuration file (with host1’s address) for host2 to sign
request messages to host1.

4.5.5 TSIG Key Based Access Control

BIND allows IP addresses and ranges to be specified in ACL definitions and allow-{ query | transfer |
update } directives. This has been extended to allow TSIG keys also. The above key would be denoted
key hostl-host2.

An example of an allow-update directive would be:
allow-update { key hostl-host2. ;};

This allows dynamic updates to succeed only if the request was signed by a key named ”“host1-host2.”.

See Section 6.2.28.4 for a discussion of the more flexible update-policy statement.

4.5.6 Errors

The processing of TSIG signed messages can result in several errors. If a signed message is sent to a non-
TSIG aware server, a FORMERR (format error) will be returned, since the server will not understand the
record. This is a result of misconfiguration, since the server must be explicitly configured to send a TSIG
signed message to a specific server.

If a TSIG aware server receives a message signed by an unknown key, the response will be unsigned
with the TSIG extended error code set to BADKEY. If a TSIG aware server receives a message with a
signature that does not validate, the response will be unsigned with the TSIG extended error code set
to BADSIG. If a TSIG aware server receives a message with a time outside of the allowed range, the
response will be signed with the TSIG extended error code set to BADTIME, and the time values will
be adjusted so that the response can be successfully verified. In any of these cases, the message’s rcode
(response code) is set to NOTAUTH (not authenticated).

4.6 TKEY

TKEY is a mechanism for automatically generating a shared secret between two hosts. There are several
“modes” of TKEY that specify how the key is generated or assigned. BIND 9 implements only one of

19 BIND 9.9.8b1 (Extended Support Version)

4.7. SIG(0) CHAPTER 4. ADVANCED DNS FEATURES

these modes, the Diffie-Hellman key exchange. Both hosts are required to have a Diffie-Hellman KEY
record (although this record is not required to be present in a zone). The TKEY process must use signed
messages, signed either by TSIG or SIG(0). The result of TKEY is a shared secret that can be used to sign
messages with TSIG. TKEY can also be used to delete shared secrets that it had previously generated.

The TKEY process is initiated by a client or server by sending a signed TKEY query (including any
appropriate KEYs) to a TKEY-aware server. The server response, if it indicates success, will contain a
TKEY record and any appropriate keys. After this exchange, both participants have enough information
to determine the shared secret; the exact process depends on the TKEY mode. When using the Diffie-
Hellman TKEY mode, Diffie-Hellman keys are exchanged, and the shared secret is derived by both
participants.

4.7 SIG(0)

BIND 9 partially supports DNSSEC SIG(0) transaction signatures as specified in RFC 2535 and RFC
2931. SIG(0) uses public/private keys to authenticate messages. Access control is performed in the
same manner as TSIG keys; privileges can be granted or denied based on the key name.

When a SIG(0) signed message is received, it will only be verified if the key is known and trusted by the
server; the server will not attempt to locate and/or validate the key.

SIG(0) signing of multiple-message TCP streams is not supported.
The only tool shipped with BIND 9 that generates SIG(0) signed messages is nsupdate.

4.8 DNSSEC

Cryptographic authentication of DNS information is possible through the DNS Security (DNSSEC-bis)
extensions, defined in RFC 4033, RFC 4034, and RFC 4035. This section describes the creation and use of
DNSSEC signed zones.

In order to set up a DNSSEC secure zone, there are a series of steps which must be followed. BIND 9
ships with several tools that are used in this process, which are explained in more detail below. In all
cases, the —h option prints a full list of parameters. Note that the DNSSEC tools require the keyset files
to be in the working directory or the directory specified by the —d option, and that the tools shipped
with BIND 9.2.x and earlier are not compatible with the current ones.

There must also be communication with the administrators of the parent and/or child zone to transmit
keys. A zone’s security status must be indicated by the parent zone for a DNSSEC capable resolver to
trust its data. This is done through the presence or absence of a DS record at the delegation point.

For other servers to trust data in this zone, they must either be statically configured with this zone’s
zone key or the zone key of another zone above this one in the DNS tree.

4.8.1 Generating Keys

The dnssec-keygen program is used to generate keys.

A secure zone must contain one or more zone keys. The zone keys will sign all other records in the zone,
as well as the zone keys of any secure delegated zones. Zone keys must have the same name as the zone,
a name type of ZONE, and must be usable for authentication. It is recommended that zone keys use a
cryptographic algorithm designated as “mandatory to implement” by the IETF; currently the only one
is RSASHA1.

The following command will generate a 768-bit RSASHA1 key for the child.example zone:
dnssec-keygen —a RSASHAl -b 768 —-n ZONE child.example.

Two output files will be produced: Kchild.example.+005+12345.key and Kchild.example.+
005+12345.private (where 12345 is an example of a key tag). The key filenames contain the key

BIND 9.9.8b1 (Extended Support Version) 20

CHAPTER 4. ADVANCED DNS FEATURES 4.8. DNSSEC

name (child.example.), algorithm (3 is DSA, 1 is RSAMDS5, 5 is RSASHAL, etc.), and the key tag
(12345 in this case). The private key (in the . private file) is used to generate signatures, and the public
key (in the . key file) is used for signature verification.

To generate another key with the same properties (but with a different key tag), repeat the above com-
mand.

The dnssec-keyfromlabel program is used to get a key pair from a crypto hardware and build the key
files. Its usage is similar to dnssec-keygen.

The public keys should be inserted into the zone file by including the .key files using $INCLUDE
statements.

4.8.2 Signing the Zone

The dnssec-signzone program is used to sign a zone.

Any keyset files corresponding to secure subzones should be present. The zone signer will generate
NSEC, NSEC3 and RRSIG records for the zone, as well as DS for the child zones if ' ~g’ is specified. If
’ —g’ is not specified, then DS RRsets for the secure child zones need to be added manually.

The following command signs the zone, assuming it is in a file called zone.child.example. By
default, all zone keys which have an available private key are used to generate signatures.

dnssec-signzone -o child.example zone.child.example

One output file is produced: zone .child.example.signed. This file should be referenced by named.
conf as the input file for the zone.

dnssec-signzone will also produce a keyset and dsset files and optionally a dlvset file. These are used
to provide the parent zone administrators with the DNSKEYs (or their corresponding DS records) that
are the secure entry point to the zone.

4.8.3 Configuring Servers

To enable named to respond appropriately to DNS requests from DNSSEC aware clients, dnssec-enable
must be set to yes. (This is the default setting.)

To enable named to validate answers from other servers, the dnssec-enable option must be set to yes,
and the dnssec-validation options must be set to yes or auto.

If dnssec-validation is set to auto, then a default trust anchor for the DNS root zone will be used.
If it is set to yes, however, then at least one trust anchor must be configured with a trusted-keys or
managed-keys statement in named. conf, or DNSSEC validation will not occur. The default setting is
yes.

trusted-keys are copies of DNSKEY RRs for zones that are used to form the first link in the cryptographic
chain of trust. All keys listed in trusted-keys (and corresponding zones) are deemed to exist and only
the listed keys will be used to validated the DNSKEY RRset that they are from.

managed-keys are trusted keys which are automatically kept up to date via RFC 5011 trust anchor
maintenance.

trusted-keys and managed-keys are described in more detail later in this document.

Unlike BIND 8, BIND 9 does not verify signatures on load, so zone keys for authoritative zones do not
need to be specified in the configuration file.

After DNSSEC gets established, a typical DNSSEC configuration will look something like the following.
It has one or more public keys for the root. This allows answers from outside the organization to be
validated. It will also have several keys for parts of the namespace the organization controls. These are
here to ensure that named is immune to compromises in the DNSSEC components of the security of
parent zones.

21 BIND 9.9.8b1 (Extended Support Version)

4.8. DNSSEC

CHAPTER 4. ADVANCED DNS FEATURES

managed-keys {
/* Root Key =/

"." initial-key 257 3 3 "BNY4wrWMInCfJ+CXdOrVXyYmobt7sEEfK3clRbGaTwS

bi

trusted-keys {

JxrGkxJWoZu6I7PzJu/E9gx4UClzGAH1XKJE4zYIpRh
aBKnvcC2U9mzhkdUpdlVso/HAdjNe8LmMlnzY3zy2Xy
4k1WOADTPzSv9eamj8V18PHGjBLavVtYvk/1n5ZApjYg
hf+6fElrmLkdaz MQ20CnACR817DF4BBa7UR/beDHyp
S5iWTXWSi6XmoJLbG9Scqgc7170KDglvXR3M/1UUVRbke
glIPJSidmK3ZyCl1h4XSKbje/45SKucHgnwU5 jefMtqg
66gKodQj+MiA21AfUVe7u99WzTLzY3gqlxDhxYQQ20FQ
97S+LKUTpQcg27R7AT3/V5hROxScINgwcz4jYqzD2fQ
dgxbcDTClUOCRBdiieyLMNzXG3";

/+ Key for our organization’s forward zone =/

example.com. 257 3 5

"AWEAAaxPMcR2x0HbQV4WeZB60oEDX+r0QM6
5KbhTjrWlZaARmMPhEZZe3Y91ifgEuqivz/z
GZUdEGNWy+JZzus01lUptwgjGwhUS1558Hb
4JKUbbOTcM8pwX1jO0EiX30DFVmjHO444gL
kBOUKUf/mC7HvEfwYH/Be22GnClrinKJplO
gdywzO9Wgl1Mk 7 jbfW33gUKvirTHr25GL7S
TQUzBb5Usxt81lgnyTUHs1t3JwCY5hKZ6Cqg
FxmAVZP20igTixin/1LcrgX/KMEGd/biuv
F4gJCyduieHukuY3H4XMAcCR+xia2nIUPvm
/oyWR8BW/hWdzOvnSCTh1Hf3xiYleDbt /o
10TQ09A0=";

/+ Key for our reverse zone. x/
2.0.192.IN-ADDRPA.NET. 257 3 5 "AQOnS4xn/IgOUpBPJ3bogzwc

}i
options {

dnssec—enable yes;

x0dNax071L18QgZnQQQAVVr+i
LhGTnNGp3HoWQLUIzKrJVZ3zg
gy3WwNT6kZo6cO0tszYgbtvchm
gQC8CzKojM/W16i6MG/eafGU3
s1a0dS0yOI6BgPsw+YZdz1lYMa
IJGf4M4dyoKIhzdZyQ2bYQrjy
Q4LB01C7a0nsMyYKHHYeRVPx
I0XmdggOJGg+vsevG06zW+1xg
YJh9rCIfnmlGX/KMgxLPG2VXT
D/RnLX+D3T3UL7HJYHJhAZD5L
59VvjSPsZJHeDCUyWYrvPZesZ
DIRvhDD52SKvbheeTJUm6Ehkz
ytNN2SN96QRk8j/1I8ib";

dnssec-validation yes;

}i

BIND 9.9.8b1 (Extended Support Version) 22

CHAPTER 4. ADVANCED DNS FEABPURHESSSEC, DYNAMIC ZONES, AND AUTOMATIC SIGNING

NOTE

None of the keys listed in this example are valid. In particular, the root key is not

valid.

When DNSSEC validation is enabled and properly configured, the resolver will reject any answers from
signed, secure zones which fail to validate, and will return SERVFAIL to the client.

Responses may fail to validate for any of several reasons, including missing, expired, or invalid signa-
tures, a key which does not match the DS RRset in the parent zone, or an insecure response from a zone
which, according to its parent, should have been secure.

NOTE

When the validator receives a response from an unsigned zone that has a signed
parent, it must confirm with the parent that the zone was intentionally left un-
signed. It does this by verifying, via signed and validated NSEC/NSECS3 records,
that the parent zone contains no DS records for the child.

If the validator can prove that the zone is insecure, then the response is accepted.

However, if it cannot, then it must assume an insecure response to be a forgery;
it rejects the response and logs an error.

The logged error reads “insecurity proof failed” and "got insecure response; par-
ent indicates it should be secure”. (Prior to BIND 9.7, the logged error was "not
insecure”. This referred to the zone, not the response.)

4.9 DNSSEC, Dynamic Zones, and Automatic Signing

As of BIND 9.7.0 it is possible to change a dynamic zone from insecure to signed and back again. A
secure zone can use either NSEC or NSEC3 chains.

4.9.1 Converting from insecure to secure

Changing a zone from insecure to secure can be done in two ways: using a dynamic DNS update, or the
auto-dnssec zone option.

For either method, you need to configure named so that it can see the K« files which contain the public
and private parts of the keys that will be used to sign the zone. These files will have been generated by
dnssec-keygen. You can do this by placing them in the key-directory, as specified in named. conft:

zone example.net {
type master;
update-policy local;
file "dynamic/example.net/example.net";
key—-directory "dynamic/example.net";

}i

If one KSK and one ZSK DNSKEY key have been generated, this configuration will cause all records
in the zone to be signed with the ZSK, and the DNSKEY RRset to be signed with the KSK as well. An
NSEC chain will be generated as part of the initial signing process.

23 BIND 9.9.8b1 (Extended Support Version)

4.9. DNSSEC, DYNAMIC ZONES, AND AUTOMATIC SIGHNAWNGER 4. ADVANCED DNS FEATURES

4.9.2 Dynamic DNS update method

To insert the keys via dynamic update:

o\

nsupdate

ttl 3600

update add example.net DNSKEY 256 3 7 AwEAAZnl7pUFOKpbPA2c7Gz76Vbl8v0teKT3EyAGEB
update add example.net DNSKEY 257 3 7 AwEAAd/70dU/6402LGsifbLtQmtO8dFDtTAZXSX2+X
send

vV V V V

While the update request will complete almost immediately, the zone will not be completely signed until
named has had time to walk the zone and generate the NSEC and RRSIG records. The NSEC record at
the apex will be added last, to signal that there is a complete NSEC chain.

If you wish to sign using NSEC3 instead of NSEC, you should add an NSEC3PARAM record to the
initial update request. If you wish the NSEC3 chain to have the OPTOUT bit set, set it in the flags field
of the NSEC3PARAM record.

o\°

nsupdate

ttl 3600

update add example.net DNSKEY 256 3 7 AwWEAAZnl7pUFO0KpbPA2c7Gz76Vbl8v0teKT3EYAGEB
update add example.net DNSKEY 257 3 7 AwEAAd/70dU/6402LGsifbLtQOmtO8dFDtTAZXSX2+X
update add example.net NSEC3PARAM 1 1 100 1234567890

send

vV V. V V V

Again, this update request will complete almost immediately; however, the record won’t show up until
named has had a chance to build/remove the relevant chain. A private type record will be created to
record the state of the operation (see below for more details), and will be removed once the operation
completes.

While the initial signing and NSEC/NSEC3 chain generation is happening, other updates are possible
as well.

4.9.3 Fully automatic zone signing

To enable automatic signing, add the auto-dnssec option to the zone statement in named. conf. auto-
dnssec has two possible arguments: allow or maintain.

With auto-dnssec allow, named can search the key directory for keys matching the zone, insert them
into the zone, and use them to sign the zone. It will do so only when it receives an rndc sign <zone-
name>.

auto-dnssec maintain includes the above functionality, but will also automatically adjust the zone’s
DNSKEY records on schedule according to the keys’ timing metadata. (See dnssec-keygen(8) and
dnssec-settime(8) for more information.)

named will periodically search the key directory for keys matching the zone, and if the keys’ metadata
indicates that any change should be made the zone, such as adding, removing, or revoking a key, then
that action will be carried out. By default, the key directory is checked for changes every 60 minutes;
this period can be adjusted with the dnssec-loadkeys-interval, up to a maximum of 24 hours.
The rndc loadkeys forces named to check for key updates immediately.

If keys are present in the key directory the first time the zone is loaded, the zone will be signed immedi-
ately, without waiting for an rndc sign or rndc loadkeys command. (Those commands can still be used
when there are unscheduled key changes, however.)

When new keys are added to a zone, the TTL is set to match that of any existing DNSKEY RRset. If there
is no existing DNSKEY RRset, then the TTL will be set to the TTL specified when the key was created
(using the dnssec-keygen -L option), if any, or to the SOA TTL.

BIND 9.9.8b1 (Extended Support Version) 24

CHAPTER 4. ADVANCED DNS FEABPURHESSSEC, DYNAMIC ZONES, AND AUTOMATIC SIGNING

If you wish the zone to be signed using NSEC3 instead of NSEC, submit an NSEC3PARAM record
via dynamic update prior to the scheduled publication and activation of the keys. If you wish the
NSEC3 chain to have the OPTOUT bit set, set it in the flags field of the NSEC3PARAM record. The
NSEC3PARAM record will not appear in the zone immediately, but it will be stored for later reference.
When the zone is signed and the NSEC3 chain is completed, the NSEC3PARAM record will appear in
the zone.

Using the auto-dnssec option requires the zone to be configured to allow dynamic updates, by adding
an allow-update or update-policy statement to the zone configuration. If this has not been done, the
configuration will fail.

4.9.4 Private-type records

The state of the signing process is signaled by private-type records (with a default type value of 65534).
When signing is complete, these records will have a nonzero value for the final octet (for those records
which have a nonzero initial octet).

The private type record format: If the first octet is non-zero then the record indicates that the zone needs
to be signed with the key matching the record, or that all signatures that match the record should be
removed.

algorithm (octet 1)

key id in network order (octet 2 and 3)
removal flag (octet 4)

complete flag (octet 5)

Only records flagged as “complete” can be removed via dynamic update. Attempts to remove other
private type records will be silently ignored.

If the first octet is zero (this is a reserved algorithm number that should never appear in a DNSKEY
record) then the record indicates changes to the NSEC3 chains are in progress. The rest of the record
contains an NSEC3PARAM record. The flag field tells what operation to perform based on the flag bits.

0x01 OPTOUT
0x80 CREATE
0x40 REMOVE
0x20 NONSEC

4.9.5 DNSKEY rollovers

As with insecure-to-secure conversions, rolling DNSSEC keys can be done in two ways: using a dynamic
DNS update, or the auto-dnssec zone option.

4.9.6 Dynamic DNS update method

To perform key rollovers via dynamic update, you need to add the K~ files for the new keys so that
named can find them. You can then add the new DNSKEY RRs via dynamic update. named will then
cause the zone to be signed with the new keys. When the signing is complete the private type records
will be updated so that the last octet is non zero.

If this is for a KSK you need to inform the parent and any trust anchor repositories of the new KSK.

You should then wait for the maximum TTL in the zone before removing the old DNSKEY. If it is a KSK
that is being updated, you also need to wait for the DS RRset in the parent to be updated and its TTL to

25 BIND 9.9.8b1 (Extended Support Version)

4.9. DNSSEC, DYNAMIC ZONES, AND AUTOMATIC SIGHNAWNGER 4. ADVANCED DNS FEATURES

expire. This ensures that all clients will be able to verify at least one signature when you remove the old
DNSKEY.

The old DNSKEY can be removed via UPDATE. Take care to specify the correct key. named will clean
out any signatures generated by the old key after the update completes.

4.9.7 Automatic key rollovers

When a new key reaches its activation date (as set by dnssec-keygen or dnssec-settime), if the auto-
dnssec zone option is set to maintain, named will automatically carry out the key rollover. If the key’s
algorithm has not previously been used to sign the zone, then the zone will be fully signed as quickly as
possible. However, if the new key is replacing an existing key of the same algorithm, then the zone will
be re-signed incrementally, with signatures from the old key being replaced with signatures from the
new key as their signature validity periods expire. By default, this rollover completes in 30 days, after
which it will be safe to remove the old key from the DNSKEY RRset.

49.8 NSEC3PARAM rollovers via UPDATE

Add the new NSEC3PARAM record via dynamic update. When the new NSEC3 chain has been gener-
ated, the NSEC3PARAM flag field will be zero. At this point you can remove the old NSEC3PARAM
record. The old chain will be removed after the update request completes.

4.9.9 Converting from NSEC to NSEC3

To do this, you just need to add an NSEC3PARAM record. When the conversion is complete, the NSEC
chain will have been removed and the NSEC3PARAM record will have a zero flag field. The NSEC3
chain will be generated before the NSEC chain is destroyed.

4.9.10 Converting from NSEC3 to NSEC

To do this, use nsupdate to remove all NSEC3PARAM records with a zero flag field. The NSEC chain
will be generated before the NSEC3 chain is removed.

4.9.11 Converting from secure to insecure

To convert a signed zone to unsigned using dynamic DNS, delete all the DNSKEY records from the zone
apex using nsupdate. All signatures, NSEC or NSEC3 chains, and associated NSEC3PARAM records
will be removed automatically. This will take place after the update request completes.

This requires the dnssec-secure-to-insecure option to be set to yes in named. conft.

In addition, if the auto-dnssec maintain zone statement is used, it should be removed or changed to
allow instead (or it will re-sign).

4.9.12 Periodic re-signing

In any secure zone which supports dynamic updates, named will periodically re-sign RRsets which
have not been re-signed as a result of some update action. The signature lifetimes will be adjusted so as
to spread the re-sign load over time rather than all at once.

BIND 9.9.8b1 (Extended Support Version) 26

CHAPTER 4. ADVANCED DNS FEATURES 4.10. DYNAMIC TRUST ANCHOR MANAGEMENT

4.9.13 NSEC3 and OPTOUT

named only supports creating new NSEC3 chains where all the NSEC3 records in the zone have the
same OPTOUT state. named supports UPDATES to zones where the NSEC3 records in the chain have
mixed OPTOUT state. named does not support changing the OPTOUT state of an individual NSEC3
record, the entire chain needs to be changed if the OPTOUT state of an individual NSEC3 needs to be
changed.

410 Dynamic Trust Anchor Management

BIND 9.7.0 introduces support for RFC 5011, dynamic trust anchor management. Using this feature
allows named to keep track of changes to critical DNSSEC keys without any need for the operator to
make changes to configuration files.

4.10.1 Validating Resolver

To configure a validating resolver to use RFC 5011 to maintain a trust anchor, configure the trust anchor
using a managed-keys statement. Information about this can be found in Section 6.2.24.

4.10.2 Authoritative Server

To set up an authoritative zone for RFC 5011 trust anchor maintenance, generate two (or more) key
signing keys (KSKs) for the zone. Sign the zone with one of them; this is the “active” KSK. All KSK’s
which do not sign the zone are “stand-by” keys.

Any validating resolver which is configured to use the active KSK as an RFC 5011-managed trust anchor
will take note of the stand-by KSKs in the zone’s DNSKEY RRset, and store them for future reference.
The resolver will recheck the zone periodically, and after 30 days, if the new key is still there, then the
key will be accepted by the resolver as a valid trust anchor for the zone. Any time after this 30-day
acceptance timer has completed, the active KSK can be revoked, and the zone can be “rolled over” to
the newly accepted key.

The easiest way to place a stand-by key in a zone is to use the “smart signing” features of dnssec-keygen
and dnssec-signzone. If a key with a publication date in the past, but an activation date which is unset
or in the future, ” dnssec-signzone -S” will include the DNSKEY record in the zone, but will not sign
with it:

$ dnssec-keygen -K keys —-f KSK -P now —-A nowt2y example.net
$ dnssec-signzone -S —-K keys example.net

To revoke a key, the new command dnssec-revoke has been added. This adds the REVOKED bit to the
key flags and re-generates the K« . key and K« . private files.

After revoking the active key, the zone must be signed with both the revoked KSK and the new active
KSK. (Smart signing takes care of this automatically.)

Once a key has been revoked and used to sign the DNSKEY RRset in which it appears, that key will
never again be accepted as a valid trust anchor by the resolver. However, validation can proceed using
the new active key (which had been accepted by the resolver when it was a stand-by key).

See RFC 5011 for more details on key rollover scenarios.

When a key has been revoked, its key ID changes, increasing by 128, and wrapping around at 65535. So,
for example, the key "Kexample.com.+005+10000” becomes "Kexample.com.+005+10128".

If two keys have ID’s exactly 128 apart, and one is revoked, then the two key ID’s will collide, causing
several problems. To prevent this, dnssec-keygen will not generate a new key if another key is present

27 BIND 9.9.8b1 (Extended Support Version)

4.11. PKCS #11 (CRYPTOKI) SUPPORT CHAPTER 4. ADVANCED DNS FEATURES

which may collide. This checking will only occur if the new keys are written to the same directory which
holds all other keys in use for that zone.

Older versions of BIND 9 did not have this precaution. Exercise caution if using key revocation on keys
that were generated by previous releases, or if using keys stored in multiple directories or on multiple
machines.

It is expected that a future release of BIND 9 will address this problem in a different way, by storing
revoked keys with their original unrevoked key ID’s.

4.11 PKCS #11 (Cryptoki) support

PKCS #11 (Public Key Cryptography Standard #11) defines a platform- independent API for the control
of hardware security modules (HSMs) and other cryptographic support devices.

BIND 9 is known to work with two HSMs: The Sun SCA 6000 cryptographic acceleration board, tested
under Solaris x86, and the AEP Keyper network-attached key storage device, tested with Debian Linux,
Solaris x86 and Windows Server 2003.

4.11.1 Prerequisites

See the HSM vendor documentation for information about installing, initializing, testing and trou-
bleshooting the HSM.

BIND 9 uses OpenSSL for cryptography, but stock OpenSSL does not yet fully support PKCS #11. How-
ever, a PKCS #11 engine for OpenSSL is available from the OpenSolaris project. It has been modified
by ISC to work with with BIND 9, and to provide new features such as PIN management and key by
reference.

The patched OpenSSL depends on a "PKCS #11 provider”. This is a shared library object, providing a
low-level PKCS #11 interface to the HSM hardware. It is dynamically loaded by OpenSSL at runtime.
The PKCS #11 provider comes from the HSM vendor, and is specific to the HSM to be controlled.

There are two “flavors” of PKCS #11 support provided by the patched OpenSSL, one of which must be
chosen at configuration time. The correct choice depends on the HSM hardware:

e Use ‘crypto-accelerator” with HSMs that have hardware cryptographic acceleration features, such
as the SCA 6000 board. This causes OpenSSL to run all supported cryptographic operations in the
HSM.

e Use 'sign-only” with HSMs that are designed to function primarily as secure key storage devices,
but lack hardware acceleration. These devices are highly secure, but are not necessarily any faster
at cryptography than the system CPU — often, they are slower. It is therefore most efficient to use
them only for those cryptographic functions that require access to the secured private key, such as
zone signing, and to use the system CPU for all other computationally-intensive operations. The
AEP Keyper is an example of such a device.

The modified OpenSSL code is included in the BIND 9 release, in the form of a context diff against
the latest versions of OpenSSL. OpenSSL 0.9.8, 1.0.0, and 1.0.1 are supported; there are separate diffs
for each version. In the examples to follow, we use OpenSSL 0.9.8, but the same methods work with
OpenSSL 1.0.0 and 1.0.1.

NOTE

The latest OpenSSL versions at the time of the BIND release are 0.9.8y, 1.0.0k
% and 1.0.1e. ISC will provide an updated patch as new versions of OpenSSL are

released. The version number in the following examples is expected to change.

BIND 9.9.8b1 (Extended Support Version) 28

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS #11 (CRYPTOKI) SUPPORT

Before building BIND 9 with PKCS #11 support, it will be necessary to build OpenSSL with this patch
in place and inform it of the path to the HSM-specific PKCS #11 provider library.

Obtain OpenSSL 0.9.8s:

$ wget http://www.openssl.org/source/openssl-0.9.8s.tar.gz

Extract the tarball:

$ tar zxf openssl-0.9.8s.tar.gz

Apply the patch from the BIND 9 release:

$ patch -pl -d openssl-0.9.8s \
< bind9/bin/pkcsll/openssl-0.9.8s-patch

NOTE

(Note that the patch file may not be compatible with the “patch” utility on all

operating systems. You may need to install GNU patch.)

When building OpenSSL, place it in a non-standard location so that it does not interfere with OpenSSL li-
braries elsewhere on the system. In the following examples, we choose to install into ”/opt/pkcs11/usr”.
We will use this location when we configure BIND 9.

411.1.1 Building OpenSSL for the AEP Keyper on Linux

The AEP Keyper is a highly secure key storage device, but does not provide hardware cryptographic
acceleration. It can carry out cryptographic operations, but it is probably slower than your system’s
CPU. Therefore, we choose the "sign-only’ flavor when building OpenSSL.

The Keyper-specific PKCS #11 provider library is delivered with the Keyper software. In this example,
we place it /opt/pkesll/usr/lib:

$ cp pkcsll.GCC4.0.2.50.4.05 /opt/pkecsll/usr/lib/libpkecsll.so

This library is only available for Linux as a 32-bit binary. If we are compiling on a 64-bit Linux system,
it is necessary to force a 32-bit build, by specifying -m32 in the build options.

Finally, the Keyper library requires threads, so we must specify -pthread.

$ cd openssl-0.9.8s

$./Configure linux-generic32 -m32 -pthread \
-—pkll-libname=/opt/pkcsll/usr/1lib/libpkcsll.so \
—-—pkll-flavor=sign-only \
——prefix=/opt/pkcsll/usr

After configuring, run “make” and “make test”. If “make test” fails with “pthread_atfork() not found”,
you forgot to add the -pthread above.

29 BIND 9.9.8b1 (Extended Support Version)

4.11. PKCS #11 (CRYPTOKI) SUPPORT CHAPTER 4. ADVANCED DNS FEATURES

4.11.1.2 Building OpenSSL for the SCA 6000 on Solaris

The SCA-6000 PKCS #11 provider is installed as a system library, libpkcs11. It is a true crypto accelerator,
up to 4 times faster than any CPU, so the flavor shall be ‘crypto-accelerator’.

In this example, we are building on Solaris x86 on an AMD64 system.

$ cd openssl-0.9.8s

$./Configure solaris64-x86_64-cc \
-—pkll-libname=/usr/1ib/64/1libpkcsll.so \
—--pkll-flavor=crypto-accelerator \
——prefix=/opt/pkcsll/usr

(For a 32-bit build, use ”solaris-x86-cc” and /usr/lib/libpkesl1.so.)

After configuring, run make and make test.

4.11.1.3 Building OpenSSL for SoftHSM

SoftHSM is a software library provided by the OpenDNSSEC project (http:/ /www.opendnssec.org)
which provides a PKCS#11 interface to a virtual HSM, implemented in the form of encrypted data on
the local filesystem. It uses the Botan library for encryption and SQLite3 for data storage. Though less
secure than a true HSM, it can provide more secure key storage than traditional key files, and can allow
you to experiment with PKCS#11 when an HSM is not available.

The SoftHSM cryptographic store must be installed and initialized before using it with OpenSSL, and
the SOFTHSM_CONF environment variable must always point to the SoftHSM configuration file:

cd softhsm-1.3.0

configure —--prefix=/opt/pkcsll/usr

make

make install

export SOFTHSM_CONF=/opt/pkcsll/softhsm.conf

echo "0:/opt/pkcsll/softhsm.db" > $SOFTHSM_CONF
/opt/pkcsll/usr/bin/softhsm ——-init-token 0 —--slot 0 —--label softhsm

Ur U Ur U 0 Uy

SoftHSM can perform all cryptographic operations, but since it only uses your system CPU, there is
no need to use it for anything but signing. Therefore, we choose the "sign-only’ flavor when building
OpenSSL.

$ cd openssl-0.9.8s

$./Configure linux-x86_64 -pthread \
—-pkll-libname=/opt/pkcsll/usr/lib/libpkcsll.so \
—-—pkll-flavor=sign-only \
——prefix=/opt/pkcsll/usr

After configuring, run “make” and “make test”.
Once you have built OpenSSL, run “apps/openssl engine pkcs11” to confirm that PKCS #11 support

was compiled in correctly. The output should be one of the following lines, depending on the flavor
selected:

(pkcsll) PKCS #11 engine support (sign only)

Or:

BIND 9.9.8b1 (Extended Support Version) 30

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS #11 (CRYPTOKI) SUPPORT

(pkcsll) PKCS #11 engine support (crypto accelerator)

Next, run “apps/openssl engine pkes1l -t”. This will attempt to initialize the PKCS #11 engine. If it is
able to do so successfully, it will report “[available 1”.

If the output is correct, run “make install” which will install the modified OpenSSL suite to /opt/
pkcsll/usr.

4.11.2 Building BIND 9 with PKCS#11

When building BIND 9, the location of the custom-built OpenSSL library must be specified via configure.

411.2.1 Configuring BIND 9 for Linux with the AEP Keyper

To link with the PKCS #11 provider, threads must be enabled in the BIND 9 build.

The PKCS #11 library for the AEP Keyper is currently only available as a 32-bit binary. If we are building
on a 64-bit host, we must force a 32-bit build by adding "-m32” to the CC options on the “configure”
command line.

$ cd ../bind9

$./configure CC="gcc -m32" --enable-threads \
——with-openssl=/opt/pkcsll/usr \
——with-pkcsll=/opt/pkcsll/usr/lib/libpkcsll.so

4.11.2.2 Configuring BIND 9 for Solaris with the SCA 6000

To link with the PKCS #11 provider, threads must be enabled in the BIND 9 build.

$ cd ../bind9

$./configure CC="cc —-xarch=amd64" —--enable-threads \
——with-openssl=/opt/pkcsll/usr \
——with-pkcsll=/usr/1ib/64/1ibpkcsll.so

(For a 32-bit build, omit CC="cc -xarch=amd64”.)

If configure complains about OpenSSL not working, you may have a 32/64-bit architecture mismatch.
Or, you may have incorrectly specified the path to OpenSSL (it should be the same as the —prefix argu-
ment to the OpenSSL Configure).

4.11.2.3 Configuring BIND 9 for SoftHSM

$ cd ../bind9

$./configure —--enable-threads \
——with-openssl=/opt/pkcsll/usr \
——with-pkcsll=/opt/pkcsll/usr/lib/libpkcsll.so

v

After configuring, run “make”, “make test” and “make install”.

(Note: If “make test” fails in the “pkcs11” system test, you may have forgotten to set the SOFTHSM_CONF
environment variable.)

31 BIND 9.9.8b1 (Extended Support Version)

4.11. PKCS #11 (CRYPTOKI) SUPPORT CHAPTER 4. ADVANCED DNS FEATURES

4.11.3 PKCS #11 Tools

BIND 9 includes a minimal set of tools to operate the HSM, including pkecs11-keygen to generate a new
key pair within the HSM, pkes11-list to list objects currently available, and pkcs11-destroy to remove
objects.

In UNIX/Linux builds, these tools are built only if BIND 9 is configured with the —with-pkes11 option.
(NOTE: If —with-pkcs11 is set to “yes”, rather than to the path of the PKCS #11 provider, then the tools
will be built but the provider will be left undefined. Use the -m option or the PKCS11_PROVIDER
environment variable to specify the path to the provider.)

4.11.4 Using the HSM

First, we must set up the runtime environment so the OpenSSL and PKCS #11 libraries can be loaded:
$ export LD_LIBRARY_PATH=/opt/pkcsll/usr/lib:${LD_LIBRARY_PATH}

When operating an AEP Keyper, it is also necessary to specify the location of the “machine” file, which
stores information about the Keyper for use by PKCS #11 provider library. If the machine file is in /
opt/Keyper/PKCS11lProvider/machine, use:

$ export KEYPER_LIBRARY PATH=/opt/Keyper/PKCSllProvider

These environment variables must be set whenever running any tool that uses the HSM, including
pkes11-keygen, pkes1l-list, pkcsl1-destroy, dnssec-keyfromlabel, dnssec-signzone, dnssec-keygen(which
will use the HSM for random number generation), and named.

We can now create and use keys in the HSM. In this case, we will create a 2048 bit key and give it the
label “sample-ksk”:

$ pkcsll-keygen -b 2048 -1 sample-ksk
To confirm that the key exists:

$ pkcsll-list

Enter PIN:

object[0]: handle 2147483658 class 3 label[8] ’sample-ksk’ 1d[0]
object[1l]: handle 2147483657 class 2 label[8] ’sample-ksk’ id[O0]

Before using this key to sign a zone, we must create a pair of BIND 9 key files. The “dnssec-keyfromlabel”
utility does this. In this case, we will be using the HSM key ”sample-ksk” as the key-signing key for
“example.net”:

$ dnssec-keyfromlabel -1 sample-ksk -f KSK example.net

The resulting K* key and K*.private files can now be used to sign the zone. Unlike normal K* files,
which contain both public and private key data, these files will contain only the public key data, plus an
identifier for the private key which remains stored within the HSM. The HSM handles signing with the
private key.

If you wish to generate a second key in the HSM for use as a zone-signing key, follow the same pro-
cedure above, using a different keylabel, a smaller key size, and omitting ”-f KSK” from the dnssec-
keyfromlabel arguments:

BIND 9.9.8b1 (Extended Support Version) 32

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS #11 (CRYPTOKI) SUPPORT

$ pkcsll-keygen -b 1024 -1 sample-zsk
$ dnssec-keyfromlabel -1 sample-zsk example.net

Alternatively, you may prefer to generate a conventional on-disk key, using dnssec-keygen:
$ dnssec-keygen example.net

This provides less security than an HSM key, but since HSMs can be slow or cumbersome to use for
security reasons, it may be more efficient to reserve HSM keys for use in the less frequent key-signing
operation. The zone-signing key can be rolled more frequently, if you wish, to compensate for a reduc-
tion in key security.

Now you can sign the zone. (Note: If not using the -S option to dnssec-signzone, it will be necessary to
add the contents of both K« . key files to the zone master file before signing it.)

$ dnssec-signzone -S example.net

Enter PIN:

Verifying the zone using the following algorithms:

NSEC3RSASHAL.

Zone signing complete:

Algorithm: NSEC3RSASHAl: ZSKs: 1, KSKs: 1 active, 0 revoked, 0 stand-by
example.net.signed

4.11.5 Specifying the engine on the command line

The OpenSSL engine can be specified in named and all of the BIND dnssec-* tools by using the ”-E
<engine>" command line option. If BIND 9 is built with the —with-pkcs11 option, this option defaults
to “"pkesl11”. Specifying the engine will generally not be necessary unless for some reason you wish to
use a different OpenSSL engine.

If you wish to disable use of the “"pkcs11” engine — for troubleshooting purposes, or because the HSM
is unavailable — set the engine to the empty string. For example:

$ dnssec-signzone -E '’ -S example.net

This causes dnssec-signzone to run as if it were compiled without the —with-pkcs11 option.

4.11.6 Running named with automatic zone re-signing

If you want named to dynamically re-sign zones using HSM keys, and / or to to sign new records inserted
via nsupdate, then named must have access to the HSM PIN. This can be accomplished by placing the
PIN into the openssl.cnf file (in the above examples, /opt /pkcsll/usr/ssl/openssl.cnf).

The location of the openssl.cnf file can be overridden by setting the OPENSSL_CONF environment vari-
able before running named.

Sample openssl.cnf:

openssl_conf = openssl_def
[openssl_def]
engines = engine_section

[engine_section]
pkcsll = pkcsll_section

33 BIND 9.9.8b1 (Extended Support Version)

4.12. IPV6 SUPPORT IN BIND 9 CHAPTER 4. ADVANCED DNS FEATURES

[pkcsll_section]
PIN = <PLACE PIN HERE>

This will also allow the dnssec-* tools to access the HSM without PIN entry. (The pkcs11-* tools access
the HSM directly, not via OpenSSL, so a PIN will still be required to use them.)

WARNING

Placing the HSM’s PIN in a text file in this manner may reduce the security ad-
vantage of using an HSM. Be sure this is what you want to do before configuring
OpenSSL in this way.

4.12 IPv6 Support in BIND 9

BIND 9 fully supports all currently defined forms of IPv6 name to address and address to name lookups.
It will also use IPv6 addresses to make queries when running on an IPv6 capable system.

For forward lookups, BIND 9 supports only AAAA records. RFC 3363 deprecated the use of A6 records,
and client-side support for A6 records was accordingly removed from BIND 9. However, authoritative
BIND 9 name servers still load zone files containing A6 records correctly, answer queries for A6 records,
and accept zone transfer for a zone containing A6 records.

For IPv6 reverse lookups, BIND 9 supports the traditional “nibble” format used in the ip6.arpa domain,
as well as the older, deprecated ip6.int domain. Older versions of BIND 9 supported the ”"binary label”
(also known as “bitstring”) format, but support of binary labels has been completely removed per RFC
3363. Many applications in BIND 9 do not understand the binary label format at all any more, and will
return an error if given. In particular, an authoritative BIND 9 name server will not load a zone file
containing binary labels.

For an overview of the format and structure of IPv6 addresses, see Section C.1.

4121 Address Lookups Using AAAA Records

The IPv6 AAAA record is a parallel to the IPv4 A record, and, unlike the deprecated A6 record, specifies
the entire IPv6 address in a single record. For example,

SORIGIN example.com.
host 3600 IN AAAA 2001:db8::1

Use of IPv4-in-IPv6 mapped addresses is not recommended. If a host has an IPv4 address, use an A
record, nota AAAA, with : : ££££:192.168.42.1 as the address.

4.12.2 Address to Name Lookups Using Nibble Format

When looking up an address in nibble format, the address components are simply reversed, just as in
IPv4, and ip6.arpa. is appended to the resulting name. For example, the following would provide
reverse name lookup for a host with address 2001 : db8: : 1.

SORIGIN 0.0.0.0.0.0.0.0.8.0.d.0.1.0.0.2.1ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0

14400 IN PTR (

BIND 9.9.8b1 (Extended Support Version) 34

CHAPTER 4. ADVANCED DNS FEATURES 4.12. IPV6 SUPPORT IN BIND 9

host.example.com.)

35 BIND 9.9.8b1 (Extended Support Version)

Chapter 5

The BIND 9 Lightweight Resolver

5.1 The Lightweight Resolver Library

Traditionally applications have been linked with a stub resolver library that sends recursive DNS queries
to a local caching name server.

IPv6 once introduced new complexity into the resolution process, such as following A6 chains and
DNAME records, and simultaneous lookup of IPv4 and IPv6 addresses. Though most of the complexity
was then removed, these are hard or impossible to implement in a traditional stub resolver.

BIND 9 therefore can also provide resolution services to local clients using a combination of a lightweight
resolver library and a resolver daemon process running on the local host. These communicate using a
simple UDP-based protocol, the “lightweight resolver protocol” that is distinct from and simpler than
the full DNS protocol.

5.2 Running a Resolver Daemon

To use the lightweight resolver interface, the system must run the resolver daemon lwresd or a local
name server configured with a Iwres statement.

By default, applications using the lightweight resolver library will make UDP requests to the IPv4 loop-
back address (127.0.0.1) on port 921. The address can be overridden by Iwserverlinesin /etc/resolv.
conf.

The daemon currently only looks in the DNS, but in the future it may use other sources such as /etc/
hosts, NIS, etc.

The lwresd daemon is essentially a caching-only name server that responds to requests using the lightweight
resolver protocol rather than the DNS protocol. Because it needs to run on each host, it is designed to
require no or minimal configuration. Unless configured otherwise, it uses the name servers listed on
nameserver lines in /etc/resolv.conf as forwarders, but is also capable of doing the resolution
autonomously if none are specified.

The Iwresd daemon may also be configured with a named. conf style configuration file, in /etc/
lwresd.conf by default. A name server may also be configured to act as a lightweight resolver dae-
mon using the Iwres statement in named. conft.

37 BIND 9.9.8b1 (Extended Support Version)

Chapter 6

BIND 9 Configuration Reference

BIND 9 configuration is broadly similar to BIND 8; however, there are a few new areas of configuration,
such as views. BIND 8 configuration files should work with few alterations in BIND 9, although more
complex configurations should be reviewed to check if they can be more efficiently implemented using
the new features found in BIND 9.

BIND 4 configuration files can be converted to the new format using the shell script contrib/named-
bootconf/named-bootconf. sh.

6.1 Configuration File Elements

Following is a list of elements used throughout the BIND configuration file documentation:

acl_name
address_match_list

masters_list

domain_name

namelist
dotted_decimal

ip4_addr

ip6_addr

ip_addr

The name of an addressmatch_list as defined by the acl
statement.

A list of one or more ip_addr, ipprefix, key_id, or
acl_name elements, see Section 6.1.1.

A named list of one or more ip_addr with optional key_id
and/or ip_port. A masters_list may include other
masters_lists.

A quoted string which will be used as a DNS name, for exam-
ple “my.test.domain”.

A list of one or more domain_name elements.

One to four integers valued 0 through 255 separated by dots
(“.”), such as 123, 45.67 or 89.123.45.67.

An IPv4 address with exactly four elements in
dotted_decimal notation.

An IPv6 address, such as 2001:db8::1234. IPv6 scoped ad-
dresses that have ambiguity on their scope zones must be
disambiguated by an appropriate zone ID with the percent
character ("%’) as delimiter. It is strongly recommended to
use string zone names rather than numeric identifiers, in or-
der to be robust against system configuration changes. How-
ever, since there is no standard mapping for such names and
identifier values, currently only interface names as link iden-
tifiers are supported, assuming one-to-one mapping between
interfaces and links. For example, a link-local address fe80::1
on the link attached to the interface ne0 can be specified as
fe80::1%ne0. Note that on most systems link-local addresses
always have the ambiguity, and need to be disambiguated.
An ip4_addr or ip6_addr.

39 BIND 9.9.8b1 (Extended Support Version)

6.1. CONFIGURATION FILE ELEMENTS CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

ip_port AnIP port number. The number is limited to 0 through 65535,
with values below 1024 typically restricted to use by processes
running as root. In some cases, an asterisk (**') character can
be used as a placeholder to select a random high-numbered
port.

ip_prefix An IP network specified as an ip_addr, followed by a slash
("/’) and then the number of bits in the netmask. Trailing
zeros in a ip_addr may omitted. For example, 127/8 is the
network 127.0.0.0 with netmask 255.0.0.0 and 1.2.3.0/28 is net-
work 1.2.3.0 with netmask 255.255.255.240.

When specifying a prefix involving a IPv6 scoped address the
scope may be omitted. In that case the prefix will match pack-
ets from any scope.

key_id A domain_name representing the name of a shared key, to be
used for transaction security.

key_list A list of one or more key_ids, separated by semicolons and
ending with a semicolon.

number A non-negative 32-bit integer (i.e., a number between 0 and

4294967295, inclusive). Its acceptable value might further be
limited by the context in which it is used.

path_name A quoted string which will be used as a pathname, such as
zones/master/my.test.domain.
port_list A list of an ip_port or a port range. A port range is

specified in the form of range followed by two ip_ports,
port_low and port_high, which represents port numbers
from port_low through port_high, inclusive. port_low
must not be larger than port_high. For example, range
1024 65535 represents ports from 1024 through 65535. In
either case an asterisk (‘*) character is not allowed as a valid

ip_port.

size_spec A 64-bit unsigned integer, or the keywords unlimited or
default.
Integers may take values 0 <= value <=

18446744073709551615, though certain parameters (such
as max-journal-size) may use a more limited range within
these extremes. In most cases, setting a value to 0 does
not literally mean zero; it means “undefined” or ”as big as
possible”, depending on the context. See the explanations of
particular parameters that use size_spec for details on how
they interpret its use.
Numeric values can optionally be followed by a scaling factor:
K or k for kilobytes, M or m for megabytes, and G or g for gi-
gabytes, which scale by 1024, 1024*1024, and 1024*1024*1024
respectively.
unlimited generally means “as big as possible”, though in
certain contexts, (including max-cache-size), it may mean
the largest possible 32-bit unsigned integer (Oxffffffff); this dis-
tinction can be important when dealing with larger quantities.
unlimited is usually the best way to safely set a very large
number.
default uses the limit that was in force when the server was
started.

yes_or_no Either yes or no. The words true and false are also ac-
cepted, as are the numbers 1 and 0.

dialup-option One of yes, no, notify, notify-passive, refresh
or passive. When used in a zone, notify-passive,
refresh, and passive are restricted to slave and stub zones.

BIND 9.9.8b1 (Extended Support Version) 40

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.1. CONFIGURATION FILE ELEMENTS

6.1.1 Address Match Lists
6.1.1.1 Syntax

address_match_list = address_match_list_element ;
[address_match_list_element; ...]
address_match_list_element = [!] (ip_address [/length] |
key key_id | acl_name | { address_match_list })

6.1.1.2 Definition and Usage

Address match lists are primarily used to determine access control for various server operations. They
are also used in the listen-on and sortlist statements. The elements which constitute an address match
list can be any of the following:

e an IP address (IPv4 or IPv6)

e an IP prefix (in '/’ notation)

e a key ID, as defined by the key statement

e the name of an address match list defined with the acl statement
¢ anested address match list enclosed in braces

i

Elements can be negated with a leading exclamation mark ("), and the match list names “any”, “none”,
“localhost”, and “localnets” are predefined. More information on those names can be found in the
description of the acl statement.

ay

The addition of the key clause made the name of this syntactic element something of a misnomer, since
security keys can be used to validate access without regard to a host or network address. Nonetheless,
the term “address match list” is still used throughout the documentation.

When a given IP address or prefix is compared to an address match list, the comparison takes place in
approximately O(1) time. However, key comparisons require that the list of keys be traversed until a
matching key is found, and therefore may be somewhat slower.

The interpretation of a match depends on whether the list is being used for access control, defining
listen-on ports, or in a sortlist, and whether the element was negated.

When used as an access control list, a non-negated match allows access and a negated match denies ac-
cess. If there is no match, access is denied. The clauses allow-notify, allow-recursion, allow-recursion-
on, allow-query, allow-query-on, allow-query-cache, allow-query-cache-on, allow-transfer, allow-
update, allow-update-forwarding, and blackhole all use address match lists. Similarly, the listen-on
option will cause the server to refuse queries on any of the machine’s addresses which do not match the
list.

Order of insertion is significant. If more than one element in an ACL is found to match a given IP
address or prefix, preference will be given to the one that came first in the ACL definition. Because of
this first-match behavior, an element that defines a subset of another element in the list should come
before the broader element, regardless of whether either is negated. For example, in 1.2.3/24; ! 1.2.3.13;
the 1.2.3.13 element is completely useless because the algorithm will match any lookup for 1.2.3.13 to the
1.2.3/24 element. Using ! 1.2.3.13; 1.2.3/24 fixes that problem by having 1.2.3.13 blocked by the negation,
but all other 1.2.3.* hosts fall through.

41 BIND 9.9.8b1 (Extended Support Version)

6.1. CONFIGURATION FILE ELEMENTS CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

6.1.2 Comment Syntax

The BIND 9 comment syntax allows for comments to appear anywhere that whitespace may appear in
a BIND configuration file. To appeal to programmers of all kinds, they can be written in the C, C++, or
shell/perl style.

6.1.2.1 Syntax

/* This 1is a BIND comment as in C =/
// This is a BIND comment as in C++

This is a BIND comment as in common UNIX shells
and perl

6.1.2.2 Definition and Usage

Comments may appear anywhere that whitespace may appear in a BIND configuration file.

C-style comments start with the two characters /* (slash, star) and end with */ (star, slash). Because
they are completely delimited with these characters, they can be used to comment only a portion of a
line or to span multiple lines.

C-style comments cannot be nested. For example, the following is not valid because the entire comment
ends with the first */:

/* This is the start of a comment.
This is still part of the comment.

/+ This is an incorrect attempt at nesting a comment. =/
This is no longer in any comment. x*/

C++-style comments start with the two characters // (slash, slash) and continue to the end of the phys-
ical line. They cannot be continued across multiple physical lines; to have one logical comment span
multiple lines, each line must use the // pair. For example:

// This is the start of a comment. The next line
// is a new comment, even though it is logically
// part of the previous comment.

Shell-style (or perl-style, if you prefer) comments start with the character # (number sign) and continue
to the end of the physical line, as in C++ comments. For example:

This is the start of a comment. The next line
is a new comment, even though it is logically
part of the previous comment.

WARNING

You cannot use the semicolon (';’) character to start a comment such as you
would in a zone file. The semicolon indicates the end of a configuration state-
ment.

BIND 9.9.8b1 (Extended Support Version) 42

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

6.2 Configuration File Grammar

A BIND 9 configuration consists of statements and comments. Statements end with a semicolon. State-
ments and comments are the only elements that can appear without enclosing braces. Many statements
contain a block of sub-statements, which are also terminated with a semicolon.

The following statements are supported:

acl
controls
include
key
logging
lwres
masters
options

server
statistics-channels

trusted-keys
managed-keys

view
zone

defines a named IP address matching list, for access control
and other uses.

declares control channels to be used by the rndc utility.
includes a file.

specifies key information for use in authentication and autho-
rization using TSIG.

specifies what the server logs, and where the log messages are
sent.

configures named to also act as a light-weight resolver dae-
mon (lwresd).

defines a named masters list for inclusion in stub and slave
zones’ masters or also-notify lists.

controls global server configuration options and sets defaults
for other statements.

sets certain configuration options on a per-server basis.
declares communication channels to get access to named
statistics.

defines trusted DNSSEC keys.

lists DNSSEC keys to be kept up to date using RFC 5011 trust
anchor maintenance.

defines a view.

defines a zone.

The logging and options statements may only occur once per configuration.

6.2.1 acl Statement Grammar

acl acl—-name {

address_match_1list

bi

6.2.2 acl Statement Definition and Usage

The acl statement assigns a symbolic name to an address match list. It gets its name from a primary use
of address match lists: Access Control Lists (ACLs).

The following ACLs are built-in:

any
none
localhost

Matches all hosts.

Matches no hosts.

Matches the IPv4 and IPv6 addresses of all network interfaces on
the system. When addresses are added or removed, the localhost
ACL element is updated to reflect the changes.

43 BIND 9.9.8b1 (Extended Support Version)

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

localnets Matches any host on an IPv4 or IPv6 network for which the sys-
tem has an interface. When addresses are added or removed, the
localnets ACL element is updated to reflect the changes. Some
systems do not provide a way to determine the prefix lengths of
local IPv6 addresses. In such a case, localnets only matches the
local IPv6 addresses, just like localhost.

6.2.3 controls Statement Grammar

controls {
[inet (ip_addr | %) [port ip_port]
allow { address_match_list }
keys { key_list }; 1
[inet ...;]
[unix path perm number owner number group number
keys { key_list }; 1
[unix ...;]

}i

6.2.4 controls Statement Definition and Usage

The controls statement declares control channels to be used by system administrators to control the
operation of the name server. These control channels are used by the rndc utility to send commands to
and retrieve non-DNS results from a name server.

An inet control channel is a TCP socket listening at the specified ip_port on the specified ip_addr, which
can be an IPv4 or IPv6 address. An ip_addr of « (asterisk) is interpreted as the IPv4 wildcard address;
connections will be accepted on any of the system’s IPv4 addresses. To listen on the IPv6 wildcard
address, use an ip_addr of : :. If you will only use rndc on the local host, using the loopback address
(127.0.0.1 or : :1) is recommended for maximum security.

Vi

If no port is specified, port 953 is used. The asterisk ”+” cannot be used for ip_port.

The ability to issue commands over the control channel is restricted by the allow and keys clauses.
Connections to the control channel are permitted based on the address_match _list. This is for simple IP
address based filtering only; any key_id elements of the address_match _list are ignored.

A unix control channel is a UNIX domain socket listening at the specified path in the file system. Access
to the socket is specified by the perm, owner and group clauses. Note on some platforms (SunOS and
Solaris) the permissions (perm) are applied to the parent directory as the permissions on the socket itself
are ignored.

The primary authorization mechanism of the command channel is the key_list, which contains a list of
key_ids. Each key_id in the key_list is authorized to execute commands over the control channel. See
[Remote Name Daemon Control application] in Section 3.3.1.2) for information about configuring keys
in rndc.

If no controls statement is present, named will set up a default control channel listening on the loopback
address 127.0.0.1 and its IPv6 counterpart ::1. In this case, and also when the controls statement is
present but does not have a keys clause, named will attempt to load the command channel key from the
file rndc.key in /etc (or whatever sysconfdir was specified as when BIND was built). To create a
rndc.key file, run rnde-confgen -a.

The rndc. key feature was created to ease the transition of systems from BIND 8, which did not have
digital signatures on its command channel messages and thus did not have a keys clause. It makes it
possible to use an existing BIND 8 configuration file in BIND 9 unchanged, and still have rndc work the

BIND 9.9.8b1 (Extended Support Version) 44

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

same way ndc worked in BIND 8, simply by executing the command rndc-confgen —-a after BIND 9
is installed.

Since the rndc. key feature is only intended to allow the backward-compatible usage of BIND 8 con-
figuration files, this feature does not have a high degree of configurability. You cannot easily change the
key name or the size of the secret, so you should make a rndc. conf with your own key if you wish to
change those things. The rndc. key file also has its permissions set such that only the owner of the file
(the user that named is running as) can access it. If you desire greater flexibility in allowing other users
to access rndc commands, then you need to create a rndc. conf file and make it group readable by a
group that contains the users who should have access.

To disable the command channel, use an empty controls statement: controls { };.

6.2.5 include Statement Grammar

include filename;

6.2.6 include Statement Definition and Usage

The include statement inserts the specified file at the point where the include statement is encountered.
The include statement facilitates the administration of configuration files by permitting the reading or
writing of some things but not others. For example, the statement could include private keys that are
readable only by the name server.

6.2.7 key Statement Grammar

key key_id {
algorithm algorithm_id;
secret secret_string;

}i

6.2.8 key Statement Definition and Usage

The key statement defines a shared secret key for use with TSIG (see Section 4.5) or the command
channel (see Section 6.2.4).

The key statement can occur at the top level of the configuration file or inside a view statement. Keys de-
fined in top-level key statements can be used in all views. Keys intended for use in a controls statement
(see Section 6.2.4) must be defined at the top level.

The key_id, also known as the key name, is a domain name uniquely identifying the key. It can be used
in a server statement to cause requests sent to that server to be signed with this key, or in address match
lists to verify that incoming requests have been signed with a key matching this name, algorithm, and
secret.

The algorithm_id is a string that specifies a security/authentication algorithm. Named supports
hmac-md5, hmac-shal, hmac—-sha224, hmac-sha256, hmac-sha384 and hmac-sha512 TSIG au-
thentication. Truncated hashes are supported by appending the minimum number of required bits pre-
ceded by a dash, e.g. hmac-shal-80. The secret_stringis the secret to be used by the algorithm,
and is treated as a base-64 encoded string.

6.2.9 logging Statement Grammar

logging {
[channel channel_name {

45 BIND 9.9.8b1 (Extended Support Version)

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

(file path_name
[versions (number | unlimited)]
[size size_spec]
| syslog syslog_facility
| stderr
| null);
[severity (critical | error | warning | notice |
info | debug [level] | dynamic);]
[print-category yes or no;]
[print-severity yes or no;]
[print-time yes or no; |
biol
[category category_name {
channel_name ; [channel_name ; ...]

il

}i

6.2.10 logging Statement Definition and Usage

The logging statement configures a wide variety of logging options for the name server. Its channel
phrase associates output methods, format options and severity levels with a name that can then be used
with the category phrase to select how various classes of messages are logged.

Only one logging statement is used to define as many channels and categories as are wanted. If there is
no logging statement, the logging configuration will be:

logging {
category default { default_syslog; default_debug; };
category unmatched { null; };

bi

In BIND 9, the logging configuration is only established when the entire configuration file has been
parsed. In BIND 8, it was established as soon as the logging statement was parsed. When the server
is starting up, all logging messages regarding syntax errors in the configuration file go to the default
channels, or to standard error if the ”—g” option was specified.

6.2.10.1 The channel Phrase

All log output goes to one or more channels; you can make as many of them as you want.

Every channel definition must include a destination clause that says whether messages selected for the
channel go to a file, to a particular syslog facility, to the standard error stream, or are discarded. It can
optionally also limit the message severity level that will be accepted by the channel (the default is info),
and whether to include a named-generated time stamp, the category name and/or severity level (the
default is not to include any).

The null destination clause causes all messages sent to the channel to be discarded; in that case, other
options for the channel are meaning]less.

The file destination clause directs the channel to a disk file. It can include limitations both on how
large the file is allowed to become, and how many versions of the file will be saved each time the file is
opened.

If you use the versions log file option, then named will retain that many backup versions of the file
by renaming them when opening. For example, if you choose to keep three old versions of the file
lamers. log, then just before it is opened lamers.log.1 is renamed to lamers.log.2, lamers.
log.0 is renamed to lamers.log.1l, and lamers. log is renamed to lamers.log.0. You can say

BIND 9.9.8b1 (Extended Support Version) 46

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

versions unlimited to not limit the number of versions. If a size option is associated with the log file,
then renaming is only done when the file being opened exceeds the indicated size. No backup versions
are kept by default; any existing log file is simply appended.

The size option for files is used to limit log growth. If the file ever exceeds the size, then named will
stop writing to the file unless it has a versions option associated with it. If backup versions are kept, the
files are rolled as described above and a new one begun. If there is no versions option, no more data
will be written to the log until some out-of-band mechanism removes or truncates the log to less than
the maximum size. The default behavior is not to limit the size of the file.

Example usage of the size and versions options:

channel an_example_channel {
file "example.log" versions 3 size 20m;
print-time yes;
print-category yes;

}i

The syslog destination clause directs the channel to the system log. Its argument is a syslog facility as
described in the syslog man page. Known facilities are kern, user, mail, daemon, auth, syslog, lpr,
news, uucp, cron, authpriv, ftp, local0, locall, local2, local3, local4, local5, local6 and local7, however
not all facilities are supported on all operating systems. How syslog will handle messages sent to this
facility is described in the syslog.conf man page. If you have a system which uses a very old version of
syslog that only uses two arguments to the openlog() function, then this clause is silently ignored.

On Windows machines syslog messages are directed to the EventViewer.

7o

The severity clause works like syslog’s “priorities”, except that they can also be used if you are writing
straight to a file rather than using syslog. Messages which are not at least of the severity level given will
not be selected for the channel; messages of higher severity levels will be accepted.

If you are using syslog, then the syslog.conf priorities will also determine what eventually passes
through. For example, defining a channel facility and severity as daemon and debug but only log-
ging daemon.warning via syslog.conf will cause messages of severity info and notice to be dropped.
If the situation were reversed, with named writing messages of only warning or higher, then syslogd
would print all messages it received from the channel.

The stderr destination clause directs the channel to the server’s standard error stream. This is intended
for use when the server is running as a foreground process, for example when debugging a configura-
tion.

The server can supply extensive debugging information when it is in debugging mode. If the server’s
global debug level is greater than zero, then debugging mode will be active. The global debug level is
set either by starting the named server with the -d flag followed by a positive integer, or by running
rndc trace. The global debug level can be set to zero, and debugging mode turned off, by running rndc
notrace. All debugging messages in the server have a debug level, and higher debug levels give more
detailed output. Channels that specify a specific debug severity, for example:

channel specific_debug_level {
file "foo";
severity debug 3;

bi

will get debugging output of level 3 or less any time the server is in debugging mode, regardless of
the global debugging level. Channels with dynamic severity use the server’s global debug level to
determine what messages to print.

If print-time has been turned on, then the date and time will be logged. print-time may be specified for
a syslog channel, but is usually pointless since syslog also logs the date and time. If print-category is
requested, then the category of the message will be logged as well. Finally, if print-severity is on, then
the severity level of the message will be logged. The print- options may be used in any combination,
and will always be printed in the following order: time, category, severity. Here is an example where all
three print- options are on:

47 BIND 9.9.8b1 (Extended Support Version)

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

28-Feb-2000 15:05:32.863 general: notice: running

There are four predefined channels that are used for named’s default logging as follows. How they are
used is described in Section 6.2.10.2.

channel default_syslog {
// send to syslog’s daemon facility
syslog daemon;
// only send priority info and higher
severity infoj;

channel default_debug ({
// write to named.run in the working directory
// Note: stderr is used instead of "named.run" if
// the server is started with the ’'-f’ option.
file "named.run";
// log at the server’s current debug level
severity dynamic;

bi

channel default_stderr {
// writes to stderr
stderr;
// only send priority info and higher
severity infoj;

}i

channel null {
// toss anything sent to this channel
null;

}i

The default_debug channel has the special property that it only produces output when the server’s
debug level is nonzero. It normally writes to a file called named. run in the server’s working directory.

For security reasons, when the ”-u” command line option is used, the named. run file is created only
after named has changed to the new UID, and any debug output generated while named is starting up
and still running as root is discarded. If you need to capture this output, you must run the server with
the ”—g” option and redirect standard error to a file.

Once a channel is defined, it cannot be redefined. Thus you cannot alter the built-in channels directly,
but you can modify the default logging by pointing categories at channels you have defined.

6.2.10.2 The category Phrase

There are many categories, so you can send the logs you want to see wherever you want, without
seeing logs you don’t want. If you don’t specify a list of channels for a category, then log messages in
that category will be sent to the default category instead. If you don’t specify a default category, the
following ”default default” is used:

category default { default_syslog; default_debug; };

As an example, let’s say you want to log security events to a file, but you also want keep the default
logging behavior. You’'d specify the following:

channel my_security_channel {
file "my_security_file";
severity infoj;

}i

category security {

BIND 9.9.8b1 (Extended Support Version) 48

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

6.2. CONFIGURATION FILE GRAMMAR

my_security_channel;
default_syslog;
default_debug;

bi

To discard all messages in a category, specify the null channel:

category xfer-out { null; };
category notify { null; };

Following are the available categories and brief descriptions of the types of log information they contain.

More categories may be added in future BIND releases.

The default category defines the logging options for
those categories where no specific configuration has

The catch-all. Many things still aren’t classified into cat-

Messages relating to the databases used internally by

DNS resolution, such as the recursive lookups per-

Messages that named was unable to determine the
class of or for which there was no matching view. A
one line summary is also logged to the client category.
This category is best sent to a file or stderr, by default it

default

been defined.
general

egories, and they all end up here.
database

the name server to store zone and cache data.
security Approval and denial of requests.
config Configuration file parsing and processing.
resolver

formed on behalf of clients by a caching name server.
xfer-in Zone transfers the server is receiving.
xfer-out Zone transfers the server is sending.
notify The NOTIFY protocol.
client Processing of client requests.
unmatched

is sent to the null channel.
network Network operations.
update Dynamic updates.

update-security
queries

query-errors
dispatch

Approval and denial of update requests.

Specify where queries should be logged to.

At startup, specifying the category queries will also
enable query logging unless querylog option has been
specified.

The query log entry reports the client’s IP address and
port number, and the query name, class and type. Next
it reports whether the Recursion Desired flag was set
(+ if set, - if not set), if the query was signed (S), EDNS
was in use (E), if TCP was used (T), if DO (DNSSEC Ok)
was set (D), or if CD (Checking Disabled) was set (C).
After this the destination address the query was sent to
is reported.

client 127.0.0.1#62536

(www.example.com): query:
www.example.com IN AAAA +SE

client ::14#62537 (www.example.net):
query: www.example.net IN AAAA -SE

(The first part of this log message, showing the client
address/port number and query name, is repeated in
all subsequent log messages related to the same query.)
Information about queries that resulted in some failure.
Dispatching of incoming packets to the server modules
where they are to be processed.

49 BIND 9.9.8b1 (Extended Support Version)

6.2. CONFIGURATION FILE GRAMMAR

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

dnssec DNSSEC and TSIG protocol processing.

lame-servers Lame servers. These are misconfigurations in remote
servers, discovered by BIND 9 when trying to query
those servers during resolution.

delegation-only Delegation only. Logs queries that have been forced
to NXDOMAIN as the result of a delegation-only zone
or a delegation-only in a forward, hint or stub zone
declaration.

edns-disabled Log queries that have been forced to use plain DNS due
to timeouts. This is often due to the remote servers not
being RFC 1034 compliant (not always returning FOR-
MERR or similar to EDNS queries and other extensions
to the DNS when they are not understood). In other
words, this is targeted at servers that fail to respond to
DNS queries that they don’t understand.

Note: the log message can also be due to packet loss.
Before reporting servers for non-RFC 1034 compliance
they should be re-tested to determine the nature of the
non-compliance. This testing should prevent or reduce
the number of false-positive reports.

Note: eventually named will have to stop treating
such timeouts as due to RFC 1034 non compliance and
start treating it as plain packet loss. Falsely classify-
ing packet loss as due to RFC 1034 non compliance im-
pacts on DNSSEC validation which requires EDNS for
the DNSSEC records to be returned.

RPZ Information about errors in response policy zone files,
rewritten responses, and at the highest debug levels,
mere rewriting attempts.

rate-limit (Only available when BIND 9 is configured with the -
—-enable-rrl option at compile time.)

The start, periodic, and final notices of the rate limiting
of a stream of responses are logged at info severity in
this category. These messages include a hash value of
the domain name of the response and the name itself,
except when there is insufficient memory to record the
name for the final notice The final notice is normally
delayed until about one minute after rate limit stops. A
lack of memory can hurry the final notice, in which case
it starts with an asterisk (*). Various internal events are
logged at debug 1 level and higher.

Rate limiting of individual requests is logged in the
query-errors category.

cname Logs nameservers that are skipped due to them being a
CNAME rather than A / AAAA records.

6.2.10.3 The query-errors Category

The query-errors category is specifically intended for debugging purposes: To identify why and how
specific queries result in responses which indicate an error. Messages of this category are therefore only

logged with debug levels.

At the debug levels of 1 or higher, each response with the rcode of SERVFAIL is logged as follows:

client 127.0.0.1#61502: query failed (SERVFAIL) for www.example.com/IN/AAAA

at query.c:3880

BIND 9.9.8b1 (Extended Support Version)

50

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

This means an error resulting in SERVFAIL was detected at line 3880 of source file query.c. Log
messages of this level will particularly help identify the cause of SERVFAIL for an authoritative server.

At the debug levels of 2 or higher, detailed context information of recursive resolutions that resulted in
SERVFAIL is logged. The log message will look like as follows:

fetch completed at resolver.c:2970 for www.example.com/A
in 30.000183: timed out/success [domain:example.com,
referral:2,restart:7,grysent:8,timeout:5, lame:0,neterr:0,
badresp:1,adberr:0, findfail:0,valfail:0]

The first part before the colon shows that a recursive resolution for AAAA records of www.example.com
completed in 30.000183 seconds and the final result that led to the SERVFAIL was determined at line 2970
of source file resolver.c.

The following part shows the detected final result and the latest result of DNSSEC validation. The latter
is always success when no validation attempt is made. In this example, this query resulted in SERV-
FAIL probably because all name servers are down or unreachable, leading to a timeout in 30 seconds.
DNSSEC validation was probably not attempted.

The last part enclosed in square brackets shows statistics information collected for this particular reso-
lution attempt. The domain field shows the deepest zone that the resolver reached; it is the zone where
the error was finally detected. The meaning of the other fields is summarized in the following table.

referral The number of referrals the resolver received through-
out the resolution process. In the above example this is
2, which are most likely com and example.com.

restart The number of cycles that the resolver tried remote
servers at the domain zone. In each cycle the re-
solver sends one query (possibly resending it, depend-
ing on the response) to each known name server of the
domain zone.

grysent The number of queries the resolver sent at the domain
zone.

timeout The number of timeouts since the resolver received the
last response.

lame The number of lame servers the resolver detected at

the domain zone. A server is detected to be lame ei-
ther by an invalid response or as a result of lookup in
BIND9’s address database (ADB), where lame servers
are cached.

neterr The number of erroneous results that the resolver en-
countered in sending queries at the domain zone. One
common case is the remote server is unreachable and
the resolver receives an ICMP unreachable error mes-

sage.
badresp The number of unexpected responses (other than
lame) to queries sent by the resolver at the domain
zone.
adberr Failures in finding remote server addresses of the

domain zone in the ADB. One common case of this is
that the remote server’s name does not have any ad-
dress records.

findfail Failures of resolving remote server addresses. This is a
total number of failures throughout the resolution pro-
cess.

51 BIND 9.9.8b1 (Extended Support Version)

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

valfail Failures of DNSSEC validation. Validation failures are
counted throughout the resolution process (not lim-
ited to the domain zone), but should only happen in
domain.

At the debug levels of 3 or higher, the same messages as those at the debug 1 level are logged for other
errors than SERVFAIL. Note that negative responses such as NXDOMAIN are not regarded as errors
here.

At the debug levels of 4 or higher, the same messages as those at the debug 2 level are logged for other
errors than SERVFAIL. Unlike the above case of level 3, messages are logged for negative responses.
This is because any unexpected results can be difficult to debug in the recursion case.

6.2.11 Iwres Statement Grammar

This is the grammar of the lwres statement in the named. conf file:

lwres {
[listen-on { ip_addr [port ip_port] ;
[ip_addr [port ip_port] ; ... 1 }; 1]
[view view_name;]
[search { domain_name ; [domain_name ; ...] }; 1

[ndots number;]

bi

6.2.12 lwres Statement Definition and Usage

The lwres statement configures the name server to also act as a lightweight resolver server. (See Sec-
tion 5.2.) There may be multiple Iwres statements configuring lightweight resolver servers with different
properties.

The listen-on statement specifies a list of IPv4 addresses (and ports) that this instance of a lightweight
resolver daemon should accept requests on. If no port is specified, port 921 is used. If this statement is
omitted, requests will be accepted on 127.0.0.1, port 921.

The view statement binds this instance of a lightweight resolver daemon to a view in the DNS names-
pace, so that the response will be constructed in the same manner as a normal DNS query matching this
view. If this statement is omitted, the default view is used, and if there is no default view, an error is
triggered.

The search statement is equivalent to the search statement in /etc/resolv.conf. It provides a list of
domains which are appended to relative names in queries.

The ndots statement is equivalent to the ndots statement in /etc/resolv.conf. It indicates the min-
imum number of dots in a relative domain name that should result in an exact match lookup before
search path elements are appended.

6.2.13 masters Statement Grammar

masters name [port ip_port] { (masters_list |
ip_addr [port ip_port] [key key]l) ; [...]1 };

BIND 9.9.8b1 (Extended Support Version) 52

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

6.2.14 masters Statement Definition and Usage

masters lists allow for a common set of masters to be easily used by multiple stub and slave zones in
their masters or also-notify lists.

6.2.15 options Statement Grammar

This is the grammar of the options statement in the named. conf file:

options {

[attach-cache cache_name;]
version version_string;]
hostname hostname_string;]
server—-id server_id_string;]
directory path_name;]
key-directory path_name;]
managed-keys—-directory path_name;]
named-xfer path_name;]
tkey-gssapi-keytab path_name;]
tkey-gssapi-credential principal;]
tkey—-domain domainname;]
tkey—-dhkey key_name key_tag;]
cache-file path_name;]
dump-file path_name;]
bindkeys—-file path_name;]
secroots—-file path_name;]
session-keyfile path_name;]
session-keyname key_name;]
session-keyalg algorithm_id;]
memstatistics yes_or_no;]
memstatistics—-file path_name;]
pid-file path_name;]
recursing—-file path_name;]
statistics-file path_name;]
zone—statistics full | terse | none; |
auth-nxdomain yes_or_no;]
deallocate-on-exit yes_or_no; |
dialup dialup_option;]
fake-iquery yes_or_no;]
fetch-glue yes_or_no; |
flush-zones-on-shutdown yes_or_no;]
has-old-clients yes_or_no; |
host-statistics yes_or_no; |
host-statistics—-max number;]
minimal-responses yes_or_no; |
multiple-cnames yes_or_no;]
notify yes_or_no | explicit | master-only; 1
recursion yes_or_no; |
request-nsid yes_or_no;]
rfc2308-typel yes_or_no;]
use-id-pool yes_or_no;]
maintain-ixfr-base yes_or_no; |

ixfr-from-differences (yes_or_no | master | slave);]
dnssec-enable yes_or_no;]
dnssec-validation (yes_or_no | auto);]
dnssec-lookaside (auto |

no |

domain trust—-anchor domain);]

53 BIND 9.9.8b1 (Extended Support Version)

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

dnssec—-must-be-secure domain yes_or_no;]
dnssec—-accept-expired yes_or_no;]
forward (only | first);]
forwarders { [ip_addr [port ip_port] ; ... 1 }; 1
dual-stack-servers [port ip_port] {

(domain_name [port ip_port] |

— — — — —

ip_addr [port ip_port]) ;
bl
[check-names (master | slave | response)
(warn | fail | ignore); 1
check-dup-records (warn | fail | ignore); 1
check-mx (warn | fail | ignore);]

check-wildcard yes_or_no;]
check-integrity yes_or_no;]

check-mx-cname (warn | fail | ignore);]
check-srv-cname (warn | fail | ignore);]
check-sibling yes_or_no;]

check-spf (warn | ignore); |

allow-new—zones { yes_or_no };]

allow-notify { address_match_list };]
allow—query { address_match_list };]
allow—-query-on { address_match_list };]
allow—query-cache { address_match_1list };]
allow—-query-cache-on { address_match_list };]
allow-transfer { address_match_list };]
allow-recursion { address_match_list };]
allow-recursion-on { address_match_list };]
allow-update { address_match_list };]
allow-update-forwarding { address_match_list };]
update-check-ksk yes_or_no;]
dnssec-update-mode (maintain | no-resign);]
dnssec—-dnskey-kskonly yes_or_no;]
dnssec—-loadkeys—-interval number;]
dnssec—-secure-to-insecure yes_or_no ;]
try-tcp-refresh yes_or_no; |
allow-v6-synthesis { address_match_list };]
blackhole { address_match_1list };]
no-case-compress { address_match_list };]
use-v4d-udp-ports { port_list };]
avoid-v4-udp-ports { port_list };]
use-vé6-udp-ports { port_list };]
avoid-vé6-udp-ports { port_list };]

e e B T e T R e B T R B T I e T T e T T T e e B T T e B T I e I e e R e T T

listen-on [port ip_port] { address_match_list }; 1]
listen-on-v6 [port ip_port] { address_match_list }; 1
query-source ((ip4_addr | =)

[port (ip_port | *) 1 |
[address (ip4_addr | =«
[port (ip_port | *) 1]

[query-source-v6 ((ip6_addr | =)
[port (ip_port | x)] |

[address (ip6_addr | =)]

[port (ip_port | =) 1) ; |
use—queryport—-pool yes_or_no; |
queryport-pool-ports number;]
queryport-pool-updateinterval number;]
max—-transfer—-time—-in number;]
max—-transfer—-time—-out number;]
max-transfer—-idle-in number;]
max-transfer—-idle-out number;]

— o/ o/, e

BIND 9.9.8b1 (Extended Support Version) 54

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

reserved-sockets number;]
recursive-clients number;]
tcp-clients number;]
clients-per—query number ;]
max—-clients—-per—query number ;]

fetches-per-server number [(drop | fail)l;]
fetch—-quota-params number fixedpoint fixedpoint fixedpoint ;]
fetches-per-zonenumber [(drop | fail)]l; 1

serial—-query-rate number;]

serial-queries number;]

tcp-listen—queue number;]

transfer—-format (one—answer | many—-answers);]
transfers—-in number;]

transfers—-out number;]

transfers—-per—-ns number;]

transfer-source (ip4_addr | x) [port ip_port] ;]
transfer-source-v6 (ip6_addr | *) [port ip_port] ; 1
alt-transfer-source (ip4_addr | %) [port ip_port] ; 1
alt-transfer-source-v6 (ip6_addr | x)

[port ip_port] ;]

use—alt-transfer-source yes_or_no;]
notify-delay seconds ;]
notify-source (ip4_addr | *) [port ip_port] ;]
notify-source-v6 (ip6_addr | =*) [port ip_port] ;]
notify-to-soa yes_or_no ;]
also-notify { ip_addr

[port ip_port] [key keyname] ;

[ip_addr [port ip_port] [key keyname] ; ... 1 }; 1
max—-ixfr-log-size number;]
max—-journal-size size_spec;]

coresize size_spec ;]

datasize size_spec ;]

files size_spec ;]

stacksize size_spec ;]
cleaning-interval number;]
heartbeat—-interval number;]
interface-interval number;]
statistics—interval number;]
topology { address_match_list }1];
sortlist { address_match_1list }];
rrset-order { order_spec ; [order_spec ; ... 1 1 };
lame—-ttl number;]

max-ncache-ttl number;]
max—cache-ttl number;]
sig-validity-interval number [number] ;]
sig-signing-nodes number ;]
sig-signing-signatures number ;]
sig-signing-type number ;]
min-roots number;]

use-ixfr yes_or_no ;]
provide—-ixfr yes_or_no;]
request-ixfr yes_or_no;]
treat-cr—as—space yes_or_no ; |
min-refresh-time number ;]
max-refresh-time number ;]
min-retry-time number ;]
max-retry-time number ;]

port ip_port; 1]
additional-from-auth yes_or_no ;]

55 BIND 9.9.8b1 (Extended Support Version)

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

additional-from-cache yes_or_no ;]
random-device path_name ;]
max—-cache-size size_spec ;]
match-mapped—-addresses yes_or_no;]
filter-aaaa-on-v4 (yes_or_no | break-dnssec); 1
filter—-aaaa { address_match_list };]
dns64 ipvée-prefix {

[clients { address_match_1list };]

[mapped { address_match_list };]

[exclude { address_match_1list };]
[suffix IPv6-address;]
[
[

—, — — e e

recursive-only yes_or_no; |
break-dnssec yes_or_no;]
i1
dns64-server name]
dns64-contact name]
preferred-glue (A | AAAA | NONE); 1]
edns—-udp-size number;]
max-udp-size number;]
max-rsa-exponent-size number;]
root-delegation-only [exclude { namelist } 1 ;]
querylog yes_or_no ;]
disable—-algorithms domain { algorithm;

[algorithm; 1 };]
acache-enable yes_or_no ;]
acache-cleaning-interval number;]
max—acache-size size_spec ;]
max-recursion-depth number ;]
max—-recursion—-queries number ;]
masterfile-format (text|raw) ;]
empty—-server name ;]
empty—-contact name ;]
empty—-zones—enable yes_or_no ;]
disable-empty-zone zone_name ;]
zero—-no-soa-ttl yes_or_no ;]
zero—no-soa-ttl-cache yes_or_no ;]
resolver—-query-timeout number ;]
deny-answer—addresses { address_match_list } [except-from { namelist } 1;]
deny-answer—-aliases { namelist } [except-from { namelist } 1;]
rate-limit {
responses—per—second number ;]
referrals—per—-second number ;]
nodata-per—-second number ;]
nxdomains-per-second number ;]
errors—-per-second number ;]
all-per-second number ;]

window number ;]

log-only yes_or_no ;]

gps—scale number ;]

ipvd-prefix—-length number ;]
ipvée-prefix—-length number ;]

slip number ;]

exempt-clients { address_match_list } ;]
max-table-size number ;]

min-table-size number ;]

L B B B B T e B e T e B T B e T I e T) — e

o B B T e T B B e T R T e T B e T e e B

bl
[response-policy {
zone zone_name
[policy (given | disabled | passthru |

BIND 9.9.8b1 (Extended Support Version) 56

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

nxdomain | nodata | cname domain)]
il
[recursive-only yes_or_no]
[max-policy-ttl number]
[break—-dnssec yes_or_no]
[min—-ns—dots number]
]

6.2.16 options Statement Definition and Usage

The options statement sets up global options to be used by BIND. This statement may appear only once
in a configuration file. If there is no options statement, an options block with each option set to its
default will be used.

attach-cache Allows multiple views to share a single cache database. Each view has its own cache
database by default, but if multiple views have the same operational policy for name resolution
and caching, those views can share a single cache to save memory and possibly improve resolution
efficiency by using this option.

The attach-cache option may also be specified in view statements, in which case it overrides the
global attach-cache option.

The cache_name specifies the cache to be shared. When the named server configures views which
are supposed to share a cache, it creates a cache with the specified name for the first view of these
sharing views. The rest of the views will simply refer to the already created cache.

One common configuration to share a cache would be to allow all views to share a single cache.
This can be done by specifying the attach-cache as a global option with an arbitrary name.

Another possible operation is to allow a subset of all views to share a cache while the others to
retain their own caches. For example, if there are three views A, B, and C, and only A and B
should share a cache, specify the attach-cache option as a view A (or B)’s option, referring to the
other view name:

view "A" {
// this view has its own cache

}i

view "B" {
// this view refers to A’s cache
attach-cache "A";

bi

view "C" {
// this view has its own cache

}i

Views that share a cache must have the same policy on configurable parameters that may affect
caching. The current implementation requires the following configurable options be consistent
among these views: check-names, cleaning-interval, dnssec-accept-expired, dnssec-validation,
max-cache-ttl, max-ncache-ttl, max-cache-size, and zero-no-soa-ttl.

Note that there may be other parameters that may cause confusion if they are inconsistent for
different views that share a single cache. For example, if these views define different sets of for-
warders that can return different answers for the same question, sharing the answer does not
make sense or could even be harmful. It is administrator’s responsibility to ensure configuration
differences in different views do not cause disruption with a shared cache.

57 BIND 9.9.8b1 (Extended Support Version)

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

directory The working directory of the server. Any non-absolute pathnames in the configuration file
will be taken as relative to this directory. The default location for most server output files (e.g.
named. run) is this directory. If a directory is not specified, the working directory defaults to *.”,
the directory from which the server was started. The directory specified should be an absolute
path.

key-directory When performing dynamic update of secure zones, the directory where the public and
private DNSSEC key files should be found, if different than the current working directory. (Note
that this option has no effect on the paths for files containing non-DNSSEC keys such as bind.
keys, rndc.key or session.key.)

managed-keys-directory Specifies the directory in which to store the files that track managed DNSSEC
keys. By default, this is the working directory.

If named is not configured to use views, then managed keys for the server will be tracked in a
single file called managed-keys.bind. Otherwise, managed keys will be tracked in separate
files, one file per view; each file name will be the SHA256 hash of the view name, followed by the
extension .mkeys.

named-xfer This option is obsolete. It was used in BIND 8 to specify the pathname to the named-xfer
program. In BIND 9, no separate named-xfer program is needed; its functionality is built into the
name server.

tkey-gssapi-keytab The KRB5 keytab file to use for GSS-TSIG updates. If this option is set and tkey-
gssapi-credential is not set, then updates will be allowed with any key matching a principal in the
specified keytab.

tkey-gssapi-credential The security credential with which the server should authenticate keys requested
by the GSS-TSIG protocol. Currently only Kerberos 5 authentication is available and the credential
is a Kerberos principal which the server can acquire through the default system key file, normally
/etc/krb5.keytab. The location keytab file can be overridden using the tkey-gssapi-keytab
option. Normally this principal is of the form "DNS/server.domain”. To use GSS-TSIG, tkey-
domain must also be set if a specific keytab is not set with tkey-gssapi-keytab.

tkey-domain The domain appended to the names of all shared keys generated with TKEY. When a
client requests a TKEY exchange, it may or may not specify the desired name for the key. If present,
the name of the shared key will be client specified part + tkey-domain. Otherwise,
the name of the shared key will be random hex digits + tkey-domain. In most cases, the
domainname should be the server’s domain name, or an otherwise non-existent subdomain like
”_tkey.domainname”. If you are using GSS-TSIG, this variable must be defined, unless you specify
a specific keytab using tkey-gssapi-keytab.

tkey-dhkey The Diffie-Hellman key used by the server to generate shared keys with clients using the
Diffie-Hellman mode of TKEY. The server must be able to load the public and private keys from
files in the working directory. In most cases, the keyname should be the server’s host name.

cache-file This is for testing only. Do not use.

dump-file The pathname of the file the server dumps the database to when instructed to do so with
rndc dumpdb. If not specified, the default is named_dump . db.

memstatistics-file The pathname of the file the server writes memory usage statistics to on exit. If not
specified, the default is named .memstats.

BIND 9.9.8b1 (Extended Support Version) 58

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

pid-file The pathname of the file the server writes its process ID in. If not specified, the default is /
var/run/named/named.pid. The PID file is used by programs that want to send signals to
the running name server. Specifying pid-file none disables the use of a PID file — no file will be
written and any existing one will be removed. Note that none is a keyword, not a filename, and
therefore is not enclosed in double quotes.

recursing-file The pathname of the file the server dumps the queries that are currently recursing when
instructed to do so with rndc recursing. If not specified, the default is named. recursing.

statistics-file The pathname of the file the server appends statistics to when instructed to do so using
rndc stats. If not specified, the default is named. stats in the server’s current directory. The
format of the file is described in Section 6.4.0.1.

bindkeys-file The pathname of a file to override the built-in trusted keys provided by named. See the
discussion of dnssec-lookaside and dnssec-validation for details. If not specified, the default is /
etc/bind.keys.

secroots-file The pathname of the file the server dumps security roots to when instructed to do so with
rndc secroots. If not specified, the default is named. secroots.

session-keyfile The pathname of the file into which to write a TSIG session key generated by named
for use by nsupdate -1. If not specified, the default is /var/run/named/session.key. (See
Section 6.2.28.4, and in particular the discussion of the update-policy statement’s 1ocal option
for more information about this feature.)

session-keyname The key name to use for the TSIG session key. If not specified, the default is “local-
ddns”.

session-keyalg The algorithm to use for the TSIG session key. Valid values are hmac-shal, hmac-
sha224, hmac-sha256, hmac-sha384, hmac-sha512 and hmac-md>5. If not specified, the default is
hmac-sha256.

port The UDP/TCP port number the server uses for receiving and sending DNS protocol traffic. The
default is 53. This option is mainly intended for server testing; a server using a port other than 53
will not be able to communicate with the global DNS.

random-device The source of entropy to be used by the server. Entropy is primarily needed for DNSSEC
operations, such as TKEY transactions and dynamic update of signed zones. This options speci-
fies the device (or file) from which to read entropy. If this is a file, operations requiring entropy
will fail when the file has been exhausted. If not specified, the default value is /dev/random (or
equivalent) when present, and none otherwise. The random-device option takes effect during the
initial configuration load at server startup time and is ignored on subsequent reloads.

preferred-glue If specified, the listed type (A or AAAA) will be emitted before other glue in the addi-
tional section of a query response. The default is not to prefer any type (NONE).

root-delegation-only Turn on enforcement of delegation-only in TLDs (top level domains) and root
zones with an optional exclude list.

DS queries are expected to be made to and be answered by delegation only zones. Such queries
and responses are treated as an exception to delegation-only processing and are not converted to
NXDOMAIN responses provided a CNAME is not discovered at the query name.

59 BIND 9.9.8b1 (Extended Support Version)

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

If a delegation only zone server also serves a child zone it is not always possible to determine
whether an answer comes from the delegation only zone or the child zone. SOA NS and DNSKEY
records are apex only records and a matching response that contains these records or DS is treated
as coming from a child zone. RRSIG records are also examined to see if they are signed by a child
zone or not. The authority section is also examined to see if there is evidence that the answer is
from the child zone. Answers that are determined to be from a child zone are not converted to
NXDOMAIN responses. Despite all these checks there is still a possibility of false negatives when
a child zone is being served.

Similarly false positives can arise from empty nodes (no records at the name) in the delegation
only zone when the query type is not ANY.

Note some TLDs are not delegation only (e.g. "DE”, "LV”, "US” and "MUSEUM"). This list is not
exhaustive.

options {
root-delegation-only exclude { "de"; "1lv"; "us"; "museum"; };

}i

disable-algorithms Disable the specified DNSSEC algorithms at and below the specified name. Multi-
ple disable-algorithms statements are allowed. Only the most specific will be applied.

dnssec-lookaside When set, dnssec-lookaside provides the validator with an alternate method to vali-
date DNSKEY records at the top of a zone. When a DNSKEY is at or below a domain specified by
the deepest dnssec-lookaside, and the normal DNSSEC validation has left the key untrusted, the
trust-anchor will be appended to the key name and a DLV record will be looked up to see if it can
validate the key. If the DLV record validates a DNSKEY (similarly to the way a DS record does)
the DNSKEY RRset is deemed to be trusted.

If dnssec-lookaside is set to auto, then built-in default values for the DLV domain and trust
anchor will be used, along with a built-in key for validation.

If dnssec-lookaside is set to no, then dnssec-lookaside is not used.

The default DLV key is stored in the file bind. keys; named will load that key at startup if dnssec-
lookaside is set to auto. A copy of the file is installed along with BIND 9, and is current as of
the release date. If the DLV key expires, a new copy of bind.keys can be downloaded from
<https://www.isc.org/solutions/dlv/>.

(To prevent problems if bind.keys is not found, the current key is also compiled in to named.
Relying on this is not recommended, however, as it requires named to be recompiled with a new
key when the DLV key expires.)

NOTE: named only loads certain specific keys from bind.keys: those for the DLV zone and for
the DNS root zone. The file cannot be used to store keys for other zones.

dnssec-must-be-secure Specify hierarchies which must be or may not be secure (signed and validated).
If yes, then named will only accept answers if they are secure. If no, then normal DNSSEC vali-
dation applies allowing for insecure answers to be accepted. The specified domain must be under
a trusted-keys or managed-keys statement, or dnssec-lookaside must be active.

dns64 This directive instructs named to return mapped IPv4 addresses to AAAA queries when there
are no AAAA records. It is intended to be used in conjunction with a NAT64. Each dns64 defines
one DN564 prefix. Multiple DNS64 prefixes can be defined.

Compatible IPv6 prefixes have lengths of 32, 40, 48, 56, 64 and 96 as per RFC 6052.

Additionally a reverse IP6.ARPA zone will be created for the prefix to provide a mapping from
the IP6.ARPA names to the corresponding IN-ADDR.ARPA names using synthesized CNAMEs.

BIND 9.9.8b1 (Extended Support Version) 60

https://www.isc.org/solutions/dlv/

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

dns64-server and dns64-contact can be used to specify the name of the server and contact for the
zones. These are settable at the view / options level. These are not settable on a per-prefix basis.

Each dns64 supports an optional clients ACL that determines which clients are affected by this
directive. If not defined, it defaults to any; .

Each dns64 supports an optional mapped ACL that selects which IPv4 addresses are to be mapped
in the corresponding A RRset. If not defined it defaults to any; .

Normally, DNS64 won’t apply to a domain name that owns one or more AAAA records; these
records will simply be returned. The optional exclude ACL allows specification of a list of IPv6
addresses that will be ignored if they appear in a domain name’s AAAA records, and DNS64 will
be applied to any A records the domain name owns. If not defined, exclude defaults to none.

A optional suffix can also be defined to set the bits trailing the mapped IPv4 address bits. By
default these bits are set to : :. The bits matching the prefix and mapped IPv4 address must be
Zero.

If recursive-only is set to yes the DNS64 synthesis will only happen for recursive queries. The
default is no.

If break-dnssec is set to yes the DNS64 synthesis will happen even if the result, if validated, would
cause a DNSSEC validation failure. If this option is set to no (the default), the DO is set on the
incoming query, and there are RRSIGs on the applicable records, then synthesis will not happen.

acl rfcl918 { 10/8; 192.168/16; 172.16/12; };

dns64 64:FF9B::/96 {
clients { any; };
mapped { !'rfcl918; any; };
exclude { 64:FF9B::/96; ::ffff:0000:0000/96; };
suffix ::;

dnssec-update-mode If this option is set to its default value of maintain in a zone of type master
which is DNSSEC-signed and configured to allow dynamic updates (see Section 6.2.28.4), and if
named has access to the private signing key(s) for the zone, then named will automatically sign
all new or changed records and maintain signatures for the zone by regenerating RRSIG records
whenever they approach their expiration date.

If the option is changed to no-resign, then named will sign all new or changed records, but
scheduled maintenance of signatures is disabled.

With either of these settings, named will reject updates to a DNSSEC-signed zone when the signing
keys are inactive or unavailable to named. (A planned third option, external, will disable all
automatic signing and allow DNSSEC data to be submitted into a zone via dynamic update; this
is not yet implemented.)

zone-statistics If full, the server will collect statistical data on all zones (unless specifically turned off
on a per-zone basis by specifying zone-statistics terse or zone-statistics none in the zone state-
ment). The default is terse, providing minimal statistics on zones (including name and current
serial number, but not query type counters).

These statistics may be accessed via the statistics-channel or using rndc stats, which will dump
them to the file listed in the statistics-file. See also Section 6.4.0.1.

For backward compatibility with earlier versions of BIND 9, the zone-statistics option can also
accept yes or no, which have the same effect as full and terse, respectively.

61 BIND 9.9.8b1 (Extended Support Version)

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

6.2.16.1 Boolean Options

allow-new-zones If yes, then zones can be added at runtime via rndc addzone or deleted via rndc
delzone. The default is no.

auth-nxdomain If yes, then the AA bit is always set on NXDOMAIN responses, even if the server is
not actually authoritative. The default is no; this is a change from BIND 8. If you are using very
old DNS software, you may need to set it to yes.

deallocate-on-exit This option was used in BIND 8 to enable checking for memory leaks on exit. BIND
9 ignores the option and always performs the checks.

memstatistics Write memory statistics to the file specified by memstatistics-file at exit. The default is
no unless -m record’ is specified on the command line in which case it is yes.

dialup If yes, then the server treats all zones as if they are doing zone transfers across a dial-on-demand
dialup link, which can be brought up by traffic originating from this server. This has different
effects according to zone type and concentrates the zone maintenance so that it all happens in a
short interval, once every heartbeat-interval and hopefully during the one call. It also suppresses
some of the normal zone maintenance traffic. The default is no.

The dialup option may also be specified in the view and zone statements, in which case it over-
rides the global dialup option.

If the zone is a master zone, then the server will send out a NOTIFY request to all the slaves
(default). This should trigger the zone serial number check in the slave (providing it supports
NOTIFY) allowing the slave to verify the zone while the connection is active. The set of servers to
which NOTIFY is sent can be controlled by notify and also-notify.

If the zone is a slave or stub zone, then the server will suppress the regular “zone up to date” (re-
fresh) queries and only perform them when the heartbeat-interval expires in addition to sending
NOTIFY requests.

Finer control can be achieved by using notify which only sends NOTIFY messages, notify—
passive which sends NOTIFY messages and suppresses the normal refresh queries, refresh
which suppresses normal refresh processing and sends refresh queries when the heartbeat-interval
expires, and passive which just disables normal refresh processing.

dialup mode normal refresh heart-beat refresh ~ heart-beat notify
no (default) yes no no

yes no yes yes

notify yes no yes

refresh no yes no

passive no no no
notify-passive no no yes

Note that normal NOTIFY processing is not affected by dialup.

fake-iquery In BIND 8, this option enabled simulating the obsolete DNS query type IQUERY. BIND 9
never does IQUERY simulation.

fetch-glue This option is obsolete. In BIND 8, fetch—glue yes caused the server to attempt to fetch
glue resource records it didn’t have when constructing the additional data section of a response.
This is now considered a bad idea and BIND 9 never does it.

BIND 9.9.8b1 (Extended Support Version) 62

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

flush-zones-on-shutdown When the nameserver exits due receiving SIGTERM, flush or do not flush
any pending zone writes. The default is flush-zones-on-shutdown no.

has-old-clients This option was incorrectly implemented in BIND 8, and is ignored by BIND 9. To
achieve the intended effect of has-old-clients yes, specify the two separate options auth-nxdomain
yes and rfc2308-typel no instead.

host-statistics In BIND 8, this enables keeping of statistics for every host that the name server interacts
with. Not implemented in BIND 9.

maintain-ixfr-base This option is obsolete. It was used in BIND 8 to determine whether a transaction log
was kept for Incremental Zone Transfer. BIND 9 maintains a transaction log whenever possible. If
you need to disable outgoing incremental zone transfers, use provide-ixfr no.

minimal-responses If yes, then when generating responses the server will only add records to the au-
thority and additional data sections when they are required (e.g. delegations, negative responses).
This may improve the performance of the server. The default is no.

multiple-cnames This option was used in BIND 8 to allow a domain name to have multiple CNAME
records in violation of the DNS standards. BIND 9.2 onwards always strictly enforces the CNAME
rules both in master files and dynamic updates.

notify If yes (the default), DNS NOTIFY messages are sent when a zone the server is authoritative
for changes, see Section 4.1. The messages are sent to the servers listed in the zone’s NS records
(except the master server identified in the SOA MNAME field), and to any servers listed in the
also-notify option.

If master-only, notifies are only sent for master zones. If explicit, notifies are sent only to
servers explicitly listed using also-notify. If no, no notifies are sent.

The notify option may also be specified in the zone statement, in which case it overrides the
options notify statement. It would only be necessary to turn off this option if it caused slaves to
crash.

notify-to-soa If yes do not check the nameservers in the NS RRset against the SOA MNAME. Normally
a NOTIFY message is not sent to the SOA MNAME (SOA ORIGIN) as it is supposed to contain the
name of the ultimate master. Sometimes, however, a slave is listed as the SOA MNAME in hidden
master configurations and in that case you would want the ultimate master to still send NOTIFY
messages to all the nameservers listed in the NS RRset.

recursion If yes, and a DNS query requests recursion, then the server will attempt to do all the work
required to answer the query. If recursion is off and the server does not already know the answer, it
will return a referral response. The default is yes. Note that setting recursion no does not prevent
clients from getting data from the server’s cache; it only prevents new data from being cached as
an effect of client queries. Caching may still occur as an effect the server’s internal operation, such
as NOTIFY address lookups. See also fetch-glue above.

request-nsid If yes, then an empty EDNS(0) NSID (Name Server Identifier) option is sent with all
queries to authoritative name servers during iterative resolution. If the authoritative server returns
an NSID option in its response, then its contents are logged in the resolver category at level info.
The default is no.

rfc2308-typel Setting this to yes will cause the server to send NS records along with the SOA record
for negative answers. The default is no.

63 BIND 9.9.8b1 (Extended Support Version)

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

NOTE

Not yet implemented in BIND 9.

use-id-pool This option is obsolete. BIND 9 always allocates query IDs from a pool.

use-ixfr This option is obsolete. If you need to disable IXFR to a particular server or servers, see the
information on the provide-ixfr option in Section 6.2.18. See also Section 4.3.

provide-ixfr See the description of provide-ixfr in Section 6.2.18.
request-ixfr See the description of request-ixfr in Section 6.2.18.

treat-cr-as-space This option was used in BIND 8 to make the server treat carriage return (”\r”) charac-
ters the same way as a space or tab character, to facilitate loading of zone files on a UNIX system
that were generated on an NT or DOS machine. In BIND 9, both UNIX “\n” and NT/DOS "\r\n”
newlines are always accepted, and the option is ignored.

additional-from-auth, additional-from-cache These options control the behavior of an authoritative
server when answering queries which have additional data, or when following CNAME and
DNAME chains.

When both of these options are set to yes (the default) and a query is being answered from au-
thoritative data (a zone configured into the server), the additional data section of the reply will be
filled in using data from other authoritative zones and from the cache. In some situations this is
undesirable, such as when there is concern over the correctness of the cache, or in servers where
slave zones may be added and modified by untrusted third parties. Also, avoiding the search for
this additional data will speed up server operations at the possible expense of additional queries
to resolve what would otherwise be provided in the additional section.

For example, if a query asks for an MX record for host foo.example. com, and the record found is
"MX 10 mail.example.net”,normally the addressrecords (A and AAAA)formail.example.
net will be provided as well, if known, even though they are not in the example.com zone. Setting
these options to no disables this behavior and makes the server only search for additional data in
the zone it answers from.

These options are intended for use in authoritative-only servers, or in authoritative-only views.
Attempts to set them to no without also specifying recursion no will cause the server to ignore the
options and log a warning message.

Specifying additional-from-cache no actually disables the use of the cache not only for additional
data lookups but also when looking up the answer. This is usually the desired behavior in an
authoritative-only server where the correctness of the cached data is an issue.

When a name server is non-recursively queried for a name that is not below the apex of any served
zone, it normally answers with an “upwards referral” to the root servers or the servers of some
other known parent of the query name. Since the data in an upwards referral comes from the
cache, the server will not be able to provide upwards referrals when additional-from-cache no
has been specified. Instead, it will respond to such queries with REFUSED. This should not cause
any problems since upwards referrals are not required for the resolution process.

match-mapped-addresses If yes, then an IPv4-mapped IPv6 address will match any address match list
entries that match the corresponding IPv4 address.

BIND 9.9.8b1 (Extended Support Version) 64

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

This option was introduced to work around a kernel quirk in some operating systems that causes
IPv4 TCP connections, such as zone transfers, to be accepted on an IPv6 socket using mapped
addresses. This caused address match lists designed for IPv4 to fail to match. However, named
now solves this problem internally. The use of this option is discouraged.

filter-aaaa-on-v4 This option is only available when BIND 9 is compiled with the ——enable-filter-
aaaa option on the “configure” command line. It is intended to help the transition from IPv4 to
IPv6 by not giving IPv6 addresses to DNS clients unless they have connections to the IPv6 Internet.
This is not recommended unless absolutely necessary. The default is no. The filter-aaaa-on-v4
option may also be specified in view statements to override the global filter-aaaa-on-v4 option.

If yes, the DNS client is at an IPv4 address, in filter-aaaa, and if the response does not include
DNSSEC signatures, then all AAAA records are deleted from the response. This filtering applies
to all responses and not only authoritative responses.

If break-dnssec, then AAAA records are deleted even when dnssec is enabled. As suggested
by the name, this makes the response not verify, because the DNSSEC protocol is designed detect
deletions.

This mechanism can erroneously cause other servers to not give AAAA records to their clients. A
recursing server with both IPv6 and IPv4 network connections that queries an authoritative server
using this mechanism via IPv4 will be denied AAAA records even if its client is using IPv6.

This mechanism is applied to authoritati