

BIND 9 Administrator Reference

Manual
Release 9.18.27

Internet Systems Consortium

2024-05-03

Introduction to DNS and BIND 9

1.1
1.2
1.3
1.4
1.5

Scope of Document

Resource Requirements

2.1
2.2
23
24
2.5
2.6
2.7

Configurations and Zone Files

Introduction,
Authoritative Name Servers
Resolver (Caching Name Servers)
Load Balancing
ZoneFile,

3.1
3.2
33
34
35

Hardware Requirements
CPU Requirements
Memory Requirements
Name Server-Intensive Environment Issues

Supported Platforms

Unsupported Platforms
Installing BINDO

Name Server Operations

Tools for Use With the Name Server Daemon
Signals
Plugins
Configuring Plugins
Developing Plugins

Zone Signingo
Secure Delegation.

Dynamic Trust Anchor Management

4.1

4.2

4.3

4.4

4.5
DNSSEC
5.1

52

5.3 DNSSEC Validation
54

5.5

PKCS#11 (Cryptoki) Support

Advanced Configurations

6.1
6.2
6.3

Dynamic Update
NOTIFY i e
Incremental Zone Transfers (IXFR)

Organization of This Document
Conventions Used in This Document
The Domain Name System (DNS)
DNS Security Overview

CONTENTS

.......................... 11

15

.......................... 15
....................................... 18
.................................... 23
.......................... 31
.......................... 31

39

.............................. 39
.......................... 43
.......................... 43
.......................... 43
.......................... 44

45

.......................... 45
.......................... 51
.......................... 51
................................... 52
...................................... 53

6.4 SplitDNS
6.5 IPv6o Supportin BIND O e e e e
6.6 Dynamically Loadable Zones (DLZ) e e
6.7 Dynamic Database (DynDB) e
6.8 Catalog Zones e e e e e e e e e
6.9 DNS Firewalls and Response Policy Zones e

Security Configurations

7.1 Security ASSUMPLIONS v v v v v e e e e e e e e e e e e e e e e e
7.2 Access Control LiSts o o o e e e e e e e e e e e e e e e e e
7.3 Chrootand Setuld o o i i i e e e e e e e e e e e
7.4 Dynamic Update Security o i e e e e e e e e e e e e e
7.5 TSIG . . . e
7.6 TKEY e e
7.7 SIG(0) . . o o e e e e e

Configuration Reference

8.1 Configuration File (named.conf)
8.2 Blocks e e e e e e e
8.3 Statements e e e e e e e e e e e e e e e e e e
8.4 Statements by Tag e e e e e e
8.5 BIND O Statistics v o v v i e e e e e e e e e e e e

Troubleshooting

9.1 CommonProblems e
9.2 Incrementing and Changing the Serial Number
9.3 Where Can I GetHelp? e

10 Building BIND 9

10.1 Required Libraries o o e e e e e e e e e e e
10.2 Optional Features e e e
103 macOS e

11 Release Notes

11.1 Introduction e e e e e e e
11.2 Supported Platforms e e e e e
11.3 Download e e e e e
11.4 KnownlIssues o i e e e
11.5 Notes for BIND 9.18.27 e e e e
11.6 Notes for BIND 9.18.26 e e e e e
11.7 Notes for BIND 9.18.25 e e e e
11.8 Notes for BIND 9.18.24 e
11.9 Notes for BIND 9.18.23 e
11.10 Notes for BIND 9.18.22 e e e e e
11.11 Notes for BIND 9.18.21 e e e e e e e
11.12 Notes for BIND 9.18.20 e e e e e e e e
11.13 Notes for BIND 9.18.19 e e
11.14 Notes for BIND 9.18.18
11.15 Notes for BIND 9.18.17 e e e e e e e
11.16 Notes for BIND 9.18.16 e e e e e e e
11.17 Notes for BIND 9.18.15 e e e e
11.18 Notes for BIND 9.18.14 e e e
11.19 Notes for BIND 9.18.13 e e e
11.20 Notes for BIND 9.18.12 e e e e e e e e e e
11.21 Notes for BIND 9.18.11 e e e e e e e

81
81
82
83
84
84
&7
87

89
89
95
257
292
327

335
335
336
337

339
339
340
341

347

11.22 Notes for BIND 9.18.10 e e e e e e e e e e
11.23 Notes for BIND 9.18.9 e
11.24 Notes for BIND 9.18.8 e
11.25 Notes for BIND 9.18.7 e e e e
11.26 Notes for BIND 9.18.6 e e e e
11.27 Notes for BIND 9.18.5 e e e e e e e
11.28 Notes for BIND 9.18.4 e
11.29 Notes for BIND 9.18.3
11.30 Notes for BIND 9.18.2 e e e e e e e e e e e e
11.31 Notes for BIND 9.18.1 e e e e e e e
11.32 Notes for BIND 9.18.0 e e e e e e
T1.33 LACENSE . . o v o o e o e e e e e e e e e e e e e e e
1134 Endof Life e e e e
11.35 Thank YOu o e e e e e e e e e

12 DNSSEC Guide
12.1 Preface o o e e
122 Introduction o e e e e e e e e e e
12.3 Getting Started L L e e e e e e e e e e
12.4 Validation e e e e
125 SigNing . . . o o o e e e e
12.6 Basic DNSSEC Troubleshooting 0 i i i et e e e e e e e
12.7 Advanced Discussionso e e
12.8 ReCIPES o o e e
12.9 Commonly Asked QUESLiONS L. L e e e e

13 A Brief History of the DNS and BIND

14 General DNS Reference Information
14.1 Requests for Comment (RFCs) e e e
142 NOES o o e e e e e e e

15 Manual Pages
15.1 arpaname - translate IP addresses to the corresponding ARPAnames
15.2 ddns-confgen - TSIG key generationtool
15.3 delv - DNS lookup and validation utility
15.4 dig- DNSlookup utility o o e e e e e e e e e e e
15.5 dnssec-cds - change DS records for a child zone based on CDS/CDNSKEY
15.6 dnssec-dsfromkey - DNSSEC DS RR generationtool
15.7 dnssec-importkey - import DNSKEY records from external systems so they can be managed
15.8 dnssec-keyfromlabel - DNSSEC key generationtool
15.9 dnssec-keygen: DNSSEC key generationtool
15.10 dnssec-revoke - set the REVOKED bitona DNSSECkey
15.11 dnssec-settime: set the key timing metadata fora DNSSECkey
15.12 dnssec-signzone - DNSSEC zone signing tool
15.13 dnssec-verify - DNSSEC zone verificationtool,
15.14 dnstap-read - print dnstap data in human-readable form
15.15 filter-aaaa.so - filter AAAA in DNS responses when Aispresent
15.16 host - DNS lookup utility o o o o e e e e e e e e e
15.17 mdig - DNS pipelined lookup utility o
15.18 named-checkconf - named configuration file syntax checkingtool
15.19 named-checkzone - zone file validationtool L L
15.20 named-compilezone - zone file convertingtool Lo
15.21 named-journalprint - print zone journal in human-readable form

373
373
374
379
381
393
414
421
435
454

457

459
459
464
464

465
465
465
466
471
481
484
486
487
491
495
496
499
505
506
507
508
510
515
516
519
522

15.22 named-nzd2nzf - convert an NZD database to NZF text format 522

15.23 named-rrchecker - syntax checker for individual DNS resource records 523
15.24 named.conf - configuration file formamed L L Lo 524
15.25 named - Internet domain NAME SETVET o v v v bt e e e e e e e e e e e e e e e 541
15.26 nsec3hash - generate NSEC3 hash 545
15.27 nslookup - query Internet name servers interactivelyo oL 546
15.28 nsupdate - dynamic DNS update utility e 549
15.29 rndc-confgen - rndc key generation tool L. Lo Lo e 554
15.30 rndc.conf - rndc configurationfile oL o 555
15.31 rndc - name server control utilityo o e e e 557
15.32 tsig-keygen - TSIG key generation tool Lo 565
Index 567

CHAPTER
ONE

INTRODUCTION TO DNS AND BIND 9

The Internet Domain Name System (DNS) consists of:
* the syntax to specify the names of entities in the Internet in a hierarchical manner,
* the rules used for delegating authority over names, and
* the system implementation that actually maps names to Internet addresses.

DNS data is maintained in a group of distributed hierarchical databases.

1.1 Scope of Document

The Berkeley Internet Name Domain (BIND) software implements a domain name server for a number of operating sys-
tems. This document provides basic information about the installation and maintenance of Internet Systems Consortium
(ISC) BIND version 9 software package for system administrators.

This manual covers BIND version 9.18.27.

1.2 Organization of This Document

Introduction to DNS and BIND 9 introduces the basic DNS and BIND concepts. Some tutorial material on 7he Domain
Name System (DNS) is presented for those unfamiliar with DNS. A DNS Security Overview is provided to allow BIND
operators to implement appropriate security for their operational environment.

Resource Requirements describes the hardware and environment requirements for BIND 9 and lists both the supported
and unsupported platforms.

Configurations and Zone Files is intended as a quickstart guide for newer users. Sample files are included for Authoritative
Name Servers (both primary and secondary), as well as a simple Resolver (Caching Name Servers) and a Forwarding
Resolver Configuration. Some reference material on the Zone File is included.

Name Server Operations covers basic BIND 9 software and DNS operations, including some useful tools, Unix signals,
and plugins.

Advanced Configurations builds on the configurations of Configurations and Zone Files, adding functions and features the
system administrator may need.

Security Configurations covers most aspects of BIND 9 security, including file permissions, running BIND 9 in a “jail,”
and securing file transfers and dynamic updates.

DNSSEC describes the theory and practice of cryptographic authentication of DNS information. The DNSSEC Guide is a
practical guide to implementing DNSSEC.

BIND 9 Administrator Reference Manual, Release 9.18.27

Configuration Reference gives exhaustive descriptions of all supported blocks, statements, and grammars used in BIND
9’s named. conf configuration file.

Troubleshooting provides information on identifying and solving BIND 9 and DNS problems. Information about bug-
reporting procedures is also provided.

Building BIND 9 is a definitive guide for those occasions where the user requires special options not provided in the
standard Linux or Unix distributions.

The Appendices contain useful reference information, such as a bibliography and historic information related to BIND
and the Domain Name System, as well as the current man pages for all the published tools.

1.3 Conventions Used in This Document

In this document, we generally use fixed-width text to indicate the following types of information:
* pathnames
* filenames
* URLs
* hostnames
* mailing list names
* new terms or concepts
* literal user input
* program output
* keywords
* variables

Text in “quotes,” bold text, or italics is also used for emphasis or clarity.

1.4 The Domain Name System (DNS)

This is a brief description of the functionality and organization of the Domain Name System (DNS). It is provided to
familiarize users with the concepts involved, the (often confusing) terminology used, and how all the parts fit together to
form an operational system.

All network systems operate with network addresses, such as IPv4 and IPv6. The vast majority of humans find it easier to
work with names rather than seemingly endless strings of network address digits. The earliest ARPANET systems (from
which the Internet evolved) mapped names to addresses using a hosts file that was distributed to all entities whenever
changes occurred. Operationally, such a system became rapidly unsustainable once there were more than 100 networked
entities, which led to the specification and implementation of the Domain Name System that we use today.

2 Chapter 1. Introduction to DNS and BIND 9

BIND 9 Administrator Reference Manual, Release 9.18.27

1.4.1 DNS Fundamentals

The DNS naming system is organized as a tree structure comprised of multiple levels and thus it naturally creates a
distributed system. Each node in the tree is given a label which defines its Domain (its area or zone) of Authority. The
topmost node in the tree is the Root Domain; it delegates to Domains at the next level which are generically known as
the Top-Level Domains (TLDs). They in turn delegate to Second-Level Domains (SLDs), and so on. The Top-Level
Domains (TLDs) include a special group of TLDs called the Country Code Top-Level Domains (ccTLDs), in which
every country is assigned a unique two-character country code from ISO 3166 as its domain.

Note: The Domain Name System is controlled by ICANN (https://www.icann.org) (a 501c non-profit entity); their
current policy is that any new TLD, consisting of three or more characters, may be proposed by any group of commercial
sponsors and if it meets ICANN’s criteria will be added to the TLDs.

The concept of delegation and authority flows down the DNS tree (the DNS hierarchy) as shown:

ROOT root (.) DEIEgﬂtiﬂn
Authority

Fig. 1: Delegation and Authority in the DNS Name Space

A domain is the label of a node in the tree. A domain name uniquely identifies any node in the DNS tree and is written, left
to right, by combining all the domain labels (each of which are unique within their parent’s zone or domain of authority),
with a dot separating each component, up to the root domain. In the above diagram the following are all domain names:

example.com
b.com

ac.uk

us

org

The root has a unique label of “.” (dot), which is normally omitted when it is written as a domain name, but when it is
written as a Fully Qualified Domain Name (FQDN) the dot must be present. Thus:

example.com # domain name
example.com. # FQODN

1.4. The Domain Name System (DNS) 3

https://www.icann.org

BIND 9 Administrator Reference Manual, Release 9.18.27

1.4.2 Authority and Delegation

Each domain (node) has been delegated the authority from its parent domain. The delegated authority includes specific
responsibilities to ensure that every domain it delegates has a unique name or label within its zone or domain of authority,
and that it maintains an authoritative list of its delegated domains. The responsibilities further include an operational
requirement to operate two (or more) name servers (wWhich may be contracted to a third party) which will contain the
authoritative data for all the domain labels within its zone of authority in a zone file. Again, the tree structure ensures that
the DNS name space is naturally distributed.

The following diagram illustrates that Authoritative Name Servers exist for every level and every domain in the DNS
name space:

f— Root root (.) Authﬂ'rity
NS Delegation

TLD
B DNS
.example .b
— User TLD
DNS

Fig. 2: Authoritative Name Servers in the DNS Name Space

Note: The difference between a domain and a zone can appear confusing. Practically, the terms are generally used
synonymously in the DNS. If, however, you are into directed graphs and tree structure theory or similar exotica, a zone
can be considered as an arc through any node (or domain) with the domain at its apex. The zone therefore encompasses
all the name space below the domain. This can, however, lead to the concept of subzones and these were indeed defined
in the original DNS specifications. Thankfully the term subzone has been lost in the mists of time.

1.4.3 Root Servers

The root servers are a critical part of the DNS authoritative infrastructure. There are 13 root servers (a.root-servers.net
to m.root-servers.net). The number 13 is historically based on the maximum amount of name and IPv4 data that could be
packed into a 512-byte UDP message, and not a perverse affinity for a number that certain cultures treat as unlucky. The
512-byte UDP data limit is no longer a limiting factor and all root servers now support both IPv4 and IPv6. In addition,
almost all the root servers use anycast, with well over 300 instances of the root servers now providing service worldwide
(see further information at https://www.root-servers.org). The root servers are the starting point for all name resolution
within the DNS.

4 Chapter 1. Introduction to DNS and BIND 9

https://www.root-servers.org

BIND 9 Administrator Reference Manual, Release 9.18.27

1.4.4 Name Resolution

So far all the emphasis has been on how the DNS stores its authoritative domain (zone) data. End-user systems use names
(an email address or a web address) and need to access this authoritative data to obtain an IP address, which they use to
contact the required network resources such as web, FTP, or mail servers. The process of converting a domain name to
a result (typically an IP address, though other types of data may be obtained) is generically called name resolution, and
is handled by resolvers (also known as caching name servers and many other terms). The following diagram shows the
typical name resolution process:

Name Resolution
Authoritative Name Servers and Resolvers

Area Resolver
DNS o (ISP, SP or
root-servers < Private Network)
PC
DNS Stub
TLD Domain H?l:sa?#gle

DNS Browser

User Domain
{cache) ! !

Fig. 3: Authoritative Name Servers and Name Resolution

An end-user application, such as a browser (1), when needing to resolve a name such as www.example.com, makes an
internal system call to a minimal function resolution entity called a stub resolver (2). The stub resolver (using stored IP
addresses) contacts a resolver (a caching name server or full-service resolver) (3), which in turn contacts all the necessary
authoritative name servers (4, 5, and 6) to provide the answer that it then returns to the user (2, 1). To improve perfor-
mance, all resolvers (including most stub resolvers) cache (store) their results such that a subsequent request for the same
data is taken from the resolver’s cache, removing the need to repeat the name resolution process and use time-consuming
resources. All communication between the stub resolver, the resolver, and the authoritative name servers uses the DNS
protocol’s query and response message pair.

1.4.5 DNS Protocol and Queries

DNS queries use the UDP protocol over the reserved port 53 (but both TCP and TLS can optionally be used in some
parts of the network).

The following diagram shows the name resolution process expressed in terms of DNS queries and responses.

The stub resolver sends a recursive query message (with the required domain name in the QUESTION section of the
query) (2) to the resolver. A recursive query simply requests the resolver to find the complete answer. A stub resolver
only ever sends recursive queries and always needs the service of a resolver. The response to a recursive query can be:

1. The answer to the user’s QUESTION in the ANSWER section of the query response.

1.4. The Domain Name System (DNS) 5

BIND 9 Administrator Reference Manual, Release 9.18.27

Recursive and Iterative Queries

DNS

root-servers

€

www.example.com (QNAME)

Area Resolver
(ISP, SP, or

Reafarral

DNS
.com TLD

Referral

DNS

example.com

Private Network)

PC

Stub

Resolver
(cache)

 ——

Answer

Mote: Each numberad line represents
a queny/answer pair

Item (2) is a Recursive query, one question gives one complete answer
Items (3), (4), and (5) are Iterative queries which may return either a referral,
an answer, of an error

Fig. 4: Resolvers and Queries

Chapter 1. Introduction to DNS and BIND 9

BIND 9 Administrator Reference Manual, Release 9.18.27

2. An error (such as NXDOMALIN - the name does not exist).

The resolver, on receipt of the user’s recursive query, either responds immediately, if the ANSWER is in its cache, or
accesses the DNS hierarchy to obtain the answer. The resolver always starts with root servers and sends an iterative
query (4, 5, and 6). The response to an iterative query can be:

1. The answer to the resolver’s QUESTION in the ANSWER section of the query response.

2. Areferral (indicated by an empty ANSWER section but data in the AUTHORITY section, and typically IP addresses
in the ADDITIONAL section of the response).

3. An error (such as NXDOMAIN - the name does not exist).

If the response is either an answer or an error, these are returned immediately to the user (and cached for future use). If
the response is a referral, the resolver needs to take additional action to respond to the user’s recursive query.

A referral, in essence, indicates that the queried server does not know the answer (the ANSWER section of the response
is empty), but it refers the resolver to the authoritative name servers (in the AUTHORITY section of the response)
which it knows about in the domain name supplied in the QUESTION section of the query. Thus, if the QUESTION
is for the domain name www.example.com, the root server to which the iterative query was sent adds a list of the .com
authoritative name servers in the AUTHORITY section. The resolver selects one of the servers from the AUTHORITY
section and sends an iterative query to it. Similarly, the .com authoritative name servers send a referral containing a list of
the example.com authoritative name servers. This process continues down the DNS hierarchy until either an ANSWER
or an error is received, at which point the user’s original recursive query is sent a response.

Note: The DNS hierarchy is always accessed starting at the root servers and working down; there is no concept of “up”
in the DNS hierarchy. Clearly, if the resolver has already cached the list of .com authoritative name servers and the user’s
recursive query QUESTION contains a domain name ending in .com, it can omit access to the root servers. However,
that is simply an artifact (in this case a performance benefit) of caching and does not change the concept of top-down
access within the DNS hierarchy.

The insatiably curious may find reading RFC 1034 and RFC 1035 a useful starting point for further information.

1.4.6 DNS and BIND 9

BIND 9 is a complete implementation of the DNS protocol. BIND 9 can be configured (using its named . conf file) as
an authoritative name server, a resolver, and, on supported hosts, a stub resolver. While large operators usually dedicate
DNS servers to a single function per system, smaller operators will find that BIND 9’s flexible configuration features
support multiple functions, such as a single DNS server acting as both an authoritative name server and a resolver.

Example configurations of basic authoritative name servers and resolvers and forwarding resolvers, as well as advanced
configurations and secure configurations, are provided.

1.5 DNS Security Overview

DNS is a communications protocol. All communications protocols are potentially vulnerable to both subversion and
eavesdropping. It is important for users to audit their exposure to the various threats within their operational environment
and implement the appropriate solutions. BIND 9, a specific implementation of the DNS protocol, provides an extensive
set of security features. The purpose of this section is to help users to select from the range of available security features
those required for their specific user environment.

A generic DNS network is shown below, followed by text descriptions. In general, the further one goes from the left-hand
side of the diagram, the more complex the implementation.

1.5. DNS Security Overview 7

https://datatracker.ietf.org/doc/html/rfc1034.html
https://datatracker.ietf.org/doc/html/rfc1035.html

BIND 9 Administrator Reference Manual, Release 9.18.27

Note: Historically, DNS data was regarded as public and security was concerned, primarily, with ensuring the integrity
of DNS data. DNS data privacy is increasingly regarded as an important dimension of overall security, specifically DNS
over TLS.

Dynamic Rem EtE
Updates Admin
(DD NS)
and
RNDC Queries Queries
—Authoritative Area Resolver Proxy Stub (caching)
Prima ny {Caching Mame Serwe r@ Resolver (PC)
I DSL/Cable
Transfers Modern
° Authoritative
Secondary

Zone Files
— SysAdmin
—)p TS| G, TKEY, SIG(0) & TLS
——— DNSSEC & TLS

Fig. 5: BIND 9 Security Overview

The following notes refer to the numbered elements in the above diagram.

1. A variety of system administration techniques and methods may be used to secure BIND 9’s local environment,
including file permissions, running BIND 9 in a jail, and the use of Access Control Lists.

2. The remote name daemon control (rndc) program allows the system administrator to control the operation of a name
server. The majority of BIND 9 packages or ports come preconfigured with local (loopback address) security preconfig-
ured. If rndc is being invoked from a remote host, further configuration is required. The nsupdate tool uses Dynamic
DNS (DDNS) features and allows users to dynamically change the contents of the zone file(s). nsupdate access and
security may be controlled using named. conf statements or using TSIG or SIG(0) cryptographic methods. Clearly, if
the remote hosts used for either rndc or DDNS lie within a network entirely under the user’s control, the security threat
may be regarded as non-existent. Any implementation requirements, therefore, depend on the site’s security policy.

3. Zone transfer from a primary to one or more secondary authoritative name servers across a public network carries
risk. The zone transfer may be secured using named . conf statements, TSIG cryptographic methods or TLS. Clearly, if
the secondary authoritative name server(s) all lie within a network entirely under the user’s control, the security threat
may be regarded as non-existent. Any implementation requirements again depend on the site’s security policy.

4. If the operator of an authoritative name server (primary or secondary) wishes to ensure that DNS responses to user-
initiated queries about the zone(s) for which they are responsible can only have come from their server, that the data
received by the user is the same as that sent, and that non-existent names are genuine, then DNSSEC is the only solution.
DNSSEC requires configuration and operational changes both to the authoritative name servers and to any resolver which
accesses those servers.

5. The typical Internet-connected end-user device (PCs, laptops, and even mobile phones) either has a stub resolver

8 Chapter 1. Introduction to DNS and BIND 9

BIND 9 Administrator Reference Manual, Release 9.18.27

or operates via a DNS proxy. A stub resolver requires the services of an area or full-service resolver to completely
answer user queries. Stub resolvers on the majority of PCs and laptops typically have a caching capability to increase
performance. At this time there are no standard stub resolvers or proxy DNS tools that implement DNSSEC. BIND 9
may be configured to provide such capability on supported Linux or Unix platforms. DNS over TLS may be configured to
verify the integrity of the data between the stub resolver and area (or full-service) resolver. However, unless the resolver
and the Authoritative Name Server implements DNSSEC, end-to-end integrity (from authoritative name server to stub
resolver) cannot be guaranteed.

1.5. DNS Security Overview 9

BIND 9 Administrator Reference Manual, Release 9.18.27

10 Chapter 1. Introduction to DNS and BIND 9

CHAPTER
TWO

RESOURCE REQUIREMENTS

2.1 Hardware Requirements

DNS hardware requirements have traditionally been quite modest. For many installations, servers that have been retired
from active duty have performed admirably as DNS servers.

However, the DNSSEC features of BIND 9 may be quite CPU-intensive, so organizations that make heavy use of these
features may wish to consider larger systems for these applications. BIND 9 is fully multithreaded, allowing full utilization
of multiprocessor systems for installations that need it.

2.2 CPU Requirements

CPU requirements for BIND 9 range from i386-class machines, for serving static zones without caching, to enterprise-
class machines to process many dynamic updates and DNSSEC-signed zones, serving many thousands of queries per
second.

2.3 Memory Requirements

Server memory must be sufficient to hold both the cache and the zones loaded from disk. The max—-cache-size option
can limit the amount of memory used by the cache, at the expense of reducing cache hit rates and causing more DNS
traffic. It is still good practice to have enough memory to load all zone and cache data into memory; unfortunately, the
best way to determine this for a given installation is to watch the name server in operation. After a few weeks, the server
process should reach a relatively stable size where entries are expiring from the cache as fast as they are being inserted.

2.4 Name Server-Intensive Environment Issues

For name server-intensive environments, there are two configurations that may be used. The first is one where clients and
any second-level internal name servers query the main name server, which has enough memory to build a large cache;
this approach minimizes the bandwidth used by external name lookups. The second alternative is to set up second-level
internal name servers to make queries independently. In this configuration, none of the individual machines need to have
as much memory or CPU power as in the first alternative, but this has the disadvantage of making many more external
queries, as none of the name servers share their cached data.

11

BIND 9 Administrator Reference Manual, Release 9.18.27

2.5 Supported Platforms

The current support status of BIND 9 versions across various platforms can be found in the ISC Knowledgebase:
https://kb.isc.org/docs/supported-platforms

In general, this version of BIND will build and run on any POSIX-compliant system with a C11-compliant C compiler,
BSD-style sockets with RFC-compliant IPv6 support, POSIX-compliant threads, and the required libraries.

The following C11 features are used in BIND 9:
¢ Atomic operations support, either in the form of C11 atomics or __atomic builtin operations.

e Thread Local Storage support, either in the form of C11 _Thread_local/thread_local, or the __thread GCC
extension.

The C11 variants are preferred.

ISC regularly tests BIND on many operating systems and architectures, but lacks the resources to test all of them. Con-
sequently, ISC is only able to offer support on a “best-effort” basis for some.

2.5.1 Regularly Tested Platforms

Current versions of BIND 9 are fully supported and regularly tested on the following systems:
¢ Debian 11, 12
e Ubuntu LTS 20.04, 22.04
* Fedora 39
» Red Hat Enterprise Linux / CentOS / Oracle Linux 7, 8, 9
e FreeBSD 13.3, 14.0
* Alpine Linux 3.19
The amd64 CPU architecture is fully supported and regularly tested.

2.5.2 Best-Effort

The following are platforms on which BIND is known to build and run. ISC makes every effort to fix bugs on these
platforms, but may be unable to do so quickly due to lack of hardware, less familiarity on the part of engineering staff,
and other constraints. None of these are tested regularly by ISC.

* macOS 10.12+

* Solaris 11

* NetBSD

* OpenBSD

¢ Other Linux distributions still supported by their vendors, such as:
— Ubuntu 20.10+
— Gentoo
— Arch Linux

* OpenWRT/LEDE 17.01+

12 Chapter 2. Resource Requirements

https://kb.isc.org/docs/supported-platforms

BIND 9 Administrator Reference Manual, Release 9.18.27

Other CPU architectures (arm, arm64, mips64, ppc64, s390x)

2.5.3 Community-Maintained

These systems may not all have the required dependencies for building BIND easily available, although it is possible in
many cases to compile those directly from source. The community and interested parties may wish to help with mainte-
nance, and we welcome patch contributions, although we cannot guarantee that we will accept them. All contributions
will be assessed against the risk of adverse effect on officially supported platforms.

2.6

Platforms past or close to their respective EOL dates, such as:
— Ubuntu 14.04, 16.04 (Ubuntu ESM releases are not supported)
CentOS 6
Debian 8 Jessie, 9 Stretch, 10 Buster
FreeBSD 10.x, 11.x

Less common CPU architectures (1386, 1686, mips, mipsel, sparc, ppc, and others)

Unsupported Platforms

These are platforms on which current versions of BIND 9 are known not to build or run:

2.7

Platforms without at least OpenSSL 1.0.2

Windows

Solaris 10 and older

Platforms that do not support IPv6 Advanced Socket API (RFC 3542)
Platforms that do not support atomic operations (via compiler or library)
Linux without NPTL (Native POSIX Thread Library)

Platforms on which libuv cannot be compiled

Installing BIND 9

Building BIND 9 contains complete instructions for how to build BIND 9.

The ISC Knowledgebase contains many useful articles about installing BIND 9 on specific platforms.

2.6. Unsupported Platforms

13

https://kb.isc.org/

BIND 9 Administrator Reference Manual, Release 9.18.27

14 Chapter 2. Resource Requirements

CHAPTER
THREE

CONFIGURATIONS AND ZONE FILES

3.1 Introduction

BIND 9 uses a single configuration file called named.conf. which is typically located in either /etc/namedb or
/usr/local/etc/namedb.

Note: If rndc is being used locally (on the same host as BIND 9) then an additional file rndc. conf
may be present, though rndc operates without this file. If rndc is being run from a remote host then an
rndc. conf file must be present as it defines the link characteristics and properties.

Depending on the functionality of the system, one or more zone files is required.

The samples given throughout this and subsequent chapters use a standard base format for both the named. conf and
the zone files for example.com. The intent is for the reader to see the evolution from a common base as features are
added or removed.

3.1.1 named.conf Base File

This file illustrates the typical format and layout style used for named. conf and provides a basic logging service, which
may be extended as required by the user.

// base named.conf file
// Recommended that you always maintain a change log in this file as shown here
// options clause defining the server-wide properties
options {
// all relative paths use this directory as a base
directory "/var";
// version statement for security to avoid hacking known weaknesses
// 1f the real version number 1is revealed
version "not currently available";

bi

// logging clause
// log to /var/log/named/example.log all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages that occur before logging is established are
// in syslog (/var/log/messages)
//
logging {
channel example_log {
// uses a relative path name and the directory statement to
(continues on next page)

15

26

27

28

29

BIND 9 Administrator Reference Manual, Release 9.18.27

(continued from previous page)

// expand to /var/log/named/example.log
file "log/named/example.log" versions 3 size 250k;
// only log info and up messages — all others discarded
severity info;

i

category default {
example_log;

}i

bi

The I1ogging and options blocks and category, channel, directory, file,and severity statements
are all described further in the appropriate sections of this ARM.

3.1.2 example.com base zone file

The following is a complete zone file for the domain example.com, which illustrates a number of common features.
Comments in the file explain these features where appropriate. Zone files consist of Resource Records (RR), which describe
the zone’s characteristics or properties.

; base zone file for example.com

STTL 2d ; default TTL for zone

SORIGIN example.com. ; base domain-name

; Start of Authority RR defining the key characteristics of the zone (domain)

@ IN SOA nsl.example.com. hostmaster.example.com. (
2003080800 ; serial number
12h ; refresh
15m ; update retry
3w ; expiry
2h ; minimum

)

; name server RR for the domain

IN NS nsl.example.com.
; the second name server is external to this zone (domain)
IN NS ns2.example.net.
; mail server RRs for the zone (domain)
3w IN MX 10 mail.example.com.
; the second mail servers is external to the zone (domain)
IN MX 20 mail.example.net.

; domain hosts includes NS and MX records defined above

; plus any others required

; for instance a user query for the A RR of joe.example.com will
; return the IPv4 address 192.168.254.6 from this zone file

nsl IN A 192.168.254.2

mail IN A 192.168.254.4

joe IN A 192.168.254.6

WWW IN A 192.168.254.7

; aliases ftp (ftp server) to an external domain
ftp IN CNAME ftp.example.net.

This type of zone file is frequently referred to as a forward-mapped zone file, since it maps domain names to some
other value, while a reverse-mapped zone file maps an IP address to a domain name. The zone file is called example.com
for no good reason except that it is the domain name of the zone it describes; as always, users are free to use whatever
file-naming convention is appropriate to their needs.

16 Chapter 3. Configurations and Zone Files

BIND 9 Administrator Reference Manual, Release 9.18.27

3.1.3 Other Zone Files

Depending on the configuration additional zone files may or should be present. Their format and functionality are briefly
described here.

3.1.4 localhost Zone File

All end-user systems are shipped with a host s file (usually located in /etc). This file is normally configured to map
the name localhost (the name used by applications when they run locally) to the loopback address. It is argued, reason-
ably, that a forward-mapped zone file for localhost is therefore not strictly required. This manual does use the BIND 9
distribution file 1localhost-forward.db (normally in /etc/namedb/master or /usr/local/etc/namedb/master) in all
configuration samples for the following reasons:

1. Many users elect to delete the hosts file for security reasons (it is a potential target of serious domain name
redirection/poisoning attacks).

2. Systems normally lookup any name (including domain names) using the host s file first (if present), followed
by DNS. However, the nsswitch.conf file (typically in /etc) controls this order (normally hosts: file dns),
allowing the order to be changed or the file value to be deleted entirely depending on local needs. Unless the
BIND administrator controls this file and knows its values, it is unsafe to assume that localhost is forward-mapped
correctly.

3. As a reminder to users that unnecessary queries for localhost form a non-trivial volume of DNS queries on the
public network, which affects DNS performance for all users.

Users may, however, elect at their discretion not to implement this file since, depending on the operational environment,
it may not be essential.

The BIND 9 distribution file 1ocalhost-forward.db format is shown for completeness and provides for both IPv4
and IPv6 localhost resolution. The zone (domain) name is localhost.

$STTL 3h

localhost. SOA localhost. nobody.localhost. 42 1d 12h 1w 3h
NS localhost.
A 127.0.0.1
AARA HENE

Note: Readers of a certain age or disposition may note the reference in this file to the late, lamented Douglas Noel
Adams.

3.1.5 localhost Reverse-Mapped Zone File

This zone file allows any query requesting the name associated with the loopback IP (127.0.0.1). This file is required to
prevent unnecessary queries from reaching the public DNS hierarchy. The BIND 9 distribution file 1localhost.rev
is shown for completeness:

STTL 1D
@ IN SOA localhost. root.localhost. (
2007091701 ; serial
30800 ; refresh
7200 ; retry
604800 ; expire
300) ; minimum

(continues on next page)

3.1. Introduction 17

BIND 9 Administrator Reference Manual, Release 9.18.27

(continued from previous page)

IN NS localhost.
1 IN PTR localhost.

3.2 Authoritative Name Servers

These provide authoritative answers to user queries for the zones they support: for instance, the zone data describing the
domain name example.com. An authoritative name server may support one or many zones.

Each zone may be defined as either a primary or a secondary. A primary zone reads its zone data directly from a file
system. A secondary zone obtains its zone data from the primary zone using a process called zone transfer. Both the
primary and the secondary zones provide authoritative data for their zone; there is no difference in the answer to a query
from a primary or a secondary zone. An authoritative name server may support any combination of primary and secondary
zones.

Note: The terms primary and secondary do not imply any access priority. Resolvers (name servers that provide the
complete answers to user queries) are not aware of (and cannot find out) whether an authoritative answer comes from the
primary or secondary name server. Instead, the resolver uses the list of authoritative servers for the zone (there must be
at least two) and maintains a Round Trip Time (RTT) - the time taken to respond to the query - for each server in the list.
The resolver uses the lowest-value server (the fastest) as its preferred server for the zone and continues to do so until its
RTT becomes higher than the next slowest in its list, at which time that one becomes the preferred server.

For reasons of backward compatibility BIND 9 treats “primary” and “master” as synonyms, as well as “secondary” and
“slave.”

The following diagram shows the relationship between the primary and secondary name servers. The text below explains
the process in detail.

The numbers in parentheses in the following text refer to the numbered items in the diagram above.
1. The authoritative primary name server always loads (or reloads) its zone files from (1) a local or networked filestore.

2. The authoritative secondary name server always loads its zone data from a primary via a zone transfer operation.
Zone transfer may use AXFR (complete zone transfer) or IXFR (incremental zone transfer), but only if both
primary and secondary name servers support the service. The zone transfer process (either AXFR or IXFR) works
as follows:

a) The secondary name server for the zone reads (3 and 4) the SOA RR periodically. The interval is defined by
the refresh parameter of the Start of Authority (SOA) RR.

b) The secondary compares the serial number parameter of the SOA RR received from the primary with the
serial number in the SOA RR of its current zone data.

c) If the received serial number is arithmetically greater (higher) than the current one, the secondary initiates a
zone transfer (5) using AXFR or IXFR (depending on the primary and secondary configuration), using TCP
over port 53 (6).

3. The typically recommended zone refresh times for the SOA RR (the time interval when the secondary reads or
polls the primary for the zone SOA RR) are multiples of hours to reduce traffic loads. Worst-case zone change
propagation can therefore take extended periods.

4. The optional NOTIFY (RFC 1996) feature (2) is automatically configured; use the not i £y statement to turn
off the feature. Whenever the primary loads or reloads a zone, it sends a NOTIFY message to the configured
secondary (or secondaries) and may optionally be configured to send the NOTIFY message to other hosts using the
also-notify statement. The NOTIFY message simply indicates to the secondary that the primary has loaded
or reloaded the zone. On receipt of the NOTIFY message, the secondary respons to indicate it has received the

18 Chapter 3. Configurations and Zone Files

https://datatracker.ietf.org/doc/html/rfc1996.html

BIND 9 Administrator Reference Manual, Release 9.18.27

Primary - Secondary
NOTIFY

—_——

S —

DNS DNS

Primary (Secondary

—

o AXFR/IXFR

Zone Files(s)

Fig. 1: Authoritative Primary and Secondary Name Servers

3.2. Authoritative Name Servers

19

BIND 9 Administrator Reference Manual, Release 9.18.27

NOTIFY and immediately reads the SOA RR from the primary (as described in section 2 a. above). If the zone
file has changed, propagation is practically immediate.

The authoritative samples all use NOTIFY but identify the statements used, so that they can be removed if not required.

3.2.1 Primary Authoritative Name Server

The zone files are unmodified from the base samples but the named. conf file has been modified as shown:

// authoritative primary named.conf file
// options clause defining the server-wide properties
options {
// all relative paths use this directory as a base
directory "/var";
// version statement for security to avoid hacking known weaknesses
// 1f the real version number is revealed
version "not currently available";
// This is the default - allows user queries from any IP
allow—query { any; };
// normal server operations may place items in the cache
// this prevents any user query from accessing these items
// only authoritative zone data will be returned
allow—query—-cache { none; };
// Do not provide recursive service to user queries
recursion no;
bi
// logging clause
// log to /var/log/named/example.log all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages that occur before logging is established are
// in syslog (/var/log/messages)
//
logging {
channel example_log {
// uses a relative path name and the directory statement to
// expand to /var/log/named/example.log
file "log/named/example.log" versions 3 size 250k;
// only log info and up messages — all others discarded
severity info;
i
category default {
example_log;
i
bi
// Provide forward mapping zone for localhost
// (optional)
zone "localhost" {
type primary;
file "master/localhost-forward.db";
notify noj;
i
// Provide reverse mapping zone for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type primary;
file "localhost.rev";
notify noj;

(continues on next page)

20 Chapter 3. Configurations and Zone Files

BIND 9 Administrator Reference Manual, Release 9.18.27

(continued from previous page)
i
// We are the primary server for example.com
zone "example.com" {
// this is the primary name server for the zone
type primary;
file "example.com";
// this is the default
notify yes;
// IP addresses of secondary servers allowed to
// transfer example.com from this server
allow-transfer {
192.168.4.14;
192.168.5.53;
i
bi

The added statements and blocks are commented in the above file.

The zone block, and allow—-query, allow—query—-cache, allow-transfer, file, notify, recur—
sion, and type statements are described in detail in the appropriate sections.

3.2.2 Secondary Authoritative Name Server

The zone files local-host-forward.db and localhost . rev are unmodified from the base samples. The ex-
ample.com zone file is not required (the zone file is obtained from the primary via zone transfer). The named.conf file
has been modified as shown:

// authoritative secondary named.conf file
// options clause defining the server-wide properties
options {
// all relative paths use this directory as a base
directory "/var";
// version statement for security to avoid hacking known weaknesses
// 1f the real version number is revealed
version "not currently available";
// This is the default - allows user queries from any IP
allow—query { any; };
// normal server operations may place items in the cache
// this prevents any user query from accessing these items
// only authoritative zone data will be returned
allow—query-cache { none; };
// Do not provide recursive service to user queries
recursion noj;
bi
// logging clause
// log to /var/log/named/example.log all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages that occur before logging is established are
// in syslog (/var/log/messages)
//
logging {
channel example_log {
// uses a relative path name and the directory statement to
// expand to /var/log/named/example.log
file "log/named/example.log" versions 3 size 250k;
(continues on next page)

3.2. Authoritative Name Servers 21

BIND 9 Administrator Reference Manual, Release 9.18.27

(continued from previous page)

// only log info and up messages - all others discarded
severity info;
bi
category default {
example_log;
i
i
// Provide forward mapping zone for localhost
// (optional)
zone "localhost" {
type primary;
file "master/localhost—forward.db";
notify noj;
bi
// Provide reverse mapping zone for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
type primary;
file "localhost.rev";
notify noj;
bi
// We are the secondary server for example.com
zone "example.com" {
// this is a secondary server for the zone
type secondary;
// the file statement here allows the secondary to save
// each zone transfer so that in the event of a program restart
// the zone can be loaded immediately and the server can start
// to respond to queries without waiting for a zone transfer
file "example.com.saved";
// IP address of example.com primary server
primaries { 192.168.254.2; };
bi

The statements and blocks added are all commented in the above file.

The zone block, and allow—query, allow—query—-cache, allow—-transfer, file, primaries, re—
cursion, and t ype statements are described in detail in the appropriate sections.

If NOTIFY is not being used, no changes are required in this named.conf file, since it is the primary that initiates the
NOTIFY message.

Note: Just when the reader thought they understood primary and secondary, things can get more complicated. A
secondary zone can also be a primary to other secondaries: named, by default, sends NOTIFY messages for every zone
it loads. Specifying notify primary-only; in the zone block for the secondary causes named to only send NOTIFY
messages for primary zones that it loads.

22 Chapter 3. Configurations and Zone Files

BIND 9 Administrator Reference Manual, Release 9.18.27

3.3 Resolver (Caching Name Servers)

Resolvers handle recursive user queries and provide complete answers; that is, they issue one or more iferative queries to
the DNS hierarchy. Having obtained a complete answer (or an error), a resolver passes the answer to the user and places it
in its cache. Subsequent user requests for the same query will be answered from the resolver’s cache until the 77L of the
cached answer has expired, when it will be flushed from the cache; the next user query that requests the same information
results in a new series of queries to the DNS hierarchy.

Resolvers are frequently referred to by a bewildering variety of names, including caching name servers, recursive name
servers, forwarding resolvers, area resolvers, and full-service resolvers.

The following diagram shows how resolvers can function in a typical networked environment:

Public Network Queries e User Queries

Resolver Stub (caching)
‘ ’ (Caching Mame Serwver) Resolrer (PC)

e = Stub (cachimng)
{IIIIIIIII}— :i:t:;hu:grﬂlng ;lest::ver‘* Resolrer (PC)

Resolver and Forwarding Resolver

1. End-user systems are all distributed with a local stub resolver as a standard feature. Today, the majority of stub
resolvers also provide a local cache service to speed up user response times.

2. A stub resolver has limited functionality; specifically, it cannot follow referrals. When a stub resolver receives a
request for a name from a local program, such as a browser, and the answer is not in its local cache, it sends a
recursive user query (1) to a locally configured resolver (5), which may have the answer available in its cache. If it
does not, it issues iterative queries (2) to the DNS hierarchy to obtain the answer. The resolver to which the local
system sends the user query is configured, for Linux and Unix hosts, in /etc/resolv.conf; for Windows
users it is configured or changed via the Control Panel or Settings interface.

3. Alternatively, the user query can be sent to a forwarding resolver (4). Forwarding resolvers on first glance look
fairly pointless, since they appear to be acting as a simple pass-though and, like the stub resolver, require a full-
service resolver (5). However, forwarding resolvers can be very powerful additions to a network for the following
reasons:

a)

b)

¢

d)

Cost and Performance. Each recursive user query (1) at the forwarding resolver (4) results in two messages
- the query and its answer. The resolver (5) may have to issue three, four, or more query pairs (2) to get
the required answer. Traffic is reduced dramatically, increasing performance or reducing cost (if the link
is tariffed). Additionally, since the forwarding resolver is typically shared across multiple hosts, its cache is
more likely to contain answers, again improving user performance.

Network Maintenance. Forwarding resolvers (4) can be used to ease the burden of local administration by
providing a single point at which changes to remote name servers can be managed, rather than having to update
all hosts. Thus, all hosts in a particular network section or area can be configured to point to a forwarding
resolver, which can be configured to stream DNS traffic as desired and changed over time with minimal effort.

Sanitizing Traffic. Especially in larger private networks it may be sensible to stream DNS traffic using a
forwarding resolver structure. The forwarding resolver (4) may be configured, for example, to handle all
in-domain traffic (relatively safe) and forward all external traffic to a hardened resolver (5).

Stealth Networks. Forwarding resolvers are extensively used in stealth or split networks.

3.3. Resolver (Caching Name Servers) 23

BIND 9 Administrator Reference Manual, Release 9.18.27

4. Forwarding resolvers (4) can be configured to forward all traffic to a resolver (5), or to only forward selective traffic
(5) while directly resolving other traffic (3).

Attention: While the diagram above shows recursive user queries arriving via interface (1), there is nothing to stop
them from arriving via interface (2) via the public network. If no limits are placed on the source IPs that can send such
queries, the resolver is termed an open resolver. Indeed, when the world was young this was the way things worked
on the Internet. Much has changed and what seems to be a friendly, generous action can be used by rogue actors to
cause all kinds of problems including Denial of Service (DoS) attacks. Resolvers should always be configured to limit
the IP addresses that can use their services. BIND 9 provides a number of statements and blocks to simplify defining
these IP limits and configuring a closed resolver. The resolver samples given here all configure closed resolvers using
a variety of techniques.

3.3.1 Additional Zone Files

Root Servers (Hint) Zone File

Resolvers (although not necessarily forwarding resolvers) need to access the DNS hierarchy. To do this, they need to
know the addresses (IPv4 and/or IPv6) of the 13 roor servers. This is done by the provision of a root server zone file,
which is contained in the standard BIND 9 distribution as the file named. root (normally found in /etc/namedb or
/ust/local/namedb). This file may also be obtained from the IANA website (https://www.iana.org/domains/root/files).

Note: Many distributions rename this file for historical reasons. Consult the appropriate distribution doc-
umentation for the actual file name.

The hint zone file is referenced using the t ype hint statement and a zone (domain) name of “.” (the generally silent
dot).

Note: The root server IP addresses have been stable for a number of years and are likely to remain stable
for the near future. BIND 9 has a root-server list in its executable such that even if this file is omitted,
out-of-date, or corrupt BIND 9 can still function. For this reason, many sample configurations omit the
hints file. All the samples given here include the hints file primarily as a reminder of the functionality of the
configuration, rather than as an absolute necessity.

Private IP Reverse Map Zone Files

Resolvers are configured to send iferative queries to the public DNS hierarchy when the information requested is not in
their cache or not defined in any local zone file. Many networks make extensive use of private IP addresses (defined by
RFC 1918, RFC 2193, RFC 5737, and RFC 6598). By their nature these IP addresses are forward-mapped in various
user zone files. However, certain applications may issue reverse map queries (mapping an IP address to a name). If
the private IP addresses are not defined in one or more reverse-mapped zone file(s), the resolver sends them to the DNS
hierarchy where they are simply useless traffic, slowing down DNS responses for all users.

Private IP addresses may be defined using standard reverse-mapping techniques or using the empty—-zones—enable
statement. By default this statement is set to empty-zones—enable yes; and thus automatically prevents un-
necessary DNS traffic by sending an NXDOMAIN error response (indicating the name does not exist) to any request.
However, some applications may require a genuine answer to such reverse-mapped requests or they will fail to function.
Mail systems in particular perform reverse DNS queries as a first-line spam check; in this case a reverse-mapped zone
file is essential. The sample configuration files given here for both the resolver and the forwarding resolver provide a
reverse-mapping zone file for the private IP address 192.168.254.4, which is the mail server address in the base zone

24 Chapter 3. Configurations and Zone Files

https://www.iana.org/domains/root/files
https://datatracker.ietf.org/doc/html/rfc1918.html
https://datatracker.ietf.org/doc/html/rfc2193.html
https://datatracker.ietf.org/doc/html/rfc5737.html
https://datatracker.ietf.org/doc/html/rfc6598.html

BIND 9 Administrator Reference Manual, Release 9.18.27

file, as an illustration of the reverse-map technique. The file is named 192.168.254 . rev and has a zone name of
254.168.192.in-addr.arpa.

; reverse map zone file for 192.168.254.4 only
STTL 2d ; 172800 seconds
SORIGIN 254.168.192.IN-ADDR.ARPA.

@ IN SOA nsl.example.com. hostmaster.example.com. (
2003080800 ; serial number
3h ; refresh
15m ; update retry
3w ; expiry
3h ; nx = nxdomain ttl

)
; only one NS is required for this local file
; and is an out of zone name
IN NS nsl.example.com.
; other IP addresses can be added as required
; this maps 192.168.254.4 as shown
4 IN PTR mail.example.com. ; fully qualified domain name (FQDN)

3.3.2 Resolver Configuration

The resolver provides recursive query support to a defined set of IP addresses. It is therefore a closed resolver and cannot
be used in wider network attacks.

// resolver named.conf file
// Two corporate subnets we wish to allow queries from
// defined in an acl clause
acl corpnets {
192.168.4.0/24;
192.168.7.0/24;
bi

// options clause defining the server—-wide properties
options {
// all relative paths use this directory as a base
directory "/var";
// version statement for security to avoid hacking known weaknesses
// 1f the real version number 1is revealed
version "not currently available";
// this is the default
recursion yes;
// recursive queries only allowed from these ips
// and references the acl clause
allow—query { corpnets; };
// this ensures that any reverse map for private IPs
// not defined in a zone file will *not* be passed to the public network
// it 1is the default value
empty-zones—enable yes;

bi

// logging clause

// log to /var/log/named/example.log all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K

// failure messages that occur before logging is established are

// in syslog (/var/log/messages)

(continues on next page)

3.3. Resolver (Caching Name Servers) 25

BIND 9 Administrator Reference Manual, Release 9.18.27

(continued from previous page)

/7
logging {
channel example_log {
// uses a relative path name and the directory statement to
// expand to /var/log/named/example.log
file "log/named/example.log" versions 3 size 250k;
// only log info and up messages — all others discarded
severity info;
bi
category default {
example_log;
i
i

// zone file for the root servers
// discretionary zone (see root server discussion above)
zone "." {

type hint;

file "named.root";

bi

// zone file for the localhost forward map
// discretionary zone depending on hosts file (see discussion)
zone "localhost" {

type primary;

file "masters/localhost-forward.db";

notify noj;

bi

// zone file for the loopback address
// necessary zone
zone "0.0.127.in-addr.arpa" {
type primary;
file "localhost.rev";
notify noj;
bi

// zone file for local IP reverse map
// discretionary file depending on requirements
zone "254.168.192.in-addr.arpa" {

type primary;

file "192.168.254.rev";

notify no;

bi

The zone and ac1 blocks, and the a1 low—query, empty-zones—enable, file, notify, recursion,and
t ype statements are described in detail in the appropriate sections.

As a reminder, the configuration of this resolver does not access the DNS hierarchy (does not use the public network) for
any recursive query for which:

1. The answer is already in the cache.

2. The domain name is localhost (zone localhost).

3. Is areverse-map query for 127.0.0.1 (zone 0.0.127.in-addr.arpa).

4. Is a reverse-map query for 192.168.254/24 (zone 254.168.192.in-addr.arpa).

26 Chapter 3. Configurations and Zone Files

BIND 9 Administrator Reference Manual, Release 9.18.27

5. Is a reverse-map query for any local IP (empty-zones—enable statement).

All other recursive queries will result in access to the DNS hierarchy to resolve the query.

3.3.3 Forwarding Resolver Configuration

This forwarding resolver configuration forwards all recursive queries, other than those for the defined zones and those for
which the answer is already in its cache, to a full-service resolver at the IP address 192.168.250.3, with an alternative at
192.168.230.27. The forwarding resolver will cache all responses from these servers. The configuration is closed, in that
it defines those IPs from which it will accept recursive queries.

A second configuration in which selective forwarding occurs is also provided.

// forwarding named.conf file
// Two corporate subnets we wish to allow queries from
// defined in an acl clause
acl corpnets {
192.168.4.0/24;
192.168.7.0/24;
bi

// options clause defining the server—-wide properties
options {
// all relative paths use this directory as a base
directory "/var";
// version statement for security to avoid hacking known weaknesses
// 1f the real version number is revealed
version "not currently available";
// this is the default
recursion yes;
// recursive queries only allowed from these ips
// and references the acl clause
allow—query { corpnets; };
// this ensures that any reverse map for private IPs
// not defined in a zone file will *not* be passed to the public network
// it 1is the default value
empty-zones—enable yes;
// this defines the addresses of the resolvers to which queries will be forwarded
forwarders {
192.168.250.3;
192.168.230.27;
i
// indicates all queries will be forwarded other than for defined zones
forward only;

bi

// logging clause
// log to /var/log/named/example.log all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages that occur before logging is established are
// in syslog (/var/log/messages)
//
logging {
channel example_log {
// uses a relative path name and the directory statement to
// expand to /var/log/named/example.log
file "log/named/example.log" versions 3 size 250k;

(continues on next page)

3.3. Resolver (Caching Name Servers) 27

BIND 9 Administrator Reference Manual, Release 9.18.27

(continued from previous page)

// only log info and up messages - all others discarded
severity info;
}i
category default {
example_log;
i
Hi

// hints zone file is not required

// zone file for the localhost forward map
// discretionary zone depending on hosts file (see discussion)
zone "localhost" {
type primary;
file "masters/localhost-forward.db";
notify noj;
bi

// zone file for the loopback address
// necessary zone
zone "0.0.127.in-addr.arpa" {

type primary;

file "localhost.rev";

notify noj;

bi

// zone file for local IP reverse map
// discretionary file depending on requirements
zone "254.168.192.in-addr.arpa" {

type primary;

file "192.168.254.rev";

notify noj;

bi

The zone and acl blocks, and the allow—query, empty—-zones—enable, file, forward, forwarders,
notify, recursion,and type statements are described in detail in the appropriate sections.

As a reminder, the configuration of this forwarding resolver does not forward any recursive query for which:
1. The answer is already in the cache.
2. The domain name is localhost (zone localhost).
3. Is areverse-map query for 127.0.0.1 (zone 0.0.127.in-addr.arpa).
4. Is a reverse-map query for 192.168.254/24 (zone 254.168.192.in-addr.arpa).
5. Is a reverse-map query for any local IP (empty-zones-enable statement).

All other recursive queries will be forwarded to resolve the query.

28 Chapter 3. Configurations and Zone Files

BIND 9 Administrator Reference Manual, Release 9.18.27

3.3.4 Selective Forwarding Resolver Configuration

This forwarding resolver configuration only forwards recursive queries for the zone example.com to the resolvers at
192.168.250.3 and 192.168.230.27. All other recursive queries, other than those for the defined zones and those for
which the answer is already in its cache, are handled by this resolver. The forwarding resolver will cache all responses
from both the public network and from the forwarded resolvers. The configuration is closed, in that it defines those IPs
from which it will accept recursive queries.

// selective forwarding named.conf file
// Two corporate subnets we wish to allow queries from
// defined in an acl clause
acl corpnets {
192.168.4.0/24;
192.168.7.0/24;
i

// options clause defining the server-wide properties
options {
// all relative paths use this directory as a base
directory "/var";
// version statement for security to avoid hacking known weaknesses
// if the real version number 1s revealed
version "not currently available";
// this is the default
recursion yes;
// recursive queries only allowed from these ips
// and references the acl clause
allow—query { corpnets; };
// this ensures that any reverse map for private IPs
// not defined in a zone file will *not* be passed to the public network
// it is the default value
empty-zones—-enable yes;

// forwarding is not global but selective by zone in this configuration

bi

// logging clause
// log to /var/log/named/example.log all events from info UP in severity (no debug)
// uses 3 files in rotation swaps files when size reaches 250K
// failure messages that occur before logging is established are
// in syslog (/var/log/messages)
//
logging {
channel example_log {
// uses a relative path name and the directory statement to
// expand to /var/log/named/example.log
file "log/named/example.log" versions 3 size 250k;
// only log info and up messages — all others discarded
severity info;
bi
category default ({
example_log;
i
bi

// zone file for the root servers
// discretionary zone (see root server discussion above)

(continues on next page)

3.3. Resolver (Caching Name Servers) 29

BIND 9 Administrator Reference Manual, Release 9.18.27

(continued from previous page)

zone "." {
type hint;
file "named.root";

bi

// zone file for the localhost forward map
// discretionary zone depending on hosts file (see discussion)
zone "localhost" {

type primary;

file "masters/localhost-forward.db";

notify noj;

bi

// zone file for the loopback address
// necessary zone
zone "0.0.127.in-addr.arpa" {
type primary;
file "localhost.rev";
notify noj;
bi

// zone file for local IP reverse map
// discretionary file depending on requirements
zone "254.168.192.in-addr.arpa" {
type primary;
file "192.168.254.rev";
notify noj;
bi
// zone file forwarded example.com
zone "example.com" {
type forward;
// this defines the addresses of the resolvers to
// which queries for this zone will be forwarded
forwarders {
192.168.250.3;
192.168.230.27;
bi
// indicates all queries for this zone will be forwarded
forward only;

bi

The zone and ac1l blocks, and the allow—-query, empty-zones—enable, file, forward, forwarders,
notify, recursion,and type statements are described in detail in the appropriate sections.

As a reminder, the configuration of this resolver does not access the DNS hierarchy (does not use the public network) for
any recursive query for which:

1. The answer is already in the cache.

The domain name is localhost (zone localhost).

Is a reverse-map query for 127.0.0.1 (zone 0.0.127.in-addr.arpa).

Is a reverse-map query for 192.168.254/24 (zone 254.168.192.in-addr.arpa).

Is a reverse-map query for any local IP (empty-zones-enable statement).

SAE U

Is a query for the domain name example.com, in which case it will be forwarded to either 192.168.250.3 or
192.168.230.27 (zone example.com).

30 Chapter 3. Configurations and Zone Files

BIND 9 Administrator Reference Manual, Release 9.18.27

All other recursive queries will result in access to the DNS hierarchy to resolve the query.

3.4 Load Balancing

A primitive form of load balancing can be achieved in the DNS by using multiple resource records (RRs) in a zone file
(such as multiple A records) for one name.

For example, assuming three HTTP servers with network addresses of 10.0.0.1, 10.0.0.2, and 10.0.0.3, a set of records
such as the following means that clients will connect to each machine one-third of the time:

Name TTL CLASS TYPE Resource Record (RR) Data

www 600 IN A 10.0.0.1
600 IN A 10.0.0.2
600 IN A 10.0.0.3

When a resolver queries for these records, BIND rotates them and responds to the query with the records in a random
order. In the example above, clients randomly receive records in the order 1, 2, 3; 2, 3, 1; and 3, 1, 2. Most clients use
the first record returned and discard the rest.

For more detail on ordering responses, refer to the rrser-order statement in the opt i ons block.

3.5 Zone File

This section, largely borrowed from RFC 1034, describes the concept of a Resource Record (RR) and explains how to
use them.

3.5.1 Resource Records

A domain name identifies a node in the DNS tree namespace. Each node has a set of resource information, which may
be empty. The set of resource information associated with a particular name is composed of separate RRs. The order of
RRs in a set is not significant and need not be preserved by name servers, resolvers, or other parts of the DNS. However,
sorting of multiple RRs is permitted for optimization purposes: for example, to specify that a particular nearby server be
tried first. See sort 1ist and RRset Ordering.

The components of a Resource Record are:

owner name
The domain name where the RR is found.

RR type
An encoded 16-bit value that specifies the type of the resource record. For a list of #ypes of valid RRs, in-
cluding those that have been obsoleted, please refer to https://www.iana.org/assignments/dns-parameters/dns-
parameters.xhtml#dns-parameters-4.

TTL
The time-to-live of the RR. This field is a 32-bit integer in units of seconds, and is primarily used by resolvers when
they cache RRs. The TTL describes how long a RR can be cached before it should be discarded.

class
An encoded 16-bit value that identifies a protocol family or an instance of a protocol.

RDATA
The resource data. The format of the data is type- and sometimes class-specific.

3.4. Load Balancing 31

https://datatracker.ietf.org/doc/html/rfc1034.html

BIND 9 Administrator Reference Manual, Release 9.18.27

The following classes of resource records are currently valid in the DNS:

IN
The Internet. The only widely class used today.

CH
Chaosnet, a LAN protocol created at MIT in the mid-1970s. It was rarely used for its historical purpose, but was
reused for BIND’s built-in server information zones, e.g., version.bind.

HS

Hesiod, an information service developed by MIT’s Project Athena. It was used to share information about various
systems databases, such as users, groups, printers, etc.

The owner name is often implicit, rather than forming an integral part of the RR. For example, many name servers
internally form tree or hash structures for the name space, and chain RRs off nodes. The remaining RR parts are the fixed
header (type, class, TTL), which is consistent for all RRs, and a variable part (RDATA) that fits the needs of the resource
being described.

The TTL field is a time limit on how long an RR can be kept in a cache. This limit does not apply to authoritative data
in zones; that also times out, but follows the refreshing policies for the zone. The TTL is assigned by the administrator
for the zone where the data originates. While short TTLs can be used to minimize caching, and a zero TTL prohibits
caching, the realities of Internet performance suggest that these times should be on the order of days for the typical host.
If a change is anticipated, the TTL can be reduced prior to the change to minimize inconsistency, and then increased back
to its former value following the change.

The data in the RDATA section of RRs is carried as a combination of binary strings and domain names. The domain
names are frequently used as “pointers” to other data in the DNS.

Textual Expression of RRs

RRs are represented in binary form in the packets of the DNS protocol, and are usually represented in highly encoded
form when stored in a name server or resolver. In the examples provided in RFC 1034, a style similar to that used in
primary files was employed in order to show the contents of RRs. In this format, most RRs are shown on a single line,
although continuation lines are possible using parentheses.

The start of the line gives the owner of the RR. If a line begins with a blank, then the owner is assumed to be the same
as that of the previous RR. Blank lines are often included for readability.

Following the owner are listed the TTL, type, and class of the RR. Class and type use the mnemonics defined above, and
TTL is an integer before the type field. To avoid ambiguity in parsing, type and class mnemonics are disjoint, TTLs are
integers, and the type mnemonic is always last. The IN class and TTL values are often omitted from examples in the
interest of clarity.

The resource data or RDATA section of the RR is given using knowledge of the typical representation for the data.

For example, the RRs carried in a message might be shown as:

ISLLEDU. MX 10 VENERA.ISLEDU.

MX 10 VAXA.ISLEDU
VENERA.ISLEDU A 128.9.0.32

A 10.1.0.52
VAXA.ISILEDU A 10.2.0.27

A 128.9.0.33

The MX RRs have an RDATA section which consists of a 16-bit number followed by a domain name. The address RRs
use a standard IP address format to contain a 32-bit Internet address.

The above example shows six RRs, with two RRs at each of three domain names.

32 Chapter 3. Configurations and Zone Files

https://datatracker.ietf.org/doc/html/rfc1034.html

BIND 9 Administrator Reference Manual, Release 9.18.27

Here is another possible example:

XX.LCSMIT.EDU. INA 10.0.0.44
CHA MIT.EDU. 2420

This shows two addresses for XX.LCS.MIT.EDU, each of a different class.

3.5.2 Discussion of MX Records

As described above, domain servers store information as a series of resource records, each of which contains a particular
piece of information about a given domain name (which is usually, but not always, a host). The simplest way to think of
an RR is as a typed pair of data, a domain name matched with a relevant datum and stored with some additional type
information, to help systems determine when the RR is relevant.

MX records are used to control delivery of email. The data specified in the record is a priority and a domain name. The
priority controls the order in which email delivery is attempted, with the lowest number first. If two priorities are the
same, a server is chosen randomly. If no servers at a given priority are responding, the mail transport agent falls back to
the next largest priority. Priority numbers do not have any absolute meaning; they are relevant only respective to other
MX records for that domain name. The domain name given is the machine to which the mail is delivered. It must have
an associated address record (A or AAAA); CNAME is not sufficient.

For a given domain, if there is both a CNAME record and an MX record, the MX record is in error and is ignored.
Instead, the mail is delivered to the server specified in the MX record pointed to by the CNAME. For example:

example.com. IN MX 10 mail.example.com.
IN MX 10 mail2.example.com.
IN MX 20 mail.backup.org.

mail.example.com. IN A 10.0.0.1
mail2.example.com. IN A 10.0.0.2

Mail delivery is attempted to mail.example.com and mail2.example.com (in any order); if neither of those succeeds,
delivery to mail.backup.org is attempted.

3.5.3 Setting TTLs

The time-to-live (TTL) of the RR field is a 32-bit integer represented in units of seconds, and is primarily used by resolvers
when they cache RRs. The TTL describes how long an RR can be cached before it should be discarded. The following
three types of TTLs are currently used in a zone file.

SOA minimum
The last field in the SOA is the negative caching TTL. This controls how long other servers cache no-such-domain
(NXDOMALIN) responses from this server. Further details can be found in RFC 2308.

The maximum time for negative caching is 3 hours (3h).

$TTL
The $TTL directive at the top of the zone file (before the SOA) gives a default TTL for every RR without a specific
TTL set.

RR TTLs
Each RR can have a TTL as the second field in the RR, which controls how long other servers can cache it.

All of these TTLs default to units of seconds, though units can be explicitly specified: for example, 1Th30m.

3.5. Zone File 33

https://datatracker.ietf.org/doc/html/rfc2308.html

BIND 9 Administrator Reference Manual, Release 9.18.27

3.5.4 Inverse Mapping in IPv4

Reverse name resolution (that is, translation from IP address to name) is achieved by means of the in-addr.arpa domain
and PTR records. Entries in the in-addr.arpa domain are made in least-to-most significant order, read left to right. This
is the opposite order to the way IP addresses are usually written. Thus, a machine with an IP address of 10.1.2.3 would
have a corresponding in-addr.arpa name of 3.2.1.10.in-addr.arpa. This name should have a PTR resource record whose
data field is the name of the machine or, optionally, multiple PTR records if the machine has more than one name. For
example, in the example.com domain:

$ORIGIN 2.1.10.in-addr.arpa
3 IN PTR foo.example.com.

Note: The $ORIGIN line in this example is only to provide context; it does not necessarily appear in the actual usage.
It is only used here to indicate that the example is relative to the listed origin.

3.5.5 Other Zone File Directives

The DNS “master file” format was initially defined in RFC 1035 and has subsequently been extended. While the format
itself is class-independent, all records in a zone file must be of the same class.

Master file directives include $ORIGIN, $INCLUDE, and $TTL.

The @ (at-sign)

When used in the label (or name) field, the asperand or at-sign (@) symbol represents the current origin. At the start of
the zone file, it is the <zone_name>, followed by a trailing dot (.).

The $ORIGIN Directive

Syntax: $ORIGIN domain-name [comment]

$ORIGIN sets the domain name that is appended to any unqualified records. When a zone is first read, there is an implicit
SORIGIN <zone_name>.;note the trailing dot. The current SORIGIN is appended to the domain specified in the
$ORIGIN argument if it is not absolute.

SORIGIN example.com.
WWW CNAME MAIN-SERVER

is equivalent to

[WWW .EXAMPLE.COM. CNAME MAIN-SERVER.EXAMPLE.COM.

34 Chapter 3. Configurations and Zone Files

https://datatracker.ietf.org/doc/html/rfc1035.html

BIND 9 Administrator Reference Manual, Release 9.18.27

The $INCLUDE Directive

Syntax: $INCLUDE filename [origin] [comment]

This reads and processes the file filename as if it were included in the file at this point. The filename can be an absolute
path, or a relative path. In the latter case it is read from named’s working directory. If origin is specified, the file is
processed with SORIGIN set to that value; otherwise, the current SORIGIN is used.

The origin and the current domain name revert to the values they had prior to the SINCLUDE once the file has been
read.

Note: RFC 1035 specifies that the current origin should be restored after an $INCLUDE, but it is silent on whether
the current domain name should also be restored. BIND 9 restores both of them. This could be construed as a deviation
from RFC 1035, a feature, or both.

The $TTL Directive

Syntax: $TTL default-ttl [comment]

This sets the default Time-To-Live (TTL) for subsequent records with undefined TTLs. Valid TTLs are of the range
0-2147483647 seconds.

$TTL is defined in RFC 2308.

3.5.6 BIND Primary File Extension: the SGENERATE Directive

Syntax: $GENERATE range owner [ttl] [class] type rdata [comment]
$GENERATE is used to create a series of resource records that only differ from each other by an iterator.

range
This can be one of two forms: start-stop or start-stop/step. If the first form is used, then step is set to 1. “start”,
“stop”, and “step” must be positive integers between 0 and (2°31)-1. “start” must not be larger than “stop”.

owner
This describes the owner name of the resource records to be created.

The owner string may include one or more $ (dollar sign) symbols, which will be replaced with the iterator value
when generating records; see below for details.

ttl
This specifies the time-to-live of the generated records. If not specified, this is inherited using the normal TTL
inheritance rules.

class and ttl can be entered in either order.

class
This specifies the class of the generated records. This must match the zone class if it is specified.

class and ttl can be entered in either order.

type
This can be any valid type.

rdata
This is a string containing the RDATA of the resource record to be created. As with owner, the rdata string may
include one or more $ symbols, which are replaced with the iterator value. rdata may be quoted if there are spaces
in the string; the quotation marks do not appear in the generated record.

3.5. Zone File 35

https://datatracker.ietf.org/doc/html/rfc1035.html
https://datatracker.ietf.org/doc/html/rfc1035.html
https://datatracker.ietf.org/doc/html/rfc2308.html

BIND 9 Administrator Reference Manual, Release 9.18.27

Any single $ (dollar sign) symbols within the owner or rdata strings are replaced by the iterator value. To geta $ in
the output, escape the $ using a backslash \, e.g., \' $. (For compatibility with earlier versions, $$ is also recognized
as indicating a literal $ in the output.)

The $ may optionally be followed by modifiers which change the offset from the iterator, field width, and base.
Modifiers are introduced by a { (left brace) immediately following the $, as in ${offset[,width[,base]]}. For ex-
ample, ${-20,3,d} subtracts 20 from the current value and prints the result as a decimal in a zero-padded field of
width 3. Available output forms are decimal (d), octal (0), hexadecimal (x or X for uppercase), and nibble (n or
N for uppercase). The modfiier cannot contain whitespace or newlines.

The default modifier is ${0,0,d}. If the owner is not absolute, the current SORIGIN is appended to the name.

In nibble mode, the value is treated as if it were a reversed hexadecimal string, with each hexadecimal digit as a
separate label. The width field includes the label separator.

Examples:

$GENERATE can be used to easily generate the sets of records required to support sub-/24 reverse delegations described
in RFC 2317:

SORIGIN 0.0.192.IN-ADDR.ARPA.
SGENERATE 1-2 @ NS SERVERS.EXAMPLE.
SGENERATE 1-127 $ CNAME $.0

is equivalent to

N O O
O O O O

127

.192.IN-ADDR.ARPA. NS SERVER1.EXAMPLE.
.192.IN-ADDR.ARPA. NS SERVER2.EXAMPLE.
.192.IN-ADDR.ARPA. CNAME 1.0.0.0.192.IN-ADDR.ARPA.
.192.IN-ADDR.ARPA. CNAME 2.0.0.0.192.IN-ADDR.ARPA.

O O O O

.0.0.192.IN-ADDR.ARPA. CNAME 127.0.0.0.192.IN-ADDR.ARPA.

This example creates a set of A and MX records. Note the MX’s rdata is a quoted string; the quotes are stripped when
$GENERATE is processed:

SORIGIN EXAMPLE.
SGENERATE 1-127 HOST-$ A 1.2.3.S
$SGENERATE 1-127 HOST-$ MX "0 ."

is equivalent to

HOST-1.EXAMPLE. A 1.2.3.1
HOST-1.EXAMPLE. MX 0 .
HOST-2.EXAMPLE. A 1.2.3.2
HOST-2.EXAMPLE. MX 0 .
HOST-3.EXAMPLE. A 1.2.3.3
HOST-3.EXAMPLE. MX 0
HOST-127.EXAMPLE. A 1.2.3.127

HOST-127 .EXAMPLE. MX O

This example generates A and AAAA records using modifiers; the AAAA owner names are generated using nibble mode:

SORIGIN EXAMPLE.
SGENERATE 0-2 HOST-${0,4,d} A 1.2.3.5{1,0,d}
SGENERATE 1024-1026 ${0,3,n} AAAA 2001:db8::${0,4,x}

is equivalent to:

36

Chapter 3. Configurations and Zone Files

https://datatracker.ietf.org/doc/html/rfc2317.html

BIND 9 Administrator Reference Manual, Release 9.18.27

HOST-0000.EXAMPLE. A 1.2.3.1
HOST-0001.EXAMPLE. A 1.2.3.2
HOST-0002.EXAMPLE. A 1.2030.3
0.0.4.EXAMPLE. AARAA 2001:db8::400
1.0.4.EXAMPLE. AAAA 2001:db8::401
2.0.4.EXAMPLE. AAAA 2001:db8::402

The $GENERATE directive is a BIND extension and not part of the standard zone file format.

3.5.7 Additional File Formats

In addition to the standard text format, BIND 9 supports the ability to read or dump to zone files in other formats.

The raw format is a binary representation of zone data in a manner similar to that used in zone transfers. Since it does
not require parsing text, load time is significantly reduced.

For a primary server, a zone file in raw format is expected to be generated from a text zone file by the
named-compilezone command. For a secondary server or a dynamic zone, the zone file is automatically gener-
ated when named dumps the zone contents after zone transfer or when applying prior updates, if one of these formats is
specified by the masterfile-format option.

If a zone file in raw format needs manual modification, it first must be converted to text format by the
named-compilezone command, then converted back after editing. For example:

named-compilezone —-f raw -F text -o zonefile.text <origin> zonefile.raw
[edit zonefile.text]
named-compilezone —-f text -F raw -o zonefile.raw <origin> zonefile.text

3.5. Zone File 37

BIND 9 Administrator Reference Manual, Release 9.18.27

38 Chapter 3. Configurations and Zone Files

CHAPTER
FOUR

NAME SERVER OPERATIONS

4.1 Tools for Use With the Name Server Daemon

This section describes several indispensable diagnostic, administrative, and monitoring tools available to the system ad-
ministrator for controlling and debugging the name server daemon.

4.1.1 Diagnostic Tools

The dig, host, and nslookup programs are all command-line tools for manually querying name servers. They differ
in style and output format.
dig

dig is the most versatile and complete of these lookup tools. It has two modes: simple interactive mode for a

single query, and batch mode, which executes a query for each in a list of several query lines. All query options are
accessible from the command line.

For more information and a list of available commands and options, see dig - DNS lookup utfility.

host
The host utility emphasizes simplicity and ease of use. By default, it converts between host names and Internet
addresses, but its functionality can be extended with the use of options.

For more information and a list of available commands and options, see host - DNS lookup utility.

nslookup
nslookup hastwo modes: interactive and non-interactive. Interactive mode allows the user to query name servers
for information about various hosts and domains, or to print a list of hosts in a domain. Non-interactive mode is
used to print just the name and requested information for a host or domain.

Due to its arcane user interface and frequently inconsistent behavior, we do not recommend the use of nsIookup.
Use dig instead.

4.1.2 Administrative Tools

Administrative tools play an integral part in the management of a server.

named—-checkconf
The named—-checkconf program checks the syntax of a named. conf file.

For more information and a list of available commands and options, see named-checkconf - named configuration
file syntax checking tool.

39

BIND 9 Administrator Reference Manual, Release 9.18.27

named-checkzone
The named-checkzone program checks a zone file for syntax and consistency.

For more information and a list of available commands and options, see named-checkzone - zone file validation
tool.

named-compilezone
This tool is similar to named—-checkzone but it always dumps the zone content to a specified file (typically in a
different format).

For more information and a list of available commands and options, see named-compilezone - zone file converting
tool.

rndc
The remote name daemon control (rndc) program allows the system administrator to control the operation of a
name server.

See rndc - name server control utility for details of the available rndc commands.

rndc requires a configuration file, since all communication with the server is authenticated with digital signatures
that rely on a shared secret, and there is no way to provide that secret other than with a configuration file. The default
location for the rndc configuration file is /usr/local/etc/rndc.conf, but an alternate location can be
specified with the —c option. If the configuration file is not found, rndc also looks in /usr/local/etc/
rndc. key (or whatever sysconfdir was defined when the BIND build was configured). The rndc . key file
is generated by running rndc-confgen -—a as described in controls.

The format of the configuration file is similar to that of named. conf, but is limited to only three blocks: the
options, key, server, and the include Directive. These blocks are what associate the secret keys to the servers
with which they are meant to be shared. The order of blocks is not significant.

options

Grammar:

options {
default-key <string>;
default-port <integer>;
default-server <string>;
default-source—address (<ipv4_address> | *);
default-source-address-v6 (<ipvé6_address> | *);

bi

Blocks: topmost

default-server

Grammar: default-server <string>;
Blocks: options

default—-server takes a host name or address argument and represents the server that is contacted if no
—s option is provided on the command line.

default-key
Grammar: default-key <string>;

Blocks: options
default—key takes the name of a key as its argument, as defined by a key block.

default-port

Grammar: default-port <integer>;

Blocks: options

40 Chapter 4. Name Server Operations

BIND 9 Administrator Reference Manual, Release 9.18.27

default—-port specifies the port to which rndc should connect if no port is given on the command line
orina server block.

default-source—-address

Grammar: default-source-address (<ipv4_address> | *);
Blocks: options

default-source—-address-v6

Grammar: default-source-address-v6 (<ipv6_address> | *);
Blocks: options

default-source-address and default-source-address-v6 specify the IPv4 and IPv6
source address used to communicate with the server if no address is given on the command line or in a
server block.

key
Grammar server: key <string>;

Grammar topmost:

key <string> {
algorithm <string>;
secret <string>;

}; // may occur multiple times

Blocks: topmost, server

The key block defines a key to be used by rndc when authenticating with named. Its syntax is identical to the
key statement in named. conf. The keyword key is followed by a key name, which must be a valid domain
name, though it need not actually be hierarchical; thus, a string like rndc_key is a valid name. The key block
has two statements: algorithmand secret.

algorithm
Grammar: algorithm <string>;

Blocks: key

While the configuration parser accepts any string as the argument to a1 gorithm, currently only the strings
hmac-md5, hmac—-shal, hmac—-sha224, hmac-sha256, hmac—-sha384, and hmac—-sha512
have any meaning.

secret

Grammar: secret <string>;
Blocks: key
The secret is a Base64-encoded string as specified in RFC 3548.

server

Grammar:

g
server <string> {

addresses { (<quoted_string> [port <integer>] | <ipv4_address> [port
—<integer>] | <ipv6_address> [port <integer>]); ... };

key <string>;

port <integer>;

source—-address (<ipv4_address> | *);

source-address-v6 (<ipv6_address> | *);
}; // may occur multiple times

L

4.1. Tools for Use With the Name Server Daemon 41

https://datatracker.ietf.org/doc/html/rfc3548.html

BIND 9 Administrator Reference Manual, Release 9.18.27

Blocks: topmost

The server block specifies connection parameters for a given server. The server can be specified as a host name
or address.

addresses
Grammar: addresses { (<quoted_string> [port <integer>] | <ipv4_address>
[port <integer>] | <ipv6_address> [port <integer>]); ... };

Blocks: server
Specifies one or more addresses to use when communicating with this server.

key
Associates a key defined using the key statement with a server.

port
Grammar: port <integer>;

Blocks: server
Specifes the port rndc should connect to on the server.

source—address

Grammar: source-address (<ipv4_address> | *);
Blocks: server

source—address-v6

Grammar: source-address-v6 (<ipv6_address> | *);
Blocks: server

Overrides default-source—address and default-source-address-vé6 for this specific
server.

A sample minimal configuration file is as follows:

key rndc_key {
algorithm "hmac-sha256";
secret
"c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0IG1hZGUgZmIyIGEgd29tYW4K" ;
i
options {
default-server 127.0.0.1;
default-key rndc_key;
}i

L

This file, if installed as /usr/local/etc/rndc.conf, allows the command:
rndc reload

to connect to 127.0.0.1 port 953 and causes the name server to reload, if a name server on the local machine is
running with the following controls statements:

controls {
inet 127.0.0.1
allow { localhost; } keys { rndc_key; };
bi

42

Chapter 4. Name Server Operations

BIND 9 Administrator Reference Manual, Release 9.18.27

and it has an identical key block for rndc_key.

Running the rndc-confgen program conveniently creates an rndc.conf file, and also displays the cor-
responding controls statement needed to add to named.conf. Alternatively, it is possible to run
rndc-confgen —atosetupan rndc.key file and not modify named. conf at all.

4.2 Signals

Certain Unix signals cause the name server to take specific actions, as described in the following table. These signals can
be sent using the kill command.

SIGHUP Causes the server to read named. conf and reload the database.
SIGTERM Causes the server to clean up and exit.
SIGINT Causes the server to clean up and exit.

4.3 Plugins

Plugins are a mechanism to extend the functionality of named using dynamically loadable libraries. By using plugins,
core server functionality can be kept simple for the majority of users; more complex code implementing optional features
need only be installed by users that need those features.

The plugin interface is a work in progress, and is expected to evolve as more plugins are added. Currently, only “query
plugins” are supported; these modify the name server query logic. Other plugin types may be added in the future.

The only plugin currently included in BIND is filter-aaaa. so, which replaces the filter—aaaa feature that
previously existed natively as part of named. The code for this feature has been removed from named and can no longer
be configured using standard named. conf syntax, but linking in the filter-aaaa. so plugin provides identical
functionality.

4.4 Configuring Plugins

plugin
Grammar: plugin (query) <string> [{ <unspecified-text> } 1; // may occur
multiple times

Blocks: topmost, view

Tags: server

Configures plugins in named. conf.

A plugin is configured with the p1ugin statement in named. conf:

plugin query "library.so" {
parameters

bi

In this example, file 1ibrary. so is the plugin library. query indicates that this is a query plugin.

Multiple p1ugin statements can be specified, to load different plugins or multiple instances of the same plugin.

4.2. Signals 43

BIND 9 Administrator Reference Manual, Release 9.18.27

parameters are passed as an opaque string to the plugin’s initialization routine. Configuration syntax differs depending
on the module.

4.5 Developing Plugins

Each plugin implements four functions:
* plugin_register to allocate memory, configure a plugin instance, and attach to hook points within named
e plugin_destroy to tear down the plugin instance and free memory,
* plugin_version to check that the plugin is compatible with the current version of the plugin API,
* plugin_check to test syntactic correctness of the plugin parameters.

At various locations within the named source code, there are “hook points” at which a plugin may register itself. When a
hook point is reached while named is running, it is checked to see whether any plugins have registered themselves there;
if so, the associated “hook action” - a function within the plugin library - is called. Hook actions may examine the runtime
state and make changes: for example, modifying the answers to be sent back to a client or forcing a query to be aborted.
More details can be found in the file 1ib/ns/include/ns/hooks.h.

44 Chapter 4. Name Server Operations

CHAPTER
FIVE

DNSSEC

DNS Security Extensions (DNSSEC) provide reliable protection from cache poisoning attacks. At the same time these
extensions also provide other benefits: they limit the impact of random subdomain attacks on resolver caches and author-
itative servers, and provide the foundation for modern applications like authenticated and private e-mail transfer.

To achieve this goal, DNSSEC adds digital signatures to DNS records in authoritative DNS zones, and DNS resolvers
verify the validity of the signatures on the received records. If the signatures match the received data, the resolver can be
sure that the data was not modified in transit.

Note: DNSSEC and transport-level encryption are complementary! Unlike typical transport-level encryption like DNS-
over-TLS, DNS-over-HTTPS, or VPN, DNSSEC makes DNS records verifiable at all points of the DNS resolution chain.

This section focuses on ways to deploy DNSSEC using BIND. For a more in-depth discussion of DNSSEC principles
(e.g. How Does DNSSEC Change DNS Lookup?) please see DNSSEC Guide.

5.1 Zone Signing

BIND offers several ways to generate signatures and maintain their validity during the lifetime of a DNS zone:
e Fully Automated (Key and Signing Policy) - strongly recommended
e Manual Key Management - only for special needs

* Manual Signing - discouraged, use only for debugging

5.1.1 Zone keys

Regardless of the zone-signing method in use, cryptographic keys are stored in files named like Kdnssec.example.
+013+12345.key and Kdnssec.example.+013+12345.private. The private key (in the . private file)
is used to generate signatures, and the public key (in the . key file) is used for signature verification. Additionally, the
Fully Automated (Key and Signing Policy) method creates a third file, Kdnssec.example+013+12345.state,
which is used to track DNSSEC key timings and to perform key rollovers safely.

These filenames contain:
* the key name, which always matches the zone name (dnssec.example.),
¢ the algorithm number (013 is ECDSAP256SHA256, 008 is RSASHA?256, etc.),

* and the key tag, i.e. a non-unique key identifier (12345 in this case).

45

https://en.wikipedia.org/wiki/DNS_cache_poisoning
https://www.isc.org/blogs/nsec-caching-should-limit-excessive-queries-to-dns-root/
https://github.com/internetstandards/toolbox-wiki/blob/main/DANE-for-SMTP-how-to.md
https://en.wikipedia.org/wiki/Digital_signature
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml#dns-sec-alg-numbers-1

BIND 9 Administrator Reference Manual, Release 9.18.27

Warning: Private keys are required for full disaster recovery. Back up key files in a safe location and protect them
from unauthorized access. Anyone with access to the private key can create fake but seemingly valid DNS data.

5.1.2 Fully Automated (Key and Signing Policy)
Key and Signing Policy (KASP) is a method of configuration that describes how to maintain DNSSEC signing keys and
how to sign the zone.

This is the recommended, fully automated way to sign and maintain DNS zones. For most use cases users can simply use
the built-in default policy, which applies up-to-date DNSSEC practices:

zone "dnssec.example" {
type primary;
file "dnssec.example.db";
dnssec-policy default;
inline-signing yes;

bi

The dnssec—policy statement requires dynamic DNS to be set up, or inline-signing to be enabled. In the
example above we use the latter.

This is sufficient to create the necessary signing keys, and generate DNSKEY, RRSIG, and NSEC records for the zone.
BIND also takes care of any DNSSEC maintenance for this zone, including replacing signatures that are about to expire
and managing Key Rollovers.

Note: dnssec—policy needs write access to the zone. Please see dnssec—policy for more details about impli-
cations for zone storage.

The default policy creates one key that is used to sign the complete zone, and uses NSEC to enable authenticated denial
of existence (a secure way to tell which records do not exist in a zone). This policy is recommended and typically does
not need to be changed.

If needed, a custom policy can be defined by adding a dnssec—policy statement into the configuration:

dnssec-policy "custom" {
dnskey-ttl 600;
keys {
ksk lifetime PlY algorithm ecdsap384sha384;
zsk lifetime 60d algorithm ecdsap384sha384;
bi
nsec3param iterations 0 optout no salt-length 0;

bi

This custom policy, for example:
* uses a very short DNSKEY TTL (600 seconds),

* uses two keys to sign the zone: a Key Signing Key (KSK) to sign the key related RRsets (DNSKEY, CDS, and
CDNSKEY), and a Zone Signing Key (ZSK) to sign the rest of the zone. The KSK is automatically rotated after
one year and the ZSK after 60 days.

Also:
* The configured keys have a lifetime set and use the ECDSAP384SHA384 algorithm.

46 Chapter 5. DNSSEC

BIND 9 Administrator Reference Manual, Release 9.18.27

* The last line instructs BIND to generate NSEC3 records for Proof of Non-Existence, using zero extra iterations
and no salt. NSEC3 opt-out is disabled, meaning insecure delegations also get an NSEC3 record.

For more information about KASP configuration see dnssec—policy.

The Advanced Discussions section in the DNSSEC Guide discusses the various policy settings and may be useful for
determining values for specific needs.

Key Rollover

When using a dnssec-policy, akey lifetime can be set to trigger key rollovers. ZSK rollovers are fully automatic,
but for KSK and CSK rollovers a DS record needs to be submitted to the parent. See Secure Delegation for possible ways
to do so.

Once the DS is in the parent (and the DS of the predecessor key is withdrawn), BIND needs to be told that this event has
happened. This can be done automatically by configuring parental agents:

zone "dnssec.example" {
type primary;
file "dnssec.example.db";
dnssec-policy default;
inline-signing yes;
parental—-agents { 192.0.2.1; };
bi

Here one server, 192.0.2.1, is configured for BIND to send DS queries to, to check the DS RRset for
dnssec-example during key rollovers. This needs to be a trusted server, because BIND does not validate the re-
sponse.

If setting up a parental agent is undesirable, it is also possible to tell BIND that the DS is published in the parent with:
rndc dnssec —checkds —key 12345 published dnssec.example.. and the DS for the predecessor
key has been removed with: rndc dnssec —-checkds —key 54321 withdrawn dnssec.example..
where 12345 and 54321 are the key tags of the successor and predecessor key, respectively.

To roll a key sooner than scheduled, or to roll a key that has an unlimited lifetime, use: rndc dnssec —-rollover
—key 12345 dnssec.example..

To revert a signed zone back to an insecure zone, change the zone configuration to use the built-in “insecure” policy.
Detailed instructions are described in Reverting to Unsigned.

5.1.3 Manual Key Management

Warning: The method described here allows full control over the keys used to sign the zone. This is required only
for very special cases and is generally discouraged. Under normal circumstances, please use Fully Automated (Key
and Signing Policy).

Multi-Signer Model

Dynamic zones provide the ability to sign a zone by multiple providers, meaning each provider signs and serves the same
zone independently. Such a setup requires some coordination between providers when it comes to key rollovers, and may
be better suited to be configured with auto-dnssec allow;. This permits keys to be updated and the zone to be
re-signed only if the user issues the command rndc sign zonename.

5.1. Zone Signing 47

BIND 9 Administrator Reference Manual, Release 9.18.27

A zone can also be configured with aut o-dnssec maintain, which automatically adjusts the zone’s DNSSEC keys
on a schedule according to the key timing metadata. However, keys still need to be generated separately, for example
with dnssec-keygen.

Of course, dynamic zones can also use dnssec-policy to fully automate DNSSEC maintenance. The next sections
assume that more key management control is needed, and describe how to use dynamic DNS update to perform various
DNSSEC operations.

Enabling DNSSEC Manually

As an alternative to fully automated zone signing using dnssec-policy, a zone can be changed from insecure to secure using
a dynamic DNS update. named must be configured so that it can see the K* files which contain the public and private
parts of the zone keys that are used to sign the zone. Key files should be placed in the key—directory, as specified in
named.conft:

zone update.example {
type primary;
update-policy local;
auto-dnssec allow;
file "dynamic/update.example.db";
key-directory "keys/update.example/";
bi

If there are both a KSK and a ZSK available (or a CSK), this configuration causes the zone to be signed. An NSEC chain
is generated as part of the initial signing process.

In any secure zone which supports dynamic updates, named periodically re-signs RRsets which have not been re-signed
as a result of some update action. The signature lifetimes are adjusted to spread the re-sign load over time rather than all
at once.

Publishing DNSKEY Records

To insert the keys via dynamic update:

% nsupdate

> ttl 3600

> update add update.example DNSKEY 256 3 7.
—AWEAAZnNn17pUF0KpbPA2c7Gz76Vb18v0teKT3EyAGfBfL8eQ8al1352z2z3Y Iim/

—SAQBxXIgMfLt IwgWPdgthsu36azGQAX8=

> update add update.example DNSKEY 257 3 7 AwEAAd/70duU/
—6402LGsifbLtOmtO8dFDtTAZXSX2+X3e/UN1g9IHg3Y0 XtCO0Iuawl/gkaKVxXe2lo8Ct+dMé6UehyCgk=
> send

In order to sign with these keys, the corresponding key files should also be placed in the key—directory.

48 Chapter 5. DNSSEC

BIND 9 Administrator Reference Manual, Release 9.18.27

NSEC3

To sign using NSEC3 instead of NSEC, add an NSEC3PARAM record to the initial update request. The OPTOUT bit in
the NSEC3 chain can be set in the flags field of the NSEC3PARAM record.

% nsupdate

> ttl 3600

> update add update.example DNSKEY 256 3 7.
—AWEAAZNn17pUFO0KpbPA2c7Gz76Vb18v0teKT3EYAGEBfL8eQ8al1352z2z3Y Ilim/

—SAQOBxIgMELt IwgWPdgthsu36azGQAX8=

> update add update.example DNSKEY 257 3 7 AwEAAd/70dU/
—6402LGs1fbLtQOmtO8dFDtTAZXSX2+X3e/UN1g9THg3Y0 XtCOIuawl/gkaKVxXe2lo8Ct+dM6UehyCgk=
> update add update.example NSEC3PARAM 1 0 0 -

> send

Note that the NSEC3PARAM record does not show up until named has had a chance to build/remove the relevant chain.
A private type record is created to record the state of the operation (see below for more details), and is removed once the
operation completes.

The NSEC3 chain is generated and the NSEC3PARAM record is added before the NSEC chain is destroyed.
While the initial signing and NSEC/NSEC3 chain generation are occurring, other updates are possible as well.

A new NSEC3PARAM record can be added via dynamic update. When the new NSEC3 chain has been generated, the
NSEC3PARAM flag field is set to zero. At that point, the old NSEC3PARAM record can be removed. The old chain is
removed after the update request completes.

named only supports creating new NSEC3 chains where all the NSEC 3 records in the zone have the same OPTOUT state.
named supports updates to zones where the NSEC3 records in the chain have mixed OPTOUT state. named does not
support changing the OPTOUT state of an individual NSEC3 record; if the OPTOUT state of an individual NSEC 3 needs
to be changed, the entire chain must be changed.

To switch back to NSEC, use nsupdate to remove any NSEC3PARAM records. The NSEC chain is generated before
the NSEC3 chain is removed.

DNSKEY Rollovers

To perform key rollovers via a dynamic update, the K* files for the new keys must be added so that named can find them.
The new DNSKEY RRs can then be added via dynamic update. When the zones are being signed, they are signed with
the new key set; when the signing is complete, the private type records are updated so that the last octet is non-zero.

If this is for a KSK, the parent and any trust anchor repositories of the new KSK must be informed.

The maximum TTL in the zone must expire before removing the old DNSKEY. If it is a KSK that is being updated, the
DS RRset in the parent must also be updated and its TTL allowed to expire. This ensures that all clients are able to verify
at least one signature when the old DNSKEY is removed.

The old DNSKEY can be removed via UPDATE, taking care to specify the correct key. named cleans out any signatures
generated by the old key after the update completes.

5.1. Zone Signing 49

BIND 9 Administrator Reference Manual, Release 9.18.27

Going Insecure

To convert a signed zone to unsigned using dynamic DNS, delete all the DNSKEY records from the zone apex using
nsupdate. All signatures, NSEC or NSEC3 chains, and associated NSEC3PARAM records are removed automatically
when the zone is supposed to be re-signed.

This requires the dnssec-secure-to-insecure option to be set to yes in named. conf.

In addition, if the auto-dnssec maintain ora dnssec—policy is used, it should be removed or changed to
allow instead; otherwise it will re-sign.

5.1.4 Manual Signing

There are several tools available to manually sign a zone.

Warning: Please note manual procedures are available mainly for backwards compatibility and should be used only
by expert users with specific needs.

To set up a DNSSEC secure zone manually, a series of steps must be followed. Please see chapter Manual Signing in the
DNSSEC Guide for more information.

5.1.5 Monitoring with Private Type Records
The state of the signing process is signaled by private type records (with a default type value of 65534). When signing is
complete, those records with a non-zero initial octet have a non-zero value for the final octet.

If the first octet of a private type record is non-zero, the record indicates either that the zone needs to be signed with the
key matching the record, or that all signatures that match the record should be removed. Here are the meanings of the
different values of the first octet:

¢ algorithm (octet 1)

* key ID in network order (octet 2 and 3)
» removal flag (octet 4)

e complete flag (octet 5)

Only records flagged as “complete” can be removed via dynamic update; attempts to remove other private type records
are silently ignored.

If the first octet is zero (this is a reserved algorithm number that should never appear in a DNSKEY record), the record
indicates that changes to the NSEC3 chains are in progress. The rest of the record contains an NSEC3PARAM record,
while the flag field tells what operation to perform based on the flag bits:

0x01 OPTOUT
0x80 CREATE

0x40 REMOVE
0x20 NONSEC

50 Chapter 5. DNSSEC

BIND 9 Administrator Reference Manual, Release 9.18.27

5.2 Secure Delegation

Once a zone is signed on the authoritative servers, the last remaining step is to establish chain of trust' between the parent
zone (example.) and the local zone (dnssec.example.).

Generally the procedure is:

» Wiait for stale data to expire from caches. The amount of time required is equal to the maximum TTL value used in
the zone before signing. This step ensures that unsigned data expire from caches and resolvers do not get confused
by missing signatures.

* Insert/update DS records in the parent zone (dnssec.example. DS record).

There are multiple ways to update DS records in the parent zone. Refer to the documentation for the parent zone to find
out which options are applicable to a given case zone. Generally the options are, from most- to least-recommended:

* Automatically update the DS record in the parent zone using CDS/CDNSKEY records automatically generated by
BIND. This requires support for RFC 7344 in either parent zone, registry, or registrar. In that case, configure
BIND to monitor DS records in the parent zone and everything will happen automatically at the right time.

¢ Query the zone for automatically generated CDS or CDNSKEY records using dig, and then insert these records
into the parent zone using the method specified by the parent zone (web form, e-mail, API, ...).

* Generate DS records manually using the dnssec—dsfromkey utility on zone keys, and then insert them into
the parent zone.

5.3 DNSSEC Validation

The BIND resolver validates answers from authoritative servers by default. This behavior is controlled by the configuration
statement dnssec—-validation.

By default a trust anchor for the DNS root zone is used. This trust anchor is provided as part of BIND and is kept
up-to-date using Dynamic Trust Anchor Management.

Note: DNSSEC validation works “out of the box” and does not require additional configuration. Additional configuration
options are intended only for special cases.

To validate answers, the resolver needs at least one trusted starting point, a “trust anchor.” Essentially, trust anchors are
copies of DNSKEY RRs for zones that are used to form the first link in the cryptographic chain of trust. Alternative trust
anchors can be specified using t rust-anchors, but this setup is very unusual and is recommended only for expert
use. For more information, see Trust Anchors in the DNSSEC Guide.

The BIND authoritative server does not verify signatures on load, so zone keys for authoritative zones do not need to be
specified in the configuration file.

! For further details on how the chain of trust is used in practice, see The 12-Step DNSSEC Validation Process (Simplified) in the DNSSEC Guide.

5.2. Secure Delegation 51

https://datatracker.ietf.org/doc/html/rfc7344.html

BIND 9 Administrator Reference Manual, Release 9.18.27

5.3.1 Validation Failures

When DNSSEC validation is configured, the resolver rejects any answers from signed, secure zones which fail to validate,
and returns SERVFAIL to the client.

Responses may fail to validate for any of several reasons, including missing, expired, or invalid signatures; a key which
does not match the DS RRset in the parent zone; or an insecure response from a zone which, according to its parent,
should have been secure.

For more information see Basic DNSSEC Troubleshooting.

5.3.2 Coexistence With Unsigned (Insecure) Zones

Zones not protected by DNSSEC are called “insecure,” and these zones seamlessly coexist with signed zones.

When the validator receives a response from an unsigned zone that has a signed parent, it must confirm with the parent
that the zone was intentionally left unsigned. It does this by verifying, via signed and validated NSEC/NSEC3 records, that
the parent zone contains no DS records for the child.

If the validator can prove that the zone is insecure, then the response is accepted. However, if it cannot, the validator
must assume an insecure response to be a forgery; it rejects the response and logs an error.

The logged error reads “insecurity proof failed” and “got insecure response; parent indicates it should be secure.”

5.4 Dynamic Trust Anchor Management

BIND is able to maintain DNSSEC trust anchors using RFC 5011 key management. This feature allows named to keep
track of changes to critical DNSSEC keys without any need for the operator to make changes to configuration files.

5.4.1 Validating Resolver

To configure a validating resolver to use RFC 5011 to maintain a trust anchor, configure the trust anchor using
a trust—anchors statement and the initial-key keyword. Information about this can be found in the
trust-anchors statement description.

5.4.2 Authoritative Server

To set up an authoritative zone for RFC 5011 trust anchor maintenance, generate two (or more) key signing keys (KSKs)
for the zone. Sign the zone with one of them; this is the “active” KSK. All KSKs which do not sign the zone are “stand-by”
keys.

Any validating resolver which is configured to use the active KSK as an RFC 5011-managed trust anchor takes note of
the stand-by KSKs in the zone’s DNSKEY RRset, and stores them for future reference. The resolver rechecks the zone
periodically; after 30 days, if the new key is still there, the key is accepted by the resolver as a valid trust anchor for the
zone. Anytime after this 30-day acceptance timer has completed, the active KSK can be revoked, and the zone can be
“rolled over” to the newly accepted key.

The easiest way to place a stand-by key in a zone is to use the “smart signing” features of dnssec-keygen and
dnssec-signzone. If a key exists with a publication date in the past, but an activation date which is unset or in the
future, dnssec—-signzone -S includes the DNSKEY record in the zone but does not sign with it:

$ dnssec-keygen -K keys —-f KSK -P now —-A nowt2y example.net
$ dnssec-signzone -S -K keys example.net

52 Chapter 5. DNSSEC

https://datatracker.ietf.org/doc/html/rfc5011.html
https://datatracker.ietf.org/doc/html/rfc5011.html
https://datatracker.ietf.org/doc/html/rfc5011.html
https://datatracker.ietf.org/doc/html/rfc5011.html

BIND 9 Administrator Reference Manual, Release 9.18.27

To revoke a key, use the command dnssec—revoke. This adds the REVOKED bit to the key flags and regenerates
the K* .key and K* .private files.

After revoking the active key, the zone must be signed with both the revoked KSK and the new active KSK. Smart signing
takes care of this automatically.

Once a key has been revoked and used to sign the DNSKEY RRset in which it appears, that key is never again accepted
as a valid trust anchor by the resolver. However, validation can proceed using the new active key, which was accepted by
the resolver when it was a stand-by key.

See RFC 5011 for more details on key rollover scenarios.

When a key has been revoked, its key ID changes, increasing by 128 and wrapping around at 65535. So, for example, the
key “Kexample.com.+005+10000” becomes “Kexample.com.+005+10128".

If two keys have IDs exactly 128 apart and one is revoked, the two key IDs will collide, causing several problems. To
prevent this, dnssec—keygen does not generate a new key if another key which may collide is present. This checking
only occurs if the new keys are written to the same directory that holds all other keys in use for that zone.

Older versions of BIND 9 did not have this protection. Exercise caution if using key revocation on keys that were generated
by previous releases, or if using keys stored in multiple directories or on multiple machines.

It is expected that a future release of BIND 9 will address this problem in a different way, by storing revoked keys with
their original unrevoked key IDs.

5.5 PKCS#11 (Cryptoki) Support

Public Key Cryptography Standard #11 (PKCS#11) defines a platform-independent API for the control of hardware
security modules (HSMs) and other cryptographic support devices.

PKCS#11 uses a “provider library”: a dynamically loadable library which provides a low-level PKCS#11 interface to
drive the HSM hardware. The PKCS#11 provider library comes from the HSM vendor, and it is specific to the HSM to
be controlled.

BIND 9 uses engine_pkcs11 for PKCS#11. engine_pkes11 is an OpenSSL engine which is part of the OpenSC project.
The engine is dynamically loaded into OpenSSL and the HSM is operated indirectly; any cryptographic operations not
supported by the HSM can be carried out by OpenSSL instead.

5.5.1 Prerequisites

See the documentation provided by the HSM vendor for information about installing, initializing, testing, and trou-
bleshooting the HSM.

5.5.2 Building SoftHSMv2

SoftHSMv2, the latest development version of SoftHSM, is available from https://github.com/opendnssec/SoftHSMv2.
It is a software library developed by the OpenDNSSEC project (https://www.opendnssec.org) which provides a PKCS#11
interface to a virtual HSM, implemented in the form of an SQLite3 database on the local filesystem. It provides less secu-
rity than a true HSM, but it allows users to experiment with native PKCS#11 when an HSM is not available. Soft HSMv?2
can be configured to use either OpenSSL or the Botan library to perform cryptographic functions, but when using it for
native PKCS#11 in BIND, OpenSSL is required.

By default, the SoftHSMv2 configuration file is prefix/etc/softhsm2.conf (where prefix is configured at
compile time). This location can be overridden by the SOFTHSM2_CONF environment variable. The SoftHSMv?2
cryptographic store must be installed and initialized before using it with BIND.

5.5. PKCS#11 (Cryptoki) Support 53

https://datatracker.ietf.org/doc/html/rfc5011.html
https://github.com/OpenSC/libp11
https://github.com/opendnssec/SoftHSMv2
https://www.opendnssec.org

BIND 9 Administrator Reference Manual, Release 9.18.27

cd SoftHSMv2

make
make install

Ur 0 r O

configure —--with-crypto-backend=openssl —--prefix=/opt/pkcsll/usr

/opt/pkcsll/usr/bin/softhsm-util —--—-init-token 0 —--slot 0 --label softhsmv2

5.5.3 OpenSSL-based PKCS#11

OpenSSL-based PKCS#11 uses engine_pkcs11 OpenSSL engine from libp11 project.

engine_pkcs11 tries to fit the PKCS#11 API within the engine API of OpenSSL. That is, it provides a gateway between
PKCS#11 modules and the OpenSSL engine API. One has to register the engine with OpenSSL and one has to provide
the path to the PKCS#11 module which should be gatewayed to. This can be done by editing the OpenSSL configuration

file, by engine specific controls, or by using the p11-kit proxy module.

It is recommended, that libp11 >= 0.4.12 is used.

For more detailed howto including the examples, we recommend reading:

https://gitlab.isc.org/isc-projects/bind9/-/wikis/BIND-9-PKCS11

5.5.4 Using the HSM

The canonical documentation for configuring engine_pkcs11 is in the libpl [/README.md, but here’s copy of working

configuration for your convenience:

We are going to use our own custom copy of OpenSSL configuration, again it’s driven by an environment variable, this
time called OPENSSL_CONF. We are going to copy the global OpenSSL configuration (often found in etc/ssl/

openssl.conf) and customize it to use engines_pkcs11.

[cp /etc/ssl/openssl.cnf /opt/bind9/etc/openssl.cnf

and export the environment variable:

[export OPENSSL_CONF=/opt/bind9/etc/openssl.cnf

Now add following line at the top of file, before any sections (in square brackets) are defined:

[openssl_conf = openssl_init

And make sure there are no other ‘openssl_conf = ...’ lines in the file.

Add following lines at the bottom of the file:

[openssl_init]
engines=engine_section

[engine_section]
pkcsll = pkcsll_section

[pkcsll_section]

engine_id = pkcsll

dynamic_path = <PATHTO>/pkcsll.so
MODULE_PATH = <FULL_PATH_TO_HSM MODULE>
init = 0

54

Chapter 5. DNSSEC

https://gitlab.isc.org/isc-projects/bind9/-/wikis/BIND-9-PKCS11
https://github.com/OpenSC/libp11/blob/master/README.md#pkcs-11-module-configuration

BIND 9 Administrator Reference Manual, Release 9.18.27

5.5.5 Key Generation
HSM keys can now be created and used. We are going to assume that you already have a BIND 9 installed, either from a
package, or from the sources, and the tools are readily available in the SPATH.

For generating the keys, we are going to use pkcs11-tool available from the OpenSC suite. On both DEB-based and
RPM-based distributions, the package is called opensc.

We need to generate at least two RSA keys:

pkcsll-tool ——module <FULL_PATH_TO_HSM_MODULE> -1 -k —--key-type rsa:2048 ——-label.
—example.net-ksk —-pin <PIN>
pkcsll-tool —--module <FULL_PATH _TO_HSM_MODULE> -1 -k —-key-type rsa:2048 --label.
—example.net-zsk ——pin <PIN>

Remember that each key should have unique label and we are going to use that label to reference the private key.

Convert the RSA keys stored in the HSM into a format that BIND 9 understands. The dnssec—keyfromlabel tool
from BIND 9 can link the raw keys stored in the HSM with the K<zone>+<alg>+<id> files. You'll need to provide
the OpenSSL engine name (pkcs11), the algorithm (RSASHA256) and the PKCS#11 label that specify the token (we
asume that it has been initialized as bind9), the name of the PKCS#11 object (called label when generating the keys using
pkcsll-tool) and the HSM PIN.

Convert the KSK:

dnssec-keyfromlabel -E pkcsll -a RSASHA256 -1 "token=bind9;object=example.net-ksk;pin-
—value=0000" —-f KSK example.net

and ZSK:

dnssec-keyfromlabel -E pkcsll -a RSASHA256 -1 "token=bind9;object=example.net-zsk;pin—
—value=0000" example.net

NOTE: you can use PIN stored on disk, by specifying pin—-source=<path_to>/<file>, fe.:

[(umask 0700 && echo —-n 0000 > /opt/bind9/etc/pin.txt)

and then use in the label specification:

[pinfsource:/opt/bind9/etc/pin.txt

Confirm that you have one KSK and one ZSK present in the current directory:

[ls -1 K*

The output should look like this (the second number will be different):

Kexample.net.+008+31729.key
Kexample.net.+008+31729.private
Kexample.net.+008+42231.key
Kexample.net.+008+42231.private

A note on generating ECDSA keys: there is a bug in libp11 when looking up a key, that function compares keys only on
their ID, not the label. So when looking up a key it returns the first key, rather than the matching key. The workaround
for this is when creating ECDSA keys, you should specify a unique ID:

ksk=$ (echo "example.net-ksk" | openssl shal -r | awk '{print $1}'")
zsk=$ (echo "example.net-zsk" | openssl shal -r | awk '{print $1}')
(continues on next page)

5.5. PKCS#11 (Cryptoki) Support 55

BIND 9 Administrator Reference Manual, Release 9.18.27

(continued from previous page)
pkcsll-tool —--module <FULL_PATH_TO_HSM_MODULE> -1 -k --key-type EC:prime256vl --id
—S$ksk —--label example.net-ksk —--pin <PIN>
pkcsll-tool --module <FULL_PATH_TO_HSM_MODULE> -1 -k —--key-type EC:prime256vl --id
—$zsk —--label example.net-zsk —--pin <PIN>

5.5.6 Specifying the Engine on the Command Line

‘When using OpenSSL-based PKCS#11, the “engine” to be used by OpenSSL can be specified in named and all of the
BIND dnssec—* tools by using the -E <engine> command line option. Specifying the engine is generally not
necessary unless a different OpenSSL engine is used.

The zone signing commences as usual, with only one small difference. We need to provide the name of the OpenSSL
engine using the -E command line option.

[dnssecfsignzone -E pkcsll -S -o example.net example.net

5.5.7 Running named With Automatic Zone Re-signing

The zone can also be signed automatically by named. Again, we need to provide the name of the OpenSSL engine using
the —E command line option.

[named -E pkcsll -c¢ named.conf

and the logs should have lines like:

Fetching example.net/RSASHA256/31729 (KSK) from key repository.
DNSKEY example.net/RSASHA256/31729 (KSK) is now published
DNSKEY example.net/RSA256SHA256/31729 (KSK) is now active
Fetching example.net/RSASHA256/42231 (ZSK) from key repository.
DNSKEY example.net/RSASHA256/42231 (ZSK) is now published
DNSKEY example.net/RSA256SHA256/42231 (ZSK) is now active

For named to dynamically re-sign zones using HSM keys, and/or to sign new records inserted via nsupdate, named must
have access to the HSM PIN. In OpenSSL-based PKCS#11, this is accomplished by placing the PIN into the openssl.
cnf file (in the above examples, /opt /pkcsll/usr/ssl/openssl.cnf).

The location of the openssl.cnf file can be overridden by setting the OPENSSL_CONF environment variable before run-
ning named.

Here is a sample openssl.cnf:

openssl_conf = openssl_def
[openssl_def]

engines = engine_section

[engine_section]

pkcsll = pkcsll_section

[pkcsll_section]

PIN = <PLACE PIN HERE>

This also allows the dnssec—\ * tools to access the HSM without PIN entry. (The pkcs11-* tools access the HSM
directly, not via OpenSSL, so a PIN is still required to use them.)

56 Chapter 5. DNSSEC

CHAPTER
SIX

ADVANCED CONFIGURATIONS

6.1 Dynamic Update

Dynamic update is a method for adding, replacing, or deleting records in a primary server by sending it a special form of
DNS messages. The format and meaning of these messages is specified in RFC 2136.

Dynamic update is enabled by including an allow-update or an update-policy clause in the zone statement.

If the zone’s update-policy issetto Local, updates to the zone are permitted for the key 1ocal-ddns, which
is generated by named at startup. See Dynamic Update Policies for more details.

Dynamic updates using Kerberos-signed requests can be made using the TKEY/GSS protocol, either by setting the
tkey—-gssapi-keytab option or by setting both the t key—gssapi-credential and t key—domain options.
Once enabled, Kerberos-signed requests are matched against the update policies for the zone, using the Kerberos principal
as the signer for the request.

Updating of secure zones (zones using DNSSEC) follows RFC 3007: RRSIG, NSEC, and NSEC3 records affected by
updates are automatically regenerated by the server using an online zone key. Update authorization is based on transaction
signatures and an explicit server policy.

6.1.1 The Journal File

All changes made to a zone using dynamic update are stored in the zone’s journal file. This file is automatically created by
the server when the first dynamic update takes place. The name of the journal file is formed by appending the extension
. jn1 to the name of the corresponding zone file unless specifically overridden. The journal file is in a binary format and
should not be edited manually.

The server also occasionally writes (“dumps”) the complete contents of the updated zone to its zone file. This is not done
immediately after each dynamic update because that would be too slow when a large zone is updated frequently. Instead,
the dump is delayed by up to 15 minutes, allowing additional updates to take place. During the dump process, transient
files are created with the extensions . jnw and . jbk; under ordinary circumstances, these are removed when the dump
is complete, and can be safely ignored.

When a server is restarted after a shutdown or crash, it replays the journal file to incorporate into the zone any updates
that took place after the last zone dump.

Changes that result from incoming incremental zone transfers are also journaled in a similar way.

The zone files of dynamic zones cannot normally be edited by hand because they are not guaranteed to contain the most
recent dynamic changes; those are only in the journal file. The only way to ensure that the zone file of a dynamic zone is
up-to-date is to run rndc stop.

To make changes to a dynamic zone manually, follow these steps: first, disable dynamic updates to the zone using rndc
freeze zone. This updates the zone file with the changes stored in its . jn1l file. Then, edit the zone file. Finally,
run rndc thaw zone to reload the changed zone and re-enable dynamic updates.

57

https://datatracker.ietf.org/doc/html/rfc2136.html
https://datatracker.ietf.org/doc/html/rfc3007.html

BIND 9 Administrator Reference Manual, Release 9.18.27

rndc sync zone updates the zone file with changes from the journal file without stopping dynamic updates; this
may be useful for viewing the current zone state. To remove the . jn1 file after updating the zone file, use rndc sync
—clean.

6.2 NOTIFY

DNS NOTIFY is a mechanism that allows primary servers to notify their secondary servers of changes to a zone’s data.
In response to a NOTIFY message from a primary server, the secondary checks to see that its version of the zone is the
current version and, if not, initiates a zone transfer.

For more information about DNS NOTIFY, see the description of the not i fy and :namedconf:ref also-notify" state-
ments. The NOTIFY protocol is specified in RFC 1996.

Note: As asecondary zone can also be a primary to other secondaries, named, by default, sends NOTIFY messages for
every zone it loads.

6.3 Incremental Zone Transfers (IXFR)

The incremental zone transfer (IXFR) protocol is a way for secondary servers to transfer only changed data, instead of
having to transfer an entire zone. The IXFR protocol is specified in RFC 1995.

When acting as a primary server, BIND 9 supports IXFR for those zones where the necessary change history information
is available. These include primary zones maintained by dynamic update and secondary zones whose data was obtained
by IXFR. For manually maintained primary zones, and for secondary zones obtained by performing a full zone transfer
(AXFR), IXFR is supported only if the option ixfr-from-differencesissetto yes.

When acting as a secondary server, BIND 9 attempts to use IXFR unless it is explicitly disabled. For more information
about disabling IXFR, see the description of the request—ixfr clause of the server statement.

When a secondary server receives a zone via AXFR, it creates a new copy of the zone database and then swaps it into place;
during the loading process, queries continue to be served from the old database with no interference. When receiving
a zone via IXFR, however, changes are applied to the running zone, which may degrade query performance during the
transfer. If a server receiving an IXFR request determines that the response size would be similar in size to an AXFR
response, it may wish to send AXFR instead. The threshold at which this determination is made can be configured using
the max—ixfr-ratio option.

6.4 Split DNS

Setting up different views of the DNS space to internal and external resolvers is usually referred to as a split DNS setup.
There are several reasons an organization might want to set up its DNS this way.

One common reason to use split DNS is to hide “internal” DNS information from “external” clients on the Internet.
There is some debate as to whether this is actually useful. Internal DNS information leaks out in many ways (via email
headers, for example) and most savvy “attackers” can find the information they need using other means. However, since
listing addresses of internal servers that external clients cannot possibly reach can result in connection delays and other
annoyances, an organization may choose to use split DNS to present a consistent view of itself to the outside world.

Another common reason for setting up a split DNS system is to allow internal networks that are behind filters or in RFC
1918 space (reserved IP space, as documented in RFC 1918) to resolve DNS on the Internet. Split DNS can also be used
to allow mail from outside back into the internal network.

58 Chapter 6. Advanced Configurations

https://datatracker.ietf.org/doc/html/rfc1996.html
https://datatracker.ietf.org/doc/html/rfc1995.html
https://datatracker.ietf.org/doc/html/rfc1918.html
https://datatracker.ietf.org/doc/html/rfc1918.html
https://datatracker.ietf.org/doc/html/rfc1918.html

BIND 9 Administrator Reference Manual, Release 9.18.27

6.4.1 Example Split DNS Setup

Let’s say a company named Example, Inc. (example.com) has several corporate sites that have an internal network
with reserved Internet Protocol (IP) space and an external demilitarized zone (DMZ), or “outside” section of a network,
that is available to the public.

Example, Inc. wants its internal clients to be able to resolve external hostnames and to exchange mail with people on the
outside. The company also wants its internal resolvers to have access to certain internal-only zones that are not available
at all outside of the internal network.

To accomplish this, the company sets up two sets of name servers. One set is on the inside network (in the reserved IP
space) and the other set is on bastion hosts, which are “proxy” hosts in the DMZ that can talk to both sides of its network.

The internal servers are configured to forward all queries, except queries for sitel.internal, site2.internal,
sitel.example.com, and site2.example.com, to the servers in the DMZ. These internal servers have com-
plete sets of information for sitel.example.com, site2.example.com, sitel.internal, and site?2.
internal.

To protect the sitel.internal and site2.internal domains, the internal name servers must be configured to
disallow all queries to these domains from any external hosts, including the bastion hosts.

The external servers, which are on the bastion hosts, are configured to serve the “public” version of the sitel.
example.com and site2.example.com zones. This could include things such as the host records for public
servers (www . example.comand ftp.example.com) and mail exchange (MX) records (a .mx . example . com
and b.mx.example.com).

In addition, the public sitel.example.comand site2.example.com zones should have special MX records
that contain wildcard (*) records pointing to the bastion hosts. This is needed because external mail servers have no other
way of determining how to deliver mail to those internal hosts. With the wildcard records, the mail is delivered to the
bastion host, which can then forward it on to internal hosts.

Here’s an example of a wildcard MX record:

[* IN MX 10 externall.example.com. J

Now that they accept mail on behalf of anything in the internal network, the bastion hosts need to know how to deliver
mail to internal hosts. The resolvers on the bastion hosts need to be configured to point to the internal name servers for
DNS resolution.

Queries for internal hostnames are answered by the internal servers, and queries for external hostnames are forwarded
back out to the DNS servers on the bastion hosts.

For all of this to work properly, internal clients need to be configured to query only the internal name servers for DNS
queries. This could also be enforced via selective filtering on the network.

If everything has been set properly, Example, Inc.’s internal clients are now able to:
e Look up any hostnames in the sitel.example.comand site2.example.com zones.
¢ Look up any hostnames in the sitel.internal and site2.internal domains.
* Look up any hostnames on the Internet.
¢ Exchange mail with both internal and external users.
Hosts on the Internet are able to:
* Look up any hostnames in the sitel.example.comand site2.example.com zones.
* Exchange mail with anyone in the sitel.example.comand site2.example.com zones.

Here is an example configuration for the setup just described above. Note that this is only configuration information; for
information on how to configure the zone files, see Configurations and Zone Files.

6.4. Split DNS 59

BIND 9 Administrator Reference Manual, Release 9.18.27

Internal DNS server config:

acl internals { 172.16.72.0/24;
acl externals { bastion-ips—-go-here; };

options {

forward only;

// forward to external servers
forwarders {
bastion-ips—go-here;

bi

// sample allow-transfer
allow-transfer { none; };
// restrict query access
allow—query { internals;
// restrict recursion
allow-recursion { internals; };

(no one)

externals; };

bi

// sample primary zone
zone "sitel.example.com" {

type primary;

file "m/sitel.example.com";

// do normal iterative resolution (do not
forwarders { };
allow—query { internals; externals; };
allow-transfer { internals; };

bi

// sample secondary zone
"site2.example.com" {

type secondary;

file "s/site2.example.com";

primaries { 172.16.72.3; };

forwarders { };

allow-query { internals; externals; };
allow-transfer { internals; };

zone

bi
zone "sitel.internal" {
type primary;
file "m/sitel.internal";
forwarders { };
allow—query { internals; };
allow-transfer { internals; }
bi
zone "site2.internal" {
type secondary;
file "s/site2.internal";
primaries { 172.16.72.3; };
forwarders { };
allow-query { internals };

192.168.1.0/24; };

forward)

(continues on next page)

60

Chapter 6. Advanced Configurations

BIND 9 Administrator Reference Manual, Release 9.18.27

(continued from previous page)

allow-transfer { internals; }
bi

External (bastion host) DNS server configuration:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips—-go-here; };

options {

// sample allow-transfer (no one)
allow-transfer { none; };

// default query access

allow—query { any; };

// restrict cache access

allow-query-cache { internals; externals; };
// restrict recursion

allow-recursion { internals; externals; };

bi

// sample secondary zone
zone "sitel.example.com" {

type primary;

file "m/sitel.foo.com";

allow-transfer { internals; externals; };
bi

zone "site2.example.com" {
type secondary;
file "s/site2.foo.com";
primaries { another_bastion_host_maybe; };
allow-transfer { internals; externals; }
bi

In the resolv.conf (or equivalent) on the bastion host(s):

search

nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4

6.5 IPv6 Supportin BIND 9

BIND 9 fully supports all currently defined forms of IPv6 name-to-address and address-to-name lookups. It also uses
IPv6 addresses to make queries when running on an IPv6-capable system.

For forward lookups, BIND 9 supports only AAAA records. RFC 3363 deprecated the use of A6 records, and client-side
support for A6 records was accordingly removed from BIND 9. However, authoritative BIND 9 name servers still load
zone files containing A6 records correctly, answer queries for A6 records, and accept zone transfer for a zone containing
A6 records.

6.5. IPv6 Support in BIND 9 61

https://datatracker.ietf.org/doc/html/rfc3363.html

BIND 9 Administrator Reference Manual, Release 9.18.27

For IPv6 reverse lookups, BIND 9 supports the traditional “nibble” format used in the 1p6 . arpa domain, as well as the
older, deprecated ip6 . int domain. Older versions of BIND 9 supported the “binary label” (also known as “bitstring”)
format, but support of binary labels has been completely removed per RFC 3363. Many applications in BIND 9 do not
understand the binary label format at all anymore, and return an error if one is given. In particular, an authoritative BIND
9 name server will not load a zone file containing binary labels.

6.5.1 Address Lookups Using AAAA Records

The IPv6 AAAA record is a parallel to the IPv4 A record, and, unlike the deprecated A6 record, specifies the entire IPv6
address in a single record. For example:

SORIGIN example.com.
host 3600 IN AAAA 2001:db8::1

Use of [Pv4-in-IPv6 mapped addresses is not recommended. If a host has an IPv4 address, use an A record, nota AAAA,
with : : ££££:192.168.42.1 as the address.

6.5.2 Address-to-Name Lookups Using Nibble Format

When looking up an address in nibble format, the address components are simply reversed, just as in IPv4, and ip6.
arpa. is appended to the resulting name. For example, the following commands produce a reverse name lookup for a
host with address 2001 :db8: : 1:

SORIGIN 0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.1ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 14400 IN PTR (
host.example.com.)

6.6 Dynamically Loadable Zones (DLZ)

Dynamically Loadable Zones (DLZ) are an extension to BIND 9 that allows zone data to be retrieved directly from an
external database. There is no required format or schema. DLZ modules exist for several different database backends,
including MySQL and LDAP, and can be written for any other.

The DLZ module provides data to named in text format, which is then converted to DNS wire format by named. This
conversion, and the lack of any internal caching, places significant limits on the query performance of DLZ modules.
Consequently, DLZ is not recommended for use on high-volume servers. However, it can be used in a hidden primary
configuration, with secondaries retrieving zone updates via AXFR. Note, however, that DLZ has no built-in support for
DNS notify; secondary servers are not automatically informed of changes to the zones in the database.

6.6.1 Configuring DLZ

dlz

Grammar zone (primary, redirect, secondary): d1z <string>;

Grammar topmost, view:

dlz <string> {
database <string>;
search <boolean>;

}; // may occur multiple times

62 Chapter 6. Advanced Configurations

https://datatracker.ietf.org/doc/html/rfc3363.html

BIND 9 Administrator Reference Manual, Release 9.18.27

Blocks: topmost, view, zone (primary, redirect, secondary)

Tags: zone

Configures a Dynamically Loadable Zone (DLZ) database in named. conf.

A DLZ database is configured with a d1 z statement in named. conf:

dlz example {

database "dlopen driver.so args";
search yes;

bi

This specifies a DLZ module to search when answering queries; the module is implemented in driver . so and is loaded
at runtime by the dlopen DLZ driver. Multiple d 1 z statements can be specified.

search

Grammar: search <boolean>;
Blocks: dlz, view.dlz
Tags: query

Specifies whether a Dynamically Loadable Zone (DLZ) module is queried for an answer to a quer