Net wor k Wor ki ng Group J. Linn
Request for Comments: 1508 Ceer Zol ot Associ ates
Sept ember 1993

Generic Security Service Application ProgramInterface
Status of this Menp

This RFC specifies an Internet standards track protocol for the
Internet conmmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
Oficial Protocol Standards" for the standardization state and status
of this protocol. Distribution of this nmeno is unlinited.

Abst r act

This CGeneric Security Service Application ProgramInterface (GSS-API)
definition provides security services to callers in a generic

fashi on, supportable with a range of underlying nmechani sms and
technol ogi es and hence all owi ng source-level portability of
applications to different environnents. This specification defines
GSS- APl services and primtives at a |l evel independent of underlying
nmechani sm and progranmi ng | anguage environnent, and is to be

conpl enented by other, related specifications:

docunent s defining specific paranmeter bindings for particul ar
| anguage environnents

docunents defining token formats, protocols, and procedures to
be inplenmented in order to realize GSS-APlI services atop
particul ar security nechanisns

Tabl e of Contents

1. GSS-API Characteristics and Conceptsc....... 2
1.1, GSS-API COoNStrUCES ... e e e e 5
1.1.1. Credential s ... 5
1.1.2. ToKens ... 6
1.1.3. Security Contexts e 7
1.1.4. Mechani SmM TYPeS ..ottt e e e e e 8
1.1.5. NamiNQ ..o 9
1.1.6. Channel Bindings 10
1.2. GSS-API Features and ISSUES iy 11
1.2.1. Status Reporting e 11
1.2.2. Per-Message Security Service Availability 12
1.2.3. Per-Mssage Replay Detection and Sequencing 13
1.2.4. Qality of Protection 15

Li nn [Page 1]

RFC 1508 Ceneric Security Interface Sept ember 1993

2. Interface DesCriptions, 15
2.1. Credential managenent calls 17
2.1.1. GSS Acquire_cred call 17
2.1.2. GSS Release cred call 19
2.1.3. GSS Inquire_cred call i 20
2.2. Context-level calls 21
2.2.1. GSS Init_sec context call 21
2.2.2. GSS_ Accept_sec_context call 26
2.2.3. GSS Delete_sec_context call 29
2.2.4. GSS Process _context _token call 30
2.2.5. GSS Context tinme call, 31
2.3. Per-nmessage calls 32
2.3.1. GSS Sign call 32
2.3.2. GSS Verify call 33
2.3.3. GSS_Seal call 35
2.3.4. GSS Unseal call 36
2.4, Support calls 37
2.4.1. GSS Display_status call 37
2.4.2. GSS Indicate nmechs call 38
2.4.3. GSS Conpare_nane call 38
2.4.4. GSS Display_nane call 39
2.4.5. GSS Inport_name call 40
2.4.6. GSS Release nane call 41
2.4.7. GSS_Release_buffer call 41
2.4.8. GSS Release oid set callccooiiiiiiiiiiii... 42
3. Mechani sm Specific Exanple Scenarios 42
3.1. Kerberos V5, single-TGT 43
3.2. Kerberos V5, double-TGT i, 43
3.3. X. 509 Authentication Framework 44
4, Related ActiVvities e 45
5. Acknow edgment S e 46
6. Security Considerations i, 46
7. Author’s Address 46
AppPENdi X A 47
AppeNndi X B ... 48
APPENdi X € oo 49

1. GSS- APl Characteristics and Concepts

The operational paradigmin which GSS-APlI operates is as follows. A
typical GSS-APl caller is itself a communications protocol, calling
on GSS-APl in order to protect its comrunications with

aut hentication, integrity, and/or confidentiality security services.
A GSS- APl caller accepts tokens provided to it by its |ocal GSS-API

i mpl enmentation and transfers the tokens to a peer on a renote system
that peer passes the received tokens to its |ocal GSS-API

i npl ementation for processing. The security services avail able
through GSS-API in this fashion are inplenentable (and have been

Li nn [Page 2]

RFC 1508 Ceneric Security Interface Sept ember 1993

i mpl enent ed) over a range of underlying nmechani sms based on secret-
key and public-key cryptographic technol ogi es.

The GSS- APl separates the operations of initializing a security

cont ext between peers, achieving peer entity authentication (This
security service definition, and other definitions used in this
docunent, corresponds to that provided in International Standard |SO
7498-2-1988(E), Security Architecture.) (GSS Init_sec_context() and
GSS _Accept _sec_context() calls), fromthe operations of providing
per-nmessage data origin authentication and data integrity protection
(GSS_Sign() and GSS Verify() calls) for nessages subsequently
transferred in conjunction with that context. Per-nessage GSS Seal ()
and GSS Unseal () calls provide the data origin authentication and
data integrity services which GSS_Sign() and GSS Verify() offer, and
al so support selection of confidentiality services as a caller
option. Additional calls provide supportive functions to the GSS-
AP’ s users

The foll owi ng paragraphs provide an exanple illustrating the

datafl ows involved in use of the GSS-API by a client and server in a
nmechani sm i ndependent fashi on, establishing a security context and
transferring a protected nmessage. The exanpl e assunes that credenti al
acquisition has already been conpleted. The exanple assunes that the
underlying aut hentication technology is capable of authenticating a
client to a server using elenments carried within a single token, and
of authenticating the server to the client (mutual authentication)
with a single returned token; this assunption holds for presently-
docunent ed CAT mechani sms but is not necessarily true for other

crypt ographi ¢ technol ogi es and associ ated protocol s.

The client calls GSS Init_sec_context() to establish a security
context to the server identified by targ nane, and elects to set the
mutual _req_flag so that nutual authentication is perfornmed in the
course of context establishnent. GSS Init_sec_context() returns an
out put _token to be passed to the server, and indicates

GSS_CONTI NUE_NEEDED st at us pendi ng conpl etion of the nutua

aut henti cati on sequence. Had nmutual req flag not been set, the
initial call to GSS Init_sec_context() would have returned
GSS_COWPLETE status. The client sends the output_token to the server

The server passes the received token as the input_token paraneter to

GSS Accept _sec_context(). GSS Accept_sec_context indicates

GSS COWPLETE status, provides the client’s authenticated identity in

the src_nane result, and provides an output _token to be passed to the
client. The server sends the output_token to the client.

The client passes the received token as the input_token paraneter to
a successor call to GSS_Init_sec_context(), which processes data

Li nn [Page 3]

RFC 1508 Ceneric Security Interface Sept ember 1993

included in the token in order to achi eve nmutual authentication from
the client’s viewpoint. This call to GSS_ Init_sec_context() returns
GSS_COWPLETE status, indicating successful nutual authentication and
the conpl etion of context establishnment for this exanple.

The client generates a data nessage and passes it to GSS Seal ().

GSS Seal () perforns data origin authentication, data integrity, and
(optionally) confidentiality processing on the nessage and

encapsul ates the result into output_nessage, indicating GSS_COVPLETE
status. The client sends the output_nessage to the server.

The server passes the received nessage to GSS Unseal (). GSS Unsea
inverts the encapsul ation perforned by GSS Seal (), deciphers the
message if the optional confidentiality feature was applied, and

val idates the data origin authentication and data integrity checking
quantities. GSS Unseal () indicates successful validation by
returning GSS_COVWPLETE status along with the resultant

out put _nessage.

For purposes of this exanple, we assune that the server knows by

out - of -band nmeans that this context will have no further use after
one protected nessage is transferred fromclient to server. Gven
this prem se, the server now calls GSS Del ete_sec_context() to flush
context-level information. GSS Del ete sec_context() returns a
context _token for the server to pass to the client.

The client passes the returned context_token to
GSS _Process_context_token(), which returns GSS COWLETE status after
deleting context-level information at the client system

The GSS- APl design assunes and addresses several basic goal s,
i ncl udi ng:

Mechani sm i ndependence: The GSS- APl defines an interface to
cryptographically inplemented strong authentication and ot her
security services at a generic level which is independent of
particul ar underlying mechani snms. For exanple, GSS-API-provided
services can be inplemented by secret-key technol ogies (e.g.

Ker beros) or public-key approaches (e.g., X 509).

Prot ocol environnment independence: The GSS-API is independent of
the conmuni cations protocol suites with which it is enployed,
pernmitting use in a broad range of protocol environnents. In
appropriate environnents, an internedi ate inplenentation "veneer"
which is oriented to a particular comuni cation protocol (e.g.
Remote Procedure Call (RPC)) may be interposed between
applications which call that protocol and the GSS-API, thereby

i nvoki ng GSS-API facilities in conjunction with that protocol’s

Li nn [Page 4]

RFC 1508 Ceneric Security Interface Sept ember 1993

conmuni cati ons i nvocati ons.

Prot ocol associ ation independence: The GSS-API’'s security context
construct is independent of conmunications protocol association
constructs. This characteristic allows a single GSS-API

i npl ementation to be utilized by a variety of invoking protoco
nodul es on behal f of those nodul es’ calling applications. GSS-API
services can al so be invoked directly by applications, wholly

i ndependent of protocol associations.

Suitability to a range of inplenentation placenents: GSS-API
clients are not constrained to reside within any Trusted Conputing
Base (TCB) perineter defined on a systemwhere the GSS-API is

i mpl ement ed; security services are specified in a manner suitable
to both intra-TCB and extra-TCB call ers.

1.1. GSS-API Constructs
This section describes the basic el enents conprising the GSS-API
1.1.1. Credentials

Credentials structures provide the prerequisites enabling peers to
establish security contexts with each other. A caller nay designate
that its default credential be used for context establishnent calls
wi t hout presenting an explicit handle to that credenti al

Alternately, those GSS-APlI callers which need to nake explicit

sel ection of particular credentials structures may nmake references to
those credentials through GSS- APl - provi ded credential handl es
("cred_handl es").

A single credential structure nmay be used for initiation of outbound
contexts and acceptance of inbound contexts. Callers needing to
operate in only one of these nodes nay designate this fact when
credentials are acquired for use, allow ng underlying nechanisns to
optinmize their processing and storage requirenents. The credenti al

el ements defined by a particular nmechanismnay contain multiple
cryptographi c keys, e.g., to enable authentication and nessage
encryption to be perfornmed with different algorithns.

A single credential structure may accommodate credential information
associated with rmultiple underlying nmechani sns (nech_types); a
credential structure's contents will vary depending on the set of
mech_types supported by a particular GSS-API inplenentation
Commonl y, a single nmech_type will be used for all security contexts
established by a particular initiator to a particular target; the
primary notivation for supporting credential sets representing
multiple mech _types is to allowinitiators on systens which are

Li nn [Page 5]

RFC 1508 Ceneric Security Interface Sept ember 1993

equi pped to handle nultiple types to initiate contexts to targets on
ot her systenms which can accommpdate only a subset of the set
supported at the initiator’s system

It is the responsibility of underlying system specific nechani sns and
CS functions below the GSS-API to ensure that the ability to acquire
and use credentials associated with a given identity is constrained
to appropriate processes within a system This responsibility should
be taken seriously by inplementors, as the ability for an entity to
utilize a principal’s credentials is equivalent to the entity’'s
ability to successfully assert that principal’s identity.

Once a set of GSS-API credentials is established, the transferability
of that credentials set to other processes or anal ogous constructs
within a systemis a local matter, not defined by the GSS-API. An
exanpl e local policy would be one in which any credentials received
as a result of login to a given user account, or of delegation of
rights to that account, are accessible by, or transferable to,
processes runni ng under that account.

The credential establishnent process (particularly when performed on
behal f of users rather than server processes) is likely to require
access to passwords or other quantities which should be protected

| ocally and exposed for the shortest tinme possible. As a result, it
will often be appropriate for prelinnary credential establishnment to
be perfornmed through | ocal nmeans at user login tine, with the
result(s) cached for subsequent reference. These prelinnary
credentials would be set aside (in a systemspecific fashion) for
subsequent use, either:

to be accessed by an invocation of the GSS-API GSS Acquire_cred()
call, returning an explicit handle to reference that credenti al

as the default credentials installed on behalf of a process
1.1.2. Tokens

Tokens are data elenments transferred between GSS-APlI callers, and are
divided into two classes. Context-|evel tokens are exchanged in order
to establish and manage a security context between peers. Per-nessage
t okens are exchanged in conjunction with an established context to
provi de protective security services for correspondi ng data nessages
The internal contents of both classes of tokens are specific to the
particul ar underlying mechani smused to support the GSS-API; Appendi X
B of this document provides a uniformrecomrendation for designers of
GSS- APl support mechani sms, encapsul ati ng mechani sm specific
information along with a globally-interpretable mechanismidentifier

Li nn [Page 6]

RFC 1508 Ceneric Security Interface Sept ember 1993

Tokens are opaque fromthe vi ewpoi nt of GSS-APlI callers. They are
generated within the GSS-API inplenentation at an end system
provided to a GSS-API caller to be transferred to the peer GSS-API
caller at a renote end system and processed by the GSS-API

i npl ementation at that renote end system Tokens nmay be output by
GSS-APlI primitives (and are to be transferred to GSS-APlI peers)

i ndependent of the status indications which those prinmitives

i ndi cate. Token transfer may take place in an in-band nanner,
integrated into the same protocol streamused by the GSS-API callers
for other data transfers, or in an out-of-band manner across a

| ogi call y separate channel

Devel oprment of GSS- APl support prinitives based on a particul ar
under | yi ng cryptographi c techni que and protocol does not necessarily
imply that GSS-API callers invoking that GSS-API mechani smtype will
be able to interoperate with peers invoking the sanme techni que and
prot ocol outside the GSS-APlI paradigm For example, the format of
GSS- APl tokens defined in conjunction with a particul ar nechani sm
and the techniques used to integrate those tokens into callers
protocols, nmay not be the sane as those used by non-GSS-APlI callers
of the same underlying technique.

1.1.3. Security Contexts

Security contexts are established between peers, using credentials
established locally in conjunction with each peer or received by
peers via delegation. Miltiple contexts may exi st sinultaneously
between a pair of peers, using the sanme or different sets of
credentials. Coexistence of multiple contexts using different
credentials allows graceful rollover when credentials expire.

Di stinction anbng nultiple contexts based on the sane credentials
serves applications by distinguishing different nmessage streans in a
security sense

The GSS- APl is independent of underlying protocols and addressing
structure, and depends on its callers to transport GSS-API-provided
data elenments. As a result of these factors, it is a caller
responsibility to parse comrmuni cated nessages, separating GSS-API -
rel ated data elenments fromcaller-provided data. The GSS-API is

i ndependent of connection vs. connectionless orientation of the
under | yi ng conmuni cati ons servi ce.

No correl ati on between security context and comuni cati ons protoco
association is dictated. (The optional channel binding facility,

di scussed in Section 1.1.6 of this docunent, represents an
intentional exception to this rule, supporting additional protection
features within GSS-APlI supporting nmechani sns.) This separation

all ows the GSS-API to be used in a wide range of conmunications

Li nn [Page 7]

RFC 1508 Ceneric Security Interface Sept ember 1993

1

1

environnents, and also sinplifies the calling sequences of the

i ndividual calls. In many cases (depending on underlying security
protocol, associated nmechanism and availability of cached
information), the state information required for context setup can be
sent concurrently with initial signed user data, w thout interposing
addi ti onal nessage exchanges.

4. Mechani sm Types

In order to successfully establish a security context with a target
peer, it is necessary to identify an appropriate underlying mechani sm
type (nech_type) which both initiator and target peers support. The
definition of a mechani sm enbodi es not only the use of a particular
cryptographi c technology (or a hybrid or choice anong alternative
crypt ographi c technol ogi es), but also definition of the syntax and
semantics of data el ement exchanges which that nmechanismw Il enpl oy
in order to support security services

It is reconmended that callers initiating contexts specify the
"default" mech_type value, allow ng systemspecific functions within
or invoked by the GSS-APlI inplenmentation to select the appropriate
mech_type, but callers may direct that a particular nmech_type be
enpl oyed when necessary.

The nmeans for identifying a shared nech_type to establish a security
context with a peer will vary in different environnents and
circunmst ances; exanples include (but are not linited to):

use of a fixed nech_type, defined by configuration, within an
envi ronnment

syntactic convention on a target-specific basis, through
exam nation of a target’s name

| ookup of a target’s nane in a nam ng service or other database in
order to identify nech_types supported by that target

explicit negotiation between GSS-API callers in advance of
security context setup

When transferred between GSS- APl peers, nech_type specifiers (per
Appendi x B, represented as Object lIdentifiers (ODs)) serve to
qualify the interpretation of associated tokens. (The structure and
encodi ng of Object Identifiers is defined in | SO |EC 8824,
"Specification of Abstract Syntax Notation One (ASN.1)" and in

| SO | EC 8825, "Specification of Basic Encoding Rules for Abstract
Syntax Notation One (ASN. 1)".) Use of hierarchically structured O Ds
serves to preclude anbi guous interpretation of nech_type specifiers

Li nn [Page 8]

RFC 1508 Ceneric Security Interface Sept ember 1993

The O D representing the DASS MechType, for exanple, is
1.3.12.2.1011. 7. 5.

1.1.5. Naning

The GSS- APl avoids prescription of nam ng structures, treating the
names transferred across the interface in order to initiate and
accept security contexts as opaque octet string quantities. This
approach supports the GSS-API's goal of inplenentability atop a range
of underlying security mechani snms, recogni zing the fact that

di fferent mechani sms process and authenticate nanes which are
presented in different forns. Generalized services offering
translation functions anong arbitrary sets of naning environments are
out side the scope of the GSS-API; availability and use of |oca
conversion functions to translate anong the nanming formats supported
within a given end systemis anti cipated.

Two distinct classes of name representations are used in conjunction
with different GSS-API paraneters

a printable form (denoted by OCTET STRING, for acceptance from
and presentation to users; printable name fornms are acconpani ed by
O D tags identifying the nanespace to which they correspond

an internal form (denoted by | NTERNAL NAME), opaque to callers and
defined by individual GSS-API inplenentations; GSS-AP|

i mpl enent ati ons supporting rmultiple nanespace types are
responsible for maintaining internal tags to disanbi guate the
interpretation of particular nanes

Taggi ng of printable nanes allows GSS-APl callers and underlying
GSS- APl nechani sms t o di sanbi guate nane types and to determ ne
whet her an associated nane’s type is one which they are capabl e of
processi ng, avoiding aliasing problens which could result from

m sinterpreting a nane of one type as a name of another type.

In addition to providing neans for nanmes to be tagged with types,
this specification defines prinmtives to support a |level of namng
envi ronnent i ndependence for certain calling applications. To provide
basi ¢ services oriented towards the requirenments of callers which
need not thenselves interpret the internal syntax and semantics of
nanes, GSS-API calls for nane conparison (GSS Conpare_nane()),
human-r eadabl e di splay (GSS Display_nane()), input conversion

(GSS I nport_nane()), and internal nane deall ocation

(GSS_Rel ease_nane()) functions are defined. (It is anticipated that
t hese proposed GSS-API calls will be inplenented in many end systens
based on systemspecific nanme mani pulation primtives already extant
within those end systens; inclusion within the GSS-API is intended to

Li nn [Page 9]

RFC 1508 Ceneric Security Interface Sept ember 1993

offer GSS-API callers a portable neans to performspecific
operations, supportive of authorization and audit requirenents, on
aut henti cat ed nanes.)

GSS I mport _name() inplenentations can, where appropriate, support
nore than one printable syntax corresponding to a gi ven nanespace
(e.g., alternative printable representations for X 500 D stingui shed
Names), allowing flexibility for their callers to sel ect anong
alternative representations. GSS Display_nane() inplenentations
output a printable syntax selected as appropriate to their
operational environnents; this selection is a local matter. Callers
desiring portability across alternative printable syntaxes should
refrain frominpl enenti ng conpari sons based on printable nane forns
and should instead use the GSS Conpare _nanme() call to deternine
whet her or not one internal-format name natches anot her

1.1.6. Channel Bindings

The GSS- APl accommopbdat es the concept of caller-provided channe

bi ndi ng ("chan_bi nding") information, used by GSS-API callers to bind
the establishnment of a security context to relevant characteristics
(e.g., addresses, transfornmed representati ons of encryption keys) of
t he underlyi ng communi cati ons channel and of protection nechani sns
applied to that communications channel. Verification by one peer of
chan_binding infornmati on provided by the other peer to a context
serves to protect against various active attacks. The caller
initiating a security context nust deternine the chan_bindi ng val ues
before nmaking the GSS Init_sec_context() call, and consistent val ues
nmust be provided by both peers to a context. Callers should not
assune that underlying nmechani sns provide confidentiality protection
for channel binding information.

Use or non-use of the GSS-API channel binding facility is a caller
option, and GSS-API supporting mechani snms can support operation in an
envi ronment where NULL channel bindings are presented. Wien non- NULL
channel bindings are used, certain nechanisns will offer enhanced
security value by interpreting the bindings’ content (rather than
sinply representing those bindings, or signatures conputed on them
within tokens) and will therefore depend on presentation of specific
data in a defined format. To this end, agreenments anong nechani sm

i npl ementors are defining conventional interpretations for the
contents of channel binding argunents, including address specifiers
(with content dependent on communi cati ons protocol environnment) for
context initiators and acceptors. (These conventions are being
incorporated into related docunments.) In order for GSS-APlI callers to
be portable across multiple nechani sns and achi eve the full security
functionality available fromeach nmechanism it is strongly
recomended that GSS- APl callers provide channel bindings consistent

Li nn [Page 10]

RFC 1508

Ceneric Security Interface Sept ember 1993

with these conventions and those of the networking environnent in
whi ch t hey operate.

.2. GSS-APlI Features and |ssues

This section describes aspects of GSS-APlI operations, of the security

services which the GSS- APl provides, and provides commentary on
desi gn i ssues.

.2.1. Status Reporting

Each GSS-API call provides two status return val ues. Major_status

val ues provide a nmechani smi ndependent indication of call status
(e.g., GSS_COWLETE, GSS_FAILURE, GSS_CONTI NUE_NEEDED), sufficient to
drive normal control flow within the caller in a generic fashion
Table 1 sumari zes the defined major_status return codes in tabul ar

f ashi on.

Tabl e 1: GSS- API

Li nn

FATAL ERROR CODES

GSS_BAD_BI NDI NGS
GSS_BAD_MECH
GSS_BAD_NAME
GSS_BAD_NAMETYPE
GSS_BAD_STATUS

GSS_BAD_SI G
GSS_CONTEXT_EXPI RED
GSS_CREDENTI ALS_EXPI RED
GSS_DEFECTI VE_CREDENTI AL
GSS_DEFECTI VE_TOKEN
GSS_FAI LURE

GSS_NO_CONTEXT
GSS_NO_CRED

I NFORVATORY STATUS CODES

GSS_COWPLETE
GSS_CONTI NUE_NEEDED

GSS_DUPLI CATE_TOKEN
GSS_OLD_TOKEN

GSS_UNSEQ TOKEN

Maj or Status Codes

channel binding m smatch
unsupported nechani sm request ed

i nval i d nane provi ded

nane of unsupported type provided
invalid input status sel ector
token had invalid signature
specified security context expired
expired credentials detected

def ective credential detected

def ective token detected

failure, unspecified at GSS-API

| evel

no valid security context specified
no valid credentials provided

normal conpl etion

continuation call to routine
required

dupl i cate per-nessage token
detected

ti med- out per-nessage token
det ect ed

out - of - order per-nessage token
det ected

[Page 11]

RFC 1508 Ceneric Security Interface Sept ember 1993

M nor _status provides nore detail ed status infornmation which nmay
i nclude status codes specific to the underlying security nechani sm
M nor _status val ues are not specified in this docunent.

GSS_CONTI NUE_NEEDED maj or _status returns, and optional nessage
outputs, are provided in GSS I nit_sec_context() and

GSS Accept _sec_context() calls so that different mechanisns’

enpl oynent of different nunbers of nessages within their

aut henti cati on sequences need not be reflected in separate code paths
within calling applications. Instead, such cases are acconodated with
sequences of continuation calls to GSS Init_sec_context() and

GSS Accept _sec_context(). The sane nechanismis used to encapsul ate
nmut ual authentication within the GSS-API’'s context initiation calls.

For mech_types which require interactions with third-party servers in
order to establish a security context, GSS-API context establishnent
calls may bl ock pending conpletion of such third-party interactions.
On the other hand, no GSS-API calls pend on serialized interactions
with GSS- APl peer entities. As a result, |ocal GSS-APlI status
returns cannot reflect unpredictable or asynchronous exceptions
occurring at renmote peers, and reflection of such status information
is a caller responsibility outside the GSS-API

1.2.2. Per-Message Security Service Availability

When a context is established, two flags are returned to indicate the
set of per-nmessage protection security services which will be
avail abl e on the context:

the integ avail flag indicates whether per-nmessage integrity and
data origin authentication services are avail able

the conf_avail flag indicates whether per-nessage confidentiality
services are available, and will never be returned TRUE unl ess the
integ_avail flag is also returned TRUE

GSS- APl callers desiring per-message security services should
check the values of these flags at context establishment tine, and
nmust be aware that a returned FALSE value for integ_avail means
that invocation of GSS Sign() or GSS Seal () prinmitives on the
associ ated context will apply no cryptographic protection to user
dat a nessages

The GSS- APl per-nmessage protection service prinitives, as the
category nanme inplies, are oriented to operation at the granularity
of protocol data units. They perform cryptographic operations on the
data units, transfer cryptographic control information in tokens,
and, in the case of GSS Seal (), encapsulate the protected data unit.

Li nn [Page 12]

RFC 1508 Ceneric Security Interface Sept ember 1993

As such, these primtives are not oriented to efficient data
protection for stream paradigmprotocols (e.g., Telnet) if
cryptography nust be applied on an octet-by-octet basis.

1.2.3. Per-Message Replay Detection and Sequenci ng

Certain underlying nech _types are expected to offer support for
repl ay detection and/or sequencing of nessages transferred on the
contexts they support. These optionally-sel ectable protection
features are distinct fromreplay detection and sequencing features
applied to the context establishment operation itself; the presence
or absence of context-level replay or sequencing features is wholly a
function of the underlying nech type's capabilities, and is not
selected or onmitted as a caller option.

The caller initiating a context provides flags (replay_det_req_flag
and sequence_req_flag) to specify whether the use of per-nmessage
repl ay detection and sequencing features is desired on the context
bei ng established. The GSS-API inplenentation at the initiator system
can determ ne whether these features are supported (and whether they
are optionally selectable) as a function of nmech_type, without need
for bilateral negotiation with the target. Wen enabl ed, these
features provide recipients with indicators as a result of GSS-API
processi ng of inconm ng nessages, identifying whether those nessages
were detected as duplicates or out-of-sequence. Detection of such
events does not prevent a suspect nessage from being provided to a
recipient; the appropriate course of action on a suspect nessage is a
matter of caller policy.

The senantics of the replay detection and sequenci ng services applied
to recei ved nessages, as visible across the interface which the GSS-
APl provides to its clients, are as follows:

When replay_det _state is TRUE, the possible major_status returns for
wel I -fornmed and correctly signed nessages are as foll ows:

1. GSS COWPLETE indicates that the nmessage was within the w ndow
(of time or sequence space) allow ng replay events to be detected,
and that the nessage was not a replay of a previously-processed
message within that w ndow.

2. GSS DUPLI CATE TOKEN i ndi cates that the signature on the
recei ved nmessage was correct, but that the nessage was recogni zed
as a duplicate of a previously-processed nessage.

3. GSS_O.D TOKEN indicates that the signature on the received

message was correct, but that the message is too old to be checked
for duplication.

Li nn [Page 13]

RFC 1508 Ceneric Security Interface Sept ember 1993

When sequence_state is TRUE, the possible nmajor_status returns for
wel | -fornmed and correctly signed nessages are as foll ows:

1. GSS _COWPLETE indicates that the message was within the w ndow
(of time or sequence space) allow ng replay events to be detected,
and that the nessage was not a replay of a previously-processed
message within that w ndow.

2. GSS_DUPLI CATE_TOKEN i ndicates that the signature on the
recei ved message was correct, but that the nmessage was recogni zed
as a duplicate of a previously-processed nessage.

3. GSS OLD TOKEN i ndicates that the signature on the received
message was correct, but that the token is too old to be checked
for duplication.

4. GSS_UNSEQ TOKEN i ndicates that the signature on the received
nmessage was correct, but that it is earlier in a sequenced stream
than a nessage al ready processed on the context. [Note:

Mechani sns can be architected to provide a stricter form of
sequenci ng service, delivering particular nmessages to recipients
only after all predecessor nessages in an ordered stream have been
delivered. This type of support is inconpatible with the GSS-API
paradi gmin which recipients receive all nessages, whether in
order or not, and provide them (one at a tine, wthout intra-GSS-
APl message buffering) to GSS-API routines for validation. GSS-
APl facilities provide supportive functions, aiding clients to
achi eve strict nmessage streamintegrity in an efficient manner in
conjunction with sequencing provisions in conmmunications
protocols, but the GSS-API does not offer this | evel of nessage
streamintegrity service by itself.]

As the nmessage streamintegrity features (especially sequencing) may
interfere with certain applications’ intended comunications

par adi gns, and since support for such features is likely to be
resource intensive, it is highly recommended that nech_types
supporting these features allow themto be activated sel ectively on
initiator request when a context is established. A context initiator
and target are provided with correspondi ng indicators

(replay_det _state and sequence_state), signifying whether these
features are active on a given context.

An exanpl e nech_type supporting per-nessage replay detection could
(when replay_det_state is TRUE) inplement the feature as follows: The
under |l yi ng nechani smwoul d insert tinmestanps in data el enents out put
by GSS Sign() and GSS Seal (), and would nmaintain (within a time-
limted window) a cache (qualified by originator-recipient pair)
identifying received data el ements processed by GSS Verify() and

Li nn [Page 14]

RFC 1508 Ceneric Security Interface Sept ember 1993

GSS Unseal (). Wien this feature is active, exception status returns
(GSS_DUPLI CATE TOKEN, GSS_ OLD TCKEN) wi Il be provi ded when

GSS Verify() or GSS Unseal () is presented with a nessage which is
either a detected duplicate of a prior nmessage or which is too old to
val i dat e agai nst a cache of recently received nessages.

1.2.4. Quality of Protection

Some mech_types will provide their users with fine granularity
control over the neans used to provide per-nessage protection
allowing callers to trade of f security processing overhead
dynani cal | y agai nst the protection requirenents of particul ar
messages. A per-nessage quality-of-protection paraneter (anal ogous to
qual ity-of -service, or QOS) selects anong different QOP options
supported by that mechanism On context establishment for a rmulti-QOP
mech_type, context-level data provides the prerequisite data for a
range of protection qualities.

It is expected that the majority of callers will not wish to exert
explicit mechani smspecific QOP control and will therefore request
sel ection of a default QOP. Definitions of, and choices anong, non-
default QOP val ues are nmechani smspecific, and no ordered sequences
of QOP val ues can be assuned equi val ent across different mechani sns.
Meani ngf ul use of non-default QOP val ues denands that callers be
famliar with the QOP definitions of an underlying nmechani sm or
mechani sms, and is therefore a non-portable construct.

2. Interface Descriptions

This section describes the GSS-API's service interface, dividing the
set of calls offered into four groups. Credential managenent calls
are related to the acquisition and rel ease of credentials by
principals. Context-level calls are related to the nanagenment of
security contexts between principals. Per-nmessage calls are rel ated
to the protection of individual nessages on established security
contexts. Support calls provide ancillary functions useful to GSS-API
callers. Table 2 groups and sunmarizes the calls in tabular fashion

Li nn [Page 15]

RFC 1508

Li nn

Table 2: GSS-API Calls
CREDENTI AL MANAGEMENT
GSS _Acquire_cred

GSS _Rel ease_cred

GSS Inquire cred

CONTEXT- LEVEL CALLS

GSS I nit_sec_context
GSS_Accept _sec_cont ext
GSS Del ete_sec_cont ext
GSS_Process_cont ext _t oken

GSS_Context _tinme

PER- MESSAGE CALLS
GSS_Sign

GSS Verify

GSS _Sea

GSS _Unsea

SUPPORT CALLS

GSS _Di spl ay_stat us
GSS_| ndi cat e_nechs
GSS_Conpar e_nane
GSS _Di spl ay_nane
GSS_| mport _nane

GSS_Rel ease_nane

GSS _Rel ease_buffer
GSS _Rel ease_oi d_set

Ceneric Security Interface

acquire credentials for use
rel ease credentials after use
di splay infornmati on about
credential s

initiate outbound security context
accept inbound security context
flush context when no | onger needed
process received control token on
cont ext

indicate validity tine remaining on
cont ext

apply signature, receive as token
separate from nessage

val idate signature token along with
nessage

sign, optionally encrypt,
encapsul at e

decapsul ate, decrypt
val i date signature

i f needed,

transl ate status codes to printable
form

i ndi cate mech_types supported on
| ocal system

conpare two nanes for equality
translate name to printable form
convert printable name to
normal i zed form

free storage of normalized-form
nanme

free storage of printable nane
free storage of O D set object

[Page 16]

Sept ember 1993

RFC 1508 Ceneric Security Interface Sept ember 1993

2.

2.

1

1

Credential managenent calls

These GSS-API calls provide functions related to the nanagenent of
credentials. Their characterization with regard to whet her or not
they may bl ock pendi ng exchanges with other network entities (e.g.
directories or authentication servers) depends in part on OS-specific
(extra-GSS-APl) issues, so is not specified in this docunent.

The GSS_Acquire_cred() call is defined within the GSS-API in support
of application portability, with a particular orientation towards
support of portable server applications. It is recognized that (for
certain systens and nechani sns) credentials for interactive users may
be managed differently fromcredentials for server processes; in such
environnents, it is the GSS-APlI inplenmentation’s responsibility to

di stingui sh these cases and the procedures for making this
distinction are a local matter. The GSS _Rel ease_cred() «call provides
a means for callers to indicate to the GSS-API that use of a
credentials structure is no |longer required. The GSS Inquire_cred()
call allows callers to deternine information about a credentials
structure.

1. GSS_Acquire_cred cal
I nput s:

0 desired name | NTERNAL NAME, -NULL requests locally-deternined
def aul t

o lifetine_req INTEGER -in seconds; 0 requests default

0 desired nmechs SET OF OBJECT | DENTI FI ER, -enpty set requests
system sel ect ed defaul t

0 cred_usage | NTEGER- O=I NI TI ATE- AND- ACCEPT, 1=I NI Tl ATE- O\LY,
2=ACCEPT- ONLY

Qut put s:

0 mmjor_status | NTEGER

0 mnor_status | NTEGER,

0 output_cred _handl e OCTET STRI NG

0o actual _mechs SET OF OBJECT | DENTI Fl ER,

o lifetime_rec INTEGER -in seconds, or reserved value for
| NDEFI NI TE

Li nn [Page 17]

RFC 1508 Ceneric Security Interface Sept ember 1993

Return maj or _status codes:

0 GSS_COWPLETE indicates that requested credentials were
successfully established, for the duration indicated in
lifetime_rec, suitable for the usage requested in cred_usage, for
the set of nech_types indicated in actual _nechs, and that those
credentials can be referenced for subsequent use with the handl e
returned in output_cred_handle.

0 GSS BAD MECH indicates that a nmech_type unsupp