

2C R Y P T O B Y T E S A U T U M N 1 9 9 5 — T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

Editor’s Note

In this, the autumn edition of CryptoBytes, we have
decided to concentrate on issues related to the use of
the RSA cryptosystem.

The main article in this issue is entitled The Secure
Use of RSA. Adapted from a seminar presented by
Ron Rivest at the 1995 RSA Laboratories Seminar
Series, this article considers the myths and realities
of using the RSA cryptosystem. From low exponent
attacks to padding rules, this article provides the
ground rules for avoiding a variety of potential at-
tacks on RSA when used either to provide message
encryption or to digitally sign documents.

We also have a variety of reports on several recent
research results.

At most conferences, time is set aside for researchers
to present their latest results outside of the main pro-
gram, and consequently, outside of the conference
proceedings. This means that it is often hard to track
down the essential details of what was said. As initial
steps to make information on rump session items more
widely available, we present reports on three items
that were presented at recent rump sessions.

A novel idea by Adi Shamir, leading to a rather un-
conventional implementation of RSA, has some very
intriguing properties. In this issue of CryptoBytes
we include an article by Adi Shamir which provides
more details on ideas that were originally presented
at the rump session of Eurocrypt ’95 earlier this year.

We also have news of two items from the rump ses-
sion of the Crypto ’95 conference. We report on a
new “protocol failure” when RSA is used with expo-
nent three and also on a new attack on the envelope
method of using a hash function for message authen-
tication. (In one way or another, message authenti-
cation with hash functions has featured in all issues
of CryptoBytes so far!) Also, as part of our ongoing
features, we provide an Algorithms Update on some
very exciting new work in the analysis of hash func-
tions by Hans Dobbertin.

Finally, in this issue, we introduce a new column:
Frequently Asked Questions. Extracted from the ongo-
ing enhancements to RSA Laboratories’ Answers to
Frequently Asked Questions, this column will feature
answers to new questions on today’s cryptography that

are of particular interest to our readers. In this issue,
the question “How do digital time-stamps support
digital signatures?” is answered by Stuart Haber, Burt
Kaliski and Scott Stornetta.

The future success of CryptoBytes depends on input
from all sectors of the cryptographic community
and as usual we would very much like to thank the
writers who have contributed to this third issue. We
encourage any readers with comments, opposite
opinions, suggestions, proposals for questions in our
Frequently Asked Questions column or proposals for
items in future issues to contact the CryptoBytes edi-
tor by any of the methods given below.

About RSA Laboratories

RSA Laboratories is the research and development division of RSA
Data Security, Inc., the company founded by the inventors of the
RSA public-key cryptosystem. RSA Laboratories reviews, designs
and implements secure and efficient cryptosystems of all kinds. Its
clients include government agencies, telecommunications compa-
nies, computer manufacturers, software developers, cable TV
broadcasters, interactive video manufacturers, and satellite broad-
cast companies, among others.

Contact and Subscription
Information

CryptoBytes will be available by subscrip-
tion and individual annual subscription to
four issues is U.S.$90. To subscribe, con-
tact RSA Laboratories at:

RSA Laboratories
100 Marine Parkway, Suite 500
Redwood City, CA 94065
415/595-7703
415/595-4126 (fax)
rsa-labs@rsa.com

We are hoping that electronic subscrip-
tion to CryptoBytes, via the World-Wide
Web, will be available soon. All back is-
sues are available via the World-Wide Web
at http://www.rsa.com/rsalabs/cryptobytes/.

The CryptoBytes editor can be contacted
by any of the above methods, or by E-mail
to bytes-ed@rsa.com.

At most
conferences,

time is set aside
for researchers
to present their

latest results
outside of the

main program....
This means that
it is often hard

to track down the
essential details

of what was said.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S — A U T U M N 1 9 9 5 3

only 2-3 times harder than the factorization of RSA-
129 achieved (by a different algorithm) in early 1994,
and is likely to be demonstrated within a year.

Since the inception of the RSA cryptosystem, all the
record breaking factorizations of RSA keys were based
on algorithms of the second type, and it is reasonable
to assume that this trend will continue in the foresee-
able future. If this is the case, there is no need to in-
crease the sizes of n and its prime factors at the same
rate. In this paper we use this observation in order to
propose a new variant of the RSA cryptosystem, which
we call “unbalanced RSA”. Its goal is to provide much
higher security at essentially no extra cost.

Unbalanced RSA
As a typical example of the new RSA variant, we
describe an “ultimate security” implementation,
which is likely to provide long term security even to
professional paranoids. In this version we increase
the overall size of n by a factor of 10 (to 5,000 bits),
and the size of its prime factor p by a factor of 2 (to
500 bits). The size of the other factor q of n is 4,500
bits, and the name of this variant reflects the un-
equal sizes of the two prime factors of n.

Such a modulus is way out of reach of today’s factor-
ing algorithms, and is likely to remain secure even if
factoring algorithms of the first type will become
much better, and factoring algorithms of the second
type will become enormously better. Only a major
breakthrough in factoring (such as a practical polyno-
mial time factoring algorithm, which will completely
kill the RSA scheme) can possibly threaten it.

The main problem in using such a modulus n is the
fact that standard RSA implementations become
about 1000 times slower: A typical 500 bit exponen-
tiation which required 1 second on a microprocessor
would now require 16 minutes, which is unacceptable.

Since RSA encryption is typically used only in order
to exchange session keys for fast secret key crypto-
systems, the cleartexts are usually quite short: even
three independent keys for triple DES require only
168 bits, and it is unlikely that anyone would use
the RSA cryptosystem to exchange secret keys which
are larger than p. We can thus assume that the
cleartext is in the range [0, p), and that it is padded
with random bits to make sure that it is not much
shorter than p.

RSA for Paranoids
Continued from page 1

A well known way of speeding up the RSA encryp-
tion process c = me (mod n) is to use a small encryp-
tion exponent e. Since m is only one tenth the size
of n, encryption exponents which are smaller than
10 do not provide any wraparound during the modu-
lar reduction, and should be avoided. When e is
around 20, the size of me is about twice the size of n,
and thus the wraparound effect is similar to the squar-
ing operation of full size numbers in Rabin’s scheme.
Note that for such an e, most of the multiplications
in the computation of me (mod n) are non modular
multiplications of relatively small numbers, and only
the last squaring is likely to be a full size modular
multiplication. The recommended range of e is 20-
100, which makes the encryption time with a 5,000
bit modulus comparable to the decryption time with
a 500 bit modulus (i.e., less than a second).

The other operation we have to consider is the de-
cryption process m = c d (mod n) in which c, n and d
are 5,000 bit numbers. If we use the Chinese remain-
der theorem, we can easily compute m1=cd (mod p)
via a 500 bit exponentiation, by reducing c modulo
p and d modulo p–1 at the beginning of the compu-
tation. However, we then have to carry out the 4,500
bit exponentiation m2 = c d (mod q), which is 93=729
times slower.

The main purpose of this note is to show that there
is no need to carry out this expensive computation.
By definition, m1 is equal to m (mod p). However,
the cleartext m is known to be smaller than p, and
thus m (mod p) is simply m itself. By combining these
observations, we conclude that m1 is the original
cleartext m, and thus it is just a waste of time to
carry out the computation of m2 modulo q, which
will yield the same result.

Other optimizations
While the unbalanced RSA variant has about the
same time complexity as the original variant, its
space complexity and public key size are 10 times
larger. We now show how to use additional optimi-
zation techniques to avoid these extra overheads.

Consider first the issue of RAM size. On personal
computers the 10-fold increase in the size of the reg-
isters is meaningless, but smart cards contain very
small RAMs and their cost is directly proportional
to the size of their memory. In addition, many smart
card manufacturers have already designed RSA

In this paper ...
[we] propose
a new variant
of the RSA
cryptosystem,
which we call
“unbalanced
RSA”. Its goal
is to provide
much higher
security at
essentially
no extra cost.

4C R Y P T O B Y T E S A U T U M N 1 9 9 5 — T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

coprocessors which can handle 512 bit moduli, and
would be reluctant to redesign them in order to ac-
commodate much larger moduli. However, in most
applications the smart card is talking to a powerful
PC or workstation, and we can choose to implement
either the encryption or the decryption side of the
RSA key exchange on the smart card. It turns out
to be easier to let the powerful machine choose and
encrypt the session key. The arbitrarily long cipher-
text is sent to the smart card in a bit serial mode,
and the smart card reduces it on-the-fly modulo p by
clocking it through the 512 bit input register of its
coprocessor. The resultant value is then exponent-
iated by the 512 bit coprocessor to obtain the ses-
sion key. The advantage of this approach is that
today’s coprocessors would be able to handle vari-
able length moduli (dictated by the changing state
of the art of factoring algorithms) without expensive
periodic replacements of millions of smart cards in
large-scale consumer applications.

Another potential drawback of the new variant is
the 10-fold increase in the size of the public key di-
rectory. However, the unbalanced construction of the
new public keys makes it possible to eliminate this
problem. Let G be a publicly known pseudo random
bit generator which maps each user identity u (name,
email address, etc.) into a unique 5,000 bit pseudo
random target value t. Each user picks a random 500-
bit prime p, and defines the other prime q as a ran-
dom prime number in the range [a, a + 250] where a

is the smallest integer greater than or equal to t/p.
Since the prime numbers are relatively dense, such a
q almost certainly exists, and n = pq is very close to
the target value t (the difference s = n – t is expected
to be about 550 bits long). Each user u publishes this
550-bit s as his public key, and anyone can recover
the user’s 5,000-bit modulus n by computing G(u) + s.

It is important to note that this approach does not
make n easy to factor: the only difference between
our n and standard n is that we start the search for q
at a point which is the ratio of a random number and
a prime number, rather than at a random number.
Since the distribution of prime numbers p is not
completely uniform, the choice of a is not completely
uniform. We smooth this slight nonuniformity by
specifying a fairly large range of size 250 in which q
can be chosen, which makes the exact location of
the range’s endpoints irrelevant. Once n is chosen,
it makes no difference whether we specify it by its
bits or by its distance s from another number t, and
the fact that t is a pseudo random rather than a truly
random number cannot change this fact.

Finally, we note that the technique described in this
paper can also be used to double the speed and halve
the key size of standard implementations of the RSA
cryptosystem in which p and q have similar sizes.
The optimization does not apply to the RSA signa-
ture scheme, since the verifier cannot carry out com-
putations modulo the unknown p.

Collisions in MD4

Recent work by Hans Dobbertin has discovered that
collisions for MD4 can be found within a few min-
utes on a typical PC. Even more impressive is the
fact that collisions can be constructed, in around an
hour, so that the text they represent makes sense. For
an example, see how Alf swindles Ann opposite.

MD4 was among the first of a new generation of
what are termed dedicated hash functions, designed
from first principles to be hash functions rather than
being based around some other primitive such as a
block cipher. MD5, RIPEMD, the secure hash algo-

rithm SHA and its more recent revision SHA-1 fol-
low the same design approach that was pioneered by
Rivest with MD4. Rivest also designed an extended
version of MD4 with a 256-bit rather than 128-bit
hash value which was considered to be much more
secure than MD4. It appears, however, that these new
techniques will also compromise extended-MD4.

While MD4 remained secure until now, it was felt
that MD4 made little allowance for potential crypt-
analytic developments. Consequently, the use of
MD4 has been discouraged for some considerable
time, and instead the usual recommendation was to
replace MD4 with the more conservatively designed

A L G O R I T H M S U P D A T E

... the technique
described in this

paper can also
be used to double

the speed and
halve the key

size of standard
implementations

of the RSA
cryptosystem

in which
p and q have
similar sizes.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S — A U T U M N 1 9 9 5 5

MD5. Dobbertin’s work clearly confirms that if MD4
is still being used anywhere, then it should be imme-
diately replaced.

As for the applicability of Dobbertin’s techniques to
other hash functions such as MD5, RIPEMD and

SHA-1, the task facing the cryptanalyst is much more
involved. Initial review of those algorithms suggests a
limited opportunity for new developments (except on
reduced-round versions of RIPEMD which have al-
ready succumbed to this type of analysis) and Crypto-
Bytes will report on any further developments.

Alf Swindles Ann

Hans Dobbertin
German Information Security Agency

P.O. Box 20 10 63,
D-53133 Bonn, Germany

Alf wanted to sell Ann his house, and Ann was
interested. They agreed on a price of $176,495. Alf asked
Ann to sign a contract using a digital signature scheme
which is based on some public-key algorithm and the
hash function MD4. The contract read as follows:

CONTRACT

At the price of $176,495 Alf Blowfish sells
his house to Ann Bonafide. ...

“The first 20 bytes (each of them is represented by an
asterisk above) are random. They have been placed be-
fore the text for security reasons!” claimed Alf, and Ann
signed the contract. Later, however, Alf substituted
the contract file by another which read as follows:

CONTRACT

At the price of $276,495 Alf Blowfish sells
his house to Ann Bonafide. ...

The contract had been prepared by him such that re-
placing $176,495 by $276,495 does not change the
MD4 hash value!

How Alf did it
For the precise definition of the above digital contract
note that the first sixteen 32-bit words are:

M0 = 0x9074449b M8 = 0x68742074
M1 = 0x1089fc26 M9 = 0x72702065
M2 = 0x8bf37fa2 M10 = 0x20656369
M3 = 0x1d630daf M11 = 0x2420666f
M4 = 0x63247e24 M12 = 0x2C363731
M5 = 0x4e4f430a M13 = 0x20353934
M6 = 0x43415254 M14 = 0x20666c41
M7 = 0x410a0a54 M15 = 0x776f6C42

The twenty bytes of M0-M4 are the above mentioned
“random bytes’’. The bytes of M5, in reverse ordering
(according to the definition of MD4) and interpreted as
ASCII read as follows:

0a 43 4f 4e = Line-feed ‘CON’,

and so on to M15 which reads

42 6c 6f 77 = ‘Blow’.

The sequence Mi (i<16) has been chosen such that set-
ting M’12 = M12+1 and M’i = Mi for i<16, i ≠ 12 gives a
collision, i.e.

compress(IV; M) = compress(IV; M’)

for the compress function of MD4 and its fixed initial
value IV. In [1] the basic method of generating such
collisions was described. They can be found in less than
one hour on a PC. Interpreting M12 = 0x2c363731 and
M’12 = 0x2c363732 we get:

M12 = 31 37 36 2c = ‘176,’
M’12 = 32 37 36 2c = ‘276,’

In view of the definition of MD4 as the iterative appli-
cation of compress, we obtain a collision by taking any
bit string and appending it to M and M’.

Where MD4 is still in use, it should be replaced!

References
[1] Dobbertin, H.: Cryptanalysis of MD4, preprint.

Where MD4
is still in use,
it should be
replaced!

Professor Hans Dobbertin is particularly interested in the
evaluation and design of cryptographic algorithms. He can be
contacted at dobbertin@skom.rhein.de.

6C R Y P T O B Y T E S A U T U M N 1 9 9 5 — T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

More Developments with
Keyed Hash Functions
At the rump session of Crypto’95, Bart Preneel in
joint work with Paul van Oorschot described a new
attack on one method of message authentication
using a keyed hash function (see CryptoBytes vol-
ume 1, number 1).

In what is sometimes called the envelope method, a
hash function H can be used to provide authentica-
tion of a message m under the action of two keys k1

and k2 by using the result of H(k1 . m . k2) as a mes-
sage authentication code for the message m. A vari-
ety of padding schemes might also be specified as
additional security measures.

Previously (see CryptoBytes volume 1, number 2),
Preneel and van Oorschot have reported that the
envelope method of keyed-MD5 allows a MAC forg-
ery attack with “264 known message-MAC pairs and
a single chosen text.” These known messages have
to be the same length and additional reductions in
the data requirements are possible if the messages
are known to have a particular form.

At the rump session of Crypto ’95, Preneel described
a new attack on the envelope method which allows
recovery of the secret key rather than just a MAC
forgery. For the new attack to succeed, the length of
the messages being authenticated is carefully chosen
by the cryptanalyst to ensure that the action of the
second key k2 is split into two parts, one under the
influence of ka and the other under kb, where k2 is
equal to the concatenation ka . kb.

The attack requires two phases, the first of which is
in effect the previously mentioned MAC-forgery
attack. Using information obtained from this first
phase, the cryptanalyst requests the MACs on 2|ka|

pairs of chosen messages (2|ka|+1 messages in total)
where |ka| denotes the number of bits in ka. These
new message pairs are chosen according to different
guesses for ka.

When the guess for ka is correct, the MACs gener-
ated for that pair of messages will be the same and ka

can be correctly identified. The rest of k2 can be
found either by exhaustive search, or by using mes-
sages of a second carefully chosen length to split the
unknown remainder of k2 once again.

The increased work and data requirements for the
new attack over that offering MAC-forgery depend
on the length of ka since this determines the num-
ber of guesses a cryptanalyst is required to try in the
second phase. However, since the cryptanalyst can
choose this length, the requirements of the attack
are effectively dominated by the requirements for
the MAC-forgery attack.

Since the MAC-forgery attack is barely practical the
same must be said of this new attack which recovers
the key. However the new attack does demonstrate
a certificational weakness in the envelope method
since the secret key can be recovered with much less
work than the length of the secret key might imply.
While the use of additional padding (to prevent the
splitting of k2) would thwart this attack, it seems
fair to recommend different mechanisms than the
envelope method for providing message authentica-
tion with a keyed hash function. CryptoBytes will
report on future developments.

A Linear Protocol Failure for RSA
With Exponent Three
At the rump session of Crypto ’95, Matthew Franklin
and Michael Reiter of AT&T Bell Laboratories pre-
sented a new weakness of RSA with low encrypting
exponent. This weakness depends on two messages
being encrypted with exponent three with respect
to the same RSA modulus, and on a (non-trivial)
linear relationship being known to exist between the
two messages. In such cases the messages can be
computed efficiently by an attacker that has access
only to the public key, the two ciphertexts, and the
linear relation. This differs from the “small expo-
nent” protocol failure, generalized by Hastad (de-
scribed opposite in The Secure Use of RSA), which
requires that messages be encrypted with respect to
different moduli. It also differs from the “common
modulus” protocol failure, observed by Simmons,
which requires that a single message be encrypted
with different exponents. This weakness can be ex-
ploited to yield passive attacks on protocols that en-
crypt related messages. Examples of such protocols
are a signature sharing protocol for RSA, proposed
by Franklin and Reiter at Eurocrypt ’95, and a key
distribution protocol, proposed by Tatebayashi,
Matsuzaki, and Newman at Crypto ’89. This weak-
ness does not affect the encryption of arbitrary unre-
lated messages.

... the new
attack does

demonstrate a
certificational
weakness in
the envelope

method ...

A L G O R I T H M S U P D A T E

8C R Y P T O B Y T E S A U T U M N 1 9 9 5 — T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

It may well be possible that an attack achieving the
second or third result can be mounted without the
attacker actually recovering the private key. In this
article we consider attacks that might be used to
achieve each of these goals in turn, and give rules of
thumb which prevent the attacks being successful.

We note that in a practical implementation of RSA
there are additional security considerations beyond
those covered here. For instance, the interchange-
ability of signatures and decryption might lead to
unexpected security weaknesses if the same key were
used for both. Additionally, the source of random-
ness for key generation and the storage of the pri-
vate key are vital issues in the secure implementa-
tion of RSA. Suffice it to say that no implementa-
tion of RSA can be considered fully secure unless all
issues, including the system-dependent factors, are
taken into account.

Recovering the Private Key
As a first line of attack, an adversary might take the
public key (n, e) of some user and attempt to recover
the private decrypting (or equivalently the signing)
exponent d. Interestingly, one of the links that has
been established between the RSA cryptosystem and
the difficulty of factoring is based on a number-theo-
retic result predating RSA [16], which can be used
to demonstrate that obtaining a private exponent d
from the public exponent e and the modulus n is as
hard as actually factoring n. In essence, knowledge
of the exponents e and d allows the attacker to fac-
tor the modulus n.

With this connection in mind, we first consider the
most well known (and currently the best) attack that
an adversary might mount on RSA when trying to
recover the private key, namely an attempt to factor
the RSA modulus n.

Factoring
The problem of factoring and its continuing im-
provements are the topic of a great many articles
and papers and we will not attempt to replicate the
information that can be found in three, splendid
articles [2,17,20].

It is generally accepted that RSA numbers composed
of primes p and q of about the same size are among
the hardest to factor for their size. (See, however,

the article by Adi Shamir in this issue of Crypto-
Bytes on using RSA moduli with two primes that are
widely differing in size!) For large enough numbers,
and certainly for the size of numbers we use in today’s
implementations of RSA, the general number field
sieve (GNFS) is the best “general-purpose” factoring
method. The older quadratic sieve and its variants
are faster below a certain size of modulus (currently
around 116 decimal digits in length [2]). Most im-
portantly however, users of RSA can determine the
current level of factoring ability and make allowances
for a certain amount of future improvement. As a
consequence, general-purpose factoring need not be
a concern to users of RSA if the primes (and hence
the RSA modulus) are chosen to be sufficiently large.

Depending on the form of the primes p and q that
are multiplied together to give the user’s modulus, it
might be argued that “special-purpose” factoring
methods such as Pollard’s p–1 method [18] and super-
encryption attacks [23], which we discuss next, might
end up being faster than using the GNFS. With these
and similar threats in mind, strong primes were intro-
duced so that p and q were chosen to satisfy a variety
of conditions; for instance p might be chosen so that
p–1 has a large factor r and r –1 has a large factor, etc.
These conditions, and similar ones on the form of the
numbers p+1 and q+1 would guarantee that the modu-
lus n resists the special-purpose factoring methods.

The introduction of the elliptic curve method (ECM)
of factoring changed all this [15]. This factoring
method has some probability of success regardless of
the actual form of the prime. As a consequence, the
dominant property for the security of the primes we
use is size. In protecting against the ECM factoring
technique one protects, with a very high probability,
against all special-purpose factoring techniques. In
short, large primes are more important than strong
primes.

One early proposed attack against RSA is called
superencryption. Simmons and Norris [23] observed
that after a sufficient number of repeated encryp-
tions, the original message would eventually be re-
covered. This would lead to an attack on RSA if the
number of encryptions required were small. But this
is not the case if the primes are large and chosen at
random and so while an interesting observation, super-
encryption is not a practical attack. Likewise, the

It is generally
accepted that
RSA numbers
composed of

primes of about
the same size

are among
the hardest
to factor...

... strong primes
were introduced

so that [...] the
modulus n
resists the

special-purpose
factoring

methods. The
introduction of

the elliptic
curve method

of factoring
changed all this.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S — A U T U M N 1 9 9 5 9

observation that p and q being very close together in
numerical value allows the efficient factorization of
n [25], is not relevant to practical security provided
p and q are sufficiently large and chosen at random.

Wiener’s Attack
There is an interesting attack due to Wiener [24]
which allows an attacker to recover the private ex-
ponent in an ingenious way. Wiener shows that a
continued fraction approximation using the publicly
available parameters e and n can provide sufficient
information to recover d. This attack will be efficient
and practical when the private exponent d is small
relative to the RSA modulus; that is when d < n1/4.

This attack is a concern if the private exponent d is
deliberately chosen to be small, perhaps in an at-
tempt to improve the efficiency of decryption or sign-
ing. In general use however, it is unlikely that a small
private exponent will be generated if the public ex-
ponent e is chosen first; when e is small, d is always
large enough to resist this particular attack and if e is
chosen at random, then with an overwhelming prob-
ability, d will be large enough to resist Wiener’s at-
tack. If the private exponent d is chosen, it should
not be too small.

Using Probabilistic Primes
One frequent question is how the security of RSA
might be affected if one of the primes used to compute
the modulus is, in fact, not a prime number after all.

First, the factors of n will be smaller than expected,
and so it may be easier to factor the modulus with
special-purpose factoring methods. Second, except
in the unlikely event that we have mistakenly gen-
erated a so-called “Carmichael number,” decryption
and verification will yield incorrect results for most
messages and signatures, an occurrence which could
be used to reveal the factors of the modulus.

Though a theoretical concern, the possibility of gen-
erating a non-prime is not really a practical issue.
With modern prime generation methods, the prob-
ability that an output is not prime can be made arbi-
trarily small or even eliminated entirely.

Decrypting Messages
While recovering the private exponent d seems to be
difficult provided we generate the key pair appropri-

ately, is there a way to compromise the security of RSA
encryption without recovering the private exponent?

We highlight three concerns, and describe how to
deal with each in turn. Among the theoretically
interesting results that we do not have space to
cover here are those concerned with the protection
offered by RSA encryption for various bits of mes-
sage information. The interested reader can find
more information about this topic in the work of
Alexi et al. [1].

Small Messages
Clearly RSA encryption is not effective on small
messages when the public exponent e is small. In
particular, when c = me < n, m can be recovered from
c by ordinary root extraction. In fact this attack can
be extended somewhat even if there has been some
modular reduction by guessing how much reduction
has taken place. Thus this attack extended to c > n
by trial-and-error might still be faster than exhaus-
tive search for m.

But the precaution is obvious. Either the public ex-
ponent e should be large or the messages should al-
ways be large. It is this second suggestion that is the
most useful since a small public exponent is often
preferred. However we have to be careful to ensure
that the large message we use is not merely some
multiple of a known value such as a large power of
two (as would be the case if the message were pad-
ded on the right with zeroes). As we will see, this
would allow an attacker to mount some sophisticated
attacks. So when the public exponent e is small the
messages being encrypted should always be large in
numerical value and not a multiple of some known
value. This can all be achieved by padding the mes-
sage appropriately prior to encryption.

Chosen Ciphertext Attacks
One of the identities we highlighted at the begin-
ning of this article was:

(m * r e)d ≡ md * r (mod n).

An attacker might exploit this fact in the following
way. Having intercepted some ciphertext c, the at-
tacker chooses some random number r and computes
re mod n. By sending c * re mod n to the legitimate
receiver, cd * r mod n is recovered which will, in all

Either the
public
exponent e
should be
large or the
messages
should always
be large.

Though a
theoretical
concern, the
possibility of
generating a
non-prime is
not really a
practical issue.

10C R Y P T O B Y T E S A U T U M N 1 9 9 5 — T H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S

likelihood, appear to be random. If the attacker were
to obtain this decrypted string then the intended
ciphertext could be obtained on multiplication by
r –1 mod n.

More far-reaching than obtaining the correct decryp-
tion of a particular message, is a generalization of
this technique by Desmedt and Odlyzko [7]. Since
a chosen ciphertext attack on RSA encryption is
equivalent in effect to a chosen-text attack on the
RSA signature scheme, we shall also see this attack
in the next section.

The attacker asks the user of RSA to decrypt care-
fully chosen ciphertexts and obtains a pool of data
consisting of the decryptions of small primes and cer-
tain other values. Then, when sufficient information
has been accumulated, the attacker can decrypt a
particular encrypted message by multiplying the
ciphertext by a random re and factoring the result
into small primes and other values in the pool. (The
attacker can try another r if unsuccessful.) The de-
cryption of the ciphertext will be the product of the
factors’ decryptions and r-1 mod n.

While this attack can be more efficient than factor-
ing the modulus, certain precautions can be taken to
ensure that it is impractical. However there is already
one lesson we can learn, and that is that an attacker
should not be able to obtain the raw RSA decryption
of an arbitrary value.

Just how practical is a chosen ciphertext attack?
Consider an environment where a subscriber to some
conditional-access service has access to the decryp-
tion equipment but not to the actual keys. In such a
case the subscriber might well be free to interrogate
the decryption unit at will, with ciphertexts of the
subscriber’s own choosing. It would clearly be a se-
curity flaw if the corresponding decryptions were
then directly accessible to the attacker.

Low Exponent Attacks
One class of attacks, perhaps more than any other,
has been the cause of confusion about the correct
and safe use of RSA. These attacks are due to Hastad,
and while the scope and validity of the attacks is not
in question, some have taken the existence of these
attacks as evidence for avoiding low public expo-
nents in an implementation of RSA.

Hastad [12] showed that if an attacker is able to in-
tercept the encryptions of a single message m gener-
ated using several different RSA keys with a com-
mon public exponent e, then it might be possible to
recover m. As a special case, given l different encrypt-
ions me mod n1 , ... , me mod nl an attacker can solve
for m with the Chinese Remainder Theorem [14].

More generally, given t related encryptions

(a1 m + b1)e mod n1 , ... , (at m + bt)e mod nt

where the a i’s and b i’s are known and t > e(e+1)/2,
an attacker can solve for m with lattice reduction
techniques. Note that this attack is a concern if the
messages are related in a known way. The use of suf-
ficient pseudorandom padding prior to encryption
will make such an attack impossible to mount in
practice, and we will describe one method for doing
this in the accompanying box. Messages that are re-
lated in a known way should not be encrypted with
many RSA keys.

Some very recent work by Franklin and Reiter [10]
(see Algorithms Update in this issue of CryptoBytes)
has highlighted a potential problem when related
messages are encrypted under the same RSA key
with a low exponent. This work should not be con-
fused with that of Hastad but the problem they inge-
niously exploit relies on the fact that the various
components required for their attack are once again
related in a known way. The use of random padding,
as we have already seen, will destroy any known re-
lation between messages. Related messages should
not be encrypted with the same RSA key.

Forging Signatures
The problem facing an attacker who is attempting
to forge an RSA digital signature is to construct a
valid signature for a new message while observing
the signatures of other messages that might be known
or chosen.

Among the attacks we will consider here are a simple
chosen message attack and existential forgery as well
as the signature version of the attack on encryption
due to Desmedt and Odlyzko. We do not consider
issues such as which hash functions are more suit-
able for use with the RSA signing operation. There
are a great many possible designs for hash functions

The use of
random

padding ... will
destroy any

known relation
between

messages.

...an attacker
should not
be able to
obtain the

raw RSA
decryption of
an arbitrary

value.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S — A U T U M N 1 9 9 5 11

to choose from [19] and while those based on modu-
lar arithmetic might offer certain implementation
advantages (since they might rely on much the same
operations as are already required for signing),
Coppersmith has demonstrated attacks on one such
proposal [5]. Extreme care should be taken before
considering a hash function based on modular arith-
metic for use with RSA signatures.

Chosen and Known Message Attacks
Just as there was a chosen ciphertext attack on
encryption, there is the following chosen message
attack on raw RSA signatures. As with decryption,
once given the signature of m’ = mre mod n, where
r is random, an attacker can obtain the signature of
m since md ≡ (m’)d r –1 (mod n). Again, the lesson to
learn is simple; it should not be possible to obtain a
raw RSA signature on an arbitrary value.

Using the mathematical identities at the beginning
of the article, it is always possible to compute new
message-signature pairs (m, s) of the form

m = r e Π mi
ai mod n

s = r Π si
a i mod n

where (m1 , s1), ... , (mt , st) are previous message-
signature pairs, and r and a1 , ... , at are arbitrary.
Since the resulting message m is not known in ad-
vance, this is an “existential” forgery; the signature
exists but the message may or may not be useful.
However by selecting messages mi to be signed, an
attacker can derive a signature of a given message m
in a chosen message attack. Again, this can be
avoided by padding in a way that destroys the alge-
braic connections between messages.

While a good padding scheme will destroy the algebraic
properties which allow these attacks, it is worth point-
ing out that de Jonge and Chaum [6] have extended
such basic attacks to demonstrate vulnerabilities in
an early proposal for a simple padding scheme.

Also note that while the algebraic properties we ex-
ploit appear to have a negative impact on the use of
RSA, we should point out that this “attack” can be
used constructively to provide what is called blind-
ing [4] in anonymous payment systems!

Desmedt and Odlyzko’s Attack and a Variant
The attack of Desmedt and Odlyzko on encryption
applies equally to signatures. Perhaps it is more prac-
tical when applied to signature forgery rather than
ciphertext decryption, since it might be easier to de-
mand and receive the signature on a variety of mes-
sages instead of demanding decryptions for a range
of ciphertexts. A variant of this attack can be par-
ticularly effective when the messages being signed
are small (for instance if they are generated as the
output from some message-digest algorithm) unless
care is taken.

Essentially, the attack of Desmedt and Odlyzko (for
both encryption and signatures) relies on factoring
the message into small primes and values near √ n.
An interesting adaptation of this attack (see notes
in Section 8.1 of [22]) applies to the case when the
numerical input to the signing algorithm is always
relatively small. In this adaptation, the attacker
factors the particular message into small primes (this
may or may not succeed); the signature on the mes-
sage equals the product of the factors’ signatures. The
attacker obtains the primes’ signatures from appro-
priate combinations of signatures on other messages
whose factors are small. As opposed to when the in-
put is as large as the modulus, values near √ n are not
needed. The probability of success will therefore de-
pend on the size of the message, not on the size of
the RSA modulus.

Messages to be signed should thus be as large as the
RSA modulus and, for similar reasons as for encryp-
tion, not a multiple of some known value.

RSA Block Formats
Throughout this article we have considered one po-
tential attack after another, in each case highlight-
ing its prevention. Is there a standard way to adopt
these safeguards? Is there a way that implementa-
tions of RSA can communicate with each other and
be assured of a basic level of security?

There are a variety of practical methods for address-
ing the different recommendations on encryption
and signatures. For instance, PKCS #1 [22] (see
accompanying box) is a simple, ad-hoc design for
protecting RSA encryption and signatures on mes-
sage digests; it is easy to implement and addresses
each of the attacks described above in a heuristic

...it should not
be possible
to obtain a
raw RSA
signature on
an arbitrary
value.

t

i=1

t

i=1

Messages
to be signed
should be as
large as the
RSA modulus...

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S — A U T U M N 1 9 9 5 13

Crypto ‘85, pages 18-27, Springer-Verlag, 1986.
[7] Y.G. Desmedt and A.M. Odlyzko. A chosen text attack

on the RSA cryptosystem and some discrete logarithm
schemes. In H.C. Williams, editor, Advances in Cryptol-

ogy - Crypto ‘85, pages 516-522, Springer-Verlag, 1986.
[8] W. Diffie and M.E. Hellman. New directions in cryptog-

raphy. IEEE Transactions on Information Theory, IT-22:
644-654, 1976.

[9] J.-H. Evertse and E. van Heyst. Which new RSA-signa-
tures can be computed from certain given RSA-signa-
tures? Journal of Cryptology, 5(1):41-52, 1992.

[10] M. Franklin and M. Reiter. A linear protocol failure for
RSA with exponent three. Presented at the Rump Ses-
sion of Crypto ’95, Santa Barbara, CA.

[11] L.C. Guillou, J.-J. Quisquater, M. Walker, P. Landrock,
and C. Shaer. Precautions taken against various potential
attacks in ISO/IEC DIS 9796. In I.B. Damg°ard, editor,
Advances in Cryptology— Eurocrypt ‘90, pages 465-473,
Springer-Verlag, 1991.

[12] J. Hastad. Solving simultaneous modular equations of low
degree. SIAM Journal on Computing, 17(2):336-341, April 1988.

[13] ISO/IEC. International Standard 9796: Information Tech-

nology, Security Techniques: Digital Signature Scheme Giv-

ing Message Recovery, 1991.
[14] D.E. Knuth. The Art of Computer Programming, Vol.2:

Seminumerical Algorithms. Second edition, Addison-
Wesley, Reading, MA., 1981.

[15] H.W. Lenstra Jr. Factoring integers with elliptic curves.

Ann. of Math., 126:649-673, 1987.
[16] G.L. Miller. Reimann’s hypothesis and tests for primality.

J. Comput. System Sci., 13:300-317, 1976.
[17] A.M. Odlyzko. The Future of Integer Factorization. RSA

Laboratories’ CryptoBytes, 1:2, pages 5-12, Summer, 1995.
[18] J. Pollard. Theorems on factorization and primality test-

ing. Proc. Cambridge Philos. Soc., 76:521-528, 1974.
[19] B. Preneel. Analysis and Design of Cryptographic Hash Func-

tions. Ph.D. Thesis, K.U.Leuven. January, 1993.
[20] R. Rivest. Dr. Ron Rivest on the Difficulty of Factoring.

Ciphertext: The RSA Newsletter, vol. 1, no. 1, fall 1993,
and reprinted, in an updated form, in an appendix on
pages 361-364 in S. Garfinkel, PGP: Pretty Good Privacy,
O’Reilly & Associates, 1995.

[21] R.L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120-126, February 1978.

[22] RSA Laboratories. PKCS #1: RSA Encryption Standard,
Version 1.5, November 1993.

[23] G.J. Simmons and M.J. Norris. Preliminary comments on
the MIT public-key cryptosystem. Cryptologia, 1(4):406-
414, 1977.

[24] M.J. Wiener. Cryptanalysis of short RSA secret expo-
nents. IEEE Transactions on Information Theory, 36:553-
558, 1990.

[25] H.C. Williams and B. Schmid. Some remarks concerning
the MIT public-key cryptosystem. BIT 19, pages 525-
538, 1979.

and compares the result to the ciphertext. Since the opponent
must guess the pseudorandom string in addition, the difficulty
increases by at least a factor of 264.

For protecting RSA signatures, the signature block format is
slightly different and has the following form:

00x 01x ffx ... ffx 00x D

Again 00x, 01x and ffx are byte values in hexadecimal nota-
tion, and D is the data to be signed, which must be a message
digest. There must be at least eight ffx bytes.

The byte 00x again ensures that the block is arithmetically
less than the RSA modulus. The byte 01x and the ffx padding
prevent the variant of Desmedt and Odlyzko’s attack on small
messages and the overall structure of the block prevents vari-
ous multiplicative attacks.

Just as for encryption, there is at least a 264 increase in work
effort for a variety of attacks. For instance, known and cho-

sen message forgery is 264 harder since an opponent can
only obtain “raw” RSA signatures on less than one in
every 264 possible messages. The opponent must repeat-
edly randomize the message to be signed to find one
whose block format is correct.

The PKCS #1 block format for signatures is intended
only for signatures on the message digests of messages.
Some potential attacks arise if the data D is arbitrary,
since an opponent can select the value of D so that the
resulting signature block has small prime factors, or per-
haps is even a natural power. However, when the data
D is a message digest, which is effectively a pseudoran-
dom value, these attacks are not a concern; for applica-
tions where a message digest is signed with RSA, the
format is adequate.

In applications where data is signed directly, a format
such as ISO/IEC 9796 designed specifically for signatures
with “message recovery” is preferable.

C R Y P T O B Y T E ST H E T E C H N I C A L N E W S L E T T E R O F R S A L A B O R A T O R I E S — A U T U M N 1 9 9 5 15

serve the non-repudiability desired of digital signatures
for important documents.

The statement that private keys cannot be derived
from public keys is an over-simplification of a more
complicated situation. In fact, this claim depends on
the computational difficulty of certain mathemati-
cal problems. As the state of the art advances—both
the current state of algorithmic knowledge, as well
as the computational speed and memory available in
currently available computers—the maintainers of a
digital signature system will have to make sure that
signers use longer and longer keys. But what is to
become of documents that were signed using key
lengths that are no longer considered secure? If the
signed document is digitally time-stamped, then its
integrity can be maintained even after a particular
key-length is no longer considered secure.

Of course, digital time-stamp certificates also depend
for their security on the difficulty of certain compu-
tational tasks concerned with so-called one-way hash
functions. (All practical digital-signature systems de-
pend on these functions as well.) Those who main-
tain a secure digital time-stamping service will have
to remain abreast of the state of the art in building
and in attacking one-way hash functions. Over time,
they will need to upgrade their implementation of
these functions, as part of the process of renewal [1].
This will allow time-stamp certificates to remain
valid indefinitely.

References
[1] D. Bayer, S. Haber, and W.S. Stornetta. Improving the

efficiency and reliability of digital time-stamping. In R.M.
Capocelli, A. De Santis, U. Vaccaro, editors, Sequences

II: Methods in Communication, Security, and Computer Sci-

ence, pp. 329-334, Springer-Verlag, New York (1993).
[2] W. Diffie and M.E. Hellman. New directions in cryptog-

raphy. IEEE Transactions on Information Theory, IT-22:
644-654, 1976.

[3] S. Haber and W.S. Stornetta. How to time-stamp a

digital document. Journal of Cryptology, Vol. 3, No. 2,
pp. 99-111 (1991).

[4] National Institute of Standards and Technology (NIST).
FIPS Publication 186: Digital Signature Standard, May
19, 1994.

[5] R.L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key crypto-

systems. Communications of the ACM, 21(2):120-126,
February 1978.

certificate, to this widely witnessed summary num-
ber; this is how the particular record is tied to a par-
ticular moment in time. The verification procedure
takes a particular record and a putative time-stamp
certificate for that record and a particular time, and
uses this information to validate whether that record
was indeed certified at the time claimed by checking
it against the widely available summary number for
that moment.

Two features of a digital time-stamping system are
particularly helpful in enhancing the integrity of a
digital signature system. First, a time-stamping sys-
tem cannot be compromised by the disclosure of a
key. This is because digital time-stamping systems
do not rely on keys, or any other secret information,
for that matter. Second, following the technique
introduced in [1], digital time-stamp certificates can
be renewed so as to remain valid indefinitely.

With these features in mind, consider the following
situations.

It sometimes happens that the connection between
a person and his or her public signature key must be
revoked—for example, if the user’s secure access to
the private key is accidently compromised; or when
the key belongs to a job or role in an organization
that the person no longer holds. Therefore the per-
son-key connection must have time limits, and the
signature verification procedure should check that
the record was signed at a time when the signer’s
public key was indeed in effect. And thus when a
user signs a record that may be checked some time
later—perhaps after the user’s key is no longer in
effect—the combination of the record and its signa-
ture should be certified with a secure digital time-
stamping service.

There is another situation in which a user’s public
key may be revoked. Consider the case of the signer
of a particularly important document who later
wishes to repudiate his signature. By dishonestly re-
porting the compromise of his private key, so that all
his signatures are called into question, the user is
able to disavow the signature he regrets. However, if
the document in question was digitally time-stamped
together with its signature (and key-revocation re-
ports are time-stamped as well), then the signature
cannot easily be disavowed in this way. This is the
recommended procedure, therefore, in order to pre-

Time-stamping
strengthens
non-repudiation
of digital
signatures.

CRYPTOGRAPHIC

RSA
L A B O R A T O R I E S

RESEARCH AND
CONSULTATION

100 MARINE PARKWAY

R E D W O O D C I T Y

C A . 9 4 0 6 5 - 1 0 3 1

T E L 4 1 5 / 5 9 5 - 7 7 0 3

FAX 415 /595 -4126

rsa- labs@rsa.com

PRESORT
FIRST CLASS
U.S. POSTAGE

PAID
MMS, INC

Copyright © 1995 RSA Laboratories, a division of RSA Data Security, Inc. All rights reserved.

In this issue:
• RSA for

Paranoids
• Collisions

in MD4
• The Secure

Use of RSA
• Digital Time

Stamps

For subscription
information,
see page 2 of
this newsletter.

A N N O U N C E M E N T S

The 1996 RSA Data Security
Conference

The 1996 RSA Data Security Conference will
be held January 17-19 in the Fairmont Hotel,
San Francisco. First held in 1991, this annual
conference is expected to attract more than
1,000 participants and provides an excellent
opportunity for business people, academic cryp-
tographers and representatives of government
to gather and debate the technology and busi-
ness issues facing the industry.

Spread over three days, there will be a wide
range of seminars, tutorials and presentations.
Many of the presentations will be focused on
the commercial applications of modern crypto-
graphic technology, with an emphasis on Public
Key Cryptosystems, but there will also be simul-
taneous tracks for developers, cryptographers
and analysts from which attendees can pick and
choose the talks they wish to attend.

There are plans for several open panel discus-
sions. On the final day, the focus of these dis-
cussions will be on electronic commerce and
doing business on the Internet. Meanwhile
Washington will be the topic for discussion on
the second day, with issues ranging from CLIP-
PER, FORTEZZA and key escrow, to export
control. Following the keynote address and
company announcements on the first morning,
a cryptographer’s expert panel will provide an
excellent opportunity for attendees to direct
their questions directly to some of the leading
figures in cryptographic research.

Over the years, the RSA Data Security Confer-
ence has proved to be a great opportunity for
vendors, developers and specialists to meet, and
like previous years it is expected to be filled to
capacity very soon. More information can be
found on RSA’s web page (http://www.rsa.com/)
or by contacting the conference organizer,
Layne Kaplan Events, at 415/340-9300.

