Note
Go to the end to download the full example code.
Fit Specifying Different Reduce Function¶
The reduce_fcn
specifies how to convert a residual array to a scalar value
for the scalar minimizers. The default value is None (i.e., “sum of squares of
residual”) - alternatives are: negentropy
, neglogcauchy
, or a
user-specified callable
. For more information please refer to:
https://lmfit.github.io/lmfit-py/fitting.html#using-the-minimizer-class
Here, we use as an example the Student’s t log-likelihood for robust fitting of data with outliers.
import matplotlib.pyplot as plt
import numpy as np
import lmfit
def resid(params, x, ydata):
decay = params['decay'].value
offset = params['offset'].value
omega = params['omega'].value
amp = params['amp'].value
y_model = offset + amp * np.sin(x*omega) * np.exp(-x/decay)
return y_model - ydata
Generate synthetic data with noise/outliers and initialize fitting Parameters:
decay = 5
offset = 1.0
amp = 2.0
omega = 4.0
np.random.seed(2)
x = np.linspace(0, 10, 101)
y = offset + amp * np.sin(omega*x) * np.exp(-x/decay)
yn = y + np.random.normal(size=y.size, scale=0.250)
outliers = np.random.randint(int(len(x)/3.0), len(x), int(len(x)/12))
yn[outliers] += 5*np.random.random(len(outliers))
params = lmfit.create_params(offset=2.0, omega=3.3, amp=2.5,
decay=dict(value=1, min=0))
Perform fits using the L-BFGS-B
method with different reduce_fcn
:
method = 'L-BFGS-B'
o1 = lmfit.minimize(resid, params, args=(x, yn), method=method)
print("# Fit using sum of squares:\n")
lmfit.report_fit(o1)
# Fit using sum of squares:
[[Fit Statistics]]
# fitting method = L-BFGS-B
# function evals = 130
# data points = 101
# variables = 4
chi-square = 32.1674767
reduced chi-square = 0.33162347
Akaike info crit = -107.560626
Bayesian info crit = -97.1001440
## Warning: uncertainties could not be estimated:
this fitting method does not natively calculate uncertainties
and numdifftools is not installed for lmfit to do this. Use
`pip install numdifftools` for lmfit to estimate uncertainties
with this fitting method.
[[Variables]]
offset: 1.10392445 (init = 2)
omega: 3.97313428 (init = 3.3)
amp: 1.69977002 (init = 2.5)
decay: 7.65902066 (init = 1)
o2 = lmfit.minimize(resid, params, args=(x, yn), method=method,
reduce_fcn='neglogcauchy')
print("\n\n# Robust Fit, using log-likelihood with Cauchy PDF:\n")
lmfit.report_fit(o2)
# Robust Fit, using log-likelihood with Cauchy PDF:
[[Fit Statistics]]
# fitting method = L-BFGS-B
# function evals = 135
# data points = 101
# variables = 4
chi-square = 33.5081335
reduced chi-square = 0.34544468
Akaike info crit = -103.436564
Bayesian info crit = -92.9760818
## Warning: uncertainties could not be estimated:
this fitting method does not natively calculate uncertainties
and numdifftools is not installed for lmfit to do this. Use
`pip install numdifftools` for lmfit to estimate uncertainties
with this fitting method.
[[Variables]]
offset: 1.02005972 (init = 2)
omega: 3.98224426 (init = 3.3)
amp: 1.83231442 (init = 2.5)
decay: 5.77327309 (init = 1)
plt.plot(x, y, 'o', label='true function')
plt.plot(x, yn, '--*', label='with noise+outliers')
plt.plot(x, yn+o1.residual, '-', label='sum of squares fit')
plt.plot(x, yn+o2.residual, '-', label='robust fit')
plt.legend()
plt.show()

Total running time of the script: (0 minutes 0.365 seconds)