
Programmer’s Guide to the IDB Facility

A Facility for Manipulating the DICOM
Hierarchical Query Model

David E. Beecher

Mallinckrodt Institute of Radiology
Electronic Radiology Laboratory

510 South Kingshighway Boulevard
St. Louis, Missouri 63110

314/362-6965 (Voice)
314/362-6971 (FAX)

Version 2.10.0
August 3, 1998

Copyright (c) 1995, 1998 RSNA, Washington University
/wuerlb/documentation/dicom/facilities/idb.frm

COM
 the
 and
ele-

rtion
at han-
allows
se.
eed,

 data
d were
at are

nance
y main-
1 Introduction

The IDB routines provide a structured access mechanism for building and maintaining a DI
hierarchical data model.. This library is not database dependent, does rely quite heavily on
TBL facility. This library include routines to open and close individual databases (IDB_Open
IDB_Close), as well as image insertion (IDB_InsertImage and IDB_InsertImageInstance), d
tion (IDB_Delete), and selection (IDB_Select).

Recall that the DICOM data model includes Patient, Study, Series, Image levels. The inse
routine is simplified by not having a separate routine at each level, but rather one routine th
dles all levels. Furthermore, the concept of an image instance has been introduced which
users of this facility to store multiple “instances” or copies of the same image in the databa
This is useful to differentiate between different storage mechanisms, high-speed vs. low-sp
etc.. This library was designed primarily for the support of the DICOM Image Server.

2 Data Structures

idb.h is the primary include file for applications wishing to use the facility. There are several
structures defined which are of use to the developer. The first group of structures presente
designed for the selection routine. Notice that in each structure several fields are present th
not part of the DICOM data model. Several fields have been added to facilitate the mainte
of this database, like InsertDate and InsertTime, as well as parent node pointers to correctl
tain the hierarchical connections.

typedef struct _IDB_PatentQuery {
 char
 PatNam[IDB_PN_QLENGTH+1],
 PatID[IDB_LO_QLENGTH+1],
 PatBirDat[IDB_DA_QLENGTH+1],
 PatBirTim[IDB_TM_QLENGTH+1],
 PatSex[IDB_CS_QLENGTH+1];
 long
 NumPatRelStu,
 NumPatRelSer,
 NumPatRelIma;
 char
 InsertDate[IDB_DA_QLENGTH+1],
 InsertTime[IDB_TM_QLENGTH+1],
 Owner[IDB_OWNER_QLENGTH+1],
 GroupName[IDB_GROUP_QLENGTH+1],
 Priv[IDB_PRIV_QLENGTH+1];
} IDB_PatientQuery;

typedef struct _IDB_StudyQuery {
 char
 StuDat[IDB_DA_QLENGTH+1],
 StuTim[IDB_TM_QLENGTH+1],
 AccNum[IDB_SH_QLENGTH+1],
 StuID[IDB_SH_QLENGTH+1],
 StuInsUID[IDB_UI_QLENGTH+1],
 RefPhyNam[IDB_PN_QLENGTH+1],
 StuDes[IDB_LO_QLENGTH+1],
 PatAge[IDB_AS_QLENGTH+1],
 PatSiz[IDB_DS_QLENGTH+1],
 PatWei[IDB_DS_QLENGTH+1];
 int
 NumStuRelSer,
 NumStuRelIma;
 char
 InsertDate[IDB_DA_QLENGTH+1],
 InsertTime[IDB_TM_QLENGTH+1],
 Owner[IDB_OWNER_QLENGTH+1],
 GroupName[IDB_GROUP_QLENGTH+1],
 Priv[IDB_PRIV_QLENGTH+1];
 char
 __PatParent__[DICOM_UI_LENGTH+1];
} IDB_StudyQuery;

typedef struct _IDB_SeriesQuery {
 char
 Mod[IDB_CS_QLENGTH+1],
 SerNum[IDB_IS_QLENGTH+1],
 SerInsUID[IDB_UI_QLENGTH+1],
 ProNam[IDB_LO_QLENGTH+1],
 SerDes[IDB_LO_QLENGTH+1],
 BodParExa[IDB_CS_QLENGTH+1],
 StuDes[IDB_LO_QLENGTH+1];
 int
 NumSerRelIma;
 char
 InsertDate[IDB_DA_QLENGTH+1],
 InsertTime[IDB_TM_QLENGTH+1],
 Owner[IDB_OWNER_QLENGTH+1],
 GroupName[IDB_GROUP_QLENGTH+1],
 Priv[IDB_PRIV_QLENGTH+1];
 char
__StuParent__[DICOM_UI_LENGTH+1];
} IDB_SeriesQuery;
2/14

 be
typedef struct _IDB_ImageQuery {
 char
 ImaNum[IDB_IS_QLENGTH+1],
 SOPInsUID[IDB_UI_QLENGTH+1],
 SOPClaUID[IDB_UI_QLENGTH+1],
 PhoInt[IDB_CS_QLENGTH+1];
 int
 SamPerPix,
 Row,
 Col,
 BitAll,
 BitSto,
 PixRep;
 char
 InsertDate[IDB_DA_QLENGTH+1],
 InsertTime[IDB_TM_QLENGTH+1],
 Owner[IDB_OWNER_QLENGTH+1],
 GroupName[IDB_GROUP_QLENGTH+1],
 Priv[IDB_PRIV_QLENGTH+1];
 char
 __SerParent__[DICOM_UI_LENGTH+1];
 LST_HEAD
 *ImageUIDList,
 *InstanceList;
} IDB_ImageQuery;

typedef struct _IDB_Query {
 IDB_PatientQuery patient;
 IDB_StudyQuery study;
 IDB_SeriesQuery series;
 IDB_ImageQuery image;
 long

PatientQFlag,
StudyQFlag,
SeriesQFlag,
ImageQFlag;
PatientNullFlag,
StudyNullFlag,
SeriesNullFlag,
ImageNullFlag;

} IDB_Query;

The following bit-flags are defined for the IDB_Query structure to signal which fields should
examined for retrieval:

/*
 * Query Flags for IDB_Select--Patient Level
 */
#define QF_PAT_PatNam 0x00000001
#define QF_PAT_PatID 0x00000002
#define QF_PAT_PatBirDat 0x00000004
#define QF_PAT_PatBirTim 0x00000008
#define QF_PAT_PatSex 0x00000010
#define QF_PAT_NumPatRelStu 0x00000020
#define QF_PAT_NumPatRelSer 0x00000040
#define QF_PAT_NumPatRelIma 0x00000080
#define QF_PAT_InsertDate 0x00000100
#define QF_PAT_InsertTime 0x00000200
#define QF_PAT_Owner 0x00000400
#define QF_PAT_GroupName 0x00000800
#define QF_PAT_Priv 0x00001000
/*
 * Query Flags for IDB_Select--Study Level
 */
#define QF_STU_StuDat 0x00000001
#define QF_STU_StuTim 0x00000002
#define QF_STU_AccNum 0x00000004
#define QF_STU_StuID 0x00000008
#define QF_STU_StuInsUID 0x00000010
#define QF_STU_RefPhyNam 0x00000020
#define QF_STU_StuDes 0x00000040
#define QF_STU_PatAge 0x00000080
#define QF_STU_PatSiz 0x00000100
#define QF_STU_PatWei 0x00000200
#define QF_STU_NumStuRelSer 0x00000300
#define QF_STU_NumStuRelIma 0x00000400
#define QF_STU_InsertDate 0x00000800
#define QF_STU_InsertTime 0x00001000
#define QF_STU_Owner 0x00002000
#define QF_STU_GroupName 0x00004000
#define QF_STU_Priv 0x00008000
/*
 * Query Flags for IDB_Select--Series Level
 */
#define QF_SER_Mod 0x00000001
#define QF_SER_SerNum 0x00000002
#define QF_SER_SerInsUID 0x00000004
#define QF_SER_ProNam 0x00000008
#define QF_SER_SerDes 0x00000010
#define QF_SER_BodParExa 0x00000020
#define QF_SER_NumSerRelIma 0x00000040
#define QF_SER_InsertDate 0x00000080
#define QF_SER_InsertTime 0x00000100
#define QF_SER_Owner 0x00000200
#define QF_SER_GroupName 0x00000400
#define QF_SER_Priv 0x00000800
/*
 * Query Flags for IDB_Select--Image Level
 */
4/14

y the
 exam-
Time
#define QF_IMA_ImaNum 0x00000001
#define QF_IMA_SOPInsUID 0x00000002
#define QF_IMA_SOPClaUID 0x00000004
#define QF_IMA_SamPerPix 0x00000008
#define QF_IMA_PhoInt 0x00000010
#define QF_IMA_Row 0x00000020
#define QF_IMA_Col 0x00000040
#define QF_IMA_BitAll 0x00000080
#define QF_IMA_BitSto 0x00000100
#define QF_IMA_PixRep 0x00000200
#define QF_IMA_InsertDate 0x00000400
#define QF_IMA_InsertTime 0x00000800
#define QF_IMA_Owner 0x00001000
#define QF_IMA_GroupName 0x00002000
#define QF_IMA_Priv 0x00004000
#define QF_IMA_SOPInsUIDList 0x00008000

Insertion is handled a little differently, due to the fact that not all the fields can be inserted b
user. Different structures were designed to accomodate this and are described below. For
ple, the user, when inserting and new image, is not allowed to set the InsertDate or Insert
field, the insertion routines handle that automatically.

typedef struct _IDB_PatientNode {
 char
 PatNam[DICOM_PN_LENGTH + 1],
 PatID[DICOM_LO_LENGTH + 1],
 PatBirDat[DICOM_DA_LENGTH + 1],
 PatBirTim[DICOM_TM_LENGTH + 1],
 PatSex[DICOM_CS_LENGTH + 1];
 char
 Owner[IDB_OWNER_LENGTH + 1],
 GroupName[IDB_GROUP_LENGTH + 1],
 Priv[IDB_PRIV_LENGTH + 1];
} IDB_PatientNode;

typedef struct _IDB_StudyNode {
 char
 StuDat[DICOM_DA_LENGTH + 1],
 StuTim[DICOM_TM_LENGTH + 1],
 AccNum[DICOM_SH_LENGTH + 1],
 StuID[DICOM_SH_LENGTH + 1],
 StuInsUID[DICOM_UI_LENGTH + 1],
 RefPhyNam[DICOM_PN_LENGTH + 1],
 StuDes[DICOM_LO_LENGTH + 1],
 PatAge[DICOM_AS_LENGTH + 1],
 PatSiz[DICOM_DS_LENGTH + 1],
 PatWei[DICOM_DS_LENGTH + 1];
 char
 Owner[IDB_OWNER_LENGTH + 1],
 GroupName[IDB_GROUP_LENGTH + 1],
 Priv[IDB_PRIV_LENGTH + 1];
} IDB_StudyNode;

typedef struct _IDB_SeriesNode {
 char
 Mod[DICOM_CS_LENGTH + 1],
 SerNum[DICOM_IS_LENGTH + 1],
 SerInsUID[DICOM_UI_LENGTH + 1],
 ProNam[DICOM_LO_LENGTH + 1],
 SerDes[DICOM_LO_LENGTH + 1],
 BodParExa[DICOM_CS_LENGTH + 1];
 char
 Owner[IDB_OWNER_LENGTH + 1],
 GroupName[IDB_GROUP_LENGTH + 1],
 Priv[IDB_PRIV_LENGTH + 1];
} IDB_SeriesNode;

typedef struct _IDB_ImageNode {
 char
 ImaNum[DICOM_IS_LENGTH + 1],
 SOPInsUID[DICOM_UI_LENGTH + 1],
 SOPClaUID[DICOM_UI_LENGTH + 1],
 PhoInt[DICOM_CS_LENGTH + 1];
 int
 SamPerPix,
 Row,
 Col,
 BitAll,
 BitSto,
 PixRep;
 char
 Owner[IDB_OWNER_LENGTH + 1],
 GroupName[IDB_GROUP_LENGTH + 1],
 Priv[IDB_PRIV_LENGTH + 1];
 char
 RespondingTitle[17],
 Medium[33],
 Path[256],
 Transfer[65];
 int
 Size;
} IDB_ImageNode;

typedef struct _IDB_Insertion {
 IDB_PatientNode patient;
 IDB_StudyNode study;
 IDB_SeriesNode series;
 IDB_ImageNode image;
} IDB_Insertion;

These data structures are referenced in the routine descriptions that follow.
6/14

3 Include Files

Any applications needing to use this facility should include the following files:

#include “idb.h”

4 Return Values

The following returns are defined from the IDB routines:

5 IDB Routines

Detailed descriptions of the IDB functions are included in this section.

IDB_NORMAL Operation completed successfully

IDB_UMIMPLEMENTED The operation attempted is currently unimplemented

IDB_ALREADYOPENED The specified database is already opened

IDB_BADDBTABPAIR For each database opened, a certain number of tables within
that database must exist and open successfully

IDB_NOMEMORY Unable to dynamically allocate needed memory.

IDB_CLOSERROR An error occurred attempting to close a database

IDB_BADHANDLE The handle passed is invalid

IDB_BADLEVEL The DICOM level specified is invalid

IDB_NULLUID A null UID was passed

IDB_BADPATUID An invalid Patient UID was passed

IDB_BADSTUUID An invalid Study UID was passed

IDB_BADSERUID An invalid Series UID was passed

IDB_BADIMAUID An invalid Image UID was passed

IDB_BADLISTENQ An attempt to add a node to an internal list failed

IDB_NOINSERTDATA No data was provided to insert

IDB_BADLEVELSEQ A bad BEGIN/END level sequence was passed

IDB_NOMATCHES No database matches were found for the query

IDB_EARLYEXIT The user’s callback routine returned something other than
IDB_NORMAL which caused the select to quit early

IDB_DUPINSTANCE Attempt to insert a duplicate instance in the database

tors
IDB_Close

Name

IDB_Close -this routine closes a previously opened database

Synopsis

CONDITION IDB_Close(char *databaseName, IDB_HANDLE **handle)

databaseName The name of the database to open.
handle contains the database handle

Description

This routine attempts to find the handle in it’s internal table of open database descrip
and closes all the tables associated with that descriptor.

Notes

None

Return Values

IDB_NORMAL
IDB_CLOSERROR
8/14

ll

priate
s

IDB_Delete

Name

IDB_Delete -this routine deletes node(s) in the hierarchy starting at the node of the
selected UID

Synopsis

CONDITION IDB_Delete(IDB_HANDLE **handle, long level, char *uid)

handle the database identifier.
level The level in the hierarchy specifying where the next parameter, uid, wi

be found. level must be one of the pre-defined constants,
IDB_PATIENT_LEVEL , IDB_STUDY_LEVEL,
IDB_SERIES_LEVEL, or IDB_IMAGE_LEVEL.

uid specifies the uid of the node at which to begin the deletion.

Description

IDB_Delete creates lists of all the uids to be deleted and then simply issues the appro
TBL_Delete calls to perform that task. It also updates counts in the un-deleted node
where appropriate.

Notes

None.

Return Values

IDB_NORMAL
IDB_BADHANDLE
IDB_BADLEVEL
IDB_NULLUID
IDB_BADPATID
IDB_BADSTUUID
IDB_BADSERUID
IDB_BADIMAUID
IDB_NOMEMORY
IDB_BADLISTENQ

ase

con-
d with

 data-
nser-
IDB_InsertImage

Name

IDB_InsertImage -this routine inserts records into the database

Synopsis

CONDITION IDB_InsertImage(IDB_HANDLE **handle, IDB_Insertion *pssi)

handle the database identifier
pssi the structure that contains the new record to be inserted into the datab

Description

The insertion algorithm first check to determine if any of the uids passed in pssi are
tianed in the database. If so, then these levels need not be replaced...simply update
new counts for the number of descendants. If multiple records with that UID exist, a
base integrity problem exists. This routine generates the appropriate error and the i
tion is aborted.

Notes

None.

Return Values

IDB_NORMAL
IDB_NOINSERTDATA
IDB_BADPATUID
IDB_BADSTUUID
IDB_BADSERUID
IDB_BADIMAUID
IDB_DUPINSTANCE
10/14

base

s) into
IDB_InsertImageInstance

Name

IDB_InsertImageInstance -this routine inserts an image instance record into the data

Synopsis

CONDITION IDB_InsertImageInstance(IDB_HANDLE **handle, char *imageuid,
IDB_InstanceListElement *iie)

handle the database identifier
imageuid the image uid for which the instances will be inserted.
iie the list of instances to be inserted.

Description

The image UID (imageuid) passed must exist. The routine then inserts the instance(
the image instance table.

Notes

None.

Return Values

IDB_NORMAL
IDB_BADHANDLE
IDB_BADIMAUID

nput

 to the
nd
IDB_Open

Name

IDB_Open -this routine attempts to open for access the database pointed to by the i
string databaseName.

Synopsis

CONDITION IDB_Open(char *databaseName, IDB_HANDLE **handle)

databaseName the name of the database to open.
handle will contain the newly opened database handle upon success

Description

IDB_Open uses the TBL facility extensively to determine if the needed tables can be
opened and accessed. If so, this routine allocates a context which contains pointers
tables just opened and saves this context in a linked list maintained by IDB_Open a
IDB_Close.

Notes

None.

Return Values

IDB_NORMAL
IDB_ALREADYOPENED
IDB_BADDBTABPAIR
IDB_NOMEMORY
12/14

tching

t,

d set
.

egin
nts:

tained
e list
llback

 the
IDB_Select

Name

IDB_Select -this routine selects records from the database and uses the DICOM ma
specifications for retrieval

Synopsis

CONDITION IDB_Select(IDB_HANDLE **handle, IDB_QUERY_MODEL model
long begin_level, long end_level, IDB_QUERY *pssi, long *coun
CONDITION (*callback()), void *ctx)

handle the database identifier.
model The DICOM query model to be used for the query. One of an enumerate

including PATIENT_ROOT, STUDY_ROOT, and PATIENTSTUDY_ONLY
begin_level
end_level the levels in the hierarchy specifying where the search for records will b

and end. begin_level and end_level must be one the pre-defined consta
IDB_PATIENT_LEVEL , IDB_STUDY_LEVEL, IDB_SERIES_LEVEL,
or IDB_IMAGE_LEVEL (see Notes below).

count this parameter will contain the count of the number of records matched
upon return.

callback the callback function invoked when a matching record is found.
It is invoked as described below.

ctx ancillary data passed through to the callback function and untouched by
this routine.

Description

As each record is retrieved from the database, the fields requested by the user (con
in pssi), are filled with the information retrieved from the database and a pointer to th
is passed to the callback routine designated by the input parameter callback. The ca
routine is invoked as follows:

callback(IDB_Query *pssi, long count, void *ctx)

Count contains the number of records retrieved to this point.Ctx contains any additional
information the user originally passed to the select function. Ifcallback returns any value
other thanIDB_NORMAL, it is assumed that this function should terminate (i.e. cancel
current db operation), and return an abnormal termination message (IDB_EARLYEXIT)
to the routine which originally invoked the select.

en if
vel

ly.

 as a
t no

re dif-
ver
Notes

The addition ofmodel to this routine allows for a more efficient implementation of the
STUDY_ROOT retrieval that was possible before. The user should remember that ev
theSTUDY_ROOT model is chosen, patient information is only returned if the begin_le
has a value ofIDB_PATIENT_LEVEL . Even though (logically) the patient and study
levels are collapsed in theSTUDY_ROOT model, internally they are still stored separate

This routine contains the use of a “go to” to implement the structure construct known
multi-level break statement. ‘c’ has a single level break statement in the language bu
facility to implement a multi-level break. This algorithm could well have been imple-
mented without using the actual “go to”, but the resulting code would have been mo
ficult to read and maintain in my opinion. I am not fond of using “go to’s”, and rarely e
do, but I do find that every 100 thousand lines or so that the need arises...

Return Values

IDB_NORMAL
IDB_BADHANDLE
IDB_BADLEVEL
IDB_BADLEVELSEQ
IDB_NOMATCHES
IDB_EARLYEXIT
IDB_NOMEMORY
14/14

	Programmer’s Guide to the IDB Facility
	1 Introduction
	2 Data Structures
	3 Include Files
	4 Return Values
	5 IDB Routines

	IDB_Close
	IDB_Delete
	IDB_InsertImage
	IDB_InsertImageInstance
	IDB_Open
	IDB_Select

