
CipherText Serialization

Page 1

Format of portable serialization of org.owasp.esapi.crypto.CipherText object
This spreadsheet describes the portable serialization for the ESAPI for Java 2.0's CipherText object.
This serialization is intended to be platform and operating system independent.
It is expected that other ESAPI language implementations will implement this portable serialization
to make it possible to exchange data with encrypted data with other ESAPI implementations.

String type: All strings are written out as UTF-8 encoded byte arrays in network byte order (i.e., big-endian) and

The values of the integral types in Java are integers in the following ranges:
For byte, 1 octet, range from -128 to 127, inclusive
For short, 2 octets, range from -32768 to 32767, inclusive
For int, 4 octets, range from -2147483648 to 2147483647, inclusive
For long, 8 octets, range from -9223372036854775808 to 9223372036854775807, inclusive

Memory Layout:
Ordered as a byte array. All fields are written in network byte order (i.e., big endian).

Order Size (in octets) Field Detailed Description
1 4 KDF PRF & version # Key Derivation Function (KDF) Pseudo Random Function (PRF) & serialization version #; represented as int as YYYYMMDD. See 'KDF PRF&/ vers' worksheet.

2 8 timestamp
3 2 xformLen strlen of cipherXform; always > 0.

4 xformLen octets cipherXform cipher transformation string, in form of cipherAlgorithm/cipherMode/paddingScheme; e.g., “AES/CBC/PKCS5Padding”.

5 2 keysize key size of cipher, in bits.

6 2 blocksize cipher block size, given in octets.

7 2 ivLen IV length, in octets; 0 if no IV present.

8 ivLen octets IV Initialization vector, if ivLen > 0; otherwise omitted.

9 4 ciphertextLen length of raw cipher text, in octets.

10 ciphertextLen octets rawCiphertext raw cipher text (for ciphertextLen octets).

11 2 macLen length of MAC, in octets; set to 0 if no MAC used.

12 macLen octets MAC Message Authentication Code (MAC) value if macLen > 0 (i.e., if MAC present); otherwise omitted.

Calculation of MAC:

MAC is calculated by computing a derived key using the Key Derivation Function (KDF) Pseudo Random Function (PRF), via
JavaEncryptor's private method, computeDerivedKey(), which in turn calls KeyDerivationFunction.computeDerivedKey()
with “authenticity” as the 'purpose' parameter.
This authKey is then passed to CipherText.computeAndStoreMAC() for the CipherText object.

The MAC (implemented in KeyDerivationFunction.computeDerivedKey()) is calculated based on NIST SP 800-108, section 5.1:

MAC = PRF(authKey, IV || rawCipherText);

Where '||' denotes concatenation, and PRF is a suitable pseudo random function.
The following PRFs are currently supported: HmacSHA1, HmacSHA256, HmacSHA384, & HmacSHA512.

NOTE: All data is serialized as “network byte order”, which is the same as big-endian byte order.

are prepended by a signed 2-octet length. Note that strings are not null terminated.

Notation: Fields shown in italics are considered optional. If they are omitted, the length preceding that field will be 0.

KDF PRF & vers

Page 2

Memory layout for use the first 4-byte 'int' (shown in network byte order [aka, big-endian]).

================================== Big-Endian Bit Ordering ======================================
|<------ Byte[0] ------>|<------ Byte[1] ------>|<------ Byte[2] ------>|<------ Byte[3] ------>|

|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|32|

	Un	MAC
<----------------- Version Date Indicator in form of YYYYMMDD ----------------->	us	Algorithm
	ed	Indicator

Version is KDF version and MAC algorithm indicator specifies which PRF to use.

// Proposal for bits 29-32. Default set via Encryptor.KDF.PRF in ESAPI.properties file.

// Built-in default uses HmacSHA256 if that property is not set.
//
// Allowed MAC algorithms and there respective key sizes.
//
// Value MAC Alg name hash size (bits) Notes /Comments
// ==
 00 HmacSHA1 160

 01 HmacSHA256 256 Default
 02 HmacSHA384 384
 03 HmacSHA512 512
 04 Reserved for SHA-3 winner 224 SHA-3 must provide
 05 Reserved for SHA-3 winner 256 msg digests of 224,
 06 Reserved for SHA-3 winner 384 256, 384, & 512 bits.
 07 Reserved for SHA-3 winner 512 Names for SHA-3 TBD.
 08 OtherReservedFuture01 ??? Thus leaving us room
 09 OtherReservedFuture02 ??? for 8 other MACs in
 the future.
 15 OtherReservedFuture08 8192 Uncle Albert's MACjik Elixir

