

Stream Ciphers


RSA Laboratories Technical Report TR-701


Version 2.0|July 25, 1995


M.J.B. Robshaw


matt@rsa.com


RSA Laboratories


100 Marine Parkway


Redwood City, CA 94065-1031


Copyright c 1995 RSA Laboratories, a division of RSA Data Security, Inc.


All rights reserved.


003-903040-200-000-000











i


Contents


1 Introduction 1


2 General background 2


3 Classi�cation 3


4 Analysis 5


4.1 Appearance : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5


4.1.1 Period : : : : : : : : : : : : : : : : : : : : : : : : : : : 5


4.1.2 Statistical measures : : : : : : : : : : : : : : : : : : : 7


4.2 Measures of complexity : : : : : : : : : : : : : : : : : : : : : 8


4.2.1 Linear complexity : : : : : : : : : : : : : : : : : : : : 8


4.2.2 Other measures of complexity : : : : : : : : : : : : : : 10


4.3 Some theoretical results : : : : : : : : : : : : : : : : : : : : : 12


5 Congruential generators 13


6 Shift register based schemes 14


6.1 Linear feedback shift registers : : : : : : : : : : : : : : : : : : 14


6.2 Combination and �lter generators : : : : : : : : : : : : : : : : 16


6.2.1 Correlation attacks : : : : : : : : : : : : : : : : : : : : 16


6.2.2 Two weak generators : : : : : : : : : : : : : : : : : : : 17


6.2.3 Boolean functions : : : : : : : : : : : : : : : : : : : : 18


6.2.4 Three more attacks : : : : : : : : : : : : : : : : : : : : 19


6.3 Multiplexers : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19


6.4 Clock control : : : : : : : : : : : : : : : : : : : : : : : : : : : 20


6.4.1 Stop and go with variants : : : : : : : : : : : : : : : : 21


6.4.2 Cascades : : : : : : : : : : : : : : : : : : : : : : : : : 22


6.5 Shrinking and self-shrinking generator : : : : : : : : : : : : : 23


6.6 Summation generator : : : : : : : : : : : : : : : : : : : : : : 24


7 Alternative designs 25


7.1 RC4 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25


7.2 SEAL : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25


7.3 Number-theoretic techniques : : : : : : : : : : : : : : : : : : 26


7.4 Other schemes : : : : : : : : : : : : : : : : : : : : : : : : : : 27


7.4.1 1=p generator : : : : : : : : : : : : : : : : : : : : : : : 27


7.4.2 Knapsack generator : : : : : : : : : : : : : : : : : : : 27


7.4.3 PKZIP : : : : : : : : : : : : : : : : : : : : : : : : : : 28







ii Stream Ciphers


7.5 Final examples : : : : : : : : : : : : : : : : : : : : : : : : : : 28


7.5.1 Randomized ciphers : : : : : : : : : : : : : : : : : : : 28


7.5.2 Cellular automata : : : : : : : : : : : : : : : : : : : : 29


8 Conclusions 29







1. Introduction 1


1 Introduction


Cryptosystems are divided between those that are secret-key or symmetric,


and those that are public-key or asymmetric. With the latter, the sender


uses publicly known information to send a message to the receiver. The


receiver then uses secret information to recover the message. In secret-


key cryptography, the sender and receiver have previously agreed on some


private information that they use for both encryption and decryption. This


information must be kept secret from potential eavesdroppers.


There is a further division of symmetric cryptosystems into block ciphers


and stream ciphers. The distinction between block and stream ciphers is


perhaps best summarized by the following quotation due to Rueppel [126]:


Block ciphers operate with a �xed transformation on large blocks


of plaintext data; stream ciphers operate with a time-varying


transformation on individual plaintext digits.


In this technical report we provide a review of current stream cipher


techniques. Anyone looking through the cryptographic literature will be


struck by a great di�erence in the treatment of block ciphers and stream


ciphers. Practically all work in the cryptanalysis of block ciphers is focused


on DES [94] and nearly all the proposed block ciphers are based in some way


on the perceived design goals of DES. There is no algorithm occupying an


equivalent position in the �eld of stream ciphers. There are a huge variety


of alternative stream cipher designs and cryptanalysis tends to be couched


in very general terms.


While much of this distinction might be attributed to the publication of


DES as a Federal Standard and the subsequent high pro�le of this algorithm


within both the business and cryptographic communities, there may well be


an additional and more subtle factor to consider.


We will see in this report that many stream ciphers have been proposed


which use very basic building blocks. The mathematical analysis of these


components has been very advanced for some considerable time (see Section


6.1) and intensive design and cryptanalysis over the years has resulted in the


formulation of a set of ground rules for the design of stream ciphers. It is


well known that highly developed analytic techniques facilitate both design


and cryptanalysis.


No such well-developed list could be given, until very recently, for block


ciphers. The design criteria for DES were not published and cryptanaly-


sis was, for a long time, frustratingly unsuccessful. There seemed to be







2 Stream Ciphers


little general theory available. With the advent of di�erential cryptanal-


ysis [7] and, more recently, linear cryptanalysis [80], both designers and


cryptanalysts had new and clear-cut issues to consider and there has been


considerable recent activity in both the design and analysis of block ciphers.


Curiously research into stream ciphers seems to be a predominantly Eu-


ropean a�air. By comparing the proceedings of the two major cryptography


conferences we often see that Eurocrypt meetings dedicate several sessions


to stream cipher issues whereas a single session is more often the norm at the


US Crypto meetings. This imbalance in interest may well be a by-product


of the pre-occupation with DES in the US, however an increased pro�le for


stream ciphers can be expected as more developers look to stream ciphers


to provide the encryption speeds they need.


This report aims to provide a snapshot of the di�erent techniques avail-


able today and to report on the direction and status of both prior and


contemporary research. We will avoid considerable depth on the di�erent


topics since we aim to `cover the ground' and prefer to point the reader


to sources of further details. For a more detailed source of information on


stream ciphers, we strongly recommend the excellent article by Rueppel in


Contemporary Cryptology [126] though there are also other survey articles


in the literature [51, 138].


2 General background


Much of the popularity of stream ciphers can undoubtedly be attributed to


the work of Shannon in the analysis of the one-time pad 1, originally known


as the Vernam cipher [130].


The one-time pad uses a long string of keystream which consists of bits


that are chosen completely at random. This keystream is combined with


the plaintext on a `bit by bit' basis. The keystream is the same length as


the message and can be used only once (as the name one-time pad implies);


clearly a vast amount of keystream might be required. We write the plain-


text message m as a sequence of bits m = m0m1 : : :mn�1 and the binary


keystream k which is the same length as the message as k = k0k1 : : : kn�1.


The ciphertext c = c0c1 : : : cn�1 is de�ned by ci = mi � ki for 0 � i � n� 1


where � denotes bitwise exclusive-or.


In his seminal paper [125] Shannon proved what many had previously


believed, namely that the one-time pad is `unbreakable'. In fact Shannon


1This name was adopted following its use during the Second World War with the help


of a paper pad.







3. Classi�cation 3


described the cryptosystem as being perfect; even an adversary with an


in�nite amount of computing power is unable to do better than guess the


value of a message bit since the ciphertext is statistically independent of the


plaintext.


Because of the practical problems involved with a system requiring such


a vast amount of key information, the Moscow-Washington hotline used


to be cited as perhaps the only place where the requirements for secrecy


outweighed the problems of key management. Somewhat disappointingly


Massey reports [126] that this is no longer the case and a conventional


secret-key cipher requiring much less key is used instead.


A stream cipher attempts to capture the spirit of the one-time pad by


using a short key to generate the keystream which appears to be random.


Such a keystream sequence is often described as pseudo-random and deciding


what constitutes a pseudo-random sequence forms much of the work in the


�eld of stream ciphers. We will say that the keystream is generated by the


keystream generator; other terms in the literature include pseudo-random


sequence generator and running key generator.


Stream ciphers can be very fast to operate; they are generally much faster


than block ciphers. Since the keystream can often be generated indepen-


dently of the plaintext or ciphertext such generators often have the advan-


tage that the keystream can be generated prior to encryption or decryption,


with only an easy combining step left when the message or ciphertext is to


be processed.


3 Classi�cation


We will very informally describe the state of a cryptosystem as the values


of a set of variables that together provide a unique description of the status


of the device.


When we design a stream cipher there are essentially two concerns. The


�rst is how to describe the next state of the cryptosystem in terms of the


current state, and the second is how to express the ciphertext in terms of


the plaintext and the state.


The second issue is perhaps the easiest to solve since almost invariably


the ciphertext is expressed as the bit-wise exclusive-or of the plaintext and


a function of the state of the cryptosystem. (Combining functions other


than exclusive-or might also be considered.) The sequence generated by the


function of the state of the cryptosystem is conventionally known as the


keystream.







4 Stream Ciphers


The choice of the expression of the next state of the cryptosystem, which


constituted our �rst design decision, provides us with a classi�cation of


stream ciphers into two types.


If the next state of the cryptosystem is de�ned independently of both


plaintext and ciphertext then the stream cipher is termed synchronous.


In such a scheme each plaintext bit is encrypted independently of the


others and the corruption of a bit of the ciphertext during transmission will


not a�ect the decryption of other ciphertext bits. The cipher is described


as having no error-propagation and though this appears to be a desirable


property, it has several implications. First, it limits the opportunity to


detect an error when decryption is performed, but more importantly an


attacker is able to make controlled changes to parts of the ciphertext knowing


full well what changes are being induced on the corresponding plaintext.


Of more practical signi�cance, both the encrypting and decrypting units


must remain in step since decryption cannot proceed successfully unless the


keystreams used to encrypt and decrypt are synchronized. Synchronization


is usually achieved by including `marker positions' in the transmission; the


net e�ect being that a bit of ciphertext missed during transmission results


in incorrect decryption until one of the marker positions is received.


In contrast self-synchronizing or asynchronous stream ciphers have the


facility to resume correct decryption if the keystream generated by the de-


crypting unit falls out of synchronization with the encrypting keystream.


For these stream ciphers the function that de�nes the next state of the


cryptosystem takes as input some of the previously generated ciphertext.


The most common example of this is provided by some block cipher in what


is termed cipher-feedback (CFB) mode [95].


Suppose the encryption of a bit depends on c previous ciphertext bits.


The system demonstrates limited error propagation; if one bit is received


incorrectly then decryption of the following c bits may be incorrect. Ad-


ditionally however, the system is able to resynchronize itself and produce


a correct decryption after c bits have been received correctly. This makes


such ciphers suitable for applications where synchronization is di�cult to


maintain.


Self-synchronizing stream ciphers have some limited error propagation


which may or may not be viewed as an advantage. Certainly any changes


made by an attacker to the ciphertext will have additional consequences on


other parts of the decrypted plaintext. However Rueppel suggests [114] that


there are two drawbacks to self-synchronizing stream ciphers.


First, an opponent knows some of the variables being used as input to


the generator since this input is taken from the ciphertext. Second, these







4. Analysis 5


generators have a limited analyzability because the keystream depends on


the message. Nevertheless, the design of self-synchronizing stream ciphers


has been addressed to a limited extent in the literature [101, 26] and Maurer


[81] has provided some framework for a general assessment of the security


o�ered by these stream ciphers. The rest of this report is concerned with


synchronous stream ciphers or keystream generators.


4 Analysis


There are many di�erent considerations we must keep in mind when we


consider the suitability of a keystream generated by some stream cipher.


The criteria we list here provide only some of the necessary conditions for the


security of the keystream; a keystream might well satisfy all these conditions


and yet still be vulnerable to some attack.


Over the years a vast number of di�erent considerations have been high-


lighted and they seem to fall into one of two camps. The �rst group are


used to assess the appearance of the keystream; is there some imbalance to


the way the sequence is generated that allows a cryptanalyst to guess the


next bit with some probability better than that of random guessing?


The second group of criteria address the ability of a cryptanalyst to use


the bits of the keystream he might already have, to construct a sequence


that replicates the keystream. In some way we are considering the inherent


complexity of the sequence and attempting to answer the question | is it


hard to reproduce the sequence?


Finally, Section 4.3 describes attempts to provide a �rm theoretical basis


for the security o�ered by stream ciphers.


4.1 Appearance


4.1.1 Period


The �rst attribute of a sequence, and one of the most important to consider,


is the length of the period. The usual model for a keystream generator is


provided by a �nite state machine.


In this model the machine is regularly clocked and at each clocking in-


stant the internal state of the machine is updated in a way that is determined


by its current state. At the same time some of the keystream is output. Since


there are a �nite number of states available it is clear that eventually some


internal state will occur twice. Since the successor state and the output are


determined by the current state, then from the point of repetition on, the







6 Stream Ciphers


keystream will be identical to that produced when the same state previously


occurred.


If the period of the keystream is too short then di�erent parts of the


plaintext will be encrypted in an identical way and this constitutes a severe


weakness. Knowledge of the plaintext allows recovery of the corresponding


portion of the keystream and the cryptanalyst can then use the fact that


this portion of keystream is used elsewhere in the encryption to successfully


decrypt the ciphertext. Additionally, if only the ciphertext parts are re-


ceived then they can be combined to give a stream of data that equals the


combination of two plaintext messages and is independent of the key. The


underlying statistics of the plaintext source might then be used to derive


both the plaintexts and the keystream.


During the Second World War, the Lorenz SZ-42 cipher machine was


used to encrypt messages sent fromGerman High Command to various Army


Commands. According to Good [57], who worked on the cryptanalysis of


this cipher, one of the biggest single advances came when a radio operator


used the same keystream twice to encrypt two di�erent messages. This


allowed cryptanalysts to construct a machine which mimicked the action of


the SZ-42 and paved the way for the subsequent successful cryptanalysis of


this cipher.


The question of how large a period is required for a sequence is open


to debate and depends on the application in mind. We note however, that


with a stream cipher encrypting at a speed of 1 Mbyte/sec, a sequence with


period 232 will repeat itself after only 29 seconds or 8:5 minutes. This would


not generally be considered adequate.


When the modes of use for the DES block cipher were �rst published [95]


some exibility was provided in one of the parameters for the OFB mode;


this uses the block cipher as a keystream generator. An important parameter


was allowed to vary from 8 bits through to 64. It was soon discovered that for


all choices except 64 the period of the generated keystream was very likely


to be around 232 which as we have previously noted is inadequate. Instead


the period of the keystream generated when using 64 as the parameter is


around 263 which is more acceptable. Consequently DES should only be


used in the OFB mode with a feedback of 64 bits [29].


A good assessment of the period of the keystreams generated by a


keystream generator is essential to the design of any stream cipher. Practi-


cally, the keystream should be long enough to ensure that it is overwhelm-


ingly unlikely that the same portion of keystream is used twice during en-


cryption.


On a technical point we note that many of the theoretical results in the







4. Analysis 7


later sections are obtained by considering what is termed a period of the


sequence. Most often the period of some sequence refers to the number of


bits before the sequence recurs. At other times, however, a period is said to


consist of p successive bits of the sequence where p is the length of the period.


The context provided by the text should avoid any confusion between these


two uses.


4.1.2 Statistical measures


When repeatedly tossing a fair coin one expects to see roughly as many


heads as tails. In a similar fashion many other properties can be formulated


to describe the appearance of a sequence that is purported to be generated


by a totally random source. One of the �rst formulations of some basic


ground-rules for the appearance of periodic pseudo-random sequences was


provided by Golomb [52] and these three rules have come to be known as


Golomb's postulates.


G1 The number of 1's in every period must di�er from the number of 0's


by no more than one.


G2 In every period, half the runs must have length one, one quarter must


have length two, one eighth must have length three etc. as long as the


number of runs so indicated exceeds one. Moreover, for each of these


lengths, there must be equally many runs of 1's and of 0's.


G3 Suppose we have two copies of the same sequence of period p which


are o�-set by some amount d. Then for each d, 0 � d � p� 1 we can


count the number of agreements between the two sequences, Ad, and


the number of disagreements, Dd. The auto-correlation coe�cient for


each d is de�ned by (Ad � Dd)=p and the auto-correlation function


takes on several values as d ranges through all permissible values.


For a sequence to satisfy G3, the auto-correlation function must be


two-valued.


G3 is a technical expression of what Golomb has described as the notion


of independent trials: that knowing some previous value in the sequence is


essentially of no help in deducing the current value. Another view of the


auto-correlation function is that it is some measure of the ability of being


able to distinguish between a sequence and a copy of the same sequence that


has been started at some other point in the period.







8 Stream Ciphers


A sequence satisfying G1{G3 is often termed a pn-sequence where pn


stands for pseudo{noise. However, it is clear that these rules on their own


are not su�cient to capture the full signi�cance of a random looking sequence


and a wide range of di�erent statistical tests can be applied to a sequence


to assess how well it �ts the assertion that it was generated by a perfectly


random source [4, 32, 67, 114].


We expand a little on quite what we mean when we test a keystream


generator. Suppose a sequence of length p is generated at random and this


�nite sequence of p bits is repeated to form a periodic sequence. (Such a


sequence is sometimes called a semi-in�nite sequence.) If the p bits were


generated completely at random, then any pattern of the p bits would be


equally likely. In particular, the sequence consisting of p zero bits (which


are then repeated) would be as likely to occur as any other. When we


test the generator, we test many sequences individually and assess what


proportion of the sequences generated fail the tests we apply. If the failure


rate is comparable to that expected for sequences generated using a perfectly


random source then we pass the generator. Now of course for cryptographic


purposes even sequences generated by a perfectly random source might be


wholly unsuitable for encryption, such as the example given above, and


so the design of the generator should ensure that catastrophically weak


sequences can never be generated.


4.2 Measures of complexity


As we mentioned previously, a great deal of work has centered on providing


an adequate measure of how hard a sequence might be to replicate. The


most popular technique by far, is the linear complexity; we shall describe


this next. Meanwhile, attempts to develop either new techniques or more


general measures of complexity have also had some success; we shall describe


some of these approaches in Section 4.2.2.


4.2.1 Linear complexity


One of the most far-reaching papers in stream cipher analysis is due to


Massey [77]. In this paper, an algorithm now called the Berlekamp-Massey


algorithm, is described which identi�es the shortest linear recurrence that


can be used to generate a �nite binary sequence. Since a linear recurrence


can be implemented using a linear feedback shift register (see Section 6.1)


this result is often described in terms of the shortest linear feedback shift


register that can be used to generate a sequence.







4. Analysis 9


Every sequence s0s1 : : : of period p satis�es a linear recurrence of length


p, namely si+p = si for all i � 0. A sequence may additionally satisfy a


shorter recurrence, that is each bit of the sequence can be de�ned using


some linear expression which involves bits that are less than p bits away.


The length of the shortest recurrence is de�ned to be the linear complexity


(or linear span) of the sequence.


Given a �nite sequence, the Berlekamp-Massey algorithm can be used


to calculate this recurrence over what is mathematically termed a �eld; an


example of a �eld is the set of binary numbers under the operations of


addition and multiplication modulo two, hence its applicability to pseudo-


random bit generators. An extension of the Berlekamp-Massey algorithm is


provided by Reeds and Sloane [103] which acts over more general number


systems; those that form what are mathematically called rings.


While the Berlekamp-Massey algorithm calculates the linear complexity


of a �nite sequence, its use can be easily extended to periodic or semi-in�nite


sequences. It is a very important algorithm since the linear recurrence satis-


�ed by a sequence with linear complexity k can be e�ciently calculated after


observing 2k consecutive bits of the sequence. Since the linear recurrence


also de�nes a linear feedback shift register it o�ers some indication for how


di�cult a sequence might be to replicate. A high linear complexity means


that more of the sequence has to be observed before the recurrence can be


identi�ed and that a longer register is required to duplicate the sequence.


While a high linear complexity is a necessary condition, the following


example serves to show that it is not a su�cient condition on the suitability


of the keystream. Consider the periodic sequence of period p consisting of a


single 1 with the remaining bits set to 0. In this case the linear complexity is


p since no linear relation shorter than si+p = si for all i � 0 will be satis�ed


by every bit of the sequence. However it is clear that as a keystream such a


sequence is useless since p� 1 bits are zero.


Klapper [63] demonstrates another important consideration for the lin-


ear complexity of the keystream, namely that the sequence must have a


high linear complexity not only when considered bitwise, but also when the


sequence is viewed as numbers (which happen to be 0 or 1) over �elds of


odd characteristic. In particular Klapper notes that geometric sequences [20]


might well be susceptible to this kind of analysis.


Rueppel [114] additionally proposes the use of the linear complexity pro-


�le in the analysis of stream ciphers. After each bit is added to the keystream


the linear complexity of the sequence seen so far is calculated; the value of


the linear complexity can be plotted against the number of bits that have


been examined, thereby giving a `pro�le' of the sequence. Rueppel proved







10 Stream Ciphers


several very important theorems concerning the linear complexity pro�le


and managed to obtain expressions for the expected behavior of the linear


complexity pro�le of a sequence for which each bit is generated at random


[114].


This so-called ideal linear complexity pro�le has been widely studied [96].


Rueppel established that the linear complexity pro�le for a perfectly random


source closely follows the line y = x
2
; a conjecture was posed specifying a


class of sequences which possess the ideal linear complexity pro�le, that is


which sequences have a pro�le which follows the line y = x
2
as closely as


possible. This conjecture was proved by Dai [28] and a full characterization


of all sequences with an ideal linear complexity pro�le was provided by Wang


and Massey [132].


There are other algorithms for identifying the linear complexity of a


binary sequence; some more practical than others. One very interesting


algorithm due to Games and Chan [39, 108] is exceptionally elegant but


can be used only on sequences with period 2n for which an entire period of


the sequence is known. While this appears to be an algorithm with limited


general applicability the mathematical foundations were used to prove some


very interesting results [40, 38] in the study of what are called de Bruijn


sequences [15, 35]. Very recently the validity of this algorithm has been


extended by Blackburn [9] to sequences with any period, although an entire


period of the sequence is still required for its application.


4.2.2 Other measures of complexity


As a generalization of the linear complexity a great deal of research was


completed by Jansen [58] who looked closely at algorithms for evaluating


the maximum order complexity of a sequence. This is a generalization of the


linear complexity in that the recurrence that relates bits of the sequence need


no longer be linear. Thus, when given a sequence, it might be possible to


identify a much shorter recurrence that can be used to recreate the sequence


using a nonlinear feedback shift register instead of one which is entirely


linear.


There are some very obvious relationships between the linear and the


maximum order complexity. For instance the maximum order complexity is


always less than or equal to the linear complexity. However the expected be-


havior of the maximum order complexity for a randomly generated sequence


is not easily established [58]. Consequently, the practicality of the maximum


order complexity in a statistical test tends to be somewhat limited though


it is of signi�cant theoretical interest.







4. Analysis 11


In many ways the maximum order complexity seems to be less easily


related [92, 58] to the linear complexity than to another measure of com-


plexity called the Ziv-Lempel complexity (or Lempel-Ziv complexity to some


commentators) [141, 142]. The Ziv-Lempel complexity and the maximum


order complexity are, in fact, based on quite di�erent principles since the


Ziv-Lempel complexity provides some measure of the rate at which new


patterns are generated within the sequence. The origins of the Ziv-Lempel


complexity lie within the �eld of data compression and the observation that


a random sequence cannot be signi�cantly compressed. Unfortunately the


usefulness of this measure is also currently limited since it is di�cult to de-


�ne a practical test statistic with which to evaluate the performance of a


generator.


The reason that results on the maximum order complexity and the Ziv-


Lempel complexity can be closely related is due to the fact that both com-


plexities can be computed using what is called a su�x tree [32, 97]. The


linear complexity cannot be computed in this way and this makes relating


the linear complexity to the Ziv-Lempel complexity di�cult. Jansen [58]


describes a related technique for calculating the maximum order complexity


using directed acyclic word graphs.


The use of the su�x tree points out that a measure of complexity can


only be useful if it can be e�ciently calculated for the sequence of interest.


This is the major stumbling block with the development of the quadratic


span [21].


The quadratic span lies between the linear complexity and the maximum


order complexity since it is concerned with using quadratic recurrences to


generate a sequence. At present it is only a measure of theoretical interest


since there is no e�cient way to calculate the quadratic span of a sequence.


Consequently there are as yet few results on the calculation of the quadratic


span for a binary sequence [19, 62] and even less on the expected values for a


randomly generated sequence. If, however, these problems can be overcome


then the quadratic span will almost certainly be another useful measure of


complexity.


Finally we mention the 2-adic span [64, 53] of a sequence. This fascinat-


ing new technique has allowed the cryptanalysis of the previously proposed


summation stream cipher [113]. Perhaps more importantly this work shows


the way toward a rigorous mathematical formalism of another class of shift


registers and while much research has concentrated on the cryptanalytic po-


tential of this technique, there are also results of interest to the designer


[65, 66].







12 Stream Ciphers


4.3 Some theoretical results


The statistical testing of a keystream reects what some commentators have


described as the system theoretic approach to stream cipher design [126].


The designer uses the tests that are available and if some statistical weakness


in a class of sequences is discovered a new test is devised and added to the


set. This is very much an ad hoc method of analysis and many prefer to see


some �rm theoretical foundations on which the security of stream ciphers


might be based. While a great deal of theory has been established and there


have been several proposals attempting to `prove' the security provided by


some keystream, there still remains a wide gulf between the work of the


researchers and that of the practitioners.


Much of the theoretical work was stimulated by the work of Yao [135].


Yao succeeded in tying together the two essential concepts we consider a


requisite in a keystream generator; those are the ideas of predictability and


random appearance. In short, and somewhat casually, Yao showed that a


pseudo-random generator could be `e�ciently' predicted if, and only if, the


generator could be `e�ciently' distinguished from a perfectly random source.


Following on this result, techniques in the �eld of computational com-


plexity have been used to prove results which relate the problem of predicting


the next bit in a pseudo-random sequence to the di�culty of solving a `hard'


problem [11, 12, 123]. We shall look into some of the generators proposed


as a result of this work in Section 7.3.


We have already seen an interesting link (provided by the Ziv-Lempel


complexity [141]) between techniques used in the �eld of data compression


and the analysis of pseudo-random sequences. There is another technique


due to Maurer called the universal statistical test [83] which is linked to the


�eld of data compression. This test was developed with particular interest


in the use of a pseudo-random bit generator for obtaining keys for use in a


symmetric-key cryptosystem.


Expressing the strength of a cryptosystem against exhaustive search in


terms of the length of the key might be misleading if the keys are not chosen


uniformly. In such a case an opponent can search through the keys that


are more likely to occur giving an improved chance of quickly obtaining


the correct key. Maurer's test evaluates the entropy per output bit of the


generator thereby reecting the cryptographic strength of a system when


the generator is used to obtain keys in a cryptographic application.


Returning to questions of complexity, one of the earliest attempts at as-


sessing the complexity of a sequence was provided by Chaitin [18] and Kol-


mogorov [70] who attempted to de�ne the complexity of a sequence in terms







5. Congruential generators 13


of the size of the smallest Turing machine that could be used to generate the


sequence. The Turing machine is a simple, but powerful, conceptual comput-


ing device which is often used in the theory of computing. While considering


the Turing machines' ability to reproduce a sequence leads to a theoretically


interesting measure now called the Turing-Kolmogorov-Chaitin complexity,


it is of little practical signi�cance since there is no way to compute it [5]. The


charmingly titled paper \On the Complexity of Pseudo-Random Sequences


| or: If You Can Describe a Sequence It Can't be Random"[5] provides


a link between the Turing-Kolmogorov-Chaitin complexity and the linear


complexity. More information on the Turing-Kolmogorov-Chaitin complex-


ity can be found in the work of Chaitin [17] and Martin-L�of [75].


5 Congruential generators


Some of the earliest practical systems were intended to act as pseudo-random


number generators rather than keystream generators. While the problems


are closely related, much of the motivation for pseudo-random number gen-


eration comes from problems in statistical testing and the cryptographic


value of sequences generated by these techniques can often be questioned.


A congruential generator is often used to generate random numbers and


the next number xi+1 in a sequence of numbers xi is de�ned in the following


way


xi+1 = (axi + b) mod m:


There are many results about the di�erent forms of a, b and m and their


inter-relation to obtain a sequence of pseudo-random numbers with large


period [67].


For cryptographic use the numbers generated should not be predictable;


if the modulus m is known then it is easy to solve for a and b given two


consecutive numbers in such a sequence. Knuth considers a variation of


this generator where the modulus m is a power of two [68] but only the high


order bits of the numbers are output; this bears a striking similarity to some


work of Dai [27] which is concerned with generating similar sequences using


linear feedback shift registers.


Some results on congruential generators are as follows. Marsaglia [74]


questions the claims of su�cient `random behavior' for sequences produced


using linear congruential generators and Reeds [102], Knuth [68], Plumstead


[99], Hastad and Shamir [56] and Frieze, Kannan and Lagarias [37] have all


cast considerable doubt on the cryptographic value of sequences generated


using the multiplicative congruential generator. A paper by Frieze, Hastad,







14 Stream Ciphers


Kannan, Lagarias and Shamir [36] and one by Boyar (Plumstead) [13] un-


dermine con�dence in techniques to use fragments of integers derived from


linear congruences.


While the generation of such sequences can be convenient and there are


analytic results which provide assurances on some of the basic properties


of the sequences generated, linear congruential generators cannot be recom-


mended for cryptographic use. Surprisingly perhaps, a paper by Lagarias


and Reeds [72] implies that there might be little extra cryptographic security


gained by moving to more sophisticated recurrences which involve polyno-


mial expressions. Krawczyk [71] has extended both this work and that of


Plumstead to apply a very general analysis to the problem of predicting


sequences generated using di�erent forms of polynomial recurrence relation.


6 Shift register based schemes


The vast majority of proposed keystream generators are based in some way


on the use of linear feedback shift registers [4]. There are two primary


reasons for this: a class of sequences they generate ideally capture the spirit


of Golomb's Postulates (Section 4.1.2) and their behavior is easily analyzed


using algebraic techniques.


6.1 Linear feedback shift registers


Linear feedback shift registers are very familiar to electrical engineers and


coding theorists [10] and they are very suited for high speed implementa-


tions since they are easily implemented in both hardware and software. The


two environments generally utilize di�erent implementations of the linear


feedback shift register, termed the Fibonacci and the Galois registers re-


spectively, but all theoretical results of major importance are valid for both


types.


A linear feedback shift register consists of a number of stages numbered


say from left to right as 0 : : : n�1 with feedback from each to stage n�1. The


contents of the n stages of a register describe its state. The description of the


action of the register is perhaps easier for the Fibonacci register, certainly it


is the most commonly described, so we shall consider the Fibonacci register


here. The register is controlled by a clock and at each clocking instance the


contents of stage i are moved to stage i � 1. The contents of stage 0 are


output and form part of the sequence while the new contents to stage n�1,


which is now conceptually empty, are calculated as some linear function







6. Shift register based schemes 15


of the previous contents to stages 0 : : : n � 1, the particular function being


dependent on the feedback used.


For completeness we shall briey describe the Galois register. While


each stage of the Galois register is updated according to the contents of the


stage immediately to its right (as in the Fibonacci register) the feedback


taps also determine whether the prior contents of stage 0 are exclusive-ored


into each stage of the register. Thus, in contrast to the Fibonacci register


where feedback is a function of all stages in the register and the result is


stored in the rightmost stage, feedback in the Galois register is potentially


applied to every stage of the register, though it is a function of only the


leftmost stage.


Despite the implementation di�erences between these two forms of the


linear feedback shift register, the important thing to note is that for a reg-


ister of length n, a sequence with maximum period has period 2n� 1 (since


there are 2n states and the state 0 : : : 0 cannot occur) and satis�es Golomb's


Postulates. Actually this isn't too remarkable; Golomb formed the postu-


lates with these so-called m-sequences in mind and every m-sequence is a


pn-sequence2. What is remarkable is that conditions on the generation of


such m-sequences can be easily identi�ed and this makes the analysis of


these sequences particularly straightforward.


There clearly has to be a drawback to such sequences that can be easily


and quickly generated and seem to have good properties of random appear-


ance. The drawback is that they only have linear complexity n since they


are generated using an n-stage linear feedback shift register. Consequently,


the Berlekamp-Massey algorithm (Section 4.2) can be used on 2n successive


bits of the output sequence to deduce the feedback and the initial state of


the register used to generate the sequence.


All shift register based schemes try to exploit the good characteristics


of sequences generated using linear feedback shift registers in such a way


that the new sequences are not susceptible to attacks based on their linear


complexity. Somewhat casually; the designers of shift register based schemes


are attempting to introduce su�cient nonlinear behavior into the generation


of the sequences to hinder successful cryptanalysis. As Massey is quoted


[137] as saying:


Linearity is the curse of the cryptographer.


The essential theoretical background to the study of linear feedback shift


2The question of whether every pn-sequence is an m-sequence (or its binary comple-


ment) was answered in 1981 when Cheng [22] discovered a pn-sequence which could not


be derived from an m-sequence.







16 Stream Ciphers


registers and related topics is laid down by the work of Selmer [122] and


Zierler [139]. The work of Ward [133] is often overlooked despite the fact


that many important results were derived a considerable time ago. Much


work has also concentrated on producing a parallel foundation to the theory


of non-linear feedback shift registers, see for example the work of Ronce


[111], but the lack of a convenient and general mechanism for this analysis


is a major handicap.


6.2 Combination and �lter generators


When using linear feedback shift registers there are two obvious ways to


generate an alternative output. The �rst is to use several registers in parallel


and to combine their output in some (hopefully) cryptographically secure


way. A generator like this is conventionally called a combination generator.


Another alternative is to generate the output sequence as some nonlinear


function of the state of a single register; such a register is termed a �lter


generator.


We have described this technique in very general terms and there is little


value in listing speci�c choices for the functions used. Clearly, bounding the


period and the linear complexity of the sequences generated are important


issues [114, 79, 117]. In addition, unless great care is taken in deciding which


types of function to use, these generators may be susceptible to what have


been termed correlation attacks. We will go into more detail on this subject


in Section 6.2.1.


The combination of several sequences may well involve the use of what


is termed the Hadamard product. The product of two sequences is formed


bitwise and we expect to see more 0's than 1's in a sequence formed as


the product of two other sequences which had a roughly equal distribu-


tion of 0's and 1's. While this imbalance in the product sequence tends


to increase the linear complexity considerably, the excessive number of 0's


potentially provides a cryptographic loop-hole which the cryptanalyst can


exploit. Much of the theoretical background on the linear complexity of such


product sequences can be found in the work of Zierler [140] and Rueppel and


Sta�elbach [116]. Recently Gottfert and Niederreiter [54] proved bounds on


the linear complexity of product sequences.


6.2.1 Correlation attacks


A correlation attack is a widely applicable type of attack which might be


used with success on generators which attempt to combine the output from







6. Shift register based schemes 17


several cryptographically weak keystream generators.


A correlation attack exploits the weakness in some combining function


which allows information about individual input sequences to be observed


in the output sequence. In such a case, there is a correlation between the


output sequence and one of the internal sequences. This particular internal


sequence can then be analyzed individually before attention is turned to


one of the other internal sequences. In this way the whole generator can be


deduced - this is often called a divide-and-conquer attack.


Correlation attacks were �rst introduced by Siegenthaler [121, 119, 120].


Since it is immediately clear that some combining or �lter functions are


more susceptible to attack than others, the idea of an mth-order correlation-


immune function was introduced [119]. When at least m + 1 internal se-


quences must be simultaneously considered in a correlation attack the func-


tion is said to be mth-order correlation-immune. In the same paper [119]


Siegenthaler showed that there was an interesting trade-o� between the lin-


ear complexity of the output sequence and the order of correlation immunity;


greater correlation immunity meant a reduced linear complexity.


Brynielsson [16] examined how this problem might be adapted to other


non-binary �elds and research by Rueppel [113] showed how the use of mem-


ory could be used to separate the ideas of correlation immunity and linear


complexity in the binary case. The summation generator [113] (see Sec-


tion 6.6) introduced the idea of a combining function with memory and


it was established that with this combining function it is possible to attain


maximum-order correlation and maximum linear complexity simultaneously.


Meier and Sta�elbach [86] have provided more complete details about the


correlation properties of combiners and the role of memory.


Additional work on correlation attacks, and some improvements in e�-


ciency, can be found in [23, 87, 42, 90, 2, 91, 45]. Other interesting results


have been established and we shall describe some of them in Section 6.2.3


where the issues addressed are more suitably expressed in terms of Boolean


functions.


6.2.2 Two weak generators


Since they don't fall easily into any other section, we will mention here


two early and simple proposals for keystream generators which use multiple


registers and are susceptible to correlation attacks.


The �rst is the Ge�e generator [41] which was later analyzed by Key [61]


and also cryptanalyzed using the linear syndrome algorithm [136] (Section


6.2.4). This generator uses three linear feedback shift registers, the third







18 Stream Ciphers


being used to `choose' whether the bit that is output comes from the �rst


register or the second. While such a generator has some nice properties, it


is susceptible to a correlation attack. The success of correlation attacks also


defeated the Pless generator [98] which used a widely available logic device,


the J-K ip-op, to combine the outputs from eight linear feedback shift


registers.


6.2.3 Boolean functions


It is interesting to observe that with the topic of Boolean functions the design


of stream ciphers and block ciphers are once again related. The interest in


Boolean functions for block ciphers follows from the design of S-boxes in


DES-like block ciphers [106]. Some of the conditions required for good S-


box design are essentially the same as the requirements for good combining


functions.


Meier and Sta�elbach [85] consider a measure of the distance of an ar-


bitrary Boolean function from the nearest linear function and introduce the


idea of a perfect nonlinear function. A Boolean function taking n inputs


is perfect nonlinear if the output changes with probability 1=2 whenever i


input bits are complemented for 1 � i � n. It so happens that the notion of


perfect nonlinear functions coincides with the idea of bent functions [112].


These have already been well researched in other areas of mathematics and


have been connected with functions used in the design of S-boxes [118].


A second issue of interest in the �eld of S-box design is the so-called Strict


Avalanche Criterion (SAC) [34, 73]. A Boolean function f(x) satis�es SAC


if the output changes with probability 1=2 whenever exactly one of the input


bits changes. This property is useful both in the design of S-boxes and in


the design of combining functions. So is a generalization of SAC, mth-order


SAC. A function f(x) satis�es mth-order SAC if, when any m input bits to


f(x) are kept constant, the output changes with probability 1=2 when one


of the remaining input bits changes.


Preneel et. al. [100] have uni�ed these ideas with the concept of the


propagation criterion of degree k. A Boolean function is PC of degree k if the


output changes with probability 1=2 whenever i input bits are complemented


for 1 � i � k. As a consequence we have that the idea of perfect nonlinear


is equivalent to PC of degree n and the property of SAC is equivalent to PC


of degree 1.


Counting and constructing families of Boolean functions which satisfy


various desirable cryptographic properties forms a very active area of re-


search. In particular much work is concerned with �nding an acceptable







6. Shift register based schemes 19


balance between often conicting requirements.


6.2.4 Three more attacks


In this section we briey describe three types of attacks that have been


proposed in the literature.


The linear consistency test [137] attempts to e�ciently identify some


subset of the key used for encryption. The idea is that a matrix A(K1) is


devised for which the entries identify the generator being used. This matrix


is parameterized by some subkey K1 of the complete key K. With some


portion of output sequence b the cryptanalyst attempts to �nd some x such


that the matrix equation A(K1)x = b is consistent.


If a solution is found then it can be shown that provided the portion of


output sequence b is large enough, the solution is unique and the correct


subkey K1 has been identi�ed. Thus a search need only be performed on


all possible subkeys K1 until a consistent solution is found. In this way an


attack relevant to the entire key K can be mounted.


The second attack uses what is termed the linear syndrome algorithm


[136]. This attack is essentially a generalization of the work of Meier and


Sta�elbach [85] and relies on being able to write a fragment of captured out-


put sequence b as b = a+x were a is a sequence generated by a known linear


recurrence and x is a sparse unknown sequence, where a sparse sequence


consists of more 0's than 1's. This algorithm was particularly successful in


the cryptanalysis of both the Ge�e generator [41] (Section 6.2.2) and the


stop-and-go generator [6] (Section 6.4.1).


Finally, Goli�c [43] has proposed the linear cryptanalysis of stream ci-


phers. An extension of earlier work [42] and related to other simultaneous


work [44], this technique is potentially applicable to a wide variety of stream


cipher proposals.


6.3 Multiplexers


A multiplexer is a logic device that selects one input from a set of inputs


according to the value of another index input. Sequences based on the


use of multiplexers were initially popular because they are relatively fast


and have some nice provable properties [59]. The keystream generator is


conventionally described using two sequences (often m-sequences for ease of


analysis) and the multiplexer is used to combine these two sequences in a


highly nonlinear way.


At each clocking instance a �xed pattern of k bits is taken from the







20 Stream Ciphers


�rst sequence. These k bits are viewed as the binary representation of a


number modulo 2k and this number is then mapped using a �xed and known


mapping into some other number n. (Various conditions are imposed on k


and n to ensure that the mapping is sensibly de�ned.) The number n is


used to choose some bit from the second sequence which then forms part of


the output sequence. In e�ect, the keystream generator uses a multiplexer


to select bits from the second sequence according to the values of certain


bits in the �rst sequence.


The sequences that result generally have a large period and linear com-


plexity [59]. However a technique known as the linear consistency attack


[137] has been used to show how the choice of mapping adds little to the


security of the system and it is concluded that the security of multiplexed


sequences might have been previously over-estimated. Work by Daemen [26]


has highlighted another possible avenue for mounting an attack on multi-


plexers and has undermined [25] a European Broadcast Union proposal for


audio-video scrambling [31].


6.4 Clock control


Some of the earlier attempts to introduce non-linearity into the generation of


the keystream use the idea of varying the rate at which a register is clocked.


Recall that in the conventional interpretation of a shift register, the register


is clocked regularly and the contents of the stages updated at each clocking


instance. If some arrangement is devised so that the clocking of one register


is in some way dependent on another register, then it seems reasonable to


suppose that more complex sequences will be generated.


While it is undoubtedly the case that sequences generated by these tech-


niques tend to be more complex than any of the constituent sequences,


there is a convenient framework for their analysis and some structure is


inherited in the output sequence. In fact recent theoretical work by Goli�c


and O'Conner [46] shows that most clock control keystream generators are


at least in theory susceptible to attacks termed embedding and probabilistic


correlation attacks. However these techniques can not in general be readily


extended into practical attacks.


While some of the simpler clock control techniques have not withstood


close analysis, more involved designs seem to perform quite well. Baum


and Blackburn [3] discuss a generalization of this technique and a thorough


survey of clock-control techniques is provided by Chambers and Gollmann


[51].







6. Shift register based schemes 21


6.4.1 Stop and go with variants


Among the �rst investigations were those into what was termed the `stop-


and-go' generator [6]. In this simple scenario two registers were connected


so that the second register was clocked if the output of the �rst register


was a 1, otherwise the second register repeated its previous output. Some-


times this output was then exclusive-ored with the output sequence from


a third register. It is not surprising that the repetition of bits in the �rst


output sequence roughly half the time leads to poor statistical properties


and unfortunate cryptographic consequences [138, 136].


Alterations can be made to this basic model by making the �rst, or mo-


tor, register into one which steps the second register twice when a 1 is output


by the �rst register and only once otherwise; this arrangement requires that


the second register can run at twice the speed of keystream output but it


certainly has improved statistics. Other generator arrangements, including


one by G�unther [55] which has both improved statistics and a constant reg-


ister to keystream rate, have been proposed and many properties have been


established [127, 129, 131].


Perhaps surprisingly, it is very straightforward to establish a �rm the-


oretical basis for the analysis of such sequences. Changing the clocking


pattern of one register merely ensures that the output sequence is some dec-


imated or sampled version of the original. The underlying linear algebra can


then be used to establish an expression for the new sequence in terms of


the old, and bounds on the period and the linear complexity can usually be


readily established.


Interestingly, the operations of decimation (that is, removing bits from


a sequence) and interleaving or interlacing (that is, combining sequences


together) are powerful tools in the investigation of many alternative gener-


ators [107]. Often the major di�culty is that the bounds we obtain on the


linear complexity of the sequences are upper bounds; for practical purposes


we generally wish to obtain a lower bound. Additionally it is often di�cult


to establish the conditions that de�ne when the upper bound is achieved.


Some form of lower bound can sometimes be obtained by considering the


period of the sequence since a lower bound on the period (perhaps obtained


by using combinatorial techniques) can usually be translated into a result on


the linear complexity of the sequence. Other more general theoretical results


on both what are termed the regular and irregular decimation of sequences


have been obtained [47].


After considerable early interest in clock-controlled registers during the


mid 1980's due to the provably high periods and linear complexities of the







22 Stream Ciphers


resultant sequences, there has been a slackening of research interest. How-


ever work has continued into cascades of registers (see Section 6.4.2) which


are often viewed as a generalization of the stop-and-go type register arrange-


ments.


Finally in this section we remark on two other variations. Rueppel [115]


obtained bounds on the linear complexity and period of the output from a


single register whose output controls its own clock. While such a register


should not be used as it stands as a keystream generator, Rueppel reports


[126] that several modi�cations have been suggested which might make it


useful in a cascade of registers. Second, a generator called the multiple-


speed generator [76] which uses two registers clocked at di�erent speeds, has


many interesting theoretical properties though it is vulnerable to the linear


consistency attack [137] (Section 6.2.4).


6.4.2 Cascades


The main idea behind cascades is to extend the simple stop-and-go type


arrangements of the previous section into a string of registers for which the


output of the �rst is used in some way to control the clock of the second,


the output of the second is used for the third and so on. Two major types


of cascades have been studied, the �rst where each of the registers generates


an m-sequence and the second where each of the registers is of length p,


where p is prime, and there is no feedback from any intermediate stage of


the register. Such registers are called purely cycling registers of length p.


Much of the early theoretical work on cascades took place in tandem with


proposals for clock-control [49, 51]. The beauty of cascades is that they are


conceptually very simple and they can be used to generate sequences with


vast periods and similarly vast, and guaranteed, linear complexity [49]. They


also seem to have good statistical qualities [49, 48].


However they are prone to an e�ect which has been termed lock-in [50]. A


cryptanalyst might try to reconstruct the input to the last register by using


the captured output sequence of the generator and guessing the relevant,


but unknown, parameters for the last register. Lock-in ensures that many


related guesses will su�ce to allow the reconstruction of the input sequence


to the last register. In this way a cryptanalyst can unravel a cascade register


by register, and the net result of lock-in is a reduction in the e�ective key-


space of the cascade generator. This can be a serious weakness in certain


situations, though precautions can be taken to reduce the e�ectiveness of a


cryptanalytic attack based on the lock-in e�ect.


Rather ingeniously, Chambers and Gollmann point out that if the cas-







6. Shift register based schemes 23


cade is used as an encryption mechanism with plaintext used as input to


the �rst stage (rather than the all 1 sequence when used as a keystream


generator), then the e�ect of lock-in can be used constructively to regain


synchronization after an error in transmission.


Some very recent cryptanalytic results on cascades are due to Menicocci


[89]. It is claimed that there is always some correlation between the output


sequence from the �rst register and the output of the cascade, and if this


remains signi�cant then information about the �rst register is leaked in the


output sequence. Menicocci suggests that this might form the basis for an


attack; to ensure that this e�ect is not exploitable, Menicocci suggests that


a cascade should be at least 10 registers long.


6.5 Shrinking and self-shrinking generator


These two closely related generators have been proposed recently.


Shrinking generator


The shrinking generator was proposed by Coppersmith, Krawczyk and Man-


sour [24]. It uses techniques similar to clock-control and in fact it has been


pointed out that the generator can be viewed as implementing a form of


variable clock control. One result of this equivalence is that the theoretical


results of Goli�c and O'Conner [46] (Section 6.4) are equally applicable to


the shrinking generator and the self-shrinking generator.


In e�ect, a shrinking generator is implemented by taking two sequences


that are generated in parallel. At any clocking instance a bit is output from


the second sequence if the �rst sequence outputs a 1, otherwise nothing is


output.


Like practically all of the previous schemes, when the two source se-


quences are m-sequences bounds on the period and linear complexity of the


resultant sequence can easily be obtained. Also, like many of the sequences


built out of m-sequence building blocks, the statistical appearance of the


sequences is generally good.


It is interesting to apply the techniques of decimation and interleaving


to these output sequences and it can be shown that they can be considered


as the interleaving of many o�-set copies of some m-sequence. While it is


too early to decide whether this is signi�cant to a cryptanalyst, it is clear


that there is considerable underlying structure in these sequences.


On the practical front this generator is very fast though it su�ers from


the problem that the output rate is not regular. A bu�ering technique is







24 Stream Ciphers


suggested [24] to get around this problem though it is not clear how great a


problem this irregular rate might be in practice.


Self-shrinking generator


The self-shrinking generator is a variant of the shrinking generator and was


proposed by Meier and Sta�elbach at Eurocrypt '94 [88]. Instead of generat-


ing the indexing sequence and the sequence to be shrunk from two di�erent


registers, they are both derived from the same register. While this reduces


the amount of space required for an implementation it does mean that the


sequence is generated at roughly half the speed of the shrinking generator.


There is some duality between the shrinking and the self-shrinking gen-


erator. It is easy to verify that any shrinking generator can be implemented


using some self-shrinking generator and vice versa. However the shrinking


generator equivalents to the self-shrinking generators proposed by Meier and


Sta�elbach do not possess the same form as those proposed by Coppersmith


et al. [24] and so the previous results on the shrinking register cannot be


carried over.


While there appears to be considerable unexplained behavior in the se-


quences produced using the self-shrinking generator, Meier and Sta�elbach


have proved lower bounds on both the period and the linear complexity.


Consequently parameters in an implementation of a self-shrinking generator


can be chosen to ensure adequate performance in these regards.


6.6 Summation generator


It is well known [128] that integer addition can be used as a nonlinear com-


biner; the carry in integer addition is a nonlinear function of the low-order


bits of the numbers being added.


Rueppel uses this fact in a generator known as the summation generator.


Here the outputs from several shift registers are combined using a mechanism


involving integer addition. This provides a combining function with good


nonlinearity and high-order correlation properties [113]. Importantly it also


provides an example of the role of memory in removing the trade-o� between


high nonlinearity and the correlation-immunity of a function (see Section


6.2.1). Though the work of Meier and Sta�elbach [85] on simple summation


generators, and that of Klapper and Goresky [64] more generally seems


to have compromised the security o�ered by this particular generator, it


remains a theoretically interesting technique.







7. Alternative designs 25


7 Alternative designs


It will come as no surprise that there are several important generators and


general techniques which don't really �t into the scheme of the report so far.


This penultimate section includes proposals which have not been covered in


this report and considers other very important and widely used techniques.


7.1 RC4


The RC4 stream cipher [104] was designed by Ron Rivest in 1987 for RSA


Data Security, Inc. Like its companion block cipher RC2, RC4 is a variable-


key-size cipher suitable for fast bulk encryption. It is very compact in terms


of code size, and it is particularly suitable for byte-oriented processors. RC4


can encrypt at speeds of around 1 Mbyte/sec on a 33MHz machine and, like


RC2, has special status by which the export approval process is considerably


simpli�ed [33].


While RC4 is a con�dential and proprietary stream cipher its security


does not depend on the con�dentiality of the algorithm. Its design is quite


distinct from the methods we have already seen and uses a random permu-


tation during the generation of the keystream. There are no known bad


keys and though there is no proof for the lower bound of the periods of the


sequences generated using RC4, theoretical analysis has established that the


period is overwhelmingly likely to be greater than 10100. A thorough and


extensive analysis into the security of RC4 [109] has found no reason to


question the security o�ered by the RC4 keystream generator.


7.2 SEAL


SEAL, which stands for software-optimized encryption algorithm, is a re-


cently published stream cipher designed by Rogaway and Coppersmith [110].


SEAL is described as a length-increasing pseudo-random function and this


can clearly be used as a keystream generator for a stream cipher. This


stream cipher is geared towards 32-bit architectures and encryption requires


about �ve machine instructions per byte.


SEAL requires a large amount of pre-computation to initialize several


large look-up tables which total approximately 3 Kbytes in size. This ini-


tialization procedure makes repeated use of the compression function which


lies at the heart of the Secure Hash Algorithm [93]. The algorithm was


optimized with a particular range of popular processors in mind and since


these processors were among those that are more di�cult to optimize for, it







26 Stream Ciphers


is expected that an implementation will perform well on any modern 32-bit


processor.


Since SEAL is so new there has not been enough time to allow for an


assessment of the security o�ered, but it marks a welcome new addition to


the di�erent design techniques available for stream ciphers.


7.3 Number-theoretic techniques


In this section we consider some designs for keystream generators for which


the ability to predict the keystream is in some way related to the solution


of what is considered to be a `hard' problem.


There are many well known examples of problems which are considered


to be hard; perhaps the most commonly cited are inverting the RSA cryp-


tosystem [105], establishing quadratic residuosity [69] and solving what is


called the discrete logarithm problem [69]. The aim of the designer is to


ensure that any successful method of predicting the keystream can then be


used to successfully solve some di�cult problem. Under the assumption


that this problem is in reality intractable, this implies that the keystream


cannot be e�ciently predicted. The work of Yao [135] is then cited which


then provides the �nal link to show that the keystream cannot be e�ciently


distinguished from a perfectly random source.


While these generators have considerable theoretical appeal, there are


some considerations we should keep in mind. First, the di�culty of a prob-


lem is usually expressed using techniques in the �eld of study known as


complexity theory. Such results are asymptotic in nature, that is they de-


scribe the di�culty of a problem in terms of an increasingly large instance


of the problem. The element of provability for which we are striving, is thus


asymptotic in nature and it is lost when we move to a problem instance


of �xed size. Nevertheless, these techniques do provide us with a scale by


which the security of a system can be quanti�ed against a problem that is


known to be di�cult to solve in practice. More importantly perhaps, the


number theoretic operations that these schemes use tend to be slow. As a


result these keystream generators tend to have poor performance attributes.


We shall merely list here some of the proposals in the literature and provide


some initial references for the interested reader.


Shamir [123] relates the security of a generator to inverting the RSA cryp-


tosystem but Blum and Micali highlight some interesting limitations [12].


Meanwhile, Blum and Micali [12] themselves propose a generator which is re-


lated to the problem of e�ciently computing the discrete logarithm; Kaliski


[60] provides similar work on the use of the discrete logarithm problem over







7. Alternative designs 27


elliptic curves. Meanwhile Alexi, Chor, Goldreich and Schnorr [1] propose


a scheme based on the di�culty of inverting the RSA cryptosystem. Blum,


Blum and Shub [11] use the problem of deciding quadratic residuosity as the


basis for the security of another keystream generator.


7.4 Other schemes


7.4.1 1=p generator


The 1=p generator has a long history and can be traced back to the work


of Dickson [30] and Knuth [67]. The pseudo-random sequence is generated


by expanding the fraction 1=p to some base b where p and b are relatively


prime. While the sequence itself has nice statistical features and certain


conditions on p and b can ensure a provably large period, it has been shown


[11] that this generator is insecure.


7.4.2 Knapsack generator


The security of this generator is based on what is typically called a `hard'


problem and might therefore be more consistently presented in Section 7.3.


However it is also a shift-register based scheme and this makes its classi�-


cation somewhat problematical.


The problem on which the generator is based, is called the knapsack


problem because an analogy is often drawn between solving this problem


and packing a knapsack with di�erent sized items so that the knapsack is


�lled exactly. The mathematical exposition of this problem is to �nd some


subset of a large set of numbers such that the sum of the subset equals a


speci�ed chosen target value.


In the knapsack generator [114] a set of weights are chosen as part of the


key. The state of the register at some time instance is combined with the


set of weights to give a set of integers. These are then added together using


conventional integer arithmetic. Finally bits are chosen from this sum and


output as part of the keystream.


The sequences produced have good period and linear complexity prop-


erties. However, it seems that the bad name acquired by other speci�c


knapsack-based systems during the early days of public-key cryptography


[124, 14] makes many people wary of any knapsack-based system. There do


not appear to be, however, any results in the literature on the successful


cryptanalysis of this generator.







28 Stream Ciphers


7.4.3 PKZIP


PKZIP is a widely-used compression function that has an option allowing


stream cipher encryption with a variable-length key. This cipher, however,


is not secure and Biham and Kocher [8] have described an attack which will


�nd the internal representation of the key in less than one day with a few


hundred bytes of known plaintext.


7.5 Final examples


We briey present yet more alternative approaches.


7.5.1 Randomized ciphers


We have seen cryptographers attempt to prove security against an unlim-


ited adversary or an adversary who is unable to e�ciently solve a `hard'


problem. An interesting new direction is provided by techniques which at-


tempt to ensure that the amount of work physically required for successful


cryptanalysis is too demanding. A class of stream ciphers designed with


this goal in mind, have been labelled randomized stream ciphers by Rueppel


[126]. Two schemes require massive computation or communication over-


heads for the legitimate users and can safely be considered impractical but


the third scheme we mention is practical assuming that there is some vast


public source of random bits.


The two less practical ciphers are as follows. Di�e's randomized stream


cipher is described by Rueppel [126]. The plaintext is encrypted using one


of 2n randomly generated keystreams which are all sent along with the ci-


phertext over the communication channel. The key speci�es which of the 2n


sequences the legitimate receiver should pick to use for decryption, giving a


considerable advantage over any opponent. Clearly this scheme requires a


considerable communication overhead.


Meanwhile Massey and Ingemarsson [78] have presented the Rip van


Winkle cipher, so-called because as Massey has said


One can easily guarantee that the enemy cryptanalyst will need


thousands of years to break the cipher, if one is willing to wait


millions of years to read the plaintext.


In a third scheme, Maurer considers an information-theoretic approach


to the abilities of an adversary when the adversary is computationally lim-


ited [82]. Note the contrast between this concept and that of Shannon's


information theory [125] where the computational power of the adversary is







8. Conclusions 29


assumed to be unlimited. Maurer's scheme relies on the public availability of


a vast amount of random information; an example of such a source might be


a satellite which continually beams randomly generated data back to earth.


While randomized ciphers are theoretically interesting, it seems that only


Maurer's proposal can be viewed as being near to practical.


7.5.2 Cellular automata


Proposed by Wolfram [134] the cellular automata scheme provides a tech-


nique for generating sequences with large periods and good statistical prop-


erties. The scheme also marks a departure from shift register based schemes


and as a consequence does not lend itself to the ready analysis applicable to


shift register schemes.


The generator consists of n cells that are arranged in a ring. Each cell


is updated at a given time instance according to some simple but non-linear


rule de�ned in terms of adjacent cells. The sequence of values of one chosen


cell de�nes the keystream sequence.


While the lack of a convenient framework for analysis makes cryptanaly-


sis that much harder, it also hinders attempts to assess such basic properties


of the system as the period. This is particularly the case when the theoreti-


cally interesting model of an in�nite array of cells is replaced by the practical


realization described above. Meier and Sta�elbach [84] have analyzed this


proposal and shown that the parameters originally proposed for a practical


implementation do not o�er adequate security. Daemen [26] has proposed


another cipher based on cellular automata that is resistant to the attack of


Meier and Sta�elbach.


8 Conclusions


While there is no single algorithm which acts as a focus for cryptanalysis in


the �eld of stream ciphers, the impression left by many reviews of stream


cipher techniques is that an overwhelming interest has been paid to shift-


register based schemes. This report is clearly no exception. Though a


huge variety of schemes and di�erent theoretical techniques are available,


the reality is that the open literature is dominated with shift register based


results. As we have seen, there is a close interplay between shift registers


and the techniques of linear algebra and this provides much of the emphasis


of research interest.


Despite the wealth of results on both the design and cryptanalysis of


shift register based schemes there are numerous other approaches, each with







30 Stream Ciphers


advantages and disadvantages. In the future we might expect to see some of


the alternative approaches to stream cipher design, such as those provided


by RC4 and SEAL, becoming extremely popular.


References


[1] W. Alexi, B. Chor, O. Goldreich, and C.P. Schnorr. RSA and Rabin


functions: certain parts are as hard as the whole. SIAM Journal on


Computing, 17(2):194{209, April 1988.


[2] R. Anderson. Searching for the optimum correlation attack. In Pro-


ceedings of Leuven Algorithms Workshop, December 1994, Springer-


Verlag, Berlin. To appear.


[3] U. Baum and S. Blackburn. Clock-controlled pseudorandom genera-


tors on �nite groups. In Proceedings of Leuven Algorithms Workshop,


December 1994, Springer-Verlag, Berlin. To appear.


[4] H. Beker and F. Piper. Cipher Systems. Van Nostrand, London, 1982.


[5] T. Beth and Zong-duo Dai. On the complexity of pseudo-random


sequences | or: If you can describe a sequence it can't be random.


In J.J. Quisquater and J. Vandewalle, editors, Advances in Cryptology


| Eurocrypt '89, pages 533{543, Springer-Verlag, Berlin, 1990.


[6] T. Beth and F. Piper. The stop-and-go generator. In T. Beth, N. Cot,


and I. Ingemarsson, editors, Advances in Cryptology | Eurocrypt '84,


pages 88{92, Springer-Verlag, Berlin, 1984.


[7] E. Biham and A. Shamir. Di�erential Cryptanalysis of the Data En-


cryption Standard. Springer-Verlag, New York, 1993.


[8] E. Biham and P. Kocher. A known plaintext attack on the PKZIP


encryption. In Proceedings of Leuven Algorithms Workshop, December


1994, Springer-Verlag, Berlin. To appear.


[9] S.R. Blackburn. A generalisation of the discrete Fourier transform:


an algorithm to determine the minimum polynomial of a periodic se-


quence. September 1993. Preprint.


[10] R.E. Blahut. Theory and Practice of Error Control Codes. Addison-


Wesley, 1983.







REFERENCES 31


[11] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-


random number generator. SIAM Journal on Computing, 15(2):364{


383, 1986.


[12] M. Blum and S. Micali. How to generate cryptographically strong


sequences of pseudo-random bits. SIAM Journal on Computing,


13(4):850{863, 1984.


[13] J. Boyar (Plumstead). Inferring sequences produced by a linear con-


gruential generator missing low-order bits. Journal of Cryptology,


1(3):177{184, 1989.


[14] E.F. Brickell. Breaking iterated knapsacks. In G.R. Blakley and D.


Chaum, editors, Advances in Cryptology | Crypto '84, pages 342{358,


Springer-Verlag, New York, 1985.


[15] N.G. de Bruijn. A combinatorial problem. Nederl. Akad. Wetensch.


Proc., 49:758{764, 1946.


[16] L. Brynielsson. On the linear complexity of combined shift register


sequences. In F. Pichler, editor, Advances in Cryptology | Eurocrypt


'85, pages 156{166, Springer-Verlag, Berlin, 1986.


[17] G.J. Chaitin. Information, Randomness and Incompleteness. World


Scienti�c Publishing, Singapore, 1987.


[18] G.J. Chaitin. On the length of programs for computing �nite binary


sequences. J. ACM, 13(4):547{569, October 1966.


[19] A.H. Chan. On quadratic m-sequences. In R. Anderson, editor, Fast


Software Encryption | Cambridge Security Workshop, pages 166{173,


Springer-Verlag, Berlin, 1994.


[20] A.H. Chan and R.A. Games. On the linear span of binary sequences


obtained from geometric sequences. In A.M. Odlyzko, editor, Advances


in Cryptology | Crypto '86, pages 405{417, Springer-Verlag, New


York, 1987.


[21] A.H. Chan and R.A. Games. On the quadratic spans of periodic se-


quences. In G. Brassard, editor, Advances in Cryptology | Crypto


'89, pages 82{89, Springer-Verlag, New York, 1990.


[22] U. Cheng. Properties of Sequences. PhD thesis, University of Southern


California, 1981.







32 Stream Ciphers


[23] V. Chepyzhov and B. Smeets. On a fast correlation attack on certain


stream ciphers. In D.W. Davies, editor, Advances in Cryptology |


Eurocrypt '91, pages 176{185, Springer-Verlag, Berlin, 1991.


[24] D. Coppersmith, H. Krawczyk, and Y. Mansour. The shrinking gener-


ator. In D.R. Stinson, editor, Advances in Cryptology | Crypto '93,


pages 22{39, Springer-Verlag, New York, 1994.


[25] J. Daemen, R. Govaerts, and J. Vandewalle. Cryptanalysis of MUX-


LFSR based scramblers. In State and Progress in the Research of


Cryptography, 1993, pages 55{61, 1993.


[26] J. Daemen. Cipher and Hash Function Design. PhD thesis, Katholieke


Universiteit Leuven, 1995.


[27] Zong-duo Dai. Binary sequences derived from ML-sequences over


rings. 1986. Preprint.


[28] Zong-duo Dai. Proof of Rueppel's linear complexity conjecture. IEEE


Transactions on Information Theory, IT-32:440{443, 1986.


[29] D.W. Davies and W.L. Price. Security for Computer Networks: An


Introduction to Data Security in Teleprocessing and Electronic Funds


Transfer. John Wiley & Sons, New York, 1984.


[30] L. Dickson. History of the Theory of Numbers. Chelsea Pub. Co.,


London, 1919.


[31] Speci�cation of the Systems of the MAC/Packet Family. EBU Tech-


nical Document 3258-E, October 1986.


[32] E.D. Erdmann. Empirical Tests of Binary Keystreams. Master's thesis,


University of London, 1992.


[33] P. Fahn. Answers to Frequently Asked Questions About Today's Cryp-


tography. RSA Laboratories, September 1993. Version 2.0.


[34] R. Forr�e. The strict avalanche criterion: spectral properties of Boolean


functions and an extended de�nition. In S. Goldwasser, editor, Ad-


vances in Cryptology | Crypto '88, pages 450{468, Springer-Verlag,


New York, 1990.


[35] H. Fredricksen. A survey of full length nonlinear shift register cycle


algorithms. SIAM Journal on Applied Mathematics, 24(2):195{221,


1982.







REFERENCES 33


[36] A.M. Frieze, J. Hastad, R. Kannan, J.C. Lagarias, and A. Shamir. Re-


constructing truncated integer variables satisfying linear congruences.


SIAM Journal on Computing, 17(2):262{280, April 1988.


[37] A.M. Frieze, R. Kannan, and J.C. Lagarias. Linear congruential gen-


erators do not produce random sequences. IEEE Symposium on Foun-


dations of Computer Science, 480{484, 1984.


[38] R.A. Games. There are no de Bruijn sequences of span n with com-


plexity 2n�1 + n + 1. Journal of Combinatorial Theory, Series A,


34:248{251, 1983.


[39] R.A. Games and A.H. Chan. A fast algorithm for determining the


complexity of a binary sequence with period 2n. IEEE Transactions


on Information Theory, IT-29:144{146, 1983.


[40] R.A. Games, A.H. Chan, and E.L. Key. On the complexities of de


Bruijn sequences. Journal of Combinatorial Theory, Series A, 33:233{


246, 1982.


[41] P.R. Ge�e. How to protect data with ciphers that are really hard to


break. Electronics, 99{101, January 1973.


[42] J. Goli�c. Correlation via linear sequential circuit approximation of


combiners with memory. In R.A. Rueppel, editor, Advances in Cryp-


tology | Eurocrypt '92, pages 113{123, Springer-Verlag, Berlin, 1993.


[43] J. Goli�c. Linear cryptanalysis of stream ciphers. In Proceedings of Leu-


ven Algorithms Workshop, December 1994, Springer-Verlag, Berlin. To


appear.


[44] J. Goli�c. Intrinsic statistical weakness of keystream generators. In


J. Pieprzyk and R. Safavi-Naini, editors, Advances in Cryptology |


Asiacrypt '94, pages 91{103, Springer-Verlag, Berlin, 1995.


[45] J. Goli�c. Towards fast correlation attacks on irregularly clocked shift


registers. In L.C. Guillou and J.J. Quisquater, editors, Advances in


Cryptology | Eurocrypt '95, pages 248{262, Springer-Verlag, Berlin,


1995.


[46] J. Goli�c and L. O'Conner. Embedding and probabilistic correlation


attacks on clock-controlled shift registers. In Advances in Cryptology


| Eurocrypt '94, Springer-Verlag, Berlin. To appear.







34 Stream Ciphers


[47] J. Goli�c and M.V. Zivgovi�c. On the linear complexity of nonuniformly


decimated pn-sequences. IEEE Transactions on Information Theory,


IT-34:1077{1079, 1988.


[48] D. Gollmann. Correlation analysis of cascaded sequences. December


1986. Talk presented at 1st IMA Conference on Cryptography and


Coding.


[49] D. Gollmann. Pseudo-random properties of cascade connections of


clock controlled shift registers. In T. Beth, N. Cot, and I. Ingemars-


son, editors, Advances in Cryptology | Eurocrypt '84, pages 93{98,


Springer-Verlag, Berlin, 1985.


[50] D. Gollmann and W.G. Chambers. Lock-in e�ect in cascades of clock-


controlled shift-registers. In C.G. G�unther, editor, Advances in Cryp-


tology | Eurocrypt '88, pages 331{343, Springer-Verlag, Berlin, 1988.


[51] G. Gollmann and W.G. Chambers. Clock-controlled shift registers: a


review. IEEE Journal on Selected Areas in Communications, 7(4):525{


533, May 1989.


[52] S.W. Golomb. Shift Register Sequences. Holden-Day, San Francisco,


1967.


[53] M. Goresky and A. Klapper. Feedback registers based on rami�ed


extensions of the 2-adic numbers. In Advances in Cryptology | Eu-


rocrypt '94, Springer-Verlag, Berlin. To appear.


[54] R. Gottfert and H. Niederreiter. A general lower bound for the linear


complexity of the product of shift-register sequences. In Advances in


Cryptology | Eurocrypt '94, Springer-Verlag, Berlin. To appear.


[55] C.G. G�unther. Alternating step generators controlled by de Bruijn


sequences. In D. Chaum and W.L. Price, editors, Advances in Cryp-


tology | Eurocrypt '87, pages 5{14, Springer-Verlag, Berlin, 1988.


[56] J. Hastad and A. Shamir. The cryptographic security of truncated


linearly related variables. In Proceedings of the 17th ACM Symposium


on Theory of Computing, pages 356{362, 1985.


[57] F.H. Hinsley and A. Stripp, editors. Codebreakers: The Inside Story


of Bletchley Park. Oxford University Press, 1993.







REFERENCES 35


[58] C.J.A. Jansen. Investigations on Nonlinear Streamcipher Systems:


Construction and Evaluation Methods. PhD thesis, Technical Univer-


sity of Delft, 1989.


[59] S.M. Jennings. A Special Class of Binary Sequences. PhD thesis,


University of London, 1980.


[60] B.S. Kaliski Jr. A pseudo random bit generator based on elliptic loga-


rithms. Master's thesis, Massachusetts Institute of Technology, 1987.


[61] E.L. Key. An analysis of the structure and complexity of nonlinear bi-


nary sequence generators. IEEE Transactions on Information Theory,


IT-22(6):732{736, 1976.


[62] L.H. Khachaturian. The lower bound of the quadratic spans of de


Bruijn sequences. Designs, Codes and Cryptography, 3:29{32, 1993.


[63] A. Klapper. The vulnerability of geometric sequences based on �elds


of odd characteristic. Journal of Cryptology, 7(1):33{52, 1994.


[64] A. Klapper and M. Goresky. 2-adic shift registers. In R. Anderson,


editor, Fast Software Encryption | Cambridge Security Workshop,


pages 174{178, Springer-Verlag, Berlin, 1994.


[65] A. Klapper. Feedback with carry shift registers over �nite �elds.


In Proceedings of Leuven Algorithms Workshop, December 1994,


Springer-Verlag, Berlin. To appear.


[66] A. Klapper and M. Goresky. Large period nearly de Bruijn FCSR


sequences. In L.C. Guillou and J.J. Quisquater, editors, Advances in


Cryptology | Eurocrypt '95, pages 248{262, Springer-Verlag, Berlin,


1995.


[67] D.E. Knuth. The Art of Computer Programming. Volume 2, Addison-


Wesley, Reading, Mass., 2nd edition, 1981.


[68] D.E. Knuth. Deciphering a Linear Congruential Encryption. Technical


Report 024800, Stanford University, 1980.


[69] N. Koblitz. A Course in Number Theory and Cryptography. Springer-


Verlag, New York, 1987.


[70] A.N. Kolmogorov. Three approaches to the de�nition of the concept


`quantity of information'. Problemy Peredachi Informatsii, 1:3{11,


1965. In Russian.







36 Stream Ciphers


[71] H. Krawczyk. How to predict congruential generators. In G. Bras-


sard, editor, Advances in Cryptology | Crypto '89, pages 138{153,


Springer-Verlag, New York, 1990.


[72] J.C. Lagarias and J.A. Reeds. Unique extrapolation of polynomial


recurrences. SIAM Journal on Computing, 17(2):342{362, April 1988.


[73] S. Lloyd. Counting binary functions with certain cryptographic prop-


erties. Journal of Cryptology, 5(2):107{131, 1992.


[74] G. Marsaglia. Random numbers fall mainly in the planes. Proc.


N.A.S., 61:25{28, 1968.


[75] P. Martin-L�of. The de�nition of random sequences. Inform. Contr.,


9:602{619, 1966.


[76] J. Massey and R.A. Rueppel. Linear ciphers and random sequence


generators with multiple clocks. In T. Beth, N. Cot, and I. Ingemars-


son, editors, Advances in Cryptology | Eurocrypt '84, pages 74{87,


Springer-Verlag, Berlin, 1984.


[77] J.L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans-


actions on Information Theory, IT-15:122{127, 1969.


[78] J.L. Massey and I. Ingemarsson. The Rip van Winkle cipher - a sim-


ple and provably computationally secure cipher with a �nite key. In


Abstracts of papers, IEEE Int. Symp. Inform. Theory, Brighton, UK,


June 1985.


[79] J.L. Massey and S. Serconek. A Fourier transform approach to the


linear complexity of nonlinearly �ltered sequences. In Y. Desmedt, ed-


itor, Advances in Cryptology | Crypto '94, pages 332{340, Springer-


Verlag, New York, 1994.


[80] M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helle-


seth, editor, Advances in Cryptology | Eurocrypt '93, pages 386{397,


Springer-Verlag, Berlin, 1994.


[81] U.M. Maurer. New approaches to the design of self-synchronizing


stream ciphers. In D.W. Davies, editor, Advances in Cryptology |


Eurocrypt '91, pages 458{471, Springer-Verlag, Berlin, 1991.


[82] U.M. Maurer. A provable-secure strongly-randomized cipher. In I.B.


Damg�ard, editor, Advances in Cryptology | Eurocrypt '90, pages 361{


373, Springer-Verlag, Berlin, 1991.







REFERENCES 37


[83] U.M. Maurer. A universal statistical test for random bit generators.


In A.J. Menezes and S.A. Vanstone, editors, Advances in Cryptology


| Crypto '90, pages 409{420, Springer-Verlag, New York, 1991.


[84] W. Meier and O. Sta�elbach. Analysis of pseudo random sequences


generated by cellular automata. In D.W. Davies, editor, Advances in


Cryptology | Eurocrypt '91, pages 186{199, Springer-Verlag, Berlin,


1992.


[85] W. Meier and O. Sta�elbach. Correlation properties of combiners


with memory in stream ciphers. In I.B. Damg�ard, editor, Advances in


Cryptology | Eurocrypt '90, pages 549{562, Springer-Verlag, Berlin,


1991.


[86] W. Meier and O. Sta�elbach. Correlation properties of combiners with


memory in stream ciphers. Journal of Cryptology, 5(1):67{86, 1992.


[87] W. Meier and O. Sta�elbach. Fast correlation attacks on certain


stream ciphers. Journal of Cryptology, 1(3):159{176, 1989.


[88] W. Meier and O. Sta�elbach. The self-shrinking generator. In Ad-


vances in Cryptology | Eurocrypt '94, Springer-Verlag. To appear.


[89] R. Menicocci. Short Gollmann cascade generators may be insecure. In


Proceedings of the 4th IMA Conference on Cryptography and Coding.


To appear.


[90] M.J. Mihaljevi�c and J. Goli�c. A fast iterative algorithm for a shift


register initial state reconstruction given the noisy output sequence.


In J. Seberry and J. Pieprzyk, editors, Advances in Cryptology |


Auscrypt '90, pages 165{175, Springer Verlag, Berlin, 1990.


[91] M.J. Mihaljevi�c. A correlation attack on the binary sequence genera-


tors with time-varying output function. In J. Pieprzyk and R. Safavi-


Naini, editors, Advances in Cryptology | Asiacrypt '94, pages 67{79,


Springer-Verlag, Berlin, 1995.


[92] S. Mund. Ziv-Lempel complexity for periodic sequences and its cryp-


tographic application. In D.W. Davies, editor, Advances in Cryptology


| Eurocrypt '91, pages 114{126, Springer-Verlag, Berlin, 1992.


[93] National Institute of Standards and Technology (NIST). FIPS Publi-


cation 180: Secure Hash Standard (SHS). May 11, 1993.







38 Stream Ciphers


[94] National Institute of Standards and Technology (NIST). FIPS Publi-


cation 46-2: Data Encryption Standard. December 30, 1993.


[95] National Institute of Standards and Technology (NIST). FIPS Pub-


lication 81: DES Modes of Operation. December 2, 1980. Originally


issued by National Bureau of Standards.


[96] H. Niederreiter. The linear complexity pro�le and the jump complex-


ity of keystream sequences. In I.B. Damg�ard, editor, Advances in


Cryptology | Eurocrypt '90, pages 174{188, Springer-Verlag, Berlin,


1991.


[97] L. O'Conner and T. Snider. Su�x trees and string complexity. In R.A.


Rueppel, editor, Advances in Cryptology | Eurocrypt '92, pages 138{


152, Springer-Verlag, Berlin, 1993.


[98] V.S. Pless. Encryption schemes for computer con�dentiality. IEEE


Transactions on Computers, C-26:1133{1136, Nov. 1977.


[99] J. Plumstead (Boyar). Inferring a sequence generated by a linear con-


gruence. In Proceedings of 23rd IEEE Symposium on Foundations of


Computer Science, pages 153{159, 1982.


[100] B. Preneel, W. Van Leekwijck, L. Van Linden, R. Govaerts, and J.


Vandewalle. Propagation characteristics of Boolean functions. In I.B.


Damg�ard, editor, Advances in Cryptology | Eurocrypt '90, pages 161{


173, Springer-Verlag, Berlin, 1991.


[101] N. Proctor. A self-synchronizing cascaded cipher system with dynamic


control of error-propagation. In G.R. Blakley and D. Chaum, edi-


tors, Advances in Cryptology | Crypto '84, pages 174{190, Springer-


Verlag, New York, 1985.


[102] J.A. Reeds. `Cracking' a random number generator. Cryptologia, 1,


January 1977.


[103] J.A. Reeds and N.J.A. Sloane. Shift register synthesis (modulo m).


SIAM Journal on Computing, 14(3):505{513, 1985.


[104] R.L. Rivest. The RC4 Encryption Algorithm. RSA Data Security,


Inc., March 12, 1992.


[105] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining


digital signatures and public-key cryptosystems. Communications of


the ACM, 21(2):120{126, February 1978.







REFERENCES 39


[106] M.J.B. Robshaw. Block Ciphers. Technical Report TR - 601, RSA


Laboratories, revised July 1995.


[107] M.J.B. Robshaw. On Binary Sequences with Certain Properties. PhD


thesis, University of London, 1992.


[108] M.J.B. Robshaw. On evaluating the linear complexity of a sequence


of least period 2n. Designs, Codes and Cryptography, 4:263{269, 1994.


[109] M.J.B. Robshaw. Security of RC4. Technical Report TR - 401, RSA


Laboratories. To appear.


[110] P. Rogaway and D. Coppersmith. A software-optimized encryption


algorithm. In R. Anderson, editor, Fast Software Encryption | Cam-


bridge Security Workshop, pages 56{63, Springer-Verlag, Berlin, 1994.


[111] C.A. Ronce. Feedback Shift Registers. Volume 169 of Lecture Notes in


Computer Science, Springer-Verlag, Berlin, 1984.


[112] O.S. Rothaus. On bent functions. Journal of Combinatorial Theory,


Series A, 20:300{305, 1976.


[113] R.A. Rueppel. Correlation immunity and the summation combiner.


In H.C. Williams, editor, Advances in Cryptology | Crypto '85,


pages 260{272, Springer-Verlag, New York, 1986.


[114] R.A. Rueppel. New Approaches to Stream Ciphers. PhD thesis, Swiss


Federal Institute of Technology, Zurich, 1984.


[115] R.A. Rueppel. When shift registers clock themselves. In D. Chaum


and W.L. Price, editors, Advances in Cryptology | Eurocrypt '87,


pages 53{64, Springer-Verlag, Berlin, 1988.


[116] R.A. Rueppel and O.J. Sta�elbach. Products of linear recurring se-


quences with maximum complexity. IEEE Transactions on Informa-


tion Theory, IT-33(1):124{131, 1987.


[117] A. F�uster-Sabater and P. Caballero-Gil. On the linear complexity


of nonlinearly �ltered PN-sequences. In J. Pieprzyk and R. Safavi-


Naini, editors, Advances in Cryptology | Asiacrypt '94, pages 80{90,


Springer-Verlag, Berlin, 1995.







40 Stream Ciphers


[118] J. Seberry, X.M. Zhang, and Y. Zheng. Nonlinearly balanced Boolean


functions and their propogation characteristics. In D.R. Stinson, ed-


itor, Advances in Cryptology | Crypto '93, pages 49{60, Springer-


Verlag, New York, 1994.


[119] T. Seigenthaler. Correlation-immunity of nonlinear combining func-


tions for cryptographic applications. IEEE Transactions on Informa-


tion Theory, IT-30(5):776{779, Sept. 1984.


[120] T. Seigenthaler. Cryptanalyst's representation of nonlinearity �ltered


ml-sequences. In F. Pichler, editor, Advances in Cryptology | Euro-


crypt '85, pages 103{110, Springer-Verlag, Berlin, 1986.


[121] T. Seigenthaler. Decrypting a class of stream ciphers using ciphertext


only. IEEE Transactions on Computers, C-34(1):81{85, Jan. 1985.


[122] E.S. Selmer. Linear Recurrence Relations over Finite Fields. Univer-


sity of Bergen, Norway, 1966.


[123] A. Shamir. On the generation of cryptographically strong pseudo-


random sequences. In Proc. 8th Int. Colloquium on Automata, Lan-


guages, and Programming, Springer-Verlag, 1981.


[124] A. Shamir. A polynomial time algorithm for breaking the basic Merkle-


Hellman cryptosystem. IEEE Transactions on Information Theory,


IT-30(5):699{704, Sept. 1984.


[125] C.E. Shannon. Communication theory of secrecy systems. Bell System


Technical Journal, 28:657{715, 1949.


[126] G.J. Simmons, editor. Contemporary Cryptology, The Science of In-


formation Integrity. IEEE, New York, 1992.


[127] B. Smeets. A note on sequences generated by clock-controlled shift


registers. In F. Pichler, editor, Advances in Cryptology | Eurocrypt


'85, pages 40{42, Springer-Verlag, Berlin, 1986.


[128] O. Sta�elbach and W. Meier. Cryptographic signi�cance of the carry


for ciphers based on integer addition. In A.J. Menezes and S.A. Van-


stone, editors, Advances in Cryptology | Crypto '90, pages 601{615,


Springer-Verlag, New York, 1990.


[129] S.A. Tretter. Properties of PN2 sequences. IEEE Transactions on


Information Theory, IT-20:295{297, March 1974.







REFERENCES 41


[130] G.S. Vernam. Cipher printing telegraph systems for secret wire and


radio telegraphic communications. J. Am. Inst. Elec. Eng., 55:109{


115, 1926.


[131] R. Vogel. On the linear complexity of cascaded sequences. In T.


Beth, N. Cot, and I. Ingemarsson, editors, Advances in Cryptology |


Eurocrypt '84, pages 99{109, Springer-Verlag, Berlin, 1984.


[132] M.Z. Wang and J.L. Massey. The characteristics of all binary se-


quences with perfect linear complexity pro�les. May 20{22 1986. Pre-


sented at Eurocrypt'86.


[133] M. Ward. The arithmetic theory of linear recurring series. Trans.


A.M.S., 35:600{628, 1933.


[134] S. Wolfram. Cryptography with cellular automata. In H.C.


Williams, editor, Advances in Cryptology | Crypto '85, pages 429{


432, Springer-Verlag, New York, 1986.


[135] A.C. Yao. Theory and applications of trapdoor functions. In Proc.


25th IEEE Symp. Foundations Comput. Sci., New York, 1982.


[136] K. Zeng, C.H. Yang, and T.R.N. Rao. An improved linear syndrome


algorithm in cryptanalysis with applications. In A.J. Menezes and S.A.


Vanstone, editors, Advances in Cryptology | Crypto '90, pages 34{47,


Springer-Verlag, New York, 1990.


[137] K. Zeng, C.H. Yang, and T.R.N. Rao. On the linear consistency test


in cryptanalysis with applications. In G. Brassard, editor, Advances in


Cryptology | Crypto '89, pages 167{174, Springer-Verlag, New York,


1990.


[138] K. Zeng, C.H. Yang, D.Y. Wei, and T.R.N. Rao. Pseudorandom bit


generators in stream-cipher cryptography. Computer, 8{17, February


1991.


[139] N. Zierler. Linear recurring sequences. J. Soc. Indust. Appl. Math.,


7(1):31{48, 1959.


[140] N. Zierler and W.H. Mills. Products of linear recurring sequences.


Journal of Algebra, 27:147{157, 1973.


[141] J. Ziv and A. Lempel. On the complexity of �nite sequences. IEEE


Trans. Information Theory, 22:75{81, 1976.







42 Stream Ciphers


[142] J. Ziv and A. Lempel. A universal algorithm for sequential data com-


pression. IEEE Trans. Information Theory, 23(3):337{343, 1977.






