RIPEM User's Guide

for RIPEM version 2.0

Mark Riordan

mrr@scss3.cl.msu.edu

June 1993

revised September 1994

for RIPEM 2.0 by Jeff Thompson

jefft@netcom.com

Introduction

What is RIPEM?

RIPEM (Riordan's Internet Privacy-Enhanced Mail, pronounced RYE-pehm) is a public key encryption program oriented toward use with electronic mail. It allows you to generate your own public keypairs, and to encrypt and decrypt messages based on your key and the keys of your correspondents. RIPEM is free, but each user is required to agree to a license agreement which places some limitations on its use.

RIPEM also comes with RCERTS, a menu-driven utility for managing certificates and CRLs.

This document is meant to instruct new users on the basic use of RIPEM and RCERTS. It does not replace the Unix man page ripem.man, also distributed with RIPEM. The man page describes all RIPEM options in reference format; some obscure options are discussed only in the man page. See the file CHANGES12.TXT in the RIPEM distribution for a discussion of the changes between RIPEM 1.12.0 and RIPEM 1.2 earlier versions. See also the Usenet newsgroup alt.security.ripem.

Public Key Encryption

Public key encryption, a fairly recent concept, is an encryption scheme in which messages are encrypted and decrypted with pairs of keys. One component of a user's keypair is used for encryption; the other is used for decryption. Thus, public key cryptography is sometimes referred to as asymmetric cryptography. Though both halves of the keypair are computed at the same time, neither can be derived from the other. (However, for convenience, a copy of the public key information is usually kept with the private key.)

This arrangement allows each correspondent to publish one half of his keypair (the encryption key, public key, or public component), keeping secret only the decryption half, or private component. Users wishing to send a message to, say, Alice, simply consult a non-secret directory of public components to find Alice's public key component. They encrypt their messages to Alice using her public key. Because only Alice knows her private component, only she can decrypt any of these messages to her. And none of the users corresponding with Alice need ever have first exchanged any secret information with her. Also, Alice can encrypt using her private component to produce a signature. Users can decrypt the signature using Alice's public component. Because only Alice knows her private component, only she could have produced the signature and so users trust that it came from her, just as if she put a handwritten signature on a document.

Each user needs keep secret only his/her own private component. Contrast this with traditional secret-key, or symmetric, cryptography. In a group of N correspondents, each user must keep track of N-1 secret keys. Furthermore, the total number of secret keys required for traditional cryptography is (N)*(N-1)/2, much larger than the N keys required by public key cryptography.

Thus, public key cryptography's value lies in improved key management, especially for large numbers of correspondents. However, for the value of public key cryptography to be realized, there must be an effective way for individual users to widely advertise their public key components. This problem is solved with certificates, which are explained later on.

Privacy-Enhanced Mail

RIPEM provides capabilities very similar to Privacy-Enhanced Mail (PEM), as described by Internet RFC's 1421-1424. RIPEM uses the concept of a certificate, a document which guarantees that you have the correct public key of a correspondent. However, RIPEM does not implement the full certificate hierarchy as described by RFC 1422. Instead, RIPEM supports a “direct trust” model where users certify each other directly without subscribing to a hierarchy. Because RIPEM does not implement a certificate hierarchy, it is not compliant with these Internet PEM RFC's. However, RIPEM is as compliant as is possible without implementing a certificate hierarchy.

RIPEM provides the capabilities of Privacy-Enhanced Mail (PEM), as described by Internet RFC's 1421-1424. RIPEM uses the concept of a certificate, a document which guarantees that you have the correct public key of a correspondent. RIPEM supports a “direct trust” as well as hierarchical certification models. In direct trust, users certify each other directly without needing any third parties. In a hierarchy, you certify a user as in direct trust, but you also indicate that you trust certificates that user makes make for others. In this way you can "extend" trust to a wider range of users without having to make certificates for all of them.

As specified in the PEM RFC's, RIPEM generates a pseudo-random message key, and uses this key to encipher the message using a traditional symmetric-key encryption algorithm. In the current implementation of RIPEM, the DES (Data Encryption Standard) algorithm in one of two different modes. RIPEM then enciphers the message key using the RSA (Rivest-Shamir-Adleman) public key algorithm, and includes the enciphered message key with the message. Although the actual message text is never enciphered with a public key algorithm, the effect is the same. The advantage of this hybrid approach is performance-related: DES and other typical symmetric cryptosystems are typically thousands of times faster than public key systems.

RIPEM also "signs" the message by computing a checksum or hash function of the message plaintext, and encrypting this hash value with the sender's private key component. (Private RSA key components are usually used for decryption of messages encrypted with the public component, but in fact the reverse process also works.) Rivest's MD5 message digest algorithm is used for the hash function. This signature is verified by the recipient, to ensure that the message really was from the purported sender. The recipient computes her own message digest of the message after decrypting the message. The recipient then decrypts the encrypted message digest using the sender's public key and checks it against the recomputed digest. If the two match, the message must have been encrypted by the sender, since only the sender knows his private component.

The results of these computations--the encrypted message key, the encrypted message, the signature (encrypted hash value), and various pieces of control information--are formatted into lines of ASCII text suitable for inclusion into an electronic mail message.

About RIPEM

What's New in RIPEM 2.0

The main new feature in RIPEM 2.0 is certificate chains. These allow you to participate in existing certification hierarchies and develop extended trust for the public keys of your correspondents. RIPEM includes support for certificate revocation lists (CRLs) and a flexible certificate chain finding algorithm.

The new RCERTS utility lets you be an issuer, to select which certificate chains you trust, publish your own CRLs and manage certificates.

RIPEM can now produce PEM-compliant messages which can be read by other applications which follow RFC 1421.

More support is provided for the RIPEM home directory. RIPEM will create the directory if it doesn't exist and will use a default if one is not specified. (Use of the RIPEM home directory is now required. See Upgrading from RIPEM 1.2 below for more details.)

Utilizing the new RSAREF 2.0 cryptographic library, the limit on message size has been removed. (There is one case where message size is limited. See caveats below.)

RIPEM is based on the new RIPEM library application programming interface (API). Any application, especially a user mail agent, can now call the RIPEM library API to add security to its messages. Also, using the RIPEM library, an application can process messages not only in files, but in memory buffers, on the clipboard, anywhere. The RIPEM library API is documented separately.

Platforms Supported

RIPEM runs on MS-DOS, Macintosh, OS/2, Windows NT, and a variety of Unix systems, including NeXTStep, SunOS, Sun Solaris 2.1, DEC ULTRIX, IBM AIX, HP/UX, SGI Irix, MIPS RISC/os, Motorola System V/88, Apollo, SCO Unix, Jolitz's 386BSD, Linux, ESIX, and others. Ports to other platforms are anticipated. Some ports of RIPEM do not have all the functionality of the Unix version; in particular, some versions do not implement direct network access to the RIPEM key server.

Licensing

The source code to RIPEM itself is in the public domain. However, because RIPEM was developed using RSA Data Security's RSAREF toolkit, use of RIPEM requires an RSAREF license. A copy of this license is included in RIPEM distributions, and users of RIPEM should read this license before running the program. The author of RIPEM believes that the current RSAREF license allows free personal use of RIPEM by citizens of the United States and Canada. Commercial use is forbidden. However, this personal interpretation has no legal standing, and RIPEM users are urged to read the RSAREF license agreement themselves. Note: persons wishing to redistribute RIPEM should consider relevant US government export restrictions.

How to Obtain RIPEM

RIPEM is distributed via anonymous FTP from rsa.com. RIPEM's home base, on which the most recent version can always be found, is the site ripem.msu.edu. RIPEM is distributed via non-anonymous FTP from this site. To comply with export restrictions, cryptology-related files on this server cannot be obtained via anonymous FTP. To apply for FTP access to ripem.msu.edu, send an email message to ripem@ripem.msu.edu. State your citizenship (must be USA or Canadian) and your willingness to comply with relevant export laws and software licenses. Also state the "canonical" Internet domain name of your host, and the country in which your host resides.

If you are not absolutely certain of the primary name of your host, FTP to ripem.msu.edu under user anonymous. The FTP server will inform you of your hostname. This is extremely important--experience distributing RIPEM to date has shown that many users do not know the canonical Internet hostname of their computer.

Here's a sample email message you might send:

		To: ripem@ripem.msu.edu

		Subject: FTP Access to ripem.msu.edu

Please give me access to ripem.msu.edu. I am an American citizen, and I agree to comply with crypto export laws and RSAREF license terms. My hostname is hobbit.egr.bigu.edu. This host is located in the United States.

After you have sent your request, you'll receive a special FTP username and password by return email. (There may be some delay, because I need to actually read your message before creating a username and password.) This username will work only from the hostname you specified in your message.

Once you have retrieved RIPEM, you are free to redistribute it, subject to export restrictions and RSAREF license terms. The complex distribution mechanism described above applies only to the site ripem.msu.edu, due to local site restrictions.

Caveats

Text files only. RIPEM encrypts only text-based messages; "binary" messages must be printably encoded (for instance, with uuencode) before being encrypted.

1023-character lines. The lines of text in plaintext messages processed by RIPEM must be less than 1024 characters long. (This restriction is borrowed from Internet RFC's on electronic mail and privacy-enhanced mail.)

Message size limits. Due to the nature of the RSAREF toolkit, RIPEM can encipher only messages which can fit entirely into the central memory of your computer. This is unlikely to be a problem on most workstations and larger computers, but may be a problem for some PC users. The vanilla MS-DOS version of RIPEM restricts messages to less than 48,000 characters.

Message size limits. If RIPEM is used to encipher a message which is read from stdin, the message must fit entirely into the central memory of your computer. This is because, when enciphering, a message must be read twice and stdin cannot be rewound. This is unlikely to be a problem on most workstations and larger computers, but may be a problem for some PC users. The vanilla MS-DOS version of RIPEM restricts these messages to less than 48,000 characters. A message which is enciphered from a file using the -i option, or any message which is deciphered can be of any length.

Simple "filter" only. RIPEM acts only as a "filter": it simply reads an input source and produces output. RIPEM is not capable of formatting or delivering electronic mail messages. In fact, although RIPEM has some features to facilitate its use with electronic mail, it need not be used in conjunction with electronic mail at all. For use with electronic mail, RIPEM requires an external mail program; for instance, the Unix mail program.

No guarantees. As RIPEM is free software, it should not be surprising that it comes with no guarantees of any type.

Credits

RIPEM was written primarily by Mark Riordan, but nearly all of the cryptographic technology comes from the RSAREF toolkit by RSA Data Security, Inc. Much-appreciated contributions were made by Mark Henderson, Richard Outerbridge, Greg Onufer, Marc VanHeyningen, Mark Windsor, and others. The Macintosh version of RIPEM was written by Ray Lau. RIPEM 2.0 certification extensions were written by Jeff Thompson.

Using RIPEM

Usage Overview

Using RIPEM generally requires the following steps: generating a keypair, communicating the public component of your key to correspondents, encrypting messages, and decrypting messages.

RIPEM has a bewildering array of command line options. However, most of them are not needed for ordinary use. Also, RIPEM looks at certain environment variables to determine what to do in the absence of certain command line options. Environment variables are named entities attached to your session which have values which you can set, either interactively or, more commonly, automatically at login time. For instance, a Unix user running the C Shell might include a line like

	setenv RIPEM_SERVER_NAME ripem.msu.edu RIPEM_USER_NAME fred@snark.edu

in his/her .cshrc file, while an MS-DOS user would accomplish the same thing by including

	set RIPEM_SERVER_NAME=ripem.msu.edu RIPEM_USER_NAME=fred@snark.edu

in the AUTOEXEC.BAT file.

For discussion of individual environment variables, see the sections below and the RIPEM man pages. However, there is one environment variable of general interest: the variable RIPEM_ARGS can be given the value of options using exactly the same syntax as used in command line parameters. Conflicts between parameters specified both in RIPEM_ARGS and on the command line are resolved in favor of the command line.

Here is a quick, simplified run-through of sample RIPEM usage:

To generate a keypair for username fred@snark.edu, placing the public component and the private component in the default RIPEM home directory named /usr/smith/ripemhom:

	ripem -g -H /usr/smith/ripemhom -R eks

This assumes you have set the RIPEM_USER_NAME environment variable as above. It is a good idea to set this environment variable since RIPEM always needs it.

The directory ripemhom must already be createdThis will create the RIPEM home directory if it doesn't exist. (Note: on some less common platforms, RIPEM may not know how to create a default RIPEM home directory. In this case you must use -H to specify the home directory and make sure to create it before using RIPEM.)

Assume at this point that you have collected a number of correspondents' public components by validating messages from them using �v, and that the RIPEM_USER_NAME environment variable is set.

To encrypt a message to recipient@bighost.edu, whose public key has already been validated and can be found in the default RIPEM home directory /usr/smith/ripemh, with the input message is in mymessage, and the encrypted output is to be placed in cipher.out:

	ripem -e -r recipient@bighost.edu

	 -i mymessage -o cipher.out -H /usr/smith/ripemh

To decrypt a message to you, reading from the file cipher.out and placing the decrypted message in the file plain.out, given the home directory ripemhom:

	ripem -d -i cipher.out -o plain.out -H /usr/smith/ripemh

The RIPEM Home Directory

Each of the RIPEM operations uses a home directory. The files in the RIPEM home directory contain your private key, your self-signed certificate which identifies you, the certificates you create to validate other users, and other information. You can specify the RIPEM home directory with the -H option. You may also set the RIPEM_HOME_DIR environment variable.

If you do not specify the RIPEM home directory, RIPEM will use a default, which is ~/.ripemhome for Unix, C:\RIPEMHOM for MS-DOS, and RIPEM Home in the system preferences folder for Macintosh. Other platforms may be supported in future releases. (If a default is not specified for your platform, you must specify the RIPEM home directory, which has already been created, using the -H option or the RIPEM_HOME_DIR environment variable.)

Generating a Keypair

Before you can use RIPEM, you must generate your own keypair. To do this, you must run RIPEM with the -g (for generate) option, and specify sources of pseudo-random information that RIPEM can use to create a unique keypair for you. RIPEM can obtain pseudo-random information from the running system, from characters you type at the keyboard, from a file, and from the command line. The first two options are generally the most useful.

You must also specify your RIPEM home directory.

Because keypairs are typically left unchanged for long periods of time--a year or more--it is very important that the private component of your keypair be kept secret. For this reason, RIPEM stores private key components only in encrypted form. (The key is encrypted using DES in CBC mode, with a pseudo-random "salt" added to the key.) When generating a keypair, RIPEM asks you for a key to be used to encrypt the private key component. This secondary key will be needed whenever you use RIPEM subsequently. It is critical that this key-to-a-key be chosen carefully, and that you remember it. If you forget the key to your private key component, your public key is worthless and unusable. The key to your private key can be up to 255 characters long. (This length limitation is an arbitrary implementation detail; RIPEM takes a hash function of the password you type before actually using it to encrypt the private component.)

A typical invocation of RIPEM to generate a keypair is:

	ripem -g -u fred@snark.edu -R eks -H /usr/smith/ripemh

This example assumes you have set the RIPEM_USER_NAME environment variable and are using the default RIPEM home directory. This call requests RIPEM to generate a keypair (-g). It identifies you (-u) as fred@snark.edu according to the RIPEM_USER_NAME; this information is placed in the output files. RIPEM creates a self-signed certificate and adds it to the file pubkeys in your RIPEM home directory. The file pubkeys contains all the certificates which RIPEM creates using your private key as well as issuer certificates you get from other users. The self-signed certificate contains your generated public key and your name, and is signed with your generated private key. Note that generate also displays the digest of your self-signed certificate which you should record for later use. (See below for more on self-signed certificates.) The private (or secret) component is placed in the file privkey in the RIPEM home directory. RIPEM will prompt you (twice) for an encryption password before writing to this file. The -R eks option means that to obtain a pseudo-random data for key generation, RIPEM will use the entire command line, will prompt you at the keyboard for a pseudo-random string, and will also query the system for pseudo-random information before generating the keypair.

RIPEM identifies your key by your usernameyour electronic mail address, which is specified by the -u option. If you omit the -u option, RIPEM will attempt to determine your email address username by taking the value of the environment variable RIPEM_USER_NAME or, if that is not present, by querying the running system. It is best to identify your key specify your username in a form that others will be able to use as an email address. For instance, in the above example, fred@snark.edu is a better key identifier username than just fred, because it is more readily used by correspondents on other hosts. If your host is known on the network by several different names, or if you ordinarily use several different computers interchangeably, it may be safer to explicitly specify your email address username to RIPEM, rather than have it to figure out the email address from the running system.

Note that not justjust an email address a username, but a full distinguished name is needed for the self-signed certificate. RIPEM uses the identifier username as the common name in a distinguished name for the Persona certification authority. If your RIPEM identifier username is fred@snark.edu, then your full distinguished name is “common name = fred@snark.edu, org unit = Persona Certificate, organization = RSA Data Security, Inc., country = US”.

When RIPEM generates your keypair, it also uses your new private key to create a certificate revocation list (CRL) and adds it to the file crls in your RIPEM home directory. Your CRL initially contains no revocation entries. (See below for more on CRLs.) RIPEM also creates your initial certification preferences and places them in the file preferen in you RIPEM home directory. Initially, you do not allow others to create certificate chains - only direct trust is allowed. (See below for more on certification preferences.)

By default, RIPEM generates keypairs roughly 516 bits in size. The author of RIPEM believes that this size is more than adequate for most purposes. However, the -b parameter is available for users who wish to generate larger keys. Specify -b bitsize to generate a key of size bitsize bits; bitsize must be between 512 and 1024, inclusive. Large keys are slower to generate as well as to subsequently use for encryption.

Generating a keypair is much slower than encryption or decryption. On a 386 PC-class computer, be prepared to wait several minutes for the key generation to complete if the key size is large.

Note that the first several bytes of all RIPEM keys are the same. This is due to RIPEM's use of OSI Distinguished Encoding Rules and associated key identifying strings to encode keys. It does not mean that the public keys generated are numerically similar.

Managing Private Key Components

Unlike public key components, private key components are stored in flat files only. Typically, a given user will have only one RIPEM key, and its private component will be kept by itself in the RIPEM home directory originally specified by the -H option during key generation.

During encryption and decryption, RIPEM will need to consult this file to determine your private key component. RIPEMcomponent. RIPEM determines the file's name in one of four ways: searches for your private key in the following order:

If the RIPEM home directory is specified either on the command line or by environment variable, use the file privkey in the home directory. Note that the -s option below may still be used but privkey will be searched first.

In the file privkey in the RIPEM home directory.

By using the value of In the file given by the -s (for secret key component) command line argument. If you specify �s myprivatekey on the RIPEM command line, RIPEM will use search myprivatekey as the flat file of private keys.

In the absence of -s, by using the value of file given by the RIPEM_PRIVATE_KEY_FILE environment variable.

If none of the above is specified, by using a default file name. On Unix systems, this file name is the fixed name .ripemprv in your home directory. On MS-DOS systems, it is the name \RIPEMPRV.

Note: RIPEM versions before 2.0 would also search a default file. On Unix this was ~/.ripemprv and on MS-DOS it was \RIPEMPRV. If you were relying on this default name, you must either specify it with -s or the environment variable, or better yet, move it to the file privkey in the RIPEM home directory.

Because the private key component file generated by ripem -g identifies your key by your email address, it is possible to create a database of private keys by concatenating the generated private key files created by RIPEM. RIPEM uses only the private component that corresponds to your currently-specified usernamespecified email address. This may be useful if, for some reason, you wish to maintain multiple public keys, identified by different email aliases. Also, because the private key components are encrypted, it is possible to maintain a publicly accessible file of private key components without great loss of security. However, it is generally best for each user to have exactly one public key, and for its private component to be kept in its own file, reasonably secured against access by others.

Changing the Key to Your Private Key (Changing your password)

You can change the key to your private component (also called your password) by using the -c option. This tells RIPEM to read your current private key file, decrypt it with your current key, prompt you for a new key, reencrypt your private component with the new key-to-the-key, and write out a new private component file. The old private key file is specified as described above. The modified private key file to be created may be specified via the -S option, otherwise the private key file in the home directory is rewritten “in place”. Thus, the sequence:

	$ ripem -c -H ripemhom

	Enter password to private key:

	Enter new password to private key:

	Enter again to verify:

reads the encrypted private key from privkey in ripemhom the default RIPEM home directory and changes it to the same private component encrypted with a new key.

Note: RIPEM versions before 2.0 allowed the -S option to specify the output file for the re-encrypted private key. RIPEM now always writes the output to privkey in the RIPEM home directory.

Note that the -c option changes neither the private component nor the public component of your public key. If you believe that the key to your private component has been compromised, it is probably better to change your public key (by creating a new one) than to simply change the key to your private key. The -c option also displays the digest of your self-signed certificate. Therefore, if your need this digest, you can obtain it by changing your key to private key to itself. For more on self-signed certificates, see abovebelow.

When you change your password with the -c option, RIPEM also re-signs your preferences using the new password. See RIPEM Preferences below for more information.

If you are upgrading from RIPEM version 1.1 or earlier, the -c option will create a self-signed certificate for you. See Upgrading From Version 1.1 below.

Certificates

A potential problem with public key cryptography is this: If you get a public key for some user, such as Alice, in order to encrypt a message for her or to verify a signature from her, how do you know that public key you have really belongs to her? If someone else could substitute their own public key, the message you encrypt could be read by them and they could send signed messages to you, impersonating Alice. This problem is solved by certificates.

A certificate itself is a short message containing, among other things, the name and public key of a user (called the subject) as well as the name of a user (called the issuer) which is vouching that the subject really owns that public key. The certificate itself is signed by the issuer using their own private key. Note that if you have the public key of the issuer, and you trust that one public key, then you can use it to check the signature on any certificate that the issuer creates for other users, giving you trustworthy access to all those other public keys.

You can also make use of certificates which you yourself issue for other users. When you develop trust in the public key of another user, you can make a certificate with yourself as the issuer and the other user as the subject. When you place certificates like this in your public key file, it is a safe way to store the public keys that you trust. Since the certificates are signed, no one can alter the public key or the name of the subject without breaking the signature on the certificate. This is the method RIPEM uses. It is called "direct trust" since you create certificates directly for users which you trust, and is discussed more in the next section. Certificate chains, which allow you to use a certificate with someone besides yourself as the issuer, are discussed later.

Besides a subject's name and public key and the issuer's name, a certificate has a validity period which tells when the issuer created the certificate and how long the issuer believes the subject's public key can be trusted. Validity periods are usually one or two years. A certificate also has a serial number which the issuer generates when the certificate is created. The combination of issuer name and serial number always uniquely identifies any certificate. (RIPEM actually uses the MD5 digest of the information in the certificate as the serial number since this digest will always be unique.)

CRLs

A certificate can be revoked by the issuer for various reasons, such as if the subject's private key is compromised. The issuer revokes the certificate by placing the certificate's serial number on a certificate revocation list (CRL) which is signed document that the issuer periodically publishes. This is similar to the "hot list" that a credit card company distributes. To revoke a credit card, the company does not recall the credit card. Rather it places the number of the credit card on a hot list which any merchant must check before trusting a credit card. A CRL, like a certificate, is signed with the issuer's private key and has a validity period. Usually, the validity period is only a few months and the issuer publishes a fresh CRL near the end of the period. Once a certificate is placed on a CRL it is not removed until the certificate's validity period expires.

Since you create certificates in the course of using RIPEM, you maintain your own CRL. Before trusting a certificate you have made for another user, RIPEM checks your CRL to see if you have revoked that user.

Maintaining CRLs is easy using RCERTS. When the validity period on the CRL issued by you expires, use N to renew it. Any revocation entries in the CRL will be kept and you can choose the duration of the validity period of the new CRL. Also, if you don't have any CRLs, this will create a new one. To revoke a user, use S to select the user and R to revoke them. Remember, once a user's certificate is listed in you CRL, you cannot remove it.

Certificate statuses

Given all these factors, the certificate status for a certificate can be any of the following values. Note that if the signature on the certificate is corrupt, or the public key of the issuer cannot be found, the certificate is discarded altogether and none of the following certificate statuses apply.

VALID: The certificate's validity period is current and a current CRL from the issuer is found and the certificate is not in the revocation list.

REVOCATION UNKNOWN: The certificate's validity period is current but a CRL from the issuer could not be found (or the signature on the CRL is corrupt). You may want to request a CRL from the issuer. (See Sending and Receiving CRLs below.) Note that REVOCATION UNKNOWN is the normal status from issuers which choose not to publish CRLs.

PENDING: The certificate's validity period has not yet started.

EXPIRED: The certificate's validity period has passed. If a CRL from the issuer can be found which was active when the certificate expired, RIPEM checks the revocation list. If it is in the list, then the REVOKED certificate status overrides EXPIRED.

CRL EXPIRED: The certificate's validity period is current and the certificate is not in the revocation list of the most recent CRL which could be found. However, this CRL's validity period has passed. You should get a current CRL from the issuer and check the certificate status again because the certificate may have been revoked in the mean time. (See Sending and Receiving CRLs below.)

CRL OUT OF SEQUENCE: The certificate's validity period is current and the certificate is not in the revocation list of the most recent CRL which could be found. However, the issue date of the CRL does not match the expected value. An important recent CRL may be missing. See explanation below.

REVOKED: The certificate is listed in the CRL from the issuer. The CRL may be expired, or may be a CRL from the time at which the certificate expired (see EXPIRED above). This means the public key in the certificate should not be trusted.

You may also get a status of UNVALIDATED when you encipher or decipher a message. This means no certificate could be found, but an old-style RIPEM 1.1 public key was found. This public key is "stand alone" and not protected by a signature as public keys in certificates are. If you get this status, you should use caution in trusting it and ask the owner of the key to upgrade to using certificates.

CRL OUT OF SEQUENCE status

The CRL OUT OF SEQUENCE status requires extra explanation. Suppose you revoke Alice by listing her certificate in the next CRL that you issue. If Alice somehow has delete access to your CRL database, she might delete that CRL, effectively unrevoking herself. When you check the status on the certificate you made for her, you will find only the previous CRL. The certificate status will be CRL EXPIRED, or if the two CRL validity periods overlap, you might even get a VALID status!

RIPEM solves this by keeping track of the date of the most recent CRL you issue. When RIPEM selects your current CRL from the database, it checks this date, and if it doesn't match, the certificate status is CRL OUT OF SEQUENCE. In the future, the standards for CRLs in general may be improved so that every CRL will include a sequence number. This would allow you to make sure there are no gaps in the sequence of other issuer's CRLs as well as your own.

Note that the CRL last issue date is kept in the RIPEM preferences and is protected in the same manner as the other preferences. See RIPEM Preferences below for more details.

Self-Signed Certificates

A self-signed certificate is like a normal certificate, except that it is issued by you for your own public key and name and signed with your own private key. This has two purposes: first, it is a convenient format for transmitting your name and public key; and second, when someone uses the public key in the certificate to verify the certificate’s signature, it proves that you actually had possession of you your private key when you made the signature. This prevents some crypto attacks. A self-signed certificate is included in every RIPEM message so that the recipient has the name and public key of the sender. (For the PEM message format, a self-signed certificate is not included if the sender is certified under exactly one certificate chain. See Specifying Message Format under Advanced Usage for more details.)

Self-signed certificates are used to establish "direct trust" with another user. (The difference between direct and extended trust is explained in the next section.) To establish direct trust for another useranother person, you need a signed RIPEM message from that userthat person. The first time you try to receive their message, RIPEM will tell you that you have not yet validated that user, and RIPEM will show you the digest on the sender’s self-signed certificate. You may now call the sender on the phone and ask them to read the digest of their self-signed certificate. (Or you may get their digest through some other trustworthy channel.) If the digests match, then you have good reason to trust that the self-signed certificate is actually theirs. Now you can receive their signed message again in validation mode (see Receiving in Validation Mode below). RIPEM creates a certificate signed by you containing the other person’s name and public key and adds it to pubkeys in your RIPEM home directory. Now you are ready to send that person user encrypted mail and to trust further signed messages from them.

The reverse is also true: For another person user to establish direct trust in your public key, you can send them a signed RIPEM message. Expect the other person user to contact you and ask you to state the digest of your self-signed certificate. (If you forget your self-signed certificate digest, use RIPEM to change your key to private key. run RCERTS and use V to view detail for the selected user (which is you when RCERTS starts up). This will display your digest.) The other user then receives your signed message in validation mode, and now the two of you have a trusted channel.

Certificate Chains

The previous section described direct trust, where you only trust a user if there is a certificate for that user issued directly by you. In this model, you must issue a certificate for every one of your correspondents. But suppose another user, Bob, has already issued certificates for some users such as Alice and Carlos. If you trust Bob's certification procedures, then you can issue just one certificate for Bob and tell RIPEM that you allow certificates issued directly by Bob. In the terminology used here, you set "chain length allowed" for Bob to one. In other words, you trust Bob as a certification authority. Now you can trust Alice, Carlos, and any other users Bob certifies. This is called a certificate chain because there is a chain of trust from you to Bob to the users Bob certifies. This is also sometimes called "extended trust" in contrast to "direct trust."

Furthermore, if you trust that Bob only certifies users which themselves can be trusted as certification authorities, then you might set the chain length allowed for Bob to two. In this case, you would trust a user who has a certificate from Alice, who in turn has a certificate from Bob. This is how a typical certificate hierarchy works on the Internet.

To "hook into" the Low Assurance Certification Authority's hierarchy, you make a certificate for that certification authority and set the chain length allowed to two. (This is done automatically in RCERTS when you use E to enable standard issuers and select L for Low Assurance.) Doing this means you allow the Low Assurance Certification Authority to certify other certification authorities like the Persona certification authority, which can in turn certify ordinary users. Now for example, if a user posts a message to a newsgroup and includes a certificate issued for them by the Persona certification authority, and also a certificate for Persona from the Low Assurance Certification Authority, then you will be able to trust their public key and check the signature on their message. You never even had to interact with that user!

Finding the "best" chain

Note that if you trust multiple certification authorities, then it is possible that a single user could have more than one chain which you might trust. As well as these extended certificate chains, you may also have made a direct certificate for this user. Which one should you use? RIPEM solves this by looking at the chain status for each of the possible chains.

The chain status is computed by looking at the certificate status of each of the certificates in the chain. The status of an entire chain is the worst of all the individual certificate statuses. Therefor, if all the certificates in the chain are VALID, except one which is EXPIRED, the chain status is EXPIRED. (Certificate statuses were explained above in the section on Certificates.) The "best to worse" certificate statuses go in the order listed above, starting from VALID and ending with REVOKED.

When choosing among many possible certificate chains, RIPEM chooses the "best" one by comparing each chain status. (If two chain statuses are the same, the shorter chain is considered better.) In this way, RIPEM will find valid certificates if possible and avoid expired certificates or certificates from issuers which have not published a current CRL.

Setting chain length allowed

RIPEM will allow you to set the chain length allowed for a user as high as you want (up to the maximum chain length that RIPEM can handle). Typically, though, you will set it to one or two. Note that if you set chain length allowed to zero, then you revert to direct trust for that user. You still trust that user directly because you trust your own certificate that you issue for them, but you don't trust that user to certify others.

To set the chain length allowed for a user, run RCERTS and use S to select that user as the current user. (This assumes you have already validated that user as described in Receiving in Validation Mode.) Then use M to modify the chain length allowed. When you are selecting the user, RCERTS asks if you want to allow any certificate chain for the user or to select only a direct certificate. Enter D for a direct certificate because you cannot set the chain length allowed on a user which is certified by someone else. This is necessary since RCERTS will select the "best" chain for a user as described above. If you allow any certificate chain and the certificate issued directly by you is expired, then a longer chain may have a valid status and RCERTS will select it instead, which is not what you want.

You can also use E to enable a standard issuer such as the Low Assurance Certification Authority or the Commercial Certification Authority. In this case, since RCERTS already knows the name and public key, you do not need a self-signed certificate from that user, nor to validate the user ahead of time. You also do not need to use S to select them as the current user. RCERTS will automatically create a certificate issued by you and set the chain length allowed.

RIPEM Preferences

As discussed above, the RIPEM preferences store the chain length allowed you set for users and the date of the most recent CRL you issue. This information is kept in the file preferen in the RIPEM home directory. (See the document RIPEM Message and File Formats for details on the preferences file format.)

The RIPEM preferences are signed to make them tamperproof. When RIPEM starts, if the preferences can't be found, or the preferences are corrupt, RIPEM warns you, disregards the preferences, and uses defaults. The defaults are that no user has chain length allowed of one or more. This means you do not trust any extended certificate chains. You must use RCERTS to set the chain length allowed as you did the first time for the users you trust as certification authorities. The default is also that there is no date for the most recent CRL. This means that RIPEM does not check for CRL OUT OF SEQUENCE. This preference will be set again the next time you issue a CRL in RCERTS by revoking a user or by using N to renew the CRL issued by you.

The preferences signature method

The RIPEM preferences are not signed with your RSA private key like other signed messages. Instead, the signature is computed by digesting your password and appending this to your preferences. Then all of this is digested and the result is the signature. When the signature is checked by computing the same digest, if the preferences are different, or you don't supply the same password, then the signature doesn't verify. Note that only a single user can create and verify the signature, since the password is secret. This is fine since you don't use someone else's preferences.

The RIPEM preferences is synchronized with your current password. When you use the -c option to change your password, RIPEM not only encrypts your private key under the new password, but also recomputes the signature on your preferences using the new password.

Preventing the replay attack

The technique of using the password to make the preferences signature has the advantage that it makes the signature time-dependent. You can use this advantage to prevent the following security risk. Suppose you were trusting a user as a certification authority by setting their chain length allowed greater than one. If you no longer want to trust them as a certification authority, you use RCERTS to set the chain length allowed to zero, which creates new a preferences file. Now suppose someone replaces the new preferences file with the old one. If the signature were not time-dependent you would have no way of noticing the swap and you would suddenly be trusting the user as a certification authority again! This is called the "replay attack".

Now suppose that you set the chain length allowed as before, but you also immediately change your password. If someone replaces the new preferences file with the old one, the signature will not verify since it is signed under a different password, and you will notice the swap instead of trusting the old information. RIPEM will detect a corrupt signature and reset the preferences to the defaults as described above. Note that the same method of changing your password can prevent replay attacks on other preferences information like the date of your most recent CRL.

In summary, if you are concerned that someone can replace your current preferences information with older, inaccurate information, then every time you change your preferences, also change your password. This includes every time you modify the chain length allowed for a user and every time you revoke a user (which modifies the date of the most recent CRL you issue).

Encrypting a Message

The -e option specifies that RIPEM is encrypting a message.

In encryption mode, RIPEM understands the -H, -u, -p, -s, -y, -Y, and -R options described above. The following options are also important:

Specifying Input and Output Files (-i and -o)

By default, RIPEM reads its input from standard input, and writes its output on standard output. If standard input and output are files, this is written as <infile and >outfile on most systems. Alternatively, an input file can be specified via the -i option, and an output file via the -o option:

-i infile -o outfile.

Specifying Recipients and Processing Mail Headers (-r and -h)

The recipient(s) of a message can be specified in two ways: on the command line, or via message headers in the input plaintext.

To specify recipients explicitly on the command line, use the -r option: -r recipient_addr. Recipient_addr must be the recipient's email address, in a form which RIPEM can use to look up the recipient's public key. For instance, suppose your recipient has valid email addresses bob@egr.biguniv.edu and bob@biguniv.BITNET. If Bob has registered his RIPEM public key only as bob@egr.biguniv.edu, then the address bob@biguniv.BITNET will not be adequate for RIPEM's purposes, even if it is a valid email address.

The -r option can be used multiple times for multiple recipients.

If the message plaintext has been prepared by a mail program, it may already contain mail headers which state the recipients' email addresses in "To:" and "cc:" lines. To take advantage of this situation, you can use the -h option. The -h option tells RIPEM how to handle plaintext input that contains mail headers. "Mail headers" are defined to be all the lines at the beginning of a message, up to the first blank line.

The syntax is: -h header_opts, where header_opts is one or more of the letters i, p, and r. i tells RIPEM to include the headers as part of the message to be encrypted. p tells RIPEM to prepend the headers to the encrypted output. r tells RIPEM to examine the message headers, looking for "To:" and "cc:" lines. Any recipients named on those lines are included as recipients to RIPEM's encryption.

The default is "-h i", which causes message headers to be included in the plaintext being encrypted, but no other header processing is done. This is equivalent to treating the message as if it does not contain mail headers at all.

A useful combination is "-h pr", which extracts recipients' names from the mail headers at the beginning of the input, copies the mail headers unmodified and unencrypted to the beginning of the output, and then discards the headers before encrypting the rest of the message. This combination is suitable for instances in RIPEM is being used to encrypt a message after it has been prepared by a mail program but before it has been sent.

To find the recipients’ public keys for encrypting the message, RIPEM first searches for a certificate chain. This is either a direct certificate you previously created using the validation mode (see Receiving in Validation Mode below), or an extended certificate chain you have allowed another use to make. The value given by -r is usually the common name in the full distinguished name. If it can’t find a certificate, RIPEM searches for version 1.1 and earlier style public keys first in pubkeys in the RIPEM home directory and then in other files specified with the -p option.

When RIPEM has found the public keys, it outputs the recipient’s full distinguished name and certificate status to the debug stream, which is your terminal unless you redirected it using -Z. This information is important for two reasons: first, the certificate you made for the recipient may have expired or otherwise become invalid a certificate status other than VALID such as EXPIRED, or worse, REVOKED; and more importantly, your must make sure that the full distinguished name is what you expect. If you specify -r Bob, RIPEM may find a certificate for “common name = bob, organization = Gadgets” whereas you really want “common name = Bob, organization = Widgets”. In this case, the message is encrypted for the wrong Bob and you should not send it.

Decrypting a Message

The -d option specifies that RIPEM is decrypting a message.

During decryption, RIPEM looks at the values of the -H, -i, -o, -u, -p, -s, -y, and -Y options discussed above.

If RIPEM cannot decrypt the input message, or if the input message fails the signature check, RIPEM will generate no output in the -o file or on standard output. Instead, it will issue an error message on the standard error device, which is usually your terminal. In this case you should disregard any message text output to the �o file or the standard output since it is untrustworthy. In addition, RIPEM returns a value of zero to the operating system if the message decrypts properly, and it returns a non-zero value if there are problems. This is typical behavior for programs under Unix and MS-DOS and allows you to write command scripts which check to see whether decryption proceeded properly.

If RIPEM does decrypt the message properly, it will write the decrypted plaintext to the -o file or to standard output. The output contains only the original plaintext (subject to any modifications performed by the -h option used by the sender of the message). It does not include any mail headers or other superfluous text added to the encrypted message--for instance, by a mail system--after the encryption. RIPEM also writes the name and certification status of the sender to the debug stream, which is your terminal unless you redirected it using -Z.

Any time you use -d to receive a message, any certificates in the Originator-Certificate or Issuer-Certificate fields are placed in your public key file (except for self-signed certificates). This is the means by which you get other user's certificates. Conversely, when another RIPEM user receives a message from you, any issuer certificates you send are placed in their database.

Receiving in Validation Mode

Using the -d option, the first time when you receive a RIPEM message from someone who you have not certified directly or indirectly, RIPEM will tell you that the public key in their self-signed certificate has not been validated by you and it will display the digest on their self-signed certificate. After verifying their self-signed certificate digest as explained in “Self-Signed Certificates” above, you can use your own private key to create a certificate for them by receiving the message again in validation mode. Use -d and all the other flags as before, but also add the -v option which specifies the number of months from today that the certificate will be valid. A typical value is 24 for two years. After this time, the status displayed by RIPEM when you use the certificate will change from VALID to EXPIRED. When the certificate expires you should contact the correspondent again to make sure their public key is still valid and repeat the procedure.

Note that the self-signed certificate you receive from the other user has its own validity period which reflects the sender's opinion about how long they expect their keypair to be trustworthy. Even if you specify a longer period with -v when you validate that user's key, RIPEM will not make a validity period beyond the validity in their self-signed certificate.

Getting a Persona Certificate

As described in Generating a Keypair above, RIPEM uses your username to create a distinguished name for the Persona certification authority. If your RIPEM username is fred@snark.edu, then your full distinguished name is “common name = fred@snark.edu, org unit = Persona Certificate, organization = RSA Data Security, Inc., country = US”. This is useful if you want to be certified by the Persona certification authority, which is under the Low Assurance Certification Authority hierarchy. Follow these steps:

Generate your self-signed certificate using the -g option as described above in Generating a Keypair. If you have already done this, even using RIPEM 1.2 or later, you already have a self-signed certificate which will work.

Create your certification request message using the following command. (This assumes you have set the RIPEM_USER_NAME environment variable and are using the default RIPEM home directory.)

ripem -e -m mic-only -i mymessage -o request

The input file mymessage can contain any short message, such as "Here's my certificate." The file request now has a normal signed message which contains your self-signed certificate. Email this message to persona-request@rsa.com. It doesn't matter what the subject line is in the email header. (Note that it is not necessary to create the message with -M pem. The processor at persona-request is flexible enough to handle RIPEM signed messages.)

An automated responder at persona-request will check the self-signed certificate in your message. If certain criteria are not met, such as there is already a currently valid certificate from Persona for your username, you will receive email denying your request. Otherwise, on success you will receive a PEM format email message. (The responder sends the message to the Reply-To field if present, or to the From field in your request.)

Place the message from Persona in the file response and use ripem -d -i response to receive it. This is the same signed message you originally sent, except now the Originator-Certificate field contains not your self-signed certificate but a certificate for you issued by the Persona certification authority. The message also has an Issuer-Certificate for the Persona certification authority from the Low Assurance Certification Authority. When you receive the message, these certificates are placed in your public key file, and RIPEM says that it received a signed message from you.

If you want your Persona certificate included in every message you create, or if you want to trust other users who have performed the same process to be certified by the Persona certification authority, then you need to tell RIPEM that you want to operate under the Low Assurance Certification Authority hierarchy. Do this by running RCERTS and selecting E to enable standard issuers. Then select L to enable the Low Assurance Certification Authority. Your chain length allowed for Low Assurance is set to 2.

You may also want to request CRLs for the Persona and Low Assurance certification authorities. See the next section.

Sending and Receiving CRLs

The -d option can also be used to receive CRL messages. A CRL message has the same style as other messages, except that it contains only CRLs from a certification authority and any certificate chains which the certification authority includes. Usually, the CRL message you receive is one that you have requested because you need a current CRL to check the status of a user which is certified by another certification authority. This is done by sending a CRL retrieval request message to the certification authority.

To create a CRL retrieval request, run RCERTS and use S to select the user for whom you need to check the revocation status. Note that this must be a user which has an extended certificate chain, such as a Persona user which is certified under the Low Assurance Certification Authority. (Otherwise the user is certified directly by you and there is no one else to request a CRL from.) After selecting the user, use C to create the CRL retrieval request message. This will request the latest CRL for every issuer in the certificate chain (besides yourself). In this case, it will request the CRLs issued by the Persona and Low Assurance certification authorities.

You can get CRLs for any issuer under the Low Assurance hierarchy by emailing the CRL retrieval request message to crl-retrieval@rsa.com. It doesn't matter what the subject line is in the email header. An automated responder will send you a CRL message which you can receive using the -d option.

You can also publish the CRL issued by you by using the P command in RCERTS. Note that this is only useful if another user trusts you as a certification authority and needs to check the status of users certified by you.

Advanced Usage

Specifying Encryption Algorithm (-A)

By default, RIPEM encrypts messages using DES in Cipher Block Chaining (CBC) mode. This is the data encryption algorithm and mode used by Internet PEM-conformant software.

Although DES has proven quite resistant to theoretical attacks of cryptanalysts for 16 years, many cryptologists have expressed concern over DES's relatively small keyspace, which leaves it potentially vulnerable to brute-force attack by a well-funded opponent. (DES keys are 56 bits long.) One obvious solution to the keyspace problem is to use multiple passes of DES.

A few years ago, IBM suggested a particular multi-pass usage of DES called Encrypt-Decrypt-Encrypt (EDE). In EDE usage (sometimes called Triple-DES), each 64-bit block is encrypted with a 56-bit key we'll call key1. The result of that encryption is decrypted with a second 56-bit key called key2. Finally, the 64-bit result of that decryption is encrypted with key1. This use of DES results in a dramatic increase of keyspace from 2^56 keys to 2^112 keys.

RIPEM implements this use of DES, with Cipher Block Chaining applied after each triple encryption, and refers to it as DES-EDE-CBC. When encrypting, specify -A des-ede-cbc to select this mode. When decrypting, RIPEM automatically detects the encryption algorithm used and decrypts appropriately.

DES-EDE has not been widely adopted by the cryptographic community. In particular, DES-EDE encryption is not conformant with Internet PEM as of this writing. Therefore, use the default mode (which can also be explicitly requested via -A des-cbc) for all but your most critical messages. In addition, consider that there is some performance degradation associated with Triple-DES.

Specifying Debug Mode (-D and -Z)

RIPEM uses the debug output to show the status of recipient public keys while encrypting a message and to show the status of sender’s public key and signature while receiving a message. RIPEM also uses the debug output to show self-signed certificate digests and other important messages which come under the default level.

Users experiencing problems with RIPEM, or simply wishing to examine the inner workings of the program, can use the -D option to increase the debug level which will cause RIPEM to print informative messages while it executes. Debugging options were originally implemented in RIPEM for development purposes, but have been left in place for the benefit of curious users. Specify -D debuglevel to turn on debug messages. Debuglevel is an integer specifying the amount of debug output desired. 1 is the default level for required information on senders and recipients, while 4 is the maximum value currently implemented.

Debug messages are normally written to the standard error output, which is usually your terminal screen. To write debug messages to a file, use the -Z debugfile option.

Specifying Encryption Mode (-m)

By default, in encryption (-e) mode RIPEM encrypts a message, encodes it to printable ASCII characters, and signs the message. This processing corresponds to the -m encrypted command line option. With non-default values for the -m option, RIPEM can perform other types of processing in -e mode.

-m mic-clear specifies that the message is signed, but not encrypted. The body of the message is left in plaintext, so that the recipient can read it without decryption software of any sort. If the recipient wishes to verify the signature, however, he/she will have to use RIPEM in -d mode as usual.

-m mic-only also specifies that the message is signed, but not encrypted. However, the body of the message is printably encoded into ASCII characters as per RFC 1113. This encoding expands the size of the message by about 33% and adds no security; it simply helps guarantee that the message will survive hostile mail software verbatim. In practice, mic-only mode is infrequently used.

Specifying Message Format (-M)

When using encryption (-e) mode, you can specify the output message as either RIPEM format (-M ripem1) or PEM format (-M pem). RIPEM format is the default.

-M ripem1: This format uses the most flexible way to identify senders and recipients and is also compatible with RIPEM versions before 2.0. The Originator-Certificate field contains the your self-signed certificate. This format outputs Issuer-Certificate fields (which earlier versions of RIPEM ignore) if you have a certificate under any of the certification authorities you have enabled (by setting chain length allowed greater than one). These issuer certificate fields help the recipient trust you if they trust the same certification authority.

Recipients are identified by Recipient-Key-Asymmetric fields, which give the recipient's public key (as opposed to "pem" which uses Recipient-ID-Asymmetric). Since the recipient knows their own public key, they don't have any problem recognizing that the recipient field is for them.

-M pem: This format specifies that the message is to be compatible with the RFC 1421 message syntax and the RFC 1422 certification model. Recipients are identified by Recipient-ID-Asymmetric fields, which give an issuer name and serial number (as opposed to "ripem1" which uses Recipient-Key-Asymmetric). Since it is not known which issuer a recipient recognizes themself by, recipient fields are output for all possible issuers. Note that you must have a certificate in your public key file for that user from the issuer they recognize for this to work.

If you are certified under exactly one certificate chain, the Originator-Certificate field contains the certificate from the issuer which certified you in that chain. However, if RIPEM finds certificates for you from more than one issuer, then it doesn't know which one to use, so it uses your self-signed certificate in the Originator-Certificate field as in "ripem1".

Specifying Your Username (Email Address) (-u)

As described above, you can specify your username (or more correctly, your email address) via the -u option or via the environment variable RIPEM_USER_NAME. The default is for RIPEM to attempt to determine your email address from the running system. On MS-DOS, RIPEM defaults to the name “me.”

RIPEM makes use of this information in all three modes: key generation, encryption, and decryption. If you have a number of email addresses that you wish to be regarded as equivalent, you can specify your username as a list of comma-separated email addresses. During key generation and encryption, RIPEM will use the first name in the list as your username. During decryption, RIPEM will search your private key file for your private component under each one of the comma-separated names until it succeeds in finding a matching key in the file.

These features make it easier to use RIPEM if you have mail forwarded to a primary mail account from a number of other email addresses. To make use of the multiple username capability, you must edit your private key file to include multiple User: lines.

Specifying the Key to Your Private Component (-k, -K)

By default, RIPEM prompts you interactively when it needs to know the key to the private component of your public key. However, with some loss in security, it is possible to inform RIPEM of this key by other means. This capability may be useful for instances when RIPEM is invoked by another program, or for when you are testing or benchmarking.

You can specify the key to your private key via the -k option; specify -k keytokey on the command line. As a special case, you can specify -k -. Specifying - as your password on the command line causes RIPEM to read the password as the first line from standard input.

If -k is not specified, RIPEM will check the value of the environment variable RIPEM_KEY_TO_PRIVATE_KEY. If this variable exists and has a non-null value, its value will be used as the key to the private key; otherwise, RIPEM will prompt you on your terminal for this key.

When using -c to change your key to private key, you can also use upper case -K to specify the new key instead of letting RIPEM prompt you for the new key. This is useful so that all values can be supplied on the command line when invoking RIPEM from another application.

Specifying the key to your private key via -k or via the environment variable is generally less secure than typing it interactively. Although RIPEM erases its command line arguments shortly after startup, there is a brief window of time during which other users on a Unix system could view your command line arguments by using the ps command. Likewise, other users could determine the value of your RIPEM_KEY_TO_PRIVATE_KEY variable by various means, especially if they had physical access to your terminal. Therefore, these options should be used with caution, if at all.

Using UNIX Mail Programs and Utilities

This section suggests techniques for using RIPEM in conjunction with popular Unix mail programs. Use of the C-Shell is assumed.

It is possible, of course, to compose a message in a text editor, save the message to a file, run RIPEM to encrypt the message, start your mailer, insert the encrypted file into a message, and then send the message. In fact, the encryption and mailing can be done on separate systems, with appropriate file transfers. However, on most Unix systems it is possible to eliminate several of these tedious steps.

Setting Up Your Environment

It is recommended that Internet-connected Unix users include the following in their .cshrc file:

	setenv RIPEM_HOME_DIR ~/.ripemhome	(must already be created)

	setenv RIPEM_SERVER_NAME ripem.msu.edu	(for 1.1 compatibility)

	setenv RIPEM_USER_NAME (Your email address; e.g., smith@bigu.edu)

Create a shell script to encrypt RIPEM messages. Place the following lines in a file named ripem�encrypt, put this file in a directory mentioned in your path, and give it execute permission. (This file is available in the RIPEM distribution, in the util directory.)

	#!/bin/sh

	tempfile=/tmp/msg-`whoami`

	ripem -e -h pr -i $1 -o $tempfile

	cp $tempfile $1

	rm $tempfile

Create a shell script to decrypt RIPEM messages. As above, place these lines in the file ripemd:

	ripem -d | more

Create a shell script to help reply to encrypted RIPEM messages. Place this in ripemr:

	ripem -d -h pr | quote -h

Include the following lines in the file .mailrc in your home directory. (A sample .mailrc can be found in the RIPEM distribution, in the util directory.)

	set editheaders

	set EDITOR=ripem-encrypt

Creating a RIPEM Public Key

The initial generation of keys can proceed something like this:

	cd ~

	ripem -g -R eks

Type random garbage at the keyboard when prompted.

Type in a secret password when prompted for the password to your private key. Type it again when prompted for verification.

Now you can create signed messages and send them to your correspondents. They will ask you for your self-signed certificate digest and validate your public key.

Encrypting an Email Message Using "mail"

If you are using the "mail" package that comes with many Unix systems, you can use the following procedure to compose, encrypt, and send a message. In this example, your input is in bold.

	$ mail smith@bigu.edu

	Subject: Greetings

	This is a test message

	~e

	Enter password to private key: (Type your password here.)

	(Type Control-D)

	$

The ~e command to mail was originally designed to edit the message being composed. Nowadays, however, it is rarely used (in favor of the ~v visual edit command). The tricks described above effectively turn ~e into an "encrypt" command on SunOS and some other Unix systems. On some Unix systems, however, the mail command does not interpret the editheaders option. On those systems, you need to use a different approach, which requires you to type the recipient's address twice:

	$ mail smith@bigu.edu

	Subject: Greetings

	This is a test message

	~| ripem -e -r smith@bigu.edu

	Enter password to private key: (Type your password here.)

	(continue)

	(Type Control-D)

	$

Decrypting an Email Message Using "mail"

	$ mail

	Mail version

	"/usr/spool/mail/jones": 1 message 1 new

	>N 1 smith@bigu.edu Wed Sep 30 22:38 29/1119 Greetings

	& pipe ripemd

	Pipe to: "ripemd"

	Enter password to private key: (Type your password here.)

	(The plaintext message is displayed.)

	"ripemd" 29/1119

	& q

	$

Encrypting an Email Message Using "Mush"

Mush is a mail package that is compatible with mail, but provides additional capabilities. The procedure described above for encrypting messages with mail also works with mush.

Decrypting an Email Message Using "Mush"

The procedures described for mail also work with mush. However, mush's greater power allows you to configure it to be easier to use than mail, especially in curses mode. Configure mush by creating a file named .mushrc in your home directory and placing the following lines in it:

	set edit_hdrs

	set editor=/home/scss3/mrr/bin/ripem-encrypt

	set visual=/usr/ucb/vi

	bind-macro D :pipe ripemd\n

	bind-macro R r~f\n~\|ripemr\n~v\n

To decrypt and display a message in curses mode, simply type the letter D while the cursor is positioned on the corresponding message index line:

 56 U Mark Riordan <mrr@cl-next Nov 3, (13/460) "test"

(press D)

:pipe ripemd (This is generated automatically by the mush macro.)

Enter password to private key: (Type the password.)

(The plaintext is displayed.)

 56 Mark Riordan <mrr@cl-next Nov 3, (13/460) "test"

	mrr 56: ...continue...

To reply to an encrypted message, type R while the cursor is positioned on the corresponding message line. The R macro decrypts the message, quotes the text of the message with the traditional "> " line prefix, and enters a visual editor. For this procedure to work, you must have compiled the quote program--located in the ripem/util directory--and installed it in a directory on your path.

 56 U Mark Riordan <mrr@cl-next Nov 3, (13/460) "test"

(press R)

To: mrr@museum.cl.msu.edu

Subject: Re: test 5

~f

Including message 56 ... (30 lines)

(continue editing letter)

~|ripemr (All of this is generated automatically by the macro.)

Enter password to private key: (Type the password, to decrypt the message.)

(Mush calls up a visual editor on a quoted copy of the plaintext of the message to you. Compose your reply and exit the editor. To exit vi, for instance, type ZZ.)

(continue editing letter)

~e (Type this to encrypt your reply)

Enter password to private key: (Type the password, to encrypt your reply.)

(continue editing letter)

(Type control-D to finish the outgoing letter and have mush send it.)

Using RIPEM with ELM's MIME Features

The popular Unix mailer Elm has recently been extended to provide MIME (Multipurpose Internet Mail Extension) capabilities. (MIME is not particular to Elm, and MIME support is or will soon be available in other mailers as well.) RIPEM can be used with Elm's MIME support, though somewhat awkwardly. Below are preliminary instructions for interfacing RIPEM with Elm.

Edit your local or system mailcap file to add the following lines:

	# This entry is for reading a mail message encoded by RIPEM

	application/ripem; ripem -d ; copiousoutput

This is necessary only on the receiving end.

On the sending end:

Compose the message and encode it, saving the result in a temporary file, say, mymsg.

Start the mail message in Elm and include the temporary file as a MIME message with a line of the form:

[include mymsg application/ripem]

Send the message.

Upon receipt, Elm will recognize it as a MIME message and start RIPEM to decode it. If the receiving mailer does not understand MIME, the usual methods of decrypting RIPEM messages can be used.

Using RIPEM with the MH Mailer

The RIPEM source distribution contains two Perl scripts that facilitate reading and sending encrypted messages with RIPEM. display-ripem decrypts and displays RIPEM messages; send-ripem encrypts and sends messages. These utilities, written by Marc VanHeyningen, can be found in the ripem/util directory. See the source code for documentation.

Using RIPEM with EMACS

Jeff Thompson has written functions for the powerful EMACS editor to facilitate use of RIPEM. These functions are in the file ripem/util/ripem.el in the RIPEM source distribution. To enable the use of these functions, edit your ~/.emacs file and add to it a line like:

	(load "/home/local/ripem/util/emacs/ripem.el")

(Modify the file name in quotes to be the correct path to the ripem.el file.)

To encrypt a message, enter the message, including the To: and cc: lines, into an EMACS buffer and type:

	Esc x ripem-encrypt

To decrypt a message, load it into an EMACS buffer and type:

	Esc x ripem-receive

To receive a message in validation mode, load it into an EMACS buffer and type:

	Esc x ripem-validate-and-receive

Online help is available by typing:

	Ctrl-h f function_name

where function_name is one of: ripem-generate, ripem-encrypt, ripem-sign, ripem-sign-clear, ripem-receive, ripem-validate-and-receive, ripem-change-password, or ripem�list-users.

Upgrading from RIPEM 1.2

RIPEM home directory required

RIPEM 2.0 relies on new files such as the CRLs database and the certification preferences file. Instead of adding yet more command line arguments, a RIPEM home directory is now required and the CRLs and preferences files are put there. If you are not already using a RIPEM home directory, you should move your public and private key files into there as pubkeys and privkey, respectively. You can use the default RIPEM home directory, which is ~/.ripemhome for Unix, C:\RIPEMHOM for DOS, and RIPEM Home in the system preferences folder for Macintosh. Otherwise, if you do not use the default, then you must specify the RIPEM home directory with the -H option or the RIPEM_HOME_DIR environment variable.

-P and -S are obsolete

RIPEM 2.0 also relies more heavily on having a public key output file for saving Issuer-Certificates from incoming messages. Instead of requiring -P in all cases, RIPEM now treats pubkeys in the home directory more as a read/write database. To prevent confusion with certificates going different places at different times, the -P option is now obsolete and RIPEM always writes public keys and certificates to pubkeys in the home directory. For consistency, the -S option is now also obsolete and RIPEM always writes private keys to privkey in the home directory.

Getting REVOCATION UNKNOWN certificate status

If you are a RIPEM 1.2 user, you will at first see a certificate status of REVOCATION UNKNOWN for the users you have validated. This is because RIPEM 2.0 looks for a CRL from the issuer (which is you) of the user's certificate in order to see if it is revoked, but cannot find the CRL. To fix this, run RCERTS and select N to renew the CRL issued by you. This will create a new CRL issued by you with no revocation entries.

Note: if you have validated a user in the past but no longer trust them, you should use RCERTS to revoke their certificate. This is better than just removing the user's certificate from your public key file because that same certificate may get re-inserted at a later date.

Upgrading From RIPEM 1.1

The most important part of upgrading from RIPEM version 1.1 or earlier is to create a self-signed certificate. This is done by changing your key to private key. Follow these steps:

Create your RIPEM home directory. From now on, use -H to specify this directory to RIPEM, or set the RIPEM_HOME_DIR environment variable. You may also allow RIPEM to use the default home directory as described above in The RIPEM Home Directory. For Unix, a good home directory is ~/.ripemhome or for MS-DOS a good directory is \ripemhom.

Use ripem -c to change your password. The old and new passwords may be the same. Specify -p and -s for your input public and private key files as you did for RIPEM 1.1, but do not specify -P or �S output files. Instead use -H to specify the RIPEM home directory. Note RIPEM does not change your public or private key. It simply places your private key under a different protection key. RIPEM creates a new private key file in the home directory so you don’t need the file given by -s anymore.

RIPEM will notice that you don’t already have a self-signed certificate, and will create one for you and add it to pubkeys in your RIPEM home directory. The validity period defaults to 24 months from now, but you may change the validity length with -v.

RIPEM displays your self-signed certificate digest which you should record for giving out to others.

You do not need to put your self-signed certificate on a server or in your “finger”. The correct way to disseminate it is to prepare a RIPEM signed message and send it to your correspondents. They will ask you for your self-signed certificate digest and will validate your public key. See Self-Signed Certificates above for a description of how to establish a trusted channel.

You can still use -d to decrypt version 1.1 and earlier messages if you indicate the public key sources using -p or -y. See Managing Keys According to RIPEM 1.1 and Earlier above. When RIPEM displays the sender’s name it will warn you that the sender’s public key is not validated.

Also, you can still send messages to users of version 1.1 or earlier. They still have access to your public key according to the old model, and current RIPEM messages are backwards compatible. When encrypting a message using -e you can specify sources of unvalidated keys for the recipients using -p or -y. RIPEM will show that the keys are not validated when it displays the recipient information.

Preferably, each of your correspondents should upgrade to the current RIPEM and you should receive a message from each of them in validation mode to create a certificate for them. Once you have done this, you should not need to use -p or -y.

Managing Keys According to RIPEM 1.1 and Earlier

Once you have generated a keypair, you must publicize the public component so that others can use it to send messages to you. Also, you must obtain access to the keys of other users. The best way for users to publish their public keys is by sending a RIPEM message which contains their self-signed certificate, as described in the previous section. However, some users may still be using RIPEM 1.1 or earlier which did not have self-signed certificates. This section describes the older model where public keys were distributed without being signed. (These distribution techniques through key servers will be useful in the future when RIPEM will support certificatesupport intermediate and hierarchical certificates retrieval through remote directories.) If you don’t need to interoperate with users of RIPEM 1.1 or earlier, skip to Managing Private Key Components this section.

In RIPEM 1.1 and earlier, key distribution can be by:

Internet key server (requires Internet access for key lookup, but not for publication)

The finger protocol (requires Internet access for key lookup and publication)

Flat files (can be used with little or no network access)

You can choose the techniques that RIPEM uses to find a key by setting the -Y command line option. The -Y option takes an argument which is a string of one or more of the characters s, g, and f, which stand for Server, finGer, and File. For each correspondent, when necessary RIPEM will attempt to learn the correspondent's public key by consulting these sources in the order specified until the key is obtained.

The default value of the -Y option is "sf", which means that RIPEM first attempts to look up a public key via an Internet key server. If it is unsuccessful, it attempts to look up the key in a flat file. Read the discussion below for details on other related command line options.

Note: RIPEM 1.2 does not use key servers or finger to manage certificates. RIPEM 1.2 only transmits a self-signed certificate, and the only other certificates that are made are direct peer-to-peer. As a RIPEM 1.2 user, you make a certificate from yourself to, say, fred@snark.edu. No one other than you and fred would be interested in this certificate. Hence, RIPEM 1.2 makes no provision for these certificates to be on key servers. A future version of RIPEM is planned which will allow certificate chaining. This will allow you to indirectly trust users directly certified by users of your choice. You will be able to say "I trust all users certified by fred". When this future version of RIPEM is available, it will become meaningful to place certificates on key servers.

Key Distribution via the RIPEM Internet Key Server

Key Server Description and Limitations

If you have Internet access, you can communicate your key to others by registering the key on an Internet RIPEM key server. Currently, there is an "experimental" RIPEM key server running on the host ripem.msu.edu. This host is experimental in that it is an unofficial service which may have to be terminated with little or no advance notice.

This RIPEM key server acts as a central repository for public keys, saving users the effort of distributing their keys individually to all potential correspondents. This key server is not an especially secure mechanism. The level of security present in the key protocols is much less than that provided, for instance, by the Privacy Enhanced Mail certificate mechanism specified in the Internet PEM RFC's. The authenticity of keys maintained on the server is not guaranteed. The RIPEM key server is simply a means for RIPEM users to conveniently exchange keys.

Registering a Key via the Key Server

To allow the maximum number of users to publicize their keys via this mechanism, the RIPEM key server accepts key registration requests by electronic mail. Although the RIPEM key server itself is connected only to the Internet, users of non-Internet networks such as CompuServe, BITNET, and so on can register their keys by sending their key registration requests via an appropriate network gateway.

To register your key, send the public component (the output file from the -P option) to the email address

	ripem-register-keys@ripem.msu.edu

Note that only RIPEM versions before 2.0 support the -P option for outputting a public key (which is not in a certificate).

On a Unix system, for instance, you can register your key by a command like:

	mail ripem-register-keys@ripem.msu.edu <mypublickey	

The key server will register your public key in its database and will send you a confirming message. The key is identified by the email address specified during the generation of the key, but the confirming message is sent to the address from which the key file was sent.

If you read electronic mail on several different hosts but wish to use the same public key on all of them, you can register the key under multiple names. You can do this by editing the key file before sending it to the server, and adding additional User: lines. (See the separate document on file formats.) Or, you can register the key under different names via separate email messages.

To subsequently delete your key from the server, encrypt a message starting with the string

	RemoveKey

with the -m mic-only command line option and send the encrypted message to the address:

	ripem-remove-keys@ripem.msu.edu

The message must have been encrypted by the owner of the key being removed.

To change your key on the server, generate a new keypair and encrypt the public component (the file from RIPEM's -P option) with the -m mic-only command line option. Send the result to the address:

	ripem-change-keys@ripem.msu.edu

The message must have been encrypted by the owner of the key being changed.

Obtaining Keys from the Key Server: Live Access

Real-time "live" queries to the RIPEM key server are made directly by RIPEM using the UDP IP network protocol. "Live" queries are possible if your computer is connected to the Internet, your copy of RIPEM has been compiled for network access, and your computer is running the right network software. This is often true of Unix computers but is generally not true of other computers. At this writing, for instance, the MS-DOS version of RIPEM supports only the PC/TCP network software from FTP Software, Inc.

In order to access the key server, RIPEM needs to know its Internet address. You can tell RIPEM the address of the server in two ways: you can set the environment variable RIPEM_SERVER_NAME to the name of the server, or you can specify the server name with the -y command line option. In either case, you can specify more than one server name, separating the server names with commas (and no blank spaces). If you specify a list of server names in this way, when querying servers RIPEM will query the servers in the order listed until it obtains the desired public key, or exhausts the list.

Obtaining Keys from the Key Server: Email-Only Access

For users for whom live UDP network access to the RIPEM key server is not possible or not feasible, electronic mail access to the key server has been implemented. To obtain a copy of the complete database of registered RIPEM keys via email, send a message to the address:

	ripem-get-keys@ripem.msu.edu

The subject and content of the message are ignored by the server, and hence can be left blank.

The return email message will contain a flat file of public keys, readable directly by RIPEM. This same file can be gotten by anonymous FTP to the host ripem.msu.edu. This file can be used as described below in the section discussing flat files.

Key Distribution via the Internet Finger Program

Another means of distributing keys over the Internet is via the finger mechanism. Finger is a simple protocol which allows a user to publish personal information that can be accessed across a TCP/IP network. For the most part, only Unix users can publish their keys using this mechanism. The advantage of finger over a RIPEM key server is that it relies only upon the correct operation of the sender's and receiver's computers, and upon the link between them. If the RIPEM key server is unavailable due to hardware, networking, or human errors, finger will be a more reliable choice. In general, though, key lookup using finger is slower than the RIPEM key server.

To set up your Unix account to give out your public key, include your public component in a file named .plan, located in your home directory. Your computer must be set up to run the fingerd finger daemon, which is normally the case on most Unix computers. Your computer must be up and running on the network for a correspondent to be able to access your key via the finger mechanism.

In no case do you need the finger program itself; RIPEM contains its own implementation of the finger protocol sufficient for the purpose of looking up keys. Hence, in some cases you can use the finger mechanism to look up someone else's key even if you are unable to publish your own key via finger due to the lack of a fingerd server program on your computer. For instance, an MS-DOS version of RIPEM is available that can look up keys via finger on PC's running the PC/TCP network implementation from FTP Software, Inc.

Aside from the -Y g command line option, there are no RIPEM command line options specific to the use of the finger mechanism.

Key Distribution via Flat Files

The key files generated by the -g option are ordinary text files formatted in such a way that a database of public keys can be created simply concatenating a collection of separate public key files. RIPEM is capable of scanning such flat files. It looks up a user's key based upon email address, so there is no ambiguity even if a flat file of keys contains keys for a large number of individuals from different sites.

The best way of obtaining a flat file containing keys is from the RIPEM key server, via email or FTP as described above.

When RIPEM uses a flat key for public key lookup, it determines the file's name in one of three ways:

By looking in the file pubkeys in the RIPEM home directory

By using the value of the -p (for public key component) command line argument. If you specify -p mypubfile on the RIPEM command line, RIPEM will use mypubfile as the flat file of public keys.

In the absence of -p, by using the value of the RIPEM_PUBLIC_KEY_FILE environment variable.

If neither of the above is specified, by using a default file name. On Unix systems, this file name is the fi
